
Improved Universally Composable Multi-party

Computation using Tamper-proof Hardware

Nishanth Chandran Vipul Goyal Amit Sahai

Department of Computer Science, UCLA
{nishanth,vipul,sahai}@cs.ucla.edu

Abstract

Katz, in [Kat07], introduced the model of tamper resistant hardware as a new setup assumption for
universally composable multi-party computation. In this model, a party P creates a hardware token
implementing a functionality and sends this token to party P ′. Given this token, P ′ can do nothing more
than observe the input/output characteristics of the functionality. Based on the DDH assumption, Katz
gave a protocol for universally composable multi-party computation tolerating any number of dishonest
parties. Unfortunately, the protocol proposed by Katz has the following drawbacks. Firstly, the protocol
requires the tamper-resistant hardware to remember state. In particular, the parties need to execute
a two-round interactive protocol with the tamper-resistant hardware. This might make the hardware
susceptible to resettability attacks [CGGM00]. It seems quite reasonable that the tamper resistant
hardware can be reset and executed again. Secondly, the protocol requires an adversary that creates a
hardware token implementing a functionality, to “know” the code that implements the functionality. In
particular, it does not model adversaries who may pass on (possibly malicious) hardware tokens from
one party to another.

In this paper, using completely different techniques from [Kat07], we improve the results of Katz
[Kat07]. In particular, we give a construction for Universally composable multi-party computation in
the tamper resistant hardware model that models the interaction with the tamper-resistant hardware
as a simple request-reply protocol. This implies resetability of our scheme and also that the tamper-
resistant hardware is stateless. Furthermore, the protocol does not require rewinding of the device in
the security proof. This implies that the party P creating the hardware token need not “know” the code
corresponding to the actions that the token will take. This models adversaries who may simply pass
on hardware obtained from a source to someone else without actually knowing the functionality of the
hardware token. Our protocol is also based on more general assumptions (namely enhanced trapdoor
permutations).

1 Introduction

The universal composability (UC) framework of security, introduced by Canetti [Can01], provides a model
for security when protocols are executed multiple times in a network where other protocols may also
be simultaneously executed. Canetti showed that any polynomial time multi-party functionality can be
realized in this setting when a strict majority of the players are honest. Canetti and Fischlin [CF01] then
showed that without an honest majority of players, there exists functionalities that cannot be securely
realized in this framework. Canetti, Kushilevitz and Lindell [CKL06] later characterized the two-party
functionalities that cannot be securely realized in the UC model ruling out almost all non-trivial functions.
These impossibility results are in a model without any setup assumptions (referred to as the “plain”
model). These results can be bypassed if one assumes a setup in the network. Canetti and Fischilin
suggest the use of common reference string (CRS) and this turns out to be a sufficient condition for UC-
secure multi-party computation for any polynomial time functionality, for any number of dishonest parties
[CLOS02]. Some other “setup” assumptions suggested have been trusted “public-key registration services”
[BCNP04, CDPW07], government issued signature cards [HMQU05] and so on.

In [Kat07], Katz introduced the model of tamper resistant hardware as a setup assumption for univer-
sally composable multi-party computation. An important attraction of this model is that it eliminates the

1

need to trust a party, and instead relies on a physical assumption. The assumption is that tamper-proof
hardware exists. In this model, a party P creates a hardware token implementing a functionality and
sends this token to party P ′. Given this token, P ′ can do nothing more than observe the input/output
characteristics of the functionality. Based on the DDH assumption, Katz gave a protocol for universally
composable multi-party computation tolerating any number of dishonest parties. Unfortunately, the pro-
tocol proposed by Katz has the following drawbacks. Firstly, the protocol requires the tamper-resistant
hardware to remember state. In particular, the parties need to execute a two-round interactive protocol
with the tamper-resistant hardware. This might make the hardware susceptible to resettability attacks
[CGGM00]. It seems quite reasonable that the tamper resistant hardware can be reset and executed again.
Secondly, the protocol requires an adversary that creates a hardware token implementing a functionality,
to “know” the code that implements the functionality. In particular, it does not model adversaries who
may pass on (possibly malicious) hardware tokens from one party to another.

