
Encryption Techniques for Secure Database
Outsourcing

Sergei Evdokimov, Oliver Günther

Humboldt-Universität zu Berlin
Spandauer str. 1, 10178 Berlin, Germany
{evdokim,guenther}@wiwi.hu-berlin.de

Abstract. While the idea of database outsourcing is becoming increas-
ingly popular, the associated security risks still prevent many potential
users from deploying it. In particular, the need to give full access to one’s
data to a third party, the database service provider, remains a major ob-
stacle. A seemingly obvious solution is to encrypt the data in such a way
that the service provider retains the ability to perform relational opera-
tions on the encrypted database. In this paper we present a model and
an encryption scheme that solves this problem at least partially. Our
approach represents the provably secure solution to the database out-
sourcing problem that allows operations exact select, Cartesian product,
and projection, and that guarantees the probability of erroneous answers
to be negligible. Our scheme is simple and practical, and it allows effec-
tive searches on encrypted tables: For a table consisting of n tuples the
scheme performs search in O(n) steps.

1 Introduction

In this paper we consider the problem in which one party (Alice) owns a database
and wants to outsource it to a second party (Bob), even though the trust of
Alice in Bob is limited. Alice wants to be sure that the data she outsources is
exposed neither to another party nor to Bob. Legal options, such as contracts,
are available, but their effectiveness is often limited [?].

If, for example, the database is acquired by other company, it may be unclear
whether the new owner is bound by the contract [?]. As Amazon says it: ”In
the unlikely event that Amazon.com Inc., or substantially all of its assets are
acquired, customer information will of course be one of the transferred assets“.
If the data were encrypted, this problem could not arise.

Ideally, Alice would like to have the data encrypted and only give the ci-
phertext to Bob, the database service provider. But if Bob is not trusted, he
cannot participate in the encryption/decryption process. Usually Bob does not
just store the data, but also processes non-trivial queries sent by Alice and there-
fore should be able to process these queries without decrypting the stored data.
About 30 years ago, Rivest et al. [?] described a possible approach for solving
such a problem they called privacy homomorphism. They proposed a scheme to

encrypt data in such a way that certain operations can be performed on the
ciphertext without decrypting it.

In this paper we present privacy homomorphism for the relational operations
exact select, projection and Cartesian product. Additionally the scheme allows
insert, exact delete, exact update and union with duplicates. Exact select, exact
delete and exact update are variants of select, delete and update operations with
condition predicates (WHERE-part of the corresponding SQL queries) restricted
to a combination of equalities connected by AND or OR. The result of a union
with duplicates is the union of two relations without duplicate tuples being
removed.

Our approach displays the following key characteristics
- Our scheme is provably secure and can sustain a chosen-plaintext and a

posteriori chosen-ciphertext attacks.
- Our scheme reveals nothing but the number of tuples that share a queried

value while performing an exact select .
- Our scheme allows to efficiently perform the supported operations on an

encrypted database. The scheme does not affect the time needed to perform
projection, Cartesian product and insert operations. Checking whether a tuple
satisfies an equality condition of an exact select requires O(1) operations; there-
fore exact update, exact delete and exact select require O(n) operations, where
n is the number of tuples in the queried relation.

- Our scheme also avoids a problem of many previous solutions, such as
the outsourcing approach of Hacıgümüş et al. [?] or the search algorithms on
encrypted data of Goh [?] and Song et al. [?]. All those solutions may return
erroneous tuples that do not satisfy the select condition. This requires Alice
each time to perform postfiltering of the received result set, which reduces the
performance and complicates the development process of a client software. This
especially becomes an issue when Alice uses a mobile device for accessing the
encrypted database. The only scheme that allows to perform search on encrypted
data and does not require postfiltering is described in [?]. This scheme, however,
can hardly be applied to databases since a search on encrypted data is restricted
to the search with predefined keywords, which constitutes a severe limitation.
The scheme we are proposing also may include erroneous tuples in the result set
of an exact select operation but the probability of such an error is negligible.

The structure of the paper is as follows. Section 2 gives the relevant definitions
and Section 3 reviews related work. Section 4 introduces the encryption scheme
constituting a database privacy homomorphism and proves its security. Section
5 shows how to perform certain relational operations on an encrypted database.
Section 6 contains some ideas on how to organize indexing of the encrypted
database, and Section 7 presents our conclusions and ideas for future work.

2 Relevant Definitions Notions of Security

In this section we briefly introduce some cryptographic primitives and definitions
used in the paper. We use the standard cryptography definitions; see, e.g., [?],[?].

By {0, 1}n we define the set of all binary strings of length n. By k R← K we
say that k is randomly and uniformly chosen from set K.

Definition 1 (pseudo-random function). A mapping F : K×X 7→ Y, where
K = {0, 1}n, is a pseudo-random function if for every PPT oracle algorithm
A, every positive polynomial p(n), and all sufficiently large n, the advantage
AdvA < 1/p(n). The advantage is defined as

AdvA = |Pr[AFk = 1]− Pr[Aφ = 1]|,

where φ is a function chosen randomly and uniformly from the set of all functions
that map X to Y.

A function that after a certain point decreases faster than one over any
polynomial is called negligible. Thus, it also can be said that the advantage is
negligible.

Consider now set of plaintexts X = {0, 1}m, set of ciphertexts Y = {0, 1}l
and set of keys K = {0, 1}n.

Definition 2 (symmetric encryption scheme).
An encryption scheme is a triple (K, E,D), where E : K×X 7→ Y is a PPT

algorithm (encryption algorithm) that maps a key k ∈ K and a plaintext x ∈ X
into a corresponding ciphertext c ∈ Y and D : K × Y 7→ X is a polynomial-time
algorithm (decryption algorithm) that maps a key k and a ciphertext c into a
corresponding plaintext x. It must hold that Dk(Ek(x)) = x. Keys are chosen
randomly and uniformly from the key space K. The bit length n of the keys is
called security parameter of the scheme.

There are also asymmetric encryption schemes that use two different keys:
one for encryption and a second for decryption. In our paper we only use sym-
metric schemes.

The security of an encryption scheme is defined as follows:

Definition 3 (indistinguishability of encryptions).
An encryption scheme (K, E,D) is indistinguishably secure if for every x, y ∈

X , every PPT algorithm A, every positive polynomial p, and all sufficiently large
n, the advantage AdvAxy < 1/p(n). The advantage is defined as

AdvAxy = |Pr [A(Ek(x)) = 1]− Pr [A(Ek(y)) = 1]|.

The definition of indistinguishability guarantees that in case a computation-
ally bounded adversary obtains the ciphertext of plaintext x, the probability
that she is able to infer any distinguishing property of the plaintext (except for
the length of the plaintext) is negligible.

In our paper we will also use a construct called pseudo-random permutation,
an indistinguishably secure encryption scheme that is a bijection and for which
X = Y.

Definition 3 guarantees security only if a key is used once. In order to securely
encrypt several messages, a new key should be generated for each new encryption.
But often it should be possible to securely encrypt several messages using the
same key. Encryption schemes that allow this are called indistinguishably secure
for multiple messages:

Definition 4 (indistinguishability of encryptions for multiple messages).

