Improved UC Secure Computation using
Tamper-proof Hardware

Nishanth Chandran Vipul Goyal Amit Sahai

Department of Computer Science, UCLA

{nishanth,vipul,sahai}@cs.ucla.edu

Abstract

The Universal Composability framework was introduced by Canetti to study the se-
curity of protocols which are concurrently executed with other protocols in a network
environment. Unfortunately it was shown that in the so called plain model, a large class
of functionalities cannot be securely realized. These severe impossibility results motivated
the study of other models involving some sort of setup assumptions, where general positive
results can be obtained. Until recently, all the setup assumptions which were proposed
required some trusted third party (or parties).

Katz recently proposed using a physical setup to avoid such trusted setup assump-
tions. In his model, the physical setup phase includes the parties exchanging temper proof
hardware tokens implementing some functionality. The temper proof hardware is modeled
so as to assume that the receiver of the token can do nothing more than observe its in-
put/output characteristics. It is further assumed that the sender knows the program code
of the hardware token which it distributed. Based on the DDH assumption, Katz gave
general positive results for universally composable multi-party computation tolerating any
number of dishonest parties making this model quite attractive.

In this paper, we improve the results of Katz in several directions using completely
different techniques. Interestingly, our security proofs do not rely on being able to rewind
the hardware tokens created by malicious parties. This means that we are able to relax the
assumptions that the parties know the code of the hardware token which they distributed.
This allows us to model real life attacks where, for example, a party may simply pass on
the token obtained from one party to the other without actually knowing its functionality.
Furthermore, our construction models the interaction with the tamper-resistant hardware
as a simple request-reply protocol. Thus, we show that the hardware tokens used in our
construction can be resettable. In fact, it suffices to use token which are completely stateless
(and thus cannot execute a multi-round protocol). Our protocol is also based on general
assumptions (namely enhanced trapdoor permutations).

1 Introduction

The universal composability (UC) framework of security, introduced by Canetti [Can01], pro-
vides a model for security when protocols are executed multiple times in a network where
other protocols may also be simultaneously executed. Canetti showed that any polynomial
time computable multi-party functionality can be realized in this setting when a strict majority

of the players are honest. Canetti and Fischlin [CF01] then showed that without an honest ma-
jority of players, there exists functionalities that cannot be securely realized in this framework.
Canetti, Kushilevitz and Lindell [CKLO6] later characterized the two-party functionalities that
cannot be securely realized in the UC model ruling out almost all non-trivial functions. These
impossibility results are in a model without any setup assumptions (referred to as the “plain”
model). These results can be bypassed if one assumes a setup in the network. Canetti and
Fischilin suggest the use of common reference string (CRS) and this turns out to be a suffi-
cient condition for UC-secure multi-party computation for any polynomial time functionality,
for any number of dishonest parties [CLOS02]. Some other “setup” assumptions suggested
have been trusted “public-key registration services” [BCNP04, CDPWO07], government issued
signature cards [HMQUO05| and so on.

UC Secure Computation based on Temper Proof Hardware. Recently, Katz [Kat07]
introduced the model of tamper resistant hardware as a setup assumption for universally com-
posable multi-party computation. An important attraction of this model is that it eliminates
the need to trust a party, and instead relies on a physical assumption. In this model, a party
P creates a hardware token implementing a functionality and sends this token to party P’.
Given this token, P’ can do nothing more than observe the input/output characteristics of
the functionality. Based on the DDH assumption, Katz gave general feasibility results for
universally composable multi-party computation tolerating any number of dishonest parties.