In this paper, using completely different techniques from [Kat07], we improve the results of Katz
[Kat07]. In particular, we give a construction for Universally composable multi-party computation in the
tamper resistant hardware model that models the interaction with the tamper-resistant hardware as a
simple request-reply protocol. This implies resetability of our scheme and also that the tamper-resistant
hardware is stateless. Furthermore, the protocol does not require rewinding of the device in the security
proof. This implies that the party P creating the hardware token need not “know” the code corresponding
to the actions that the token will take. This models adversaries who may simply pass on hardware
obtained from a source to someone else without actually knowing the functionality of the hardware token.
Our protocol is also based on more general assumptions (namely enhanced trapdoor permutations) 1.

In [Kat07], it is assumed that once P creates a hardware token and hands it over to P ′, then P cannot
send messages to the token. We relax this assumption slightly, and assume that once P creates a hardware
token and hands it to P ′ then P can neither send nor receive messages from the token. We believe that
if communication can be prevented in one direction, then it is reasonable to assume that communication
from both sides can be prevented.

To summarize, we give UC-secure multi-party computation in the tamper-resistant hardware model
(proposed by [Kat07]) with the following properties:

1. The construction is based on general assumptions (namely, enhanced trapdoor permutations).

2. Interaction with the tamper-proof hardware is a simple request-reply protocol (one round protocol).
This implies resetability of the protocol. The tamper-resistant hardware is also hence stateless in
the protocol.

3. The protocol also does not need require rewinding of the hardware token in the security proof. Hence,
the party creating the hardware token need not “know” the code corresponding to the actions that
the token will take.

2 Model

Our results are in a model largely similar to the model proposed by [Kat07]. We modify the model to
allow for adversaries who may pass on hardware tokens to other parties without knowing the code of
the functionality implemented by the hardware token. At a high level, the Ideal/Real model for multi-
party computation in the tamper-proof hardware model is as follows. To model adversaries who give
out tokens without actually “knowing” the code of the functionality of the tokens, we consider an ideal
functionality FAdv, that models adversaries who will create the code for these tokens. The functionality
Fwrap implements the tamper-resistant hardware.

In the real world, during the setup for multi-party computation, all parties give out a hardware token to
every other party. Honest parties create the code for the hardware tokens honestly and send the program
code of the hardware tokens to Fwrap. Malicious parties interact with FAdv in an arbitrary manner. FAdv

on behalf of each malicious party, then sends the program code of the tokens that are to be given to all
1Our commitment scheme is based on one-way permutations

2

other parties, to Fwrap. During protocol execution, all queries made to tamper-resistant hardware tokens
are made to the Fwrap functionality.

In the ideal world, there exists an ideal functionality F computing the function f which the parties
wish to compute. The simulator simulates the view of the adversary. When the adversary interacts with
FAdv, the simulator forwards messages from the adversary to FAdv and vice-versa. As in the real model,
FAdv on behalf of each malicious party, then sends the program code of the tokens that are to be given
to all other parties, to Fwrap. Program codes of the tokens created by honest parties are created by the
simulator using the honest protocol for token creation. When the adversary queries a token corresponding
to an honest party, S replies with the response to the adversary. When the adversary queries a token
corresponding to a malicious party, S forwards the query to Fwrap and then upon receiving the response
from Fwrap, forwards it to the adversary. Honest parties send their inputs to the trusted functionality F .
Simulator extracts inputs from adversarial parties and sends them to F . F returns the function output to
all honest parties and to the simulator who forwards it to the malicious parties.