An encryption scheme (K, E,D) is indistinguishably secure for multiple mes-
sages if for every x̄ = (x1, . . . , xt), ȳ = (y1, . . . , yt), every PPT algorithm A, ev-
ery positive polynomial p, and all sufficiently large n, the advantage AdvAx̄ȳ <
1/p(n). The advantage is defined as

AdvAx̄ȳ = |Pr [A(Ēk(x̄)) = 1]− Pr [A(Ēk(ȳ)) = 1]|.

Ēk(x̄) denotes the sequence of ciphertexts that are produced by encrypting
each xi with encryption algorithm Ek: Ēk(x̄) = (Ek(x1), . . . , Ek(xt)).

The indistinguishability definitions provided so far guarantee the protection
only from a ”passive“ adversary. Such adversary simply eavesdrops ciphertexts
and tries to get some information about the corresponding plaintexts. But in
real applications the adversary can also be ”active“ and additionally cause the
sender to encrypt a message of her choice (chosen-plaintext attack) or even cause
the receiver to decrypt the ciphertext of her choice (chosen-ciphertext attack).
Formally this is described as the ability of the adversary to query the encryption
(decryption) oracle in case of a chosen-plaintext (chosen-ciphertext) attack.

Definition 5 (indistinguishability under chosen-plaintext attack (IND-
CPA)).

An encryption scheme (K, E,D) is indistinguishably secure under a chosen-
plaintext attack if for every x, y ∈ X , every PPT algorithm AEk with access to
encryption oracle Ek, every positive polynomial p, and all sufficiently large n,
advantage AdvAEk

xy < 1/p(n). The advantage is defined as

AdvAEk
xy = |Pr [AEk(Ek(x)) = 1]− Pr [AEk(Ek(y)) = 1]|.

According to [?], Definition 4 and Definition 5 are equivalent: If an encryption
scheme is indistinguishably secure for multiple messages then the scheme is also
IND-CPA secure.

A chosen-ciphertext attack can be represented as the following game:

1. The challenger generates key k: k R← K.
2. The adversary asks the decryption oracle for the plaintexts corresponding to

the ciphertexts of her choice.
3. The challenger generates two plaintext strings and gives the adversary the

encryption of one of them.
4. The adversary may additionally ask the oracle for the decryption of some

ciphertexts except for the decryption of the received challenge.

5. The adversary tries to guess which of the two strings he was given and halts.

The described attack is called posteriori chosen-ciphertext attack (IND-CCA2).
When step 4 is omitted, the attack is called a-priori chosen-ciphertext attack
(IND-CCA). It is clear that security against IND-CCA2 attack guarantees se-
curity against IND-CCA attack. Further in the paper, when speaking about
chosen-ciphertext indistinguishability we will suggest IND-CCA2.

Definition 6 (posteriori chosen-ciphertext attack indistinguishability
(IND-CCA2)).

An encryption scheme (K, E,D) is indistinguishable with respect to posteri-
ori chosen-ciphertext attack if for every x, y ∈ X , every PPT algorithm ADk with
access to decryption oracle Dk, every positive polynomial p, and all sufficiently
large n, the advantage AdvADk

xy < 1/p(n). The advantage is defined as

AdvADk
xy = |Pr [ADk(Ek(x)) = 1]− Pr [ADk(Ek(y)) = 1]|.

Usually, in scenarios where a chosen-ciphertext attack is possible, a chosen-
plaintext attack is possible too. Therefore, when speaking about chosen-ciphertext
attacks we will also assume the possibility of a chosen-plaintext attack. Also,
when speaking about indistinguishable security, we mean indistinguishable se-
curity for multiple messages or IND-CPA security.

3 Related Work and Security Analysis of Existing
Approaches

As mentioned, the idea of a privacy homomorphism was first described by Rivest
et al. [?]. There it was also mentioned that one of the most promising applica-
tions of privacy homomorphisms could be encryption of databases. If the privacy
homomorphism preserved some of the relational operations, then it would be
possible to process encrypted relations without decrypting them. For example,
consider an encryption scheme that tuple by tuple deterministically encrypts all
the attribute values of the database relations. Deterministic encryption means
that each plaintext is bijectively mapped to the corresponding ciphertext. That
allows to state that equality of the ciphertexts means equality of the corre-
sponding plaintexts and, therefore, if the whole database is encrypted with such
an encryption scheme it is possible to perform exact selects, unions, differences,
Cartesian products and projections on the encrypted tables. Unfortunately, such
a straightforward solution is vulnerable to statistical attacks and cannot be con-
sidered for any practical use.

In 2001 Hacıgümüş et al. [?] described an encryption scheme that allowed
to perform all relational operations on an encrypted database and made the
statistical attack on the scheme less obvious as in the example described above.
According to the scheme, the domain of each attribute is partitioned into inter-
vals, and each attribute value is mapped to the interval that contains it. Then

the intervals are deterministically encrypted and attached to the secure encryp-
tions of the tuples. The way the relational operations are carried out is similar to
the deterministic privacy homomorphism described above. The only difference
is that instead of operating with deterministically encrypted attribute values,
the scheme uses the deterministically encrypted containing intervals - while the
attributes are securely hidden. So, for example, an exact select operation will re-
turn the tuples with the attribute values contained in the interval that is stated
as the argument of the select operation. This requires Alice (the user) to perform
postfiltering in order to remove the tuples that have the attribute values that
belong to the queried interval and are not equal to the argument of the select
operation. On the other hand it makes the attack on the encryption scheme
less straightforward. However, it is clear that an adversary or Bob still learns
something about the data.

It is easy to show that both encryption algorithms do not comply with Def-
inition 4 and, therefore, are not indistinguishably secure for multiple messages.
By xi, yj we define tuples of the relations and by x̄, ȳ we define the relations
consisting of these tuples. In case when the encryption scheme deterministi-
cally encrypts attribute values, the relation with identical tuples can easily be
distinguished from the relation with the same number of different tuples: The
encryption of the first set consists of the set of identical ciphertexts and the
ciphertexts for the second set will be different. If we build algorithm A that
outputs 1 when the ciphertexts are the same and 0 otherwise, the advantage for
such tables will be 1, which is not negligible. Analogously one can distinguish
tables encrypted with the scheme proposed by Hacıgümüş et al. Consider two
tables:

ID salary
171 4900
481 1200
Table 1

ID salary
171 4900
481 4900
Table 2

According to the scheme, the salaries in the first table will be mapped to
different intervals with high probability. The salaries in the second table will be
mapped to the same interval. Since the intervals are encrypted deterministically,
the ciphertexts that correspond to the intervals of the ”salary“ attribute of
the first table will be different and the analogous intervals’ encryptions for the
second table will be identical. Hence, algorithm A can determine to which table
corresponds the received ciphertext: If the ciphertexts that correspond to the
“salary” intervals are different, A outputs 0; otherwise 1. The advantage for
such an algorithm will again be non-negligible.

