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Abstract. Pairing based cryptosystems can accomplish novel security
applications such as ID-based cryptosystems, which have not been con-
structed efficiently without the pairing. The processing speed of the pair-
ing based cryptosystems is relatively slow compared with the other con-
ventional public key cryptosystems. However, several efficient algorithms
for computing the pairing have been proposed, namely Duursma-Lee al-
gorithm and its variant ηT pairing. In this paper, we present an effi-
cient implementation of the pairing over some mobilephones. Moreover,
we compare the processing speed of the pairing with that of the other
standard public key cryptosystems, i.e. RSA cryptosystem and elliptic
curve cryptosystem. Indeed the processing speed of our implementation
in ARM9 processors on BREW achieves under 100 milliseconds using the
supersingular curve over F397 . In addition, the pairing is more efficient
than the other public key cryptosystems, and the pairing can be achieved
enough also on BREW mobilephones. It has become efficient enough to
implement security applications, such as short signature, ID-based cryp-
tosystems or broadcast encryption, using the pairing on BREW mobile-
phones.

Keywords: Pairing Based Cryptosystem, Mobilephone, BREW, Effi-
cient Implementation

1 Introduction

The pairing can realize novel cryptographic applications e.g. short signature [6],
ID-based cryptosystem [5], broadcast encryption [2], which have not been achieved
by conventional public key cryptosystems. Short signature is a digital signature
suitable for applications on memory-constrained devices because the signature
length in the pairing becomes about a half of that in elliptic curve cryptosystem.
ID-based cryptosystems can replace the public key with an E-mail address or
an IP address which can be easily memorized. However, the processing speed
is slower than that of other public key cryptosystem. The timing in paper [3]
shows that the processing speed of pairing based cryptosystem is about 5 times
or more slower than that of RSA cryptosystem or elliptic curve cryptosystem.
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Recently, Duursma and Lee proposed a very efficient algorithm for computing
the pairing over supersingular curves [7]. Barreto et al. then presented ηT pairing
which is about twice faster than Duursma-Lee algorithm [1]. The two algorithms
can compute the pairing relatively efficient.

By the recent progress of devices technology, we are able to implement pairing
based cryptosystems on ubiquitous devices that the processing speed is compar-
atively slow. Especially, it is important to implement and evaluate of the pairing
based cryptosystem on mobilephones which are the most familiar as ubiquitous
devices. For mobilephones, there are two kinds of platforms such that JAVA
and BREW. An implementation of the pairing with mobilephones for JAVA was
already reported [13].

In this paper, we report about an efficient implementation of the pairing by
mobilephones in ARM9 processors on BREW. We implement both Duursma-
Lee algorithm and ηT pairing over finite fields F3m for extension degrees m =
{97,167,193,239,313}. We try to improve the efficiency of pairing by the following
procedures. At first, functions of the finite field and the pairing are implemented
from scratch in C language. Then, we investigate the functions which requires
a lot of the processing time by using a profiling tool. It turns out that the
multiplications in the finite field are about 80% of the whole computation of the
pairing programs, and thus we focus on enhancing the speed of multiplication
in F3m .

Note that a substitution operation in F3m on ARM9 processors is relatively
slow to our experiments. Comb method can perform the polynomial multipli-
cation fast because there are few substitution operations than normal multipli-
cation algorithm [11]. We propose the improved Comb method which reduces
the number of the substitution operations by eliminating the first loop of the
Comb method. The improved Comb method enhances the whole speed of pairing
by about 20%. In addition, the unrollment of the loop in the programs further
improves the speed due to the reducement of pipeline hazard.

Moreover, we compare the processing speed of the pairing with that of other
standard public key cryptosystem, i.e. RSA cryptosystem and elliptic curve cryp-
tosystem, in this paper. Indeed in our implementation in ARM9 processors on
BREW, the pairing achieves the processing speed which is more effective than
the other cryptosystem. Therefore the pairing on BREW mobilephones has be-
come practical enough.

2 Algorithms for Implementing the Pairing

In this section, we explain some efficient algorithms for computing in finite fields
and the pairing.