Our Contributions. In this paper, we improve the results of Katz in several directions
using completely different techniques. Our results can be summarized as follows:

e Knowing the Code: A central assumption made by Katz [Kat07] is that all parties (in-
cluding the malicious ones) know the program code of the hardware token which they
distributed. This assumption is precisely the source of extra power which the simulator
gets in the security proofs [Kat07]. The simulator gets the power of rewinding the hard-
ware token which is vital for the security proofs to go through. However we argue that
this assumption might be undesirable in practice. For example, it does not capture real
life adversaries who may simply pass on hardware tokens obtained from one party to an-
other. As noted by Katz [Kat07], such attacks may potentially be prevented by making
the creator of a token easily identifiable (e.g., the token could output the identity of the
creator on certain fixed input). However, we note that a non-sophisticated fix of this
type might to susceptible to attacks where a malicious party builds a wrapper around the
received token to create a new token and passes it on to other parties. Such a wrapper
would use the token inside it in a black-box way while trying to answer the user queries.
Secondly, one can imagine more sophisticated attacks where tokens of one type received
as part of one protocols may be used as tokens of some other type in other protocols.
Thus, while it may be possible to design constructions based on this assumption, it seems
like significant additional analysis might be needed to show that this assumption holds.

We relax this assumption in this work. In other words, we make no assumptions on how
malicious parties create the hardware token which they distribute.

e Resettability of the token: The security of the construction in [Kat07] also relies on the

ability of the tamper-resistant hardware to maintain state (even when, for example, the
power supply is cut off)!. In particular, the parties need to execute a two-round inter-
active protocol with the tamper-resistant hardware. It is explicitly assumed that the
hardware cannot be reset [CGGMO00]. In contrast, our construction models the interac-
tion with the tamper-resistant hardware as a simple one round request-reply protocol.
Thus, we are able to show that the hardware tokens used in our construction can be re-
settable. In fact, it suffices to use token which are completely stateless (and thus cannot
even execute a multi-round protocol). We argue that relaxing this assumption about
the capability of the temper resistant tokens is desirable and may bring down their cost
considerably.

e Cryptographic Assumptions: An open problem left in [Kat07] was to construct a protocol
in this model which is based on general assumptions. We settle this problem by presenting

a construction which is based on enhanced trapdoor permutations previously used in
CLOS [CLOS02] and other works.

Our model also has an interesting technical difference from the one in [Kat07]. In [Kat07],
it is assumed that once P creates a hardware token and hands it over to P’, then P cannot
send any messages to the token (but can receives messages from it). We require the opposite
assumption; once the token has been handed to P’, it cannot send any messages to P (but can
potentially receive messages from it). It is easy to see that if the communication is allowed in
both directions, then this model degenerates to the so called plain model which is the subject
of severe impossibility results [CF01, CKL06].

Concurrent Independent Work. Independent of our work, Damgard et al [DNWO07] pro-
posed a new construction for UC secure computation in the temper proof hardware model.
The main thrust of their work seems to obtain a scheme where the hardware tokens only need
to be partially isolated. In other words, there exists a pre-defined threshold on the number of
bits that the token can exchange with the outside world (potentially in both directions). Their
construction is also based on general assumptions (albeit their assumptions are still stronger
than ours).

Damgard et al [DNWO07] however do not solve the main problems addressed by this work.
In particular, their work is in the same rewinding based simulator paradigm as Katz [Kat07]
and thus requires the same assumption that the sender is aware of the program code of the
hardware token which it distributed. Furthermore, the security of their construction relies
upon the assumption that the hardware token is able to keep state (i.e., is not resettable).

2 Owur Model

Our model is a modification of the model in [Kat07]. The central modifications we need are to
allow for adversaries who may supply hardware tokens to other parties without knowing the

! As Katz [Kat07] noted, this assumption can be relaxed if the token has an inbuild source of randomness
and thus messages sent by the token in the protocol are different in different execution (even if the other party
is sending the same messages). Note that a true randomness source is needed to relax this assumption and
cryptographic techniques such as pseudo random functions do not suffice.

code of the functionality implemented by the hardware token. To model adversaries who give
out tokens without actually “knowing” the code of the functionality of the tokens, we consider
an ideal functionality F 44, that models the adversarial procedure used to create these tokens.
The ideal functionality Frqp implements the tamper-resistant hardware as in [Kat07].