In modern cryptography, the weakest requirement for an encryption scheme
to have any practical applications is IND-CPA security. In case of IND-CCA2
security, it may seem that the assumption of an adversary’s ability to decrypt
ciphertexts of her choice is very unlikely to be satisfied. However, the successful
chosen-ciphertext attack on the widely used internet security protocol SSL dis-
covered by Bleichenbacher [?] demonstrates the relevancy of IND-CCA2 security.

The encryption scheme that allows to perform exact selects on encrypted
relations and is IND-CPA and IND-CCA2 secure is described in [?]. The scheme
is based on encryption techniques that allow to perform searches on encrypted
data [?],[?]. It uses the similarity between searching for text documents that
contain a defined keyword and exact select operation for databases. The idea
behind the scheme is to bijectively map tuples of the relation to text documents
by treating each attribute value as a sequence of characters or ”word“, encrypt
the resulting documents with the scheme that supports searches on encrypted
data, and, instead of issuing exact selects, issue the corresponding search opera-
tions. E.g, Table 1 from the example above can be mapped to the following set
of documents:

171#ID4900SL
1200SL481#ID

In this example each attribute value is mapped to the word consisting of
6 symbols where ’#’ is the padding symbol and ”ID“ and ”SL“ are identifiers
that help to map the words back to the values of the corresponding attributes
(ID and salary). The mapping of the tuples to the documents define the way
exact selects are converted to the search operations: E.g., in order to process
the exact select SELECT * FROM Table1 WHERE salary=4900 Bob performs the
search for documents that contain word ”4900SL“.

Disadvantages of the proposed method include the necessity of postfiltering
of an exact select results (since the schemes [?,?] allow with high probability
the inclusion of erroneous tuples in the result of a search operation) and the
infeasibility of projection and Cartesian product, due to the impossibility to
concatenate and split encrypted tuples.

In [?] Yang et al. proposed the encryption scheme similar to the one we
discuss in this paper. In their work they introduce own security model and base
the security analysis of the scheme on the different notion of security. However,
though the approach they take for building the encryption scheme is correct, the
analytical part of the paper contains several serious flaws. So, as it can be easily
illustrated by a counterexample, the definition of security on which the authors
base their reasoning in fact does not require a database to be encrypted at all.
Additionally, the authors mistakenly suppose that their scheme does not include
erroneous tuples in the resulting set of a processed query. For the more detailed
analysis of this work refer to Appendix B.

4 Secure Database Encryption

In this section we show how to construct an encryption scheme that can serve
as a privacy homomorphism for a well-defined subset of relational operations.
First we show how to perform encryption and decryption of a database, then
we provide the proof of IND-CPA security of the scheme. Algorithms for the
relational operators follow in Section 5.

Attribute of R Attribute of RE Type of Attribute

ID f4FR32 int

Name aSC3f7 string[100]

. . .

Address sF3nD4 String[200]
Table 1. Corresponding attributes and data types

4.1 Construction

We build our scheme as the combination of cryptographic primitives. The term
cryptographic primitive describes an elementary cryptographic algorithm that
satisfies certain security requirements and is used as a building block for en-
cryption schemes. When implementing the encryption scheme as a computer
program, the primitives are substituted with their implementations that are be-
lieved to satisfy necessary security requirements (DES, RSA, MD5, SHA etc.).
By saying ”believed“ we mean that so far there were no successful attacks on
these implementations. In case a security breach is found, the compromised im-
plementation can be substituted by another construct that possesses the needed
properties and is considered as secure.

Our encryption scheme uses the following cryptographic primitives:

– (K, E,D), K = {0, 1}m, X = {0, 1}m, E : K×X 7→ Y is a symmetric encryp-
tion schema that is IND-CPA secure and key space and space of plaintexts
are identical.

– (K0, E0, D0), E0 : K0 × X 7→ Y0 is a symmetric encryption schema that is
IND-CPA secure.

– P : K′×X 7→ X , X = {0, 1}m is a pseudo-random permutation. Since K = X
we can also write P : K′ ×X 7→ K

The indistinguishable security of encryption scheme (K, E,D) means that the
scheme is probabilistic: Same plaintexts may be encrypted as different cipher-
texts. Otherwise it would always be possible to distinguish a set of ciphertexts
that are encryptions of the identical plaintexts from a set that contains encryp-
tions of different plaintexts. On the contrary, the pseudo-random permutation
P is deterministic and maps identical plaintexts to identical ciphertexts.
Key generation. Alice generates the encryption key k̂ that is a triple (k0, k1, k2),
where k0

R← K0, k1
R← K′, k2

R← K′: k0 is the key for encryption scheme
(K0, E0, D0), k1, k2 are the keys for pseudo-random permutation P (k1, k2 are
chosen independently).
Encryption. Suppose that Alice wants to encrypt a relational database that
consists of several relations. The idea behind the scheme is to augment encryp-
tions of every attribute value with an additional piece of information, viz., a
search tag that will allow Bob to execute search on the ciphertexts without
getting any information about the corresponding plaintext values.

Each relation is encrypted separately, so we describe the encryption algorithm
for an arbitrary attribute value of a relation R(a1 : D1, . . . , al : Dl). Without
loss of generality we suppose that Di∩Dj = ∅, i 6= j.1 The encryption algorithm
maps the relation R to an encrypted relation RE that has the same number of
attributes but the domains of the attributes are changed to binary strings. Since
the information about the domains will be not available after encryption, Alice is
responsible for saving this information and performing correct type conversions
during the decryption process (this will be discussed later in more detail).

Before starting the encryption, Alice generates key k̂ and then performs tuple-
by-tuple encryption of relation R, separately encrypting each attribute value.
Let x ∈ Di be a plaintext value of attribute ai. The encryption algorithm treats
plaintext x as a binary value and encrypts it by performing the following steps:

1. Plaintext x is encrypted with encryption function E0 and key k0: c = E0
k0

(x).
2. Pseudo-random permutation P generates key ks: ks = Pk1(x). Key ks will

be used for generating the search tag.
3. Plaintext x is deterministically encrypted by pseudo-random permutation P

with key k2: s = Pk2(x)
4. Using ciphertext s and key ks the search tag is generated: t = Eks

(s).
5. The output of the algorithm is the pair (t, c).

With Ê denoting the encryption algorithm, whole procedure can be described
as

Êk̂(x) := (EPk1 (x)(Pk2(x)), E
0
k0

(x)), (1)

where k̂ = (k0, k1, k2).
After the encryption procedure was applied to each attribute value of tu-

ple < a1 : x1, . . . , al : xl >, the resulting ciphertexts form a new tuple < aE
1 :

(t1, c1), . . . , aE
l : (tl, cl) > that belongs to relation RE . In order to hide the struc-

ture of the database, the names of the attributes should be changed (ai 6= aE
i).

To correctly decrypt the encrypted relation, Alice should store the information
about the correspondences between the attributes of relation R and the at-
tributes of the relation RE . Also, as mentioned earlier, the encryption changes
the domains of the attributes to a raw binary data. The information about the
domains of original attributes should also be maintained by Alice (Table 1).