2.1 The Elements Representation in F3m

Let F3[x] be the polynomials with coefficients over field F3 = {0, 1, 2}. Finite
field F3m is the set of all polynomials represented by F3m = F3[x]/f(x), where
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f(x) is an irreducible polynomial. An element A(x) in F3m can be represented
as follows:

A(x) = (am−1, am−2, · · · , a1, a0), ai ∈ F3,

where ai is an element in F3 for i = 0, 1, · · · , m − 1. Note that F3 has the
three values 0,1 and 2. Therefore, we represent an element in F3 as (hi,lo)-
bit, where hi and lo are binary bits. Let W be the word size of a targeted
computer, and let A[i] be a sequence of (hi, lo)-bits with size of W , where
i is a positive integer including zero. Let t = dm/W e. Then A(x) can be
represented by the right-to-left array A[t − 1], · · · , A[1], A[0]. In this case of
W = 32 and m = 97, A(x) in F397 is represented by the array such that A[3] =
(0, 0, · · · , 0, a96), A[2] = (a95, a94, · · · , a65, a64), A[1] = (a63, a62, · · · , a33, a32),
A[0] = (a31, a30 · · · , a1, a0). Finally, let A[i]k be the k-th element of A[i] (for
example, A[1]0 is a32).

2.2 Arithmetic in Finite Field F3m

Addition/Subtraction A(x) ± B(x) in F3m can be efficiently implemented by
logical operations such as AND, OR and XOR [8].

Shift-and-Add method [11] is well known as a standard algorithm for comput-
ing the polynomial multiplication over finite fields. This method is an algorithm
which shifts A(x) from right to left, and performs addition C(x)← A(x)±B(x)
based on each (hi, lo)-bit of B(x), where A(x), B(x) and C(x) are elements in
F3m . Therefore Shift-and-Add method requires 2

3m2 additions a+ b for a, b ∈ F3

and 2
3m2 substitution operations c← a+ b for the resulting addition. In this pa-

per the leftarrow (←) is called the substitution operation. Comb method [11] is
another efficient algorithm for computing the polynomial multiplication, which
shifts A(x) from right to left only after performing t additions in F3m based on
each (hi, lo)-bit of the array B[t − 1], · · · , B[1], B[0]. A(x) · xiW+k is computed
by shifting A(x) for k ∈ [0, W − 1], j ∈ [0, t− 1] and the word size W . Therefore
the number of the substitution operations in Comb method becomes dm/W e
times smaller than that of Shift-and-Add method, namely it is 1/t. In our im-
plementation in Section 3, we use the Comb method because the substitution
operations on ARM9 processors are inefficient to our experiment.

In characteristic 3, cube is represented by A(x)3 =
∑m−1

i=0 aix
3i. Cube can

be computed analogously to square in characteristic 2 by using table look-up [8].
Therefore, this process is fast because it does not require the multiplication step
actually. Inversion can be computed by using the extended Euclidean algorithm
for the polynomials over F3[x] [13]. This algorithm was improved extended Eu-
clidean algorithm in characteristic 2.

Note that each operation in F3m has the following relationship of the cost:

A < C < M < I,

where A, C, M and I are the cost for addition/subtraction, cube, multiplication
and inversion, respectively. In our implementation of F397 , the difference of the
costs in each inequality sign (<) is about 10 times (see for Section 3.4).
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2.3 Arithmetic in Extended Field F33m and F36m

We can represent F33m and F36m by a tower of extensions to use the operations
of F3m . Let F33m = F3m [ρ]/(ρ3−ρ−1) and F36m = F33m [σ]/(σ2 +1). An element
A in F36m is represented as follows:

A = α1σ + α0 (1)
= a5σρ2 + a4σρ + a3σ + a2ρ

2 + a1ρ + a0 (2)
= (a5, a4, a3, a2, a1, a0) (3)

where αi is an element in F33m , aj is an element in F3m and i = 0, 1, j =
0, 1, · · · , 5. Operations in F33m and F36m are addition, subtraction, cube, mul-
tiplication and inversion, and the operations require operations in F3m . The
operations in F33m and F36m are computed the same way in [9].

We show the costs of operations in F33m and F36m in Table 1. The operations
cost of addition/subtraction and cube in F36m is just 2 times of that in F33m .
Meanwhile the operation cost of multiplication and inversion in F36m is more
than 2 times of that in F33m .