We first formally define the Fy,.qp functionality which is a modification of the Fqp func-
tionality of [Kat07]. This functionality formalizes the intuition that an honest user can create
a hardware token T implementing any polynomial time functionality, but an adversary given
the token T can do no more than observe its input/output characteristics. Fyqp models the
hardware token encapsulating a functionality M. The only changes from [Kat07] we make
is that M is now a Turing machine (instead of a 2-round interactive Turing machine) and
does not require any externally supplied randomness. F,qp models the following sequence
of events: (1) a party (also known as creator) takes software implementing a particular func-
tionality M and seals this software into a tamper-resistant hardware token, (2) The creator
then gives this token to another party (also known as the receiver) who can use the hardware
token as a black-box implementing M. Figure 1 shows the formal description of F, based
on an algorithm M (modified from [Kat07]). Note that M could make black box calls to other
tokens (to model the tokens created by an adversarial party).

Fuwrap is parameterized by a polynomial p and an implicit security parameter k. There are
2 main procedures:

Creation. Upon receiving (create, sid, P, P', M) from P or from Fag,, where P’
is another user in the system and M is a Turing machine, do:

1. Send (create, sid, P, P') to P'.
2. If there is no tuple of the form (P, P’,) stored, then store (P, P, M).

Execution. Upon receiving (run, sid, P,msg) from P’, find the unique stored tuple
(P, P', M) (if no such tuple exists, then do nothing). Run M (msg) for at most p(k) steps
and let out be the response (set out = L if M does not respond in the allotted time). Send
(sid, P, out) to P'.

Figure 1: The Fyrqp functionality

We now formally describe the Ideal/Real world for multi-party computation in the tamper-
proof hardware model. Let there be n parties P = { Py, Ps,, P,} (P; holding input x;) who
wish to compute a function f(x1,x9, - ,x,). Let the adversarial parties be denoted by M C P
and the honest parties be denoted by H = P — M. We consider only static adversaries. As
noted before, to model adversaries who give out tokens without actually “knowing” the code
of the functionality of the tokens, we consider an ideal functionality Fa4, that models the
adversarial procedure used to create these tokens. F is the ideal functionality that computes
the function f that the parties P = { Py, P,, P,,} wish to compute, while Fy,qp (as discussed
earlier) models the tamper-resistant device.

REAL WORLD. Our real world is the (Fady, Furap)-hybrid world. In the real world, during

the setup for multi-party computation, a party has to give out a hardware token to every other
party. This is modeled as follows. The adversarial parties send arbitrary messages to Faqy
functionality before protocol execution (Fa4, could use this information for the code creation
of the adversarial tokens). At the end of this interaction, for each adversarial party P; € M,
Fadv sends a list of n — 1 program codes (corresponding to tokens that are to be given to the
other n — 1 parties) to Fyrqp. These program codes can make black calls to tokens of other
(possibly honest) parties. Each honest party sends a list of n — 1 program codes directly to
Fuwrap- During protocol execution, all queries made to tamper-resistant hardware tokens are
made to the F,qp functionality. The parties execute the protocol and compute the function

f(afl,l'Q, T ,fEn).

IDEAL WORLD. The ideal world is the (Fady, Fuwrap, F)-hybrid world. The simulator S simu-
lates the view of the adversarial parties. As in the real world, the adversarial parties initially
sends arbitrary messages to Faq,. For each adversarial party P, € M, Faq, sends a list of
n — 1 program codes (corresponding to tokens that are to be given to the other n — 1 parties)
to Furap- These program codes can make black calls to tokens of other parties. The simulator
S generates the program code for all tokens that are to be created by honest parties (S does
this honestly according to the protocol specifications for creating the program code). S sends
these program codes to Fyrap. When an adversarial party queries a token created by another
adversarial party, the simulator S forwards the query to Fiqp and then upon receiving the
response from Fyrqp, forwards it to the querying party. When an adversarial party queries a
token created by an honest party, the simulator S replies with the response to the querying
party on its own. Honest parties send their inputs to the trusted functionality F. Simulator
extracts inputs from adversarial parties and sends them to F. The ideal functionality F re-
turns the output to all honest parties and to the simulator S who then uses it to complete the
simulation for the malicious parties.