In order to use the described encryption scheme for encrypting values of
different attributes, the domains of relation RE should be of the same length.
That means that, before being encrypted, the values should be padded up to
the length of the domain that has the longest binary representation. Note that
it is very unlikely that an attribute containing very long values will be used by
an exact select (e.g., attributes that contain full address, long text, multimedia
data etc.). Such attributes should either be split into several shorter attributes
or encrypted with a conventional secure encryption scheme if no select queries
are expected for them.
1 If not, then elements of each domain Di can be appended with bits that uniquely

identify attribute ai within the table.

Decryption. The decryption is performed by decrypting the attribute values of
every tuple of relationRE and filling relationR with the corresponding plaintexts
tuples taking into account the information from Table 1. The decryption of
ciphertext (t, c) is performed straightforwardly:

D̂k̂(t, c) := Dk0(c) = x, (2)

where k̂ = (k0, k1, k2).
Using the information stored in Table 1 the plaintext is converted to the

appropriate type and saved as the value of the corresponding attribute.
The final scheme is defined as (K̂, Ê, D̂), where Ê is defined according to (1),

D̂ is defined according (2) and K̂ = (K0 ×K′ ×K′).

4.2 Proofs of Security

Theorem 1. Encryption scheme (K̂, Ê, D̂) is IND-CPA secure.

See Appendix A.1 for a proof of the theorem.
Even though the encryption scheme (K̂, Ê, D̂) provides IND-CPA security,

the scheme is vulnerable to IND-CCA2 attack. Even if we strengthen the secu-
rity of cryptographic primitives and require IND-CCA2 security for encryption
schemes (K, E,D) and
(K0, E0, D0) the resulting scheme (K̂, Ê, D̂) will still be vulnerable to a posteri-
ori chosen-ciphertext attack that can allow an adversary to recover the plaintext
from a given ciphertext.

Theorem 2. Encryption scheme (K̂, Ê, D̂) is not IND-CCA2 secure.

Proof sketch. For our scheme, where Êk̂(x) = (t, c), the distinguishing algorithm
proceeds as follows:

1. The algorithm queries the encryption oracle for x and gets ciphertext (t′, c′).
2. The algorithm queries the decryption oracle for (t′, c). This query is allowed

and returns some α (note that if the algorithm is input x, then α = x).
3. If α = x the algorithm outputs 1; otherwise 0.

Clearly, the advantage of the algorithm is non-negligible. ut
The scheme can be easily modified to be IND-CCA2 secure. There exist

standard techniques that make an IND-CPA secure encryption scheme secure
against CCA2 attack. The underlying idea is to make it infeasible for an adver-
sary having access to a decryption oracle to forge a legitimate ciphertext. One
of the possibilities is to augment the ciphertext with a tag containing “Message
Authentication Code” (MAC). A ciphertext is considered legitimate if in a pair
(c, MAC), MAC is the valid authentication code of c. The simplest way for gen-
erating MAC for a ciphertext is to input the ciphertext into a pseudo-random
function and use the output as the authentication code.

We define the IND-CCA2 secure version of encryption scheme (K̂, Ê, D̂) as
(K̂′, Ê′, D̂′) and construct it as follows:

Let F : KF ×Y×Y0 7→ Y ×Y0 or FkF
(t, c) = a, kF ∈ KF , t ∈ Y, c ∈ Y0, a ∈

Y × Y0.
Key generation. k̂′ R← K̂′, where K̂′ = K̂ × KF = K ×Kp ×Kp ×KF .
Encryption. Ê′

k̂′(x) = (Êk̂(x), FkF
(Êk̂(x))) = (t, c, FkF

(c, t)) = (t, c, a), where

k̂′ = (k̂, kf) = (k, k1, k2, kF).
Decryption. D̂′

k̂′(t, c, a) = D̂k̂(t, c) = Dk(c) if FkF
(t, c) = a otherwise the

ciphertext is not legitimate and is thus rejected.
According to [?], the encryption scheme (K̂′, Ê′, D̂′) is IND-CCA2 secure.
Since the only difference between schemes (K̂, Ê, D̂) and (K̂′, Ê′, D̂′) is the

authentication tag that is simply attached to the ciphertext, all the operations
that are feasible under scheme (K̂, Ê, D̂) will remain feasible under scheme
(K̂′, Ê′, D̂′). Note that unlike scheme (K̂, Ê, D̂) that does not require search
tag for decryption, in order to perform decryption of ciphertext (t, c, a), the
scheme (K̂′, Ê′, D̂′) needs all the members of the triple in order to check the
legitimacy of the ciphertext. That means that if a database is encrypted with
scheme (K̂′, Ê′, D̂′), the complete triples (t, c, a) should be sent to Alice, thus
tripling the amount of transferred data compared to the case when the scheme
(K̂, Ê, D̂) is used.

5 Operations on Encrypted Relational Databases

In this section we discuss the relational operations that are feasible under the
proposed scheme and security implications that arise when some of operations
are performed.

5.1 Allowed Operations

The encryption schema described above allows to perform the following subset of
relational operations on encrypted relations: exact select, projection, Cartesian
product and equijoin. Also the scheme allows to perform union with duplicates,
exact update, exact delete and insert.
Exact Select. The proposed encryption scheme allows to perform exact selects
(SELECT...
FROM...WHERE <attribute name>=<value>) on the encrypted relation with-
out decrypting it. Exact selects with more than one selection attribute connected
by AND or OR are discussed at the end of this section.

Suppose, that exact select σai.xq
should be performed on relation R that is

encrypted and stored as RE . Then the following actions should be performed:

1. Alice transforms the query σai.xq
into the following triple

(q, kq, a
E
i) = (Pk2(xq), Pk1(xq), aE

i), (3)

where aE
i is the name of the attribute of relation RE that corresponds to

attribute ai. The corresponding attributes are taken from the structure anal-
ogous to Table 1.

2. Tuple by tuple, Bob checks every value (t, c) of attribute aE
i for the following

equality:
Dkq (t) = q. (4)

The tuples that satisfy the equality are marked.
3. After all the tuples of the relation RE are checked, Bob sends the marked

tuples to Alice. The search tags of the attribute values are not needed for
the decryption and can thus be discarded. That would reduce the amounts
of the data transferred to Alice by about half.

4. Using key k0, Alice decrypts the received ciphertexts.

Recall that, when encrypting plaintext x, the encryption algorithm Ê gener-
ates a key ks = Pk1(x) and a ciphertext s = Eks(Pk2(x)). If the ciphertext (t, c),
whose search tag was checked at step 2, is the encryption of xq, then ks = kq,
s = q, and equality (4) holds true due to

Dkq (t) = Dkq (Eks(s)) = Dkq (Eks(Pk2(xq))) = Pk2(xq) = q.

Therefore, all the tuples that have encryption of xq as the value of attribute aE
i

will be marked and included in the result set.
Note that the triple provided by Alice does not contain any plaintext values.