Table 1. The costs of operations in F33m and F36m

Operations F33m F36m

Addition/Subtraction 3A 6A

Multiplication 12A + 6M 51A + 18M

Cube 3A + 3C 6A + 6C

Inversion 6A + 15M + 1I 57A + 38M + 1I

2.4 Tate Pairing

There is Tate pairing as one of the kinds of the pairing. Tate pairing requires
operations of elliptic curve over finite fields. In this paper, we use the following
supersingular elliptic curve over F3m ,

E(F3m) = {(x, y) ∈ (F3m)2 | y2 = x3 − x + 1} ∪ {O}

where O is the point at infinity. The group order ]E of E(F3m) is ]E = 3m +
3(m+1)/2 +1. Let r be a prime number which satisfies with r|]E and r|(36m−1).
Tate pairing is defined as follows:

e〈·, ·〉 : E(F3m)[r]× E(F36m)[r]→ F∗36m/(F∗36m)r

where E(F3m)[r] is the subgroup of order r in E(F3m). Point in E(F36m) is
generated from point in E(F3m) by using distortion map φ(x, y) = (−x+ ρ, yσ).
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Algorithm 1 Duursma-Lee algorithm [15]
INPUT: P = (xp, yp), Q = (xq, yq) ∈ E(F3m)[r]
OUTPUT: e〈P, Q〉 ∈ F36m

1: initialization:
T ← 1 (in F36m)
a← xp, b← yp, x← x 3

q , y ← y 3
q (in F3m)

d← 1 (in F3)
2: for i← 0 to m− 1 do
3: a← a9, b← b9 (in F3m)
4: c← a + x + d (in F3m)
5: R← −byσ − ρ2 − cρ− c2 (in F36m)
6: T ← T 3 (in F36m)
7: T ← TR (in F36m)
8: y ← −y (in F3m)
9: d← d− 1 (in F3)

10: end for
11: final exponentiation:

T ← Algorithm 2 (T )
12: return T

Algorithm 2 Final exponentiation (Duursma-Lee algorithm) [14]
INPUT: T = τ1σ + τ0 ∈ F36m

OUTPUT: T (33m−1) ∈ F36m

1: U ← T−1 (in F36m)
2: τ1 ← −τ1 (in F33m)
3: T ← UT (in F36m)
4: return T

The pairing e〈P, Q〉 satisfies bilinearity e〈aP, Q〉 = e〈P, aQ〉 = e〈P, Q〉a, where
P, Q are points in E(F3m)[r] and a is an integer.

Miller proposed the first polynomial time algorithm for computing Tate pair-
ing [17]. Duursma and Lee proposed the efficient algorithm using supersingular
elliptic curve over finite fields in characteristic 3 [7]. Kwon proposed an improved
algorithm of Duursma-Lee algorithm which requires no cube root. We present
Duursma-Lee algorithm without cube root in Algorithm 1.

Duursma-Lee algorithm has the step which is called the final exponentiation.
The step is necessary to compute T (33m−1), where T = τ1σ+τ0 is the representa-
tion in equation (2). One final exponentiation usually requires 3m multiplications
and 1 inversion in F36m . However it can be computed by 1 multiplication and
1 inversion due to T (33m−1) = (−τ1σ + t0)(τ1σ + τ0)−1 [14].

2.5 ηT Pairing

ηT pairing can reduce the cost of Duursma-Lee algorithm to the half by us-
ing Frobenius map [1]. An improved algorithm without cube root was also
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Algorithm 3 ηT pairing [4]
INPUT: P = (xp, yp), Q = (xq, yq) ∈ E(F3m)[r],

S = (33m − 1)(3m + 1)(3m − 3(m+1)/2 + 1)

OUTPUT: (ηT 〈P, Q〉S)3
(m+1)/2

∈ F36m

1: initialization:
a← xp, b← −yp, x← xq, y ← yq (in F3m)
d← 1 (in F3)
c← a + x + d (in F3m)
T ← yσ + bρ− bc (in F36m)

2: for i← 0 to (m− 1)/2 do
3: c← a + x + d (in F3m)
4: R← byσ − ρ2 − cρ− c2 (in F36m)
5: T ← TR (in F36m)
6: T ← T 3 (in F36m)
7: b← −b (in F3m)
8: x← x9, y ← y9 (in F3m)
9: d← d− 1 (in F3)

10: end for
11: final exponentiation:

T ← Algorithm 4 (T )
12: return T

Algorithm 4 Final exponentiation (ηT pairing) [20]
INPUT: K ∈ F36m , S = (33m − 1)(3m + 1)(3m − 3(m+1)/2 + 1)
OUTPUT: KS ∈ F36m