3 Preliminaries

As in [Kat07], we will show how to securely realize the multiple commitment functional-
ity Fmcom in the (Fady, Furap)— hybrid model for static adversaries. This will imply the
feasibility of UC-secure multi-party computation for any well formed functionality ([CFO1,
CLOS02]). The primitives we need for the construction of the commitment functionality
are non-interactive perfectly binding commitments, a secure signature scheme, pseudorandom
function and a zero-knowledge proof of knowledge protocol (that are all implied by one-way
permutations [GL89, NY89, HILL99, Gol01, Gol04]).

Non-interactive perfectly binding bit commitment. We denote the non-interactive
perfectly binding commitment to a string or bit a (from [GL89]) by Com(a). Open(Com(a))
denotes the opening to the commitment Com(a) (which includes a as well as the randomness
used to create Com(a)).

Secure signature scheme. We use a secure signature scheme (security as defined in
[GMRSS]) with public key secret key pair (PK,SK) that can be constructed from one-way
permutations ([NY89]). By opx(m) we denote a signature on message m under the public key

PK. We denote the verification algorithm by Verify(PK,m, o) that takes as input a public
key PK, message m and purported signature ¢ on message m. It returns 1 if and only if o is
a valid signature of m under PK.

Zero knowledge proof of knowledge. Informally, a zero knowledge proof is a proof
of knowledge protocol, if it has the additional property that the witness to the statement be-
ing proven can be extracted by a simulator that interacts with the prover. For completeness,
a more formal description is given in Appendix A. Refer [Gol01, Gol04] for more details.

4 The Construction

We show how to securely realize the multiple commitment functionality F,com in the (Fady, Fuwrap)—
hybrid model for static adversaries. We will first give a construction that realizes the single
commitment functionality in the (Fady, Furap)— hybrid model for static adversaries and then
note how this can be extended to realize Fycom. P1 wishes to commit to a string a (of length

n bits) to Ps.

Setup phase. P, generates a public-key/secret-key pair (PK,SK) for a secure signature
scheme, a seed s for a pseudorandom function F(-) and sends a token to P encapsulating the
following functionality M:

e Wait for message I = (Com(b), Open(Com(b))). Check that the opening is a valid opening
to the commitment. If so, generate signature ¢ = opg(Com(b)) and output the signature.
The randomness used to create these signatures is obtained from Fy(I).

We note that this setup is done between all pairs of parties P; and P; in the protocol for
multi-party computation.

Commitment phase. We denote the protocol in which P; commits to a string a (of
length n bits) to P, by UC-Com(P;, P2, a). The parties perform the following steps:

1. For every commitment to a string a of length n, P; generates n commitments to 0 and
n commitments to 1. P interacts with the token sent to it by P> and obtains signatures
on these 2n commitments. In order to commit to the i bit of a string a (denoted by
a;), Py selects a commitment to either 0 or 1 whose signature it had obtained from the
device sent by P» (depending on what a; is).

- We note that P; cannot give the hardware token commitments to the bits of a
alone and obtain the signatures on these commitments. Doing this would allow
Py’s hardware token to perform a selective failure attack. In other words, P»’s
hardware could be programmed to respond and output signatures only if some
condition is satisfied by the input string a (e.g., all its bits are 0). Thus if P; still
continues with the protocol, P, gains some non-trivial information about a. Hence,
P, obtains signatures on n commitments to 0 and n commitments to 1 and then
selects commitments (and their signatures) according to the string a. This makes
sure that the interaction of P; with the hardware token is independent of the actual
input a.

Let B; = Com(a;) and let the signature obtained by P; from the device on this commit-
ment be 0; = opg(B;). P1 now computes a commitment to o; for all 1 <14 < n denoted
by C; = Com(o;).

Let Com; = (B;,C;). Now A = COM(a) = {Comy,Comsa,....,Comy,} (in other words,
A is the collection of commitments to the bits of ¢ and commitments to the obtained
signatures on these commitments). P; sends A to Ps.

- Note here that P; does not send the obtained signatures directly to P, but instead
sends a commitment to these signatures. This is because the signatures could
have been maliciously generated by the hardware token created by P> to leak some
information about a.