That allows Bob to perform search for ai.xq without ai.xq itself being revealed.
However, we cannot call this scheme privacy homomorphism in a strict sense,

since the set of marked tuples may contain tuples that do not belong to the actual
solution. This can happen due to following collision:

DPk1 (xq)(EPk1 (x)(Pk2(x))) = Pk2(xq), (5)

where xq 6= x, k̂ = (k0, k1, k2).
In general the probabilities of such collisions vary depending on encryption

scheme (K, E,D). A good candidate to minimize this probability is the IND-CPA
secure one-time pad based encryption scheme constructed as follows:

– Key generation: k R← K.
– Encryption: Ek(x) := (r, fk(r)⊕x), where f : K×X 7→ X is a pseudo-random

function, r R← X .
– Decryption: Dk(r, c) := fk(r)⊕ c.

The scheme is simple, efficient and, according to [?], IND-CPA secure.
In order to use this scheme as (K, E,D) we require k, r, x ∈ {0, 1}m and

f : {0, 1}m × {0, 1}m 7→ {0, 1}m. Using this implementation of (K, E,D) we can
rewrite (5) as

fPk1 (xq)(r)⊕ fPk1 (x)(r)⊕ Pk2(x) = Pk2(xq) ⇔ fPk1 (xq)(r)⊕ fPk1 (x)(r) = Pk2(xq)⊕ Pk2(x).

Consider the ideal case where instead of pseudo-random functions fPk1 (xq), fPk1 (x)

random functions φ, ψ are used. Then

Pr[φ(r)⊕ ψ(r) = Pk2(xq)⊕ Pk2(x), x 6= xq, r
R← X] =

1
2m

.

The probability that the collision (5) will not occur is the probability of the
inverse event or

Pr[φ(r)⊕ ψ(r) 6= Pk2(xq)⊕ Pk2(x), x 6= xq, r
R← X] = 1− 2−m.

In order to estimate the probability that there will be no collisions when
equality (4) is checked for a set of different values {x1, . . . , xt(m))}, where xi 6=
xq, xi 6= xj , i 6= j and t is a positive polynomial, we note that in the ideal case,
for each xi the random function φi is chosen independently and thus the events
that correspond to the collisions for each xi are also independent. Therefore the
probability that, when performing an exact select σxq on values {x1, . . . , xt(m))},
no collisions occur is

(1− Pr[φ(r)⊕ ψ(r) = Pk2(xq)⊕ Pk2(x), x 6= xq, r
R← X])t(m) = (1− 2−m)t(m).

Analogously, to each new query there corresponds a randomly chosen function
ψi. The probability of event < that corresponds to the absence of collisions when
querying t(m) values with s(t) different queries is

Pr(<) = (1− Pr[φ(r)⊕ ψ(r) = Pk2(xq)⊕ Pk2(x), x 6= xq, r
R← X])t(m)s(m)

= (1− 2−m)t(m)s(n).

The lower bound of probability Pr(<) can be estimated as

Pr(<) =
(

1− 1
2m

)t(m)s(m)

>

(
1− t(m)s(m)

2m

)
=

(
1− p(m)

2m

)
>

(
1− 1

p(m)

)
(6)

for sufficiently large m and positive polynomial p. The probability that there
will be at least one collision is 1− Pr(<) < 1/p(m), which is negligible.

This estimation was performed for the case in which functions ψ, φ are
chosen randomly and uniformly. If instead we use pseudo-random functions
fPk1 (xq), fPk1 (x), then analogously to Lemma A.1.4 (see Appendix A.1) it can be
shown that the pair (fPk1 (xq), fPk1 (x)) is indistinguishable from the pair (ψ, φ).
Suppose that there exist a set of values and a set of queries, such that probability
1−Pr(<) is non-negligible. Then using these sets we can build an algorithm that
distinguishes between (ψ, φ) and (fPk1 (xq), fPk1 (x)) with non-negligible probabil-
ity. Due to the polynomial sizes of the sets the algorithm works in polynomial
time. That contradicts the indistinguishability of (ψ, φ) and (fPk1 (xq), fPk1 (x)).
Therefore the probability of collision in the non-ideal case is also negligible. For
real applications that means that with sufficient key lengths in most of the cases
queries results will not contain any erroneous tuples. However, since the possi-
bility of an error is not excluded, in some applications the client still may have
to recheck the result set in order to ensure its correctness.

To get an impression on what can it mean for real applications consider the
following example: If the encryption scheme (K, E,D) uses the random function
φ, m = 128, and t(m)s(m) = 1020 then according to (6) Pr(<) > 1 − 2.9 ·

10−19. That means that if Alice issues 1010 different exact selects σa.xi
, i =

1, .., 1010, xi 6= xj , i 6= j, and the attribute a of the queried relation contains
1010 different values, the probability that there will be at least one erroneous
tuple in the result set is bigger than 1−2.9 ·10−19. When instead of the random
function a cryptographic primitive is used (e.g. HMAC-SHA-2 [?]) the actual
probability might become lower, but still the presented technique may serve as a
good approach for estimating the chances of an erroneous tuple being included
in the result set.

In order to process an exact select σai.x for a relation consisting of u tuples,
Bob should only check whether equality (4) holds true for the value of attribute
ai of every tuple. Every check requires O(1) operations and therefore processing
of the query for the whole relation will be done in O(u) operations.
Projection. Since the attributes of the relation are encrypted separately, in
order to perform projection πai,...aj

(a1, . . . al), Alice simply provides the name
of the corresponding encrypted attributes and Bob performs πaE

i ,...aE
j
(aE

1 , . . . a
E
l)

on the encrypted relation.
Cartesian product. Cartesian product of two encrypted relations is carried
out just as with unencrypted relations - by returning all combinations of tuples
of the encrypted relations. Again, this is possible because the attributes are
encrypted separately and, as a result, ciphertexts can be concatenated.
Equijoin. The encryption scheme allows to perform equijoin as a combination
of of Cartesian product and exact select. The feasibility of equijoin makes it
possible to preserve the foreign key associations between the relations.
Union with duplicates. The union of two encrypted relations is performed
by simply including the tuples of both relations in the resulting one. Note that
duplicate removal is not possible because Bob has no means to determine on his
own whether two ciphertexts correspond to identical or different tuples.
Exact update. Exact update is feasible due to the feasibility of exact select
and separate encryption of the attribute values: Exact select allows to specify
the tuples that should be updated and separate encryption allows to replace the
encrypted attribute values of the tuples with the new ones. For example, con-
sider the following update query: UPDATE table1 SET salary = 3500 WHERE
name = "John Smith". Alice transforms the query into tuple (c, aE

c , s, ks, a
E
i)

and sends it to Bob. The last three values allow to run the exact select query
for getting the tuples to be updated. The first two values are the encryption of
the new attribute value (3500) and the attribute name of the encrypted relation
that corresponds to the one that should be updated (salary).
Exact delete. In order to run exact delete, Alice sends to Bob a triple (s, ks, a

E
i)

so that Bob can find the tuples to be deleted and then remove them from the
encrypted relation.
Insert. To insert a tuple, Alice encrypts it and sends it to Bob, who simply
appends it to the corresponding relation.
Logical operations. It is also possible to run operations with conditions con-
sisting of several equalities connected by AND or OR. In case of a pair of equal-
ities connected by a logical operation α, Alice sends a pair of triples connected

by α to Bob: (si, k
si , aE

i)α (sj , k
sj , aE

j), where α ∈ {AND,OR}. If α = AND,
Bob marks the tuple when (4) holds true for both triples. If α = OR, Bob marks
the tuple when (4) holds true for one of the triples (conditions built of more
than two equalities connected by AND or OR can be treated in an analogous
manner).