1: K ← K33m−1, G← Λ(K) = K3m+1

2: K ← G, K ← Λ(K) = K3m+1

3: for i← 0 to (m− 1)/2 do
4: G← G3

5: end for
6: g2 ← −g2, g1 ← −g1, g0 ← −g0

7: return K ·G

proposed in ηT pairing [4]. We show ηT pairing without cube root in Algo-
rithm 3. ηT pairing need a final exponentiation step to compute TS , where
S = (33m − 1)(3m + 1)(3m − 3(m+1)/2 + 1). Because S is a large value, it takes
much time to compute the final exponentiation compared with Duursma-Lee
algorithm. However, an efficient algorithm which uses the torus T2 for F∗36m was
proposed, where T2 is defined T2(F33m) = {A0+A1σ ∈ F∗36m : A 2

0 +A 2
1 = 1} [20].

This algorithm for computing TS is shown in Algorithm 4.
The output of Duursma-Lee algorithm and ηT pairing relates as follows:

(ηT 〈P,Q〉S)3(3
(m+1)/2+1)2 = e〈P,Q〉−3(m+3)/2

,

and e〈P,Q〉 can compute from U = ηT 〈P,Q〉S as follows [4]:

e〈P,Q〉 =
(
U3(m+1)/2+2 · 3m√

U (m−1)/2
)−1

.



Efficient Implementation of the Pairing 7

Table 2. Computation costs of Duursma-Lee algorithm and ηT pairing in F397

Duursma-Lee algorithm (Alg. 1) 4635A + 972C + 1511M + 1I ≈ 1664M
(final exponentiation (Alg. 2)) (108A + 56M + 1I) (≈ 67M)

ηT pairing (Alg. 3) 2785A + 784C + 871M + 1I ≈ 987M
(final exponentiation (Alg. 4)) (496A + 294C + 86M + 1I) (≈ 130M)

Here we estimate the computational costs of Duursma-Lee algorithm and ηT

pairing. The extension degree of the underlying finite fields is usually chosen
as m = {97, 167, 193, 239, 313} [1, 3, 4, 9, 13, 14]. The computational cost with
m = 97 is shown in Table 2. The third column is the estimated number of
multiplications with A= 0.01M, C= 0.1M, I= 10M appeared in Section 3.4.
Actually, the cost of ηT pairing is smaller than that of Duursma-Lee algorithm.

3 Implementation of the Pairing on BREW

In this section, we explain our efficient implementation of the pairing in mobile-
phones on BREW 1.

3.1 Experimental Environment and Analysis of the Program

In this paper, we try to implement the pairing on ARM9 processors which is
currently often used for mobilephones. BREW supports an emulator of ARM
processors on a PC whose programs are written in C language. A source file in
C is complied using an ARM compiler on BREW, and then an executable file
(*.mod) of BREW applications for ARM processors is generated.

Here we are interested in the timing of the executable files on ARM proces-
sors. The same source code can be also compiled using a standard C compiler,
and we can examine the timing of the compiled codes on a PC. We deploy a PC
(AMD Opteron Processor 246 (2.0 GHz), RAM : 1 GByte) with GCC version
3.4.2 using the flags ”-O2 -fomit-frame-pointer”, and mobilephones (150MHz
ARM9 processor and 225MHz ARM9 processor) with an ARM complier using
”-Otime” for optimizing the speed.

In order to implement the pairing, we implement the functions of the fi-
nite field in Section 2.2 and the pairing in Sections 2.4-2.5 from scratch in C
language. The extension degrees and their irreducible trinomial are chosen as
m = {97, 167, 193, 239, 313} and x97 + x12 + 2, x167 + x96 + 2, x193 + x12 + 2,
x239 + x24 + 2, x313 + x126 + 2, respectively. The functions in our implementa-
tion are named as follows: FF Add (addition in F3m), FF Multi (Comb method in
F3m), FF Cube (cube in F3m) and so on. Then we examine the timing of the basic
functions (FF Add, FF Multi, FF Cube, etc) by GCC using a profiling tool. The

1 BREW is a registered trademark of Qualcomm company and it is an application
platform developed for mobilephones of cdmaOne and cdma2000.
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timings of our initial implementation of Duursma-Lee algorithm and ηT pairing
in F397 by profiling is shown in Table 3.