2. P; now gives a zero knowledge proof of knowledge to P, that, for all ¢, C; is a commitment
to a valid signature of B; under P’s public key PK and that B; is a valid commitment
to a bit. More formally, P; proves the following statement using a zero knowledge proof
of knowledge protocol: “For all 4,

e There exists a valid opening of B; to a bit a; under the commitment scheme Com(-)

e There exists a valid opening of C; to a string o; under the commitment scheme
Com(-) such that Verify(PK, B;,0;) = 1.7

Decommitment phase. The parties perform the following steps:
1. P; sends P, the string that was initially committed to. In particular, P; sends a to Ps.

- Note that P; does not send the actual opening to the commitment. P; will later
prove in zero knowledge that a was the string committed to in the commitment
phase. This is to allow equivocation of the commitment by the simulator during
protocol simulation.

2. P, picks a string R uniformly at random from {0, 1}?*) and executes the commitment
protocol UC-Com(Ps, Py, R).

- P, will prove in zero knowledge that a was the string committed to in the commit-
ment phase. Since we require straight-line simulation, the simulator would have to
know in advance the challenge queries made by P» in this zero knowledge proof.
Hence before this zero knowledge proof is given, P» commits to his randomness R
using the UC-secure commitment protocol.

- We note that the decommitment to R need not be equivocable and hence we avoid
having to use the UC-secure decommitment protocol itself, which would have lead
to circularity!

3. Pp gives a zero knowledge proof that a is the string that was committed to in the
commitment phase of the protocol. The randomness used by P» in this zero knowledge
proof is R and along with every message sent in the zero knowledge protocol, P, proves
in zero knowledge that the message uses randomness according to the string R.

Denote by R; and a; the it" bits of R and a respectively. More formally, the statement P;
proves to P is “There exists randomness such that for all i, B; = Com(a;), where B; is as
sent in the commitment phase.” Let the value COM(R) sent during UC-Com(P,, P;, R)
be denoted by Z. Note that Z is of the form {(X1,Y1), (X2, Y2), -+, (Xn,Ys)} where
X; = Com(R;) and Y; is a commitment to the signature of X; under P;’s public key. The
statement P, proves to P is “There exists string R, such that

e For all i, there exists an opening of X; to R; under the commitment scheme Com(-)

e R was the randomness used to compute this message.”

4. P, accepts the decommitment if and only if the proof given by P} was accepted.

5 Security Proofs

5.1 Description of Simulator

In order to prove UC security of the commitment functionality, we will need to construct a
straight-line simulator that extracts the committed value in the commitment phase of the pro-
tocol and that can equivocate a commitment to a given value in the decommitment phase of
the protocol. Below, we describe such a simulator that runs straight-line both while extracting
the committed string when interacting with a committer P, as well as when equivocating a
commitment to a receiver P.

Setup phase. In this phase, the simulator S creates the program code for all the to-
kens to be created by honest parties (according to the honest token creation protocol) and
sends a copy of the program codes to Fyyrqp. The adversarial parties create their tokens by
interacting with F44, as described before.

Handling token queries. Whenever an adversarial party queries a token created by another
adversarial party, the simulator S forwards the request to Fyrqp. When simulating the view
during the adversary’s interaction with a token created by an honest party, S generates the
response according to the request by the adversarial party and the program code of the token.
For every pair of parties (P;, Pj) such that P; € M and P; € H, S creates a table T;;. When a
malicious party P; queries the token of an honest party P;, S stores the query in table T;;. In
other words, the simulator S builds a list of all the commitments (along with their openings)
that the malicious party queries to a token created by an honest party (for getting a signature).

Extraction during Commitment phase. The simulator (acting on behalf of honest
party P») runs protocol UC-Com(Py, S, a) with the adversarial party P;. S executes the pro-
tocol honestly as a receiver in the commitment phase. In more detail:

1. Let A = COM(a) = {Comy,Coma,....,Com,} according to the commitment protocol
described earlier. P; sends A to S (Of course, P; may not follow the protocol).