When there is a negation of the equality condition (NOT operation), Bob
marks those tuples for which (4) does not hold.

5.2 Security Analysis

It is important to understand that when an encryption scheme is a privacy ho-
momorphism the indistinguishability alone may not guarantee the security of the
encrypted data. In some cases in order to perform an operation on the encrypted
data Alice has to provide Bob with additional input that is dependent on the en-
cryption key or the data itself. To see how this can become a problem, consider
a database privacy homomorphism that encrypts a table and queries with an
indistinguishably secure encryption scheme using two independently generated
keys - one for the table and another for the queries. In order to provide Bob with
the ability to run queries issued by Alice the encrypted table is appended with
the key used for encrypting the queries and each query is appended with the key
used for encrypting the table. When Alice issues a query she encrypts the corre-
sponding SQL statement with the appropriate key and sends it to Bob. Bob, in
turn, by using the key he got with the encrypted table and the key that he has
received with the query decrypts the table and the query, runs the query and
send the result to Alice. As a result, on the one hand we have a database privacy
homomorphism that securely encrypts the table and the queries and supports
all possible relational operations. But on the other hand that homomorphism
gives no security at all after an operation was performed.

Therefore, for a privacy homomorphism it is always necessary to estimate the
amounts of information disclosed when performing operations feasible under this
homomorphism. Concerning our case, all the feasible operations except for exact
select and those that are based on it (exact delete, exact update) do not provide
Bob with any data that depends on the keys or on the encrypted table. As for
exact select, we can show that when such queries are processed nothing except
for the frequencies of queried attribute values is revealed to Bob. Intuitively,
that means that when given an encrypted table and a sequence of queries Bob
cannot get significantly more information about the table than when he is given
the encrypted table, knows queried attributes and knows which tuples each query
returns.

To express this formally, consider a database privacy homomorphism (K, E,D)
that allows exact selects. Let mi be a message to which Alice maps exact select
qi and which is then given to Bob so that he could process this query, and let
REk(T)(mi) be a set of references pointing to the tuples of encrypted table Ek(T)
that constitute a resulting set of query mi.

Definition 7. An exact select for database privacy homomorphism (K, E,D)
reveals nothing except for the frequencies of queried attribute values if for every

PPT algorithm A there exist a PPT algorithm A′ such that for every table T ,
every polynomial p′, every sequence of exact selects q1, . . . , qt, t ≤ p′(n), every
polynomially-bounded function f , every polynomial p and all sufficiently large n

Pr [A(m1, . . . ,mt, Ek(T)) = f(T)]

< Pr [A′(REk(T)(m1), . . . , REk(T)(mt), Ek(T)) = f(T)] +
1

p(n)

And for our database privacy homomorphism (K̂, Ê, D̂) we can formulate the
following theorem

Theorem 3. Database privacy homomorphism (K̂, Ê, D̂) reveals nothing except
for the frequencies of queried attribute values.

See Appendix A.2 for a proof of the theorem.

6 Indexing and Hashing

Processing of an exact select operation requires to sequentially scan all the tuples
of the queried relation. In large databases, this is not efficient, which raises the
question of indexing.

If the database is securely encrypted and cannot be decrypted when a query is
processed, the usual indexing algorithms are no longer applicable. For example,
it is impossible to perform ordering of the ciphertexts according to their plaintext
values. Indeed, let ≺ be a binary relation defined on the set of ciphertexts and
Ek(x) ≺ Ek(y) if and only if x < y. Then given the encryptions of x and y such
that x < y, the adversary will be able to determine which ciphertext corresponds
to which plaintext by simply checking if Ek(x) ≺ Ek(y). This rules out B+ trees
and in general all indexing algorithms that rely on the ordering of the values of
the indexed attribute. Hashing, on the other hand, remains feasible even if the
database is securely encrypted.

Note, however, that identical plaintext values may be encrypted into different
ciphertexts. As a result they can have different hashes and therefore belong to
different hash buckets. This problem can be be solved by calculating the hash
of the attribute value before the value is encrypted and send the ciphertext
together with the corresponding hash to Bob. Then, when Alice issues an exact
select query σai.xq

with ai being a hash-indexed attribute, she sends Bob not
the triple (4) but a quadruple (q, kq, a

E
i , hq), where hq = H(xq). Care should be

taken when choosing a hash function for indexing encrypted data. If Bob knows
the hash function H, from a given ciphertext c and corresponding hash h he can
deduce some knowledge about the plaintext. E.g., by comparing H(x) with the
hash he got from Alice he can infer if the ciphertext c can be the encryption
of x: H(x) 6= h means that c is not the encryption of x. However, if Alice uses
a pseudo-random function for computing hashes, knowledge of the secret key is
required for calculating valid hash values. If only Alice knows the key, Bob is
not able to get any information about the plaintexts by using their hash values.

In addition, if the values of an indexed attribute are highly skewed, such a hash
function smooths out the distribution and uniformly fills the buckets.

The major drawback of such an approach is that it preserves security only if
the indexed attributes do not contain any duplicate values. As a counter example
consider two tables, one with the indexed attribute values being identical for all
tuples and another where the values of the corresponding indexed attribute are
unique. According to our indexing algorithm, Bob partitions attribute values
into buckets based on hashes precomputed by Alice. Since the same values will
produce the same hashes, the indexed attribute of the first table will produce
single bucket and the indexed attribute of the second table with high probability
will produce more than one. Using this information the adversary will be able to
distinguish these two tables even if they are encrypted with a secure encryption
scheme. According to Definition 4 the resulting scheme is not indistinguishably
secure. An analogous analysis is applied to the more common case when the
indexed column contains only some duplicates. Therefore, only key attributes
can be securely indexed this way.

In order to prevent the adversary from learning statistical information about
encrypted values, all buckets that contain pointers to the indexed values can
be padded up to the same length and encrypted. In order to process an exact
select query on a hashed attribute, Bob sends Alice the corresponding encrypted
bucket. Alice decrypts the bucket and sends the decrypted pointers to Bob, who
performs the exact select on the tuples to which the pointers from the received
bucket refer.

7 Conclusion

In this paper we presented an encryption scheme that allows the secure out-
sourcing of a substantial subset of relational database operators: exact select,
Cartesian product, projection, exact update, exact insert and exact delete. Our
approach represents the first solution to the database outsourcing problem that
is provably secure and supports such an extensive set of relational operators.
We conclusively proved the security of our scheme and showed how to reduce
the probability of having erroneous tuples in the answer to an exact select query
to a negligible level. Moreover, we presented some thoughts on how to perform
indexing and hashing in the context of encrypted database outsourcing. The
development of efficient and secure hashing and indexing schemes for encrypted
database outsourcing remains an important topic for future research.