Table 3. Timings by profiling the functions in F397

Duursma-Lee algorithm

Time of Function % Hit Count Function

927.176 84.1 199900 FF Multi

83.649 7.6 97776 FF Cube

22.580 2.0 408606 FF Add

ηT pairing

Time of Function % Hit Count Function

338.506 78.6 113200 FF Multi

53.508 12.4 165976 FF Cube

10.281 2.4 351406 FF Add

In Table 3, the multiplication speeds of both Duursma-Lee algorithm and ηT

pairing are about 80% in the whole program of the pairing. Accordingly, we try
to optimize the speed of multiplication in F3m .

3.2 Optimized Multiplication for BREW

In the following we propose the improved Comb method, which reduces the num-
ber of the substitution operations by unrolling the first loop of Comb method.
Here we explain the improved Comb method with extension degree m = 97, but
it can be applicable to other extension degrees m = {167, 193, 237, 313}.

We now focus on B[3] which is one of the array representing B(x) ∈ F397 .
Note that B[3] only contains the 96-th coefficient of B(x) as B[3]0, namely,

B[3] = (B[3]31, B[3]30, · · · , B[3]1, B[3]0) = (0, 0, · · · , 0, b96).

When we compute A(x) ·B(x) using Comb method in Section 2.2, we have to
perform the addition of A(x) ·B[3] and substitution operations for a temporary
save of the addition even B[3]j = 0 for j = 31, 30, · · · , 1. There are many sub-
stitution operations and additions which do not affect the result of A(x) ·B(x).
Those operations can be eliminated by unrolling the loop of computing B[3]. In
other words, the loop corresponding to B[i]j with j > 0 is not computed for
i = 3, and we only fulfill the complete loop for B[i]0 with i = 0, 1, 2, 3. As a
result, the proposed scheme can save 31 substitution operations compared with
Comb method, and we achieve about 20% faster multiplication. We show the
improved Comb method in Algorithm 5.
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Algorithm 5 Improved Comb method m = 97
INPUT: A(x), B(x) ∈ F3m , W = 32 : word length
OUTPUT: C(x) = A(x) ·B(x) mod f(x) ∈ F3m

1: C(x)← 0
2: for i← 0 to 3 do
3: C(x)← C(x) + B[i]0A(x)xiW

4: end for
5: for j ← 1 to W do
6: for i← 0 to 2 do
7: C(x)← C(x) + B[i]jA(x)xiW+j

8: end for
9: end for

10: for i← 2m− 2 downto m do
11: ci−85 ← ci−85 − ci

12: ci−97 ← ci−97 + ci

13: ci ← 0
14: end for
15: return C(x)

This algorithm has two steps, the polynomial multiplication step (line 1-9)
and the reduction step (line 10-14), where the reduction step is the computation
of c(x) mod f(x). The main loop is line 5-9, and process of loop unrolling is
line 2-4. The difference of the proposed scheme from Comb method is line 6.
The number of iteration in the loop of line 6 becomes one time shorter, and the
omitted process is moved to line 2.

3.3 Further Discussion on Speed-up

We carry out the following two methods for speed-up of the pairing.
In the one method, we perform effectively multiplication in F36m in the

pairing algorithms. The multiplication T · R in F36m is computed in line 7
of Algorithm 1 and line 5 of Algorithm 3. Kerins et al. pointed out the ele-
ment R = r5σρ2 + r4σρ + r3σ + r2ρ

2 + r1ρ + r0 in F36m satisfies r4 = r5 = 0 and
r2 = 2 [14]. The number of multiplication in F3m required for T · R is reduced
because the multiplication with the constants (r2, r4 and r5) is virtually for free.
We can reduce the processing time of the whole pairing about 10% by developing
the optimized multiplication for T ·R.

In the other method, we unroll the loop used in all the functions of F3m . The
functions in F3m processes 32 coefficients depending on word length at a time.
For example, the addition of m (hi, lo)-bits is constructed dm/W e times of loop.
By unrolling this loop, the count of a pipeline hazard in the target processor can
be reduced. Actually, the processing speed of the whole pairing can be improved
about 30% by unrolling the loop.