We first formally define the Fwrap functionality modelled on the Fwrap functionality of [Kat07]. An
honest user can create a hardware token TF implementing any polynomial time functionality F , but an
adversary given the token TF can do no more than observe the input/output characteristics of the token.
We modify the “wrapper” functionality Fwrap of [Kat07]. The functionality models the hardware token
encapsulating an interactive protocol M . The only change we make is that Fwrap now models M as
a 1-round interactive Turing machine (instead of a 2-round interactive Turing machine). It models the
following sequence of events: (1) a party (also known as creator) takes software implementing a particular
functionality and seals this software into a tamper-resistant hardware token (2) The creator then gives
this token to another party (also known as the user) who can use the hardware token as a black-box to
the functionality. Figure 1 shows the formal description of Fwrap based on a 1-round interactive protocol
M (modified from [Kat07]).

Fwrap is parameterized by a polynomial p and an implicit security parameter k. There are 2 main
procedures:

Creation. Upon receiving (create, sid, P, P ′,M) from P or from FAdv, where P ′ is another
user in the system and M is a 1-round interactive Turing machine, do:

1. Send (create, sid, P, P ′) to P ′.

2. If there is no tuple of the form (P, P ′, ?) stored, then store (P, P ′, M).

Execution. Upon receiving (run, sid, P,msg) from P ′, find the unique stored tuple (P, P ′,M) (if
no such tuple exists, then do nothing). Choose random w ← {0, 1}p(k). Run M(msg; w) for at most
p(k) steps and let out be the response (set out = ⊥ if M does not respond in the allotted time). Send
(sid, P, out) to P ′.

Figure 1: Fwrap functionality based on a 1-round interactive Turing machine M

We now formally describe the Ideal/Real model for multi-party computation in the tamper-proof
hardware model. Let there be n parties P = {P1, P2,, Pn} (Pi holding input xi) who wish to compute a
function f(x1, x2, · · · , xn). Let the adversarial parties be denoted by M⊂ P and let the honest parties be
denoted by H = P −M. We consider only static adversaries. To model adversaries who give out tokens
without actually “knowing” the code of the functionality of the tokens, we consider an ideal functionality
FAdv, that models adversaries who will create the code for these tokens. F is the functionality that
computes the function f that the parties P = {P1, P2,, Pn} wish to compute, while Fwrap (as discussed
earlier) models the tamper-resistant device.

Real model. The real model is the (FAdv,Fwrap)-hybrid model. The adversary interacts with FAdv in
an arbitrary manner before protocol execution. At the end of this interaction, for each adversarial party
Pi ∈M, FAdv sends a list of n-1 program codes (corresponding to tokens that are to be given to the other

3

n-1 parties) to Fwrap. Each honest party sends a list of n-1 program codes to Fwrap. During protocol
execution, all queries made to tamper-resistant hardware tokens are made to the Fwrap functionality. The
parties execute the protocol and compute the function f(x1, x2, · · · , xn).

Ideal model. The ideal model is the (FAdv,Fwrap,F)-hybrid model. The simulator S simulates the view
of the adversary. When the adversary initially communicates with FAdv, S simply forwards messages from
the adversary to FAdv and vice-versa. For each adversarial party Pi ∈M, FAdv sends a list of n-1 program
codes (corresponding to tokens that are to be given to the other n-1 parties) to Fwrap. S generates the
program code for all tokens that are to be created by honest parties (S does this according to the honest
protocol for creating the program code). When the adversary queries a token corresponding to an honest
party, S replies with the response to the adversary. When the adversary queries a token corresponding
to a malicious party, S forwards the query to Fwrap and then upon receiving the response from Fwrap,
forwards it to the adversary. Honest parties send their inputs to the trusted functionality F . Simulator
extracts inputs from adversarial parties and sends them to F . F returns the output to all honest parties
and to S who forwards it to the malicious parties. Figure ?? shows the representation of the Ideal model.