2. P now gives a zero knowledge proof of knowledge to S that for all ¢, C; is a commitment
to a valid signature of B; under P’s public key PK and that B; is a valid commitment

to a bit. That is, P; proves the following statement using a zero knowledge proof of
knowledge protocol: “For all 7,

e There exists a valid opening of B; to a bit a; under the commitment scheme Com(-)

e There exists a valid opening of C; to a string o; under the commitment scheme
Com(-) such that Verify(PK, B;,0;) = 1.7

The simulator S accepts the commitment if it accepts the zero-knowledge proof. If the
zero knowledge proof was accepted, S looks up the commitments B;’s to the bits of a in the
table T15. Note that T7o contains a list of all commitments that were queried by P; to the
token created by honest party P».

By a reduction to the security of the underlying signature scheme, we prove in Lemma 1
that if the zero knowledge proof was accepted by S, then except with negligible probability,
for all 7, the commitment B; was queried by P; to the device sent by P». Now, since the
commitments to the bits of a were queried by P; to the device, the simulator S has already
recorded the openings to these commitments and hence can extract a by looking up for the
opening of all these commitments B;’s in the table T}o.

Equivocation during Decommitment phase. The simulator (on behalf of honest party
Py interacting with malicious party P») is given a string ¢’ to which it needs to decommit a
commitment given earlier. The simulator proceeds as follows:

1. S sends a’ to P;.

2. P, picks a string R uniformly at random from {0, 1}?*) and executes the commitment
protocol UC-Com(P, S, R). Again, P, may not execute the protocol honestly.

By the property of extraction of commitments (shown earlier), if the commitment was
accepted by S, then except with negligible probability S would have extracted R at the
end of this stage in the protocol.

3. The simulator S now has to give a zero knowledge proof that a’ is the string that was
committed to in the commitment phase of the protocol. Now given R, all of P»’s messages
in this zero knowledge proof protocol are deterministic.

e S internally runs the simulation of the zero knowledge protocol (using the simu-
lator S, for the underlying zero knowledge protocol) and obtains the simulated
transcript of the protocol. Note that S can do this by interacting with prover S,
and generating all messages of the verifier using randomness R.

e Now S sends messages to the party P, according to the simulated zero knowledge
protocol transcript. It sends to P» the messages of the prover and as response
receives exactly the same verifier messages as in the simulated transcript (because
P, uses randomness R to execute this protocol).

e The party P» is forced to use the randomness R because P», along with every
message sent in the zero knowledge protocol, has to prove in zero knowledge that the
message uses randomness according to the string R. By the soundness property of
this zero knowledge proof (given by P,), if P» sends a message that is not according
to randomness R, it will fail in the zero knowledge proof.

Hence S will be successful in simulating the zero knowledge proof, except with negligible
probability.

5.2 The Soundness Lemma

Lemma 1 (Soundness Lemma,)

Let UC-Com(Py, S, a) be the commitment protocol in which Pi commits to string a (of length n
bits) to the simulator S (acting on behalf of the honest party P). Suppose S accepts the zero
knowledge proof of knowledge in the commitment phase of UC-Com(P, S,a). S then looks up
table Tho for the commitments B; = Com(a;) for all i. Let E be the event that there exists i
such that B; &€ T1o. If the signature scheme used in the creation of the token by Py is secure,
then Pr[E] < e, where € is negligible in the security parameter k.

A proof of the above Soundness Lemma will be provided in the full version of this paper.

References

[BCNP04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally
composable protocols with relaxed set-up assumptions. In FOCS, pages 186-195,
2004.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136-145, 2001.

[CDPWO07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In TCC| pages 61-85, 2007.

[CFO1] Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, Lecture Notes in Computer Science, pages 19-40. Springer, 2001.

[CGGMO00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable
zero-knowledge (extended abstract). In STOC, pages 235-244, 2000.

[CKL06] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of univer-
sally composable two-party computation without set-up assumptions. J. Cryptol-
ogy, 19(2):135-167, 2006.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In STOC, pages 494—
503, 2002.