Finally, we also implemented a window method in Algorithm 5. However the
speed of the window method of width 2 was slower on the ARM9 processors
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Table 4. The average time of the operations in F3m and the pairing algorithms on the
150MHz ARM9 processor (msec)

150MHz ARM9 optF397 F397 F3167 F3193 F3239 F3313

Addition (A) 0.0006 0.0009 0.0012 0.0014 0.0016 0.0020

Subtraction (A) 0.0006 0.0009 0.0012 0.0014 0.0016 0.0019

Cube (C) 0.0070 0.0067 0.0156 0.0189 0.0229 0.0261

Multiplication (M) 0.0642 0.0852 0.2055 0.2200 0.3410 0.5308

Inversion (I) 0.6915 0.8360 1.8540 2.3765 3.4115 5.8725

Duursma-Lee algorithm 98.96 129.19 549.39 701.18 1303.07 2616.63

ηT pairing 56.50 76.68 337.25 401.27 738.23 1459.65

Table 5. The average time of the operations in F3m and the pairing algorithms on the
225MHz ARM9 processor (msec)

225MHz ARM9 optF397 F397 F3167 F3193 F3239 F3313

Addition (A) 0.0004 0.0005 0.0007 0.0008 0.0009 0.0012

Subtraction (A) 0.0004 0.0005 0.0007 0.0008 0.0010 0.0012

Cube (C) 0.0050 0.0051 0.0107 0.0133 0.0155 0.0162

Multiplication (M) 0.0393 0.0530 0.1448 0.2313 0.2200 0.3420

Inversion (I) 0.4590 0.5825 1.6890 1.4480 2.3040 3.7280

Duursma-Lee algorithm 66.00 84.70 356.11 457.93 847.56 1702.64

ηT pairing 37.52 50.34 218.27 261.88 478.54 947.30

(Note that it was faster on the Opteron processor). Therefore we do not use a
window method in this paper. The main reason is that the precomputation table
in the window method can not be stored in the CPU cache of the mobilephones
and thus we have to road it from outside the CPU cache.

3.4 Implementation Result

We show the average time of the operations in F3m and the pairing algorithms,
Duursma-Lee algorithm and ηT pairing, on the ARM9 processors and on the
Opteron processor in Table 4-6. We compute the average time for the pairing
algorithm with random input at least 200 times on the ARM9 processors and at
least 20,000 times on the Opteron processor. The optimized program at m = 97
is denoted by ”optF397”. This program uses the improved Comb method with
unrolling the loop for all the programs in F3m , and other programs use Comb
method without it.

In optF397 and F397 , it turns out that the addition/subtraction (A) was about
0.01 times of the multiplication (M), the cube (C) was about 0.1 times and the
inversion (I) was about 10 times. This estimation have little differences with the
ARM9 processors and the Opteron processor. Based on the values, we can esti-
mate the ratios of final exponentiation of Duursma-Lee algorithm and ηT pairing
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Table 6. The average time of the operations in F3m and the pairing algorithms on the
2.0 GHz Opteron processor (µ sec)

2.0 GHz Opteron optF397 F397 F3167 F3193 F3239 F3313

Addition (A) 0.0118 0.0158 0.0219 0.0250 0.0280 0.0421

Subtraction (A) 0.0118 0.0160 0.0221 0.0250 0.0281 0.0421

Cube (C) 0.1631 0.1631 0.3062 0.3406 0.4151 0.4440

Multiplication (M) 1.5955 2.3438 5.1805 5.9468 8.6590 14.7052

Inversion (I) 16.6686 19.7985 44.3534 62.2334 86.1984 137.4680

Duursma-Lee algorithm 2,610 3,810 13,980 18,531 32,800 71,780

ηT pairing 1,480 2,240 8,540 10,473 18,400 39,720

Table 7. The time of RSA and ECC on the ARM9 processors (msec)

RSA ECC (F2n) ECC (Fp)

512 bits 80.90 sect113r1 587.50 secp112r1 557.00
768 bits 209.97 sect131r1 827.00 secp128r1 663.90

150MHz 1,024 bits 447.93 sect163r1 1,360.40 secp160r1 887.60
ARM9 processor 1,536 bits 1,404.21 sect193r1 2,018.60 secp192r1 1,105.80

2,048 bits 3,083.93 sect233r1 3,238.70 secp224r1 1,391.70

512 bits 55.97 sect113r1 360.40 secp112r1 338.70
768 bits 150.91 sect131r1 527.40 secp128r1 399.20

225MHz 1,024 bits 327.33 sect163r1 902.40 secp160r1 499.00
ARM9 processor 1,536 bits 1,026.70 sect193r1 1,368.90 secp192r1 645.20

2,048 bits 2,304.70 sect233r1 2,237.70 secp224r1 803.10

as 4.03% and 13.2%, respectively. The ratios required in F3m in the pairing com-
putation become 2.78% addition/subtraction (A), 5.84% cube (C), 90.78% mul-
tiplication (M) and 0.60% inversion (I) in Duursma-Lee algorithm, and 2.82%
addition/subtraction (A), 7.94% cube (C), 88.22% multiplication (M) and 1.01%
inversion (I) in ηT pairing, respectively. In our programs except optF397 , when
extension degree becomes about 2 times, the processing speed becomes about
5 times slower on both the ARM9 processors and the Opteron processor.