3 Preliminaries

As in [Kat07], we will show how to securely realize the multiple commitment functionality Fmcom in the
(FAdv,Fwrap)− hybrid model for static adversaries. This will imply the feasibility of UC-secure multi-
party computation for any well formed functionality ([CF01, CLOS02]). The primitives we need for the
construction of the commitment functionality are non-interactive perfectly binding commitments, a secure
signature scheme, pseudorandom function and a zero-knowledge proof of knowledge protocol (that are all
implied by one-way permutations [GL89, NY89, HILL99, Gol01, Gol04]).

Non-interactive perfectly binding bit commitment. We denote the non-interactive perfectly
binding commitment to a string or bit a (from [GL89]) by Com(a).

Secure signature scheme. We use a secure signature scheme (security as defined in [GMR88])
with public key secret key pair (PK, SK) that can be constructed from one-way permutations ([NY89]).
By σPK(m) we denote a signature on message m under the public key PK. We denote the verification
algorithm by Verify(PK,m, σ) that takes as input a public key PK, message m and purported signature
σ on message m. It returns 1 if and only if σ is a valid signature of m under PK.

Zero knowledge proof of knowledge. Informally, a zero knowledge proof is a proof of knowl-
edge protocol, if it has the additional property that the witness to the statement being proven can be
extracted by a simulator that interacts with the prover. For completeness, a more formal description is
given in Appendix A. Refer [Gol01, Gol04] for more details.

4 Construction

We show how to securely realize the multiple commitment functionality Fmcom in the (FAdv,Fwrap)−
hybrid model for static adversaries. We will first give a construction that realizes the single commitment
functionality in the (FAdv,Fwrap)− hybrid model for static adversaries and then note how this can be
extended to realize Fmcom. P1 is to commit to a string a (of length n bits) to P2.

At a high level, the protocol is as follows: P2 sends a tamper resistant hardware token that will take a
commitment and its opening from P1 as input. If the opening to the commitment is valid, then the token
outputs a signature of this commitment under P2’s public key. This is the initial setup phase.

In the commitment phase, P1 generates n commitments to 0 and n commitments to 1 and using the
hardware token obtains signatures on this set of 2n commitments. To commit to an n-bit string a, P1

selects commitments along with their signatures from this set corresponding to the value of a. P1 now
commits to these signatures and sends the commitment of a as well as the commitment of the signatures

4

to P2. P1, finally proves using a zero knowledge proof of knowledge that the commitments were valid and
represent commitments to signatures of commitments to the bits of a.

In the decommitment phase, P1 sends a to P2. We note that P1 does not send the actual opening
of the commitment. This is to allow equivocation of the commitment by the simulator during protocol
simulation. P1 then gives a zero knowledge proof that a was the string committed to in the commitment
phase. Note that since we require straight-line simulation, the simulator would have to know in advance,
the challenge queries made by P2 in this zero knowledge proof. Hence before this zero knowledge proof
is given, P2 commits to his randomness R using the UC-secure commitment protocol. P2 then uses ran-
domness from R in the zero knowledge protocol and gives zero knowledge proofs at every round to prove
this. We note that the decommitment to R need not be equivocable and hence we avoid having to use the
UC-secure decommitment protocol itself, which would have lead to circularity! We describe the protocol
more formally below:

Setup phase. P2 generates a public-key/secret-key pair (PK, SK) for a secure signature scheme, a
seed s for a pseudorandom function Fs(·) and sends a token to P1 encapsulating the following functionality
M :

• Wait for message I = (Com(b),Open(Com(b))). Check that the opening is a valid opening to the
commitment. If so, generate signature σ = σPK(Com(b)) and output the signature. The randomness
used to create these signatures is obtained from Fs(I).

We note that this setup is done between all pairs of parties Pi and Pj in the protocol for multi-party
computation.

Commitment phase. We denote the protocol in which P1 commits to a string a (of length n bits) to
P2 by UC-Com(P1, P2, a). The parties perform the following steps:

1. For every commitment to a string a of length n, P1 generates n commitments to 0 and n commitments
to 1. P1 interacts with the token sent to it by P2 and obtains signatures on these 2n commitments.
In order to commit to the ith bit of a string a (denoted by ai), P1 selects a commitment to 0 or 1
whose signature it had obtained from the device sent by P2 (depending on what ai is).