A Proofs of security

A.1 Proof of Theorem 1 (IND-CPA security)

First we prove several lemmas. Note that the notation used for defining crypto-
graphic primitives within the lemmas is not related to the cryptographic primi-
tives that are used for building encryption scheme (K̂, Ê, D̂).

Let (K, E,D), where K = {0, 1}m, X = {0, 1}m, E : K × X 7→ Y, be IND-
CPA secure encryption scheme and F : KF ×X 7→ K, where KF = {0, 1}n, be a
pseudo-random function.

Lemma A.1.1. The scheme (K′, E′), where E′
k′(x) := EFk′ (x)(x), is IND-CPA

secure.2

Proof sketch. IND-CPA security of scheme (K′, E′) means that for all x, y, all
PPT algorithm A with access to the encryption oracle, and every positive poly-
nomial p for all sufficiently large n, the advantage

AdvAE′
k′

xy = |Pr [AE′
k′ (E′

k′(x)) = 1]− Pr [AE′
k′ (E′

k′(y)) = 1]| < 1
p(n)

.

For every algorithm A, we can define an oracle algorithm B that is identical to
A except for the steps where A requests x from its oracle: B instead queries x
from its oracle O(·) and then calculates EO(x)(x). Then, defining by EFk′ oracle
E′

k′(·) = EFk′ (·)(·), and by Eφ oracle Eφ(·)(·), where φ is a random function, the
latter inequality can be rewritten as

AdvAE′
k′

xy ≤ |Pr [BFk′ (EFk′ (x)(x)) = 1]− Pr [Bφ(Eφ(x)(x)) = 1]|+ |Pr [AEφ(Eφ(x)(x)) = 1]

− Pr [AEφ(Eφ(x)(y)) = 1]|+ |Pr [Bφ(Eφ(x)(y)) = 1]− Pr [Bφ(Eφ(y)(y)) = 1]|
+ |Pr [AEφ(Eφ(y)(y)) = 1]− Pr [AEF

k′ (EFk′ (y)(y)) = 1]|
= Adv1 + Adv2 + Adv3 + Adv4.

Using the reduction argument and the facts that (K, E,D) is IND-CPA se-
cure, F is a pseudo-random function, φ is a random function, it can be proved
that EFk′ (x)(x) is IND-CPA indistinguishable from Eφ(x)(x), Eφ(x)(x) is IND-
CPA indistinguishable from Eφ(x)(y), Eφ(x)(y) is IND-CPA indistinguishable
from Eφ(y)(y), and Eφ(y)(y) is IND-CPA indistinguishable from EFk′ (y)(y):

∀i, Adv i <
1

4 · p(n)
, i ∈ {1, 2, 3, 4} ⇒ AdvAE′

xy <
1

p(n)
.

Therefore (K′, E′) is IND-CPA secure. ut
In the next lemma we prove IND-CPA security of the scheme analogous to

the of from Lemma A.1.1, with the pseudo-random function F being substituted
by the pseudo-random permutation P : Kp ×X 7→ X .

Lemma A.1.2. If the encryption scheme (K, E,D), where K = {0, 1}m, X =
{0, 1}m, E : K × X 7→ Y, is IND-CPA secure, then the scheme (Kp, Ep), where
Kp = {0, 1}n, Ep

kp(x) = EPkp (x)(x) and P : Kp × X 7→ K is a pseudo-random
permutation, is IND-CPA secure.

2 The scheme (K′, E′) is not an encryption scheme since the construction of E′ does
not suppose decryption.

Proof sketch. IND-CPA security of scheme (Kp, Ep) follows from Lemma A.1.1
and the fact that a pseudo-random function and a pseudo-random permutation
with the same key and argument spaces are indistinguishable [?]. Otherwise
assuming that the new scheme is not IND-CPA secure it can be shown that
there exists a PPT oracle algorithm that is able to distinguish between F and
P . ut

Lemma A.1.3. If the encryption scheme (K, E,D), where K = X , E : K×X 7→
Y, is IND-CPA secure, then the scheme (Kpp, Epp), where Kpp = Kp × Kp,
Epp

kpp(x) := EPk1 (x)(Pk2(x)), kpp = (k1, k2), k1, k2 ∈ Kp and P : Kp ×X 7→ K is
a pseudo-random permutation, is IND-CPA secure.

Proof sketch. Suppose that the scheme (Kpp, Epp) is not IND-CPA secure. Then
there exist plaintexts x, y and a PPT algorithm A that can distinguish be-
tween Epp

k1,k2(x) and Epp
k1,k2(y) with non-negligible probability. Considering that

P ′
k1,k2 := Pk1 ◦P−1

k2 is a pseudo-random permutation, it can be shown that algo-
rithm A applied to the scheme (Kp, Ep) from Lemma A.1.2, where Ep

k1,k2(x) :=
EP ′

k1,k2 (x)(x), can distinguish between Ep
k1,k2(Pk2(x)) and Ep

k1,k2(Pk2(y)) with

non-negligible probability, since Ep
k1,k2(Pk2(x)) = EPk1 (x)(Pk2(x)) and Ep

k1,k2(Pk2(y)) =
Ep

k1(Pk2(y)). ut

Lemma A.1.4. If the encryptions schemes (K1, E1, D1) and (K2, E2, D2) are
IND-CPA secure, then the encryption scheme (K0, E0, D0), where K0 = K1 ×
K2 = {0, 1}n and
E0

k0(x) := (E1
k1

(x), E2
k2

(x)), k0 = (k1, k2) and k1
R← K1, k2

R← K2, is also IND-
CPA secure.

Proof sketch. IND-CPA security of scheme (K0, E0, D0) means that for all x, y,
all PPT algorithms A with access to the encryption oracle, and every positive
polynomial p for all sufficiently large n, advantage AdvAE0

xy < 1/p(n):

AdvAE0

xy ≤ |Pr [AE0
k0 (E1

k1
(x), E2

k2
(x)) = 1]− Pr [AE0

k0 (E1
k1

(y), E2
k2

(x)) = 1]|

+ |Pr [AE0
k0 (E1

k1
(y), E2

k2
(x)) = 1]− Pr [AE0

k0 (E1
k1

(y), E2
k2

(y)) = 1]|
= Adv1 + Adv2

Using the reduction argument and the facts that encryption schemes (K1, E1, D1)
and (K2, E2, D2) are IND-CPA secure it can be proved that (E1

k1
(x), E2

k2
(x)) is

IND-CPA indistinguishable from (E1
k1

(y), E2
k2

(x)) and (E1
k1

(y), E2
k2

(x)) is IND-
CPA indistinguishable from (E1

k1
(y), E2

k2
(y)):

∀i, Adv i <
1

2 · p(n)
, i ∈ {1, 2} ⇒ AdvAE0

xy <
1

p(n)
.

Therefore (K0, E0, D0) is IND-CPA secure. ut
Now we are ready to prove Theorem 1.

Proof. IND-CPA security of encryption scheme (K̂, Ê, D̂) follows from the IND-
CPA security of encryption scheme (K, E,D), Lemma A.1.3 and Lemma A.1.4.