[DNWO07] Ivan Damgaard, Jesper Buus Nielsen, and Daniel Wichs. Universally composable
multiparty computation with partially isolated parties. Cryptology ePrint Archive,
2007. http://eprint.iacr.org/2007/332.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In STOC, pages 25-32, 1989.

10

[GMRSS]

[Gol01]

[Gol04]

[HILLYY]

[HMQUO5]

[Kat07]

[NY89]

Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281-308,
1988.

Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, Cambridge, UK, 2001.

Oded Goldreich. Foundations of Cryptography: Basic Applications. Cambridge
University Press, Cambridge, UK, 2004.

Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364-1396,
1999.

Dennis Hofheinz, Joérn Miiller-Quade, and Dominique Unruh. Universally com-
posable zero-knowledge arguments and commitments from signature cards. In
5th Central Furopean Conference on Cryptology, page A version is available at
http://homepages.cwi.nl/ hotheinz/card.pdf., 2005.

Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In FEUROCRYPT, Lecture Notes in Computer Science, pages
115-128. Springer, 2007.

Moni Naor and Moti Yung. Universal one-way hash functions and their crypto-
graphic applications. In STOC, pages 33-43, 1989.

Appendix

A Zero knowledge proof of knowledge

A protocol with a prover P and a verifier V is a zero knowledge proof of knowledge for a
language L if the following properties hold:

e Correctness. Vx € L,d witness w, such that

Pr[P(1*, 2z, w) < V(1*,2) — Accept] = 1

e Zero Knowledge. Let PV (x) denote the view of the conversation from the verifiers
point of view on input z. ¥V PPT V’/, 3 PPT S, such that Vz € L,V witnesses w are
indistinguishable:

Dy = {P(1*, 2, w) = V'(1* w) — PV (z)}
Dy ={S(1F z) - V(¥ z) — SV/'(z)}

11

e Extraction. For all PPT P’, 3 PPT E such that Vz € L, additional input w’, there
exists a negligible function € such that

Pr[P' (1%, z,w') < V(1*,2) — Accept]—
Pr[P' (1%, z,w') < E(1*,2) — w : wis a valid witness for = € L] < (k)
Here, E is allowed to rewind P’ and run P’ on polynomially many inputs.

Below, we give a protocol that is a zero knowledge proof of knowledge [Gol01, Gol04]. Let
l(k) be a super-logarithmic function of the security parameter k and let p(k) be a polynomial
in k. Both prover (P) and verifier (V') are given the instance = and the language L. The
prover is given the witness w that proves the statement x € L. Without loss of generality, we
can assume that the statement is “A given graph G has a Hamiltonian cycle”. Hence w is a
witness to the Hamiltonian cycle of G. Let Com(a) denote a non-interactive perfectly binding
commitment to a string or bit a. Open(Com(a)) denotes the opening to Com(a) (which is a
along with the randomness used to create the commitment). Figure 2 shows a zero knowledge
proof of knowledge protocol.

1. P generates [(k) pairs of the form {w?, w}} such that w) ®w} = w for all 1 < i < (k).
P then sends Com(w?), Com(w}) for all i to V.

2. V generates a [(k)-bit challenge and sends the challenge to P. Let the " bit of the
challenge be denoted by ¢;.

3. P responds with w*, for all i.

4. P picks a random permutation 7 of graph G and sends commitments of the adjacency
matrix H = 7(G). P will also commit to the permutation 7.

5. V flips a bit b at random and sends it to P.

6. If b = 0, then P responds with the opening of the commitment to the adjacency matrix
and the opening of the commitment to the permutation 7. If b = 1, then P responds
with the opening of the commitments to the edges in H forming a Hamiltonian cycle.

7. If b = 0, V checks if the openings are valid and if H = 7n(G). If b = 1, V checks if
the openings are valid and that they correspond to a Hamiltonian cycle in H. If the
checks succeed, V' accepts this round. Steps 4 — 7 of the protocol are repeated p(k)
times. V' accepts if all rounds were accepted.

Figure 2: Zero-knowledge proof of knowledge protocol

12