- We note that P1 cannot give the hardware token commitments to the bits of a alone and obtain
the signature on these commitments. This is because, P2’s hardware could be programmed
to respond only if some condition is satisfied by the input string a. If P1 continues with the
protocol, then P2 gains information about a. Hence, P1 obtains signatures on n commitments
to 0 and n commitments to 1 and then selects commitments (and their signatures) according
to the string a.

Let Bi = Com(ai) and let the signature obtained by P1 from the device on this commitment be
σi = σPK(Bi). P1 now computes a commitment to σi for all 1 ≤ i ≤ n denoted by Ci = Com(σi).

- Note here that P1 does not send the obtained signatures directly to P2, but instead sends a
commitment to these signatures. This is because, the signatures could have been maliciously
generated by the hardware token created by P2, to output some information about a.

Let Comi = (Bi, Ci). Now, A = COM(a) = {Com1, Com2,, Comn}. P1 sends A to P2.

2. P1 now gives a zero knowledge proof of knowledge to P2 that Ci is a commitment to a valid signature
of Bi under P2’s public key PK and that Bi is a valid commitment to a bit. More formally, P1

proves the following statement using a zero knowledge proof of knowledge protocol: “For all i,

• There exists a valid opening of Bi to a bit ai under the commitment scheme Com(·)
• There exists a valid opening of Ci to a string σi under the commitment scheme Com(·) such

that Verify(PK,Bi, σi) = 1.”

5

Decommitment phase. The parties perform the following steps:

1. P1 sends P2, the string that was initially committed to. In particular, P1 sends a to P2. Note
that P1 does not send the actual opening to the commitment. This is to allow equivocation of the
commitment by the simulator during protocol simulation.

2. P2 picks a string R, uniformly at random from {0, 1}p(k) and executes the commitment protocol
UC-Com(P2, P1, R).

3. P1 gives a zero knowledge proof that a is the string that was committed to in the commitment
phase of the protocol. The randomness used by P2 in this zero knowledge proof is R and along with
every message sent in the zero knowledge protocol, P2 proves in zero knowledge that the message
uses randomness according to the string R. More formally, the statement P1 proves to P2 is “L1 =
There exists randomness such that A = COM(a).” Let the commitment of R in UC-Com(P2, P1, R)
be Z = COM(R), where COM(·) is as defined in the commitment phase. The statement P2 proves
to P1 is “L2 = There exists string R, such that

• There exists an opening of Z to R under the commitment scheme COM(·) of UC-Com(P2, P1, R)

• R was the randomness used to compute this message”

4. P2 accepts the decommitment if the proof given by P1 was accepted.

5 Security Proofs

5.1 Description of Simulator

In order to prove UC security of the commitment functionality, we will need to construct a straight-line
simulator that extracts the commitment in the commitment phase of the protocol and that can equivocate
a commitment to a given value in the decommitment phase of the protocol. Below, we describe such
a simulator that runs straight-line both while extracting the committed string when interacting with a
committer P1, as well as when equivocating a commitment to a receiver P2.

Setup phase. In this phase, the simulator S creates the program code for all the tokens to be created by
honest parties (according to the honest token creation protocol). When simulating the adversary’s view
during its interaction with FAdv, the simulator simply forwards messages from the adversary to FAdv and
vice-versa. Whenever an adversary interacts with a token created by a malicious party, S forwards the
request to Fwrap. When simulating the view during the adversary’s interaction with a token created by an
honest party, S generates the response according to the request by the adversary and the program code
of the token.

Extraction during Commitment phase. The simulator (simulating honest party P2’s interaction
with P1) runs protocol UC-Com(P1, S, a) with adversarial party P1. S executes the protocol honestly as a
receiver in the commitment phase.