A.2 Proof of Theorem 3

Proof. Let T = {xij}i∈{1,...,m},j∈{1,...,l} be a table with l attributes and m rows
where the values are padded up to the same length and transformed to the binary
format (for the brevity of notation we denote attribute aj (aE

j) as j (jE)). Then
Êk̂(T) = {Êk̂(xij)} = {(tij , cij)}i∈{1,...,m},j∈{1,...,l} is table T in the encrypted
form. By Eq

k1,k2
(σj.x) we denote triple (Pk2(x), Pk1(x), j

E) that corresponds to
the encrypted query σj.x. In order to prove the theorem we have to show that
for any PPT algorithm A there exists a PPT algorithm A′ such that

Pr [A((Pk2(x1), Pk1(x1), jE
1), . . . , (Pk2(xt), Pk1(xt), jE

t), Êk̂(T)) = f(T)] <
1

p(n)
+

(∗)
Pr [A′((RÊk̂(T)(E

q
k1,k2

(σj1:x1)), j
E
1), . . . , (RÊk̂(T)(E

q
k1,k2

(σjt:xt)), j
E
t), Êk̂(T)) = f(T)]

We build algorithm A′ as a composition of algorithms A and B, where B
receives
(RÊk̂(T)(E

q
k1,k2

(σj1:x1)), j
E
1), . . . , (RÊk̂(T)(E

q
k1,k2

(σjt:xt)), j
E
t), Êk̂(T) as an input,

generates a sequence of encrypted queries (α1, β1, j
E
1), . . . , (αt, βt, j

E
s) that is in-

distinguishable from the sequence (Pk2(x1), Pk1(x1), jE
1), . . . , (Pk2(xs), Pk1(xs), jE

s)
and modifies Êk̂(T) in such a way, that queries (Pk2(xi), Pk1(xi), jE

i) and (αi, βi, j
E
i)

return tuples that reside at the same positions in the original and modified en-
crypted tables correspondingly.

As algorithm B begins, it randomly and uniformly chooses from X bit se-
quences α1 and β1 and for each Êk̂(xij1), i ∈ RÊk̂(T)(E

q
k1,k2

(σj1:x1)) replaces its
search tag with a new one computed as t′ij1 = Eα1(β1). Then for each next pair
(RÊk̂(T)(E

q
k1,k2

(σjp:xp)), jE
p), p ∈ {2, . . . , t} algorithm B checks if there exists

s < p such that jE
p = jE

s and
RÊk̂(T)(E

q
k1,k2

(σjp:xp
)) contains the same references as RÊk̂(T)(E

q
k1,k2

(σjs:xs
)).

If no, then B randomly and uniformly chooses αp from X \ {αi | i < p}, βp

from X \ {βi | i < p} and for each Êk̂(xijp), i ∈ RÊk̂(T)(E
q
k1,k2

(σjp:xp)) replaces
search tag with t′i,jp

= Eαp(βp). If yes, then that means that s-th and p-
th queries are identical. Therefore αp = αs, βp = βs and the corresponding
search tags are again replaced with t′i,jp

= Eαp
(βp). As the output B returns

(α1, β1, j
E
1), . . . , (αt, βt, j

E
t),

{(t′ij , cij)} which is taken as the input for algorithm A.
Since random valuesA′((RÊk̂(T)(E

q
k1,k2

(σj1:x1)), j
E
1), . . . , (RÊk̂(T)(E

q
k1,k2

(σjt:xt)), j
E
t),

{(tij , cij)}) and A((α1, β1, j
E
1), . . . , (αt, βt, j

E
t)), {(t′ij , cij)}) are identically dis-

tributed we can rewrite (∗) as

Pr [A((Pk2(x1), Pk1(x1), jE
1), . . . , (Pk2(xt), Pk1(xt), jE

t), {(tij , cij)}) = f(T)] <

(∗∗)

Pr [A((α1, β1, j
E
1), . . . , (αt, βt, j

E
t)), {(t′ij , cij)}) = f(T)] +

1
p(n)

Suppose now that there exist table T , queries σj1.x1 , . . . , σjt.xt
and function

f such that inequality (∗∗) does not hold. Then by wrapping the expression
A(. . .) = f(T) with algorithm U that outputs 1 when the equality holds and 0
otherwise and performing reductions similar to those that we used in the proof
of Theorem 1 it can be shown that there exist a PPT algorithm that could
distinguish between pseudo-random permutation P and a pemutation chosen
randomly and uniformly from the set of all permutations defined on X. The
existence of such algorithm will contradict to the pseudo-randomness of P what
concludes the proof of the theorem.

B Comments on the Encryption Scheme Presented in [?]

Yang et al. propose their own security model for privacy-preserving query proto-
cols. First, they introduce the notion of the minimum information revelation of
exact select query q issued to table T , which is the set of coordinates of the cells
satisfying the condition of the query. Denoting the minimum information reve-
lation by RT (q) they present their version of the definition of the query protocol
revealing nothing but RT (q):

Definition 8. A one-round query protocol reveals nothing beyond the minimum
information revelation if for any polynomial poly() and all sufficiently large n,
there exists a PPT algorithm S (called a simulator) such that for any t < poly(k),
any polynomial-size circuit family {An}, any polynomial p(), and any exact select
queries q1, . . . , qt for the advantage defined as

AdvA = |Pr [An(q1, . . . , qt,m1, . . . ,mt), Ek(T)) = 1]
− Pr [An(q1, . . . , qt, S(REk(T)(E′

k′(q1)), . . . , REk(T)(E′
Ek′ (T)(qt)), Ek(T)))) = 1]|

it holds that AdvA < 1/p(n).

However, this definition contains one serious flaw: It does not impose any re-
quirements on the security of the encryption scheme that is used to encrypt table
T . As an example, consider a protocol that performs no encryption at all and op-
erates with plaintext tables and queries. In such protocol for any table T (query
qi) Ek(T) = T (mi = qi) it is trivially to build simulator S that by observing
Ek(T) and REk(T)(m1)), . . . , REk(T)(mt)) reconstructs queries q1, . . . , qt and re-
turns them with Ek(T) as the output. Clearly, with such simulator AdvA = 0 –
thus, the protocol which gives no security at all satisfies the proposed definition.

The encryption scheme and the querying algorithm proposed by Yang et al.
exploits the approach similar to the one we proposed in Section 4. But by proving
that the described query protocol satisfies Definition 8 Yang et al. claim that
the protocol reveals only number of tuples sharing the queried value and the
queried attribute. As we have just shown, this definition, actually, says nothing
about the strength of the encryption and the level of security provided by the
protocol.

Also, without any formal argumentation Yang et al. claim that their protocol
returns those, and only those tuples that satisfy an issued exact select query.
However, by applying the same reasoning as we did in Section 5.1 one can easily
see that the protocol may allow erroneous tuples to be included in the resulting
set.

It is worth to mention that the described issues as well address the query
protocol with enhanced security, which Yang et al. construct to minimize the
amount of information leaked when the table is being queried.