1. Let A = COM(a) = {Com1, Com2,, Comn} according to the commitment protocol described
earlier. P1 sends A to S (Of course, P1 may not follow the protocol).

2. P1 now gives a zero knowledge proof of knowledge to S that Ci is a commitment to a valid signature
of Bi under P2’s public key PK and that Bi is a valid commitment to a bit. That is, P1 proves the
following statement using a zero knowledge proof of knowledge protocol: “For all i,

• There exists a valid opening of Bi to a bit ai under the commitment scheme Com(·)
• There exists a valid opening of Ci to a string σi under the commitment scheme Com(·) such

that Verify(PK,Bi, σi) = 1.”

6

S accepts the commitment if it accepts the zero-knowledge proof. If the zero knowledge proof was
accepted, S looks up the commitments of the bits of a in the list of commitments that were queried by
P1 to the device created by honest party P2. Note that since P2 is honest, the queries made by P1 to
the device created by P2 were actually made to the simulator in the ideal world and S has a list of these
commitments along with their openings.

By a reduction to the security of the underlying signature scheme, we prove in Lemma 1 that if the zero
knowledge proof was accepted by S, then except with negligible probability, the commitments to the bits
of a were queried by P1 to the device sent by P2. Now, since the commitments to the bits of a were queried
by P1 to the device, the simulator S has the openings to these commitments and hence has extracted the
value of a by looking up these commitments.

Equivocation during Decommitment phase. The simulator (on behalf of honest party P1 in-
teracting with malicious party P2) is given a string a′ to which it needs to decommit a commitment given
earlier.

1. S sends a′ to P2.

2. P2 picks a string R, uniformly at random from {0, 1}p(k) and executes the commitment protocol
UC-Com(P2, S, R). Again, P2 may not execute the protocol honestly.

By the property of extraction of commitments (shown earlier), if the commitment was accepted by
S, then except with negligible probability S would have extracted R at the end of this stage in the
protocol.

3. S now has to give a zero knowledge proof that a′ is the string that was committed to in the commit-
ment phase of the protocol. Now given R, all of P2’s messages in this zero knowledge proof protocol
are deterministic. S internally runs the simulation of the zero knowledge protocol (using the simula-
tor Szk for the zero knowledge protocol) and obtains the simulated transcript of the protocol. Note
that S can do this by interacting with prover Szk and generating all messages of the adversary using
randomness R. Now, S sends messages to the adversary according to the simulated zero knowledge
protocol transcript. It sends the adversary the messages of the prover and as response receives ex-
actly the same messages as in the simulated transcript (because the adversary uses randomness R
to execute this protocol). The adversary is forced to use the randomness R because P2, along with
every message sent in the zero knowledge protocol, has to prove in zero knowledge that the message
uses randomness according to the string R. By the soundness property of this zero knowledge proof
(given by P2), if P2 sends a message that is not according to randomness R, it will fail in the zero
knowledge proof. Hence S will be successful in the zero knowledge proof, except with negligible
probability.

Lemma 1 (Soundness Lemma)
Let UC-Com(P1, S, a) be the commitment protocol in which P1 commits to string a (of length n bits) to the
simulator S (S simulates honest party P2). Let E be the event that S accepts the zero knowledge proof
of knowledge given by P1 in the commitment phase of UC-Com(P1, S, a). Let the bits of a be denoted by
a1, a2, · · · , an. Let (Com(ai), Open(Com(ai))) denote valid commitment/opening pairs to the bit ai for all
i. Let F be the event that P1 queried the device sent by P2 with (Com(ai), Open(Com(ai))) for all i. Then,

|Pr[E]− Pr[F]| < ε

where ε is negligible in the security parameter k.

Proof. Details will be given in the full version of the paper. ¤

References

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In FOCS, pages 186–195, 2004.

7

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable secu-
rity with global setup. In TCC, pages 61–85, 2007.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO, Lecture
Notes in Computer Science, pages 19–40. Springer, 2001.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-knowledge
(extended abstract). In STOC, pages 235–244, 2000.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally com-
posable two-party computation without set-up assumptions. J. Cryptology, 19(2):135–167,
2006.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
STOC, pages 25–32, 1989.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press,
Cambridge, UK, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge University
Press, Cambridge, UK, 2004.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[HMQU05] Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. Universally com-
posable zero-knowledge arguments and commitments from signature cards. In
5th Central European Conference on Cryptology, page A version is available at
http://homepages.cwi.nl/ hofheinz/card.pdf., 2005.

[Kat07] Jonathan Katz. Universally composable multi-party computation using tamper-proof hard-
ware. In EUROCRYPT, Lecture Notes in Computer Science, pages 115–128. Springer, 2007.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In STOC, pages 33–43, 1989.

Appendix

A Zero knowledge proof of knowledge

A protocol with a prover P and a verifier V is a zero knowledge proof of knowledge for a language L if
the following properties hold:

• Correctness. ∀x ∈ L,∃ witness w, such that

Pr[P (1k, x, w) ↔ V (1k, x) → Accept] = 1

8

• Zero Knowledge. Let PV (x) denote the view of the conversation from the verifiers point of view
on input x. ∀ PPT V ′, ∃ PPT S, such that ∀x ∈ L,∀ witnesses w are indistinguishable:

D0 = {P (1k, x, w) ↔ V ′(1k, w) → PV (x)}
D1 = {S(1k, x) ↔ V ′(1k, x) → SV ′(x)}

• Extraction. For all PPT P ′, ∃ PPT E such that ∀x ∈ L, additional input w′, there exists a
negligible function ε such that

Pr[P ′(1k, x, w′) ↔ V (1k, x) → Accept]−

Pr[P ′(1k, x, w′) ↔ E(1k, x) → w : wis a valid witness for x ∈ L] ≤ ε(k)

Here, E is allowed to rewind P ′ and run P ′ on polynomially many inputs.

Below, we give a protocol that is a zero knowledge proof of knowledge [Gol01, Gol04]. Let l(k) be a
super-logarithmic function of the security parameter k and let p(k) be a polynomial in k. Both prover (P)
and verifier (V) are given the instance x and the language L. The prover is given the witness w that proves
the statement x ∈ L. Without loss of generality, we can assume that the statement is “A given graph
G has a Hamiltonian cycle”. Hence w is a witness to the Hamiltonian cycle of G. Let Com(a) denote a
non-interactive perfectly binding commitment to a string or bit a. Open(Com(a)) denotes the opening to
Com(a) (which is a along with the randomness used to create the commitment). Figure 2 shows a zero
knowledge proof of knowledge protocol.

1. P generates l(k) pairs of the form {w0
i , w

1
i } such that w0

i ⊕ w1
i = w for all 1 ≤ i ≤ l(k). P then

sends Com(w0
i),Com(w1

i) for all i to V .

2. V generates a l(k)-bit challenge and sends the challenge to P . Let the ith bit of the challenge be
denoted by qi.

3. P responds with wqi
i , for all i.

4. P picks a random permutation π of graph G and sends commitments of the adjacency matrix
H = π(G). P will also commit to the permutation π.

5. V flips a bit b at random and sends it to P .

6. If b = 0, then P responds with the opening of the commitment to the adjacency matrix and the
opening of the commitment to the permutation π. If b = 1, then P responds with the opening of
the commitments to the edges in H forming a Hamiltonian cycle.

7. If b = 0, V checks if the openings are valid and if H = π(G). If b = 1, V checks if the openings are
valid and that they correspond to a Hamiltonian cycle in H. If the checks succeed, V accepts this
round. Steps 4− 7 of the protocol are repeated p(k) times. V accepts if all rounds were accepted.

Figure 2: Zero-knowledge proof of knowledge protocol

9