The size of executable file (*.mod) in optF397 was 36,524 Bytes. The size
of other programs m = 97, 167, 193, 239, 313 are 32,336 Bytes, 32,464 Bytes,
33,000 Bytes, 33,012 Bytes, 32,704 Bytes, respectively. Because the program of
optF397 increase the amount of the size of the loop unrollment, the size of optF397

is the largest. As an average size of executable files currently, 300 Kbytes or less
is standard. Then, the size of our executable files becomes the size of around
10% in BREW applications.

ηT pairing is more efficient than Duursma-Lee algorithm in ARM9 processors
and the Opteron processor. The processing speed achieves 56.5 msec in the
150MHz ARM9 processor and 37.52 msec in the 225MHz ARM9 processor for
computing ηT pairing on the supersingular curve over F397 .
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Remark 1 In paper [13], there is a report on the implementation of ηT pairing
using Java mobilephones. They achieved about 500 msec for m = 97 on FOMA
901iS, where its CPU specification is not available from the manufacture. How-
ever, FOMA 901 is a commercial product of the same generation with the mo-
bilephones which equips 150MHz and 225Mhz ARM9 processors. An executable
file on Java mobilephones is in general slower than that in BREW mobilephones.
In this case our implementation is about 10 times faster.

3.5 Comparison with Other Public Key Cryptosystems

In order to demonstrate the efficiency of our implementation of the pairing,
we implement the standard public key cryptosystems in ARM9 processors on
BREW, namely RSA cryptosystem (RSA) and elliptic curve cryptosystem (ECC).

The processing speed of RSA is measured with modular exponentiation
fg mod h, where f and g are integers as large as the RSA modulus h of {512,
1024, 1536, 2048} bits. We use the Chinese remainder theorem [19], the Mont-
gomery multiplication [16, Algorithm 14.36] and the sliding window method of
width 3 [16, Algorithm 14.85]. Next, let E be an elliptic curve over finite field F2n

or Fp, where n is an integer and p is a prime number. We choose the elliptic curves
appeared in SECG [21]. The processing speed of ECC is measured with scalar
multiplication dP ∈ E, where d is a scalar as large as #E and P is a point of
elliptic curve E: sect113r1, sect131r1, sect163r1, sect193r1, sect233r1 for
ECC over F2n and secp112r1, secp128r1, secp160r1, secp192r1, secp224r1
for ECC over Fp, respectively. The non-adjacent form (NAF) is used for com-
puting the scalar multiplication [12].

The current key size of RSA is 1,024 bits. It is known that the key size of ECC
with the same security level as 1,024 bits RSA is 160 bits. In our implementation,
this is equivalent to ECC over F2163 and Fp (p = 160 bits). On the other hand,
Page et al. estimated an equivalent size of the security parameter between the
pairing and RSA [18]. The security parameter of the ηT pairing over F3m , which
has 1,024 bits RSA security should be as large as m = 193.

The processing speed of RSA and that of ECC over F2n and Fp are shown
Table 7. The speeds of 1,024 bits RSA on 150MHz and 225MHz ARM9 processors
are 447.93 msec and 327.33 msec, respectively. The speeds of ηT pairing over F3193

on 150MHz and 225MHz ARM9 processors are 401.27 msec and 261.88 msec in
Tables 4 and 5, respectively. Thus, the speeds of ηT pairing is slightly faster than
that of RSA. In addition, the speeds of ECC over F2163 (and Fp (p = 160 bits)) on
150MHz and 225MHz ARM9 processors are 1,360.40, 887.60 msec (and 902.40,
499.00 msec), respectively. The speed of ECC over Fp is faster than that over
F2n . However the speed of ECC over Fp is about 2 times slower than that of
ηT pairing with the same security level.

4 Conclusion

In this paper, we presented efficient implementation of Duursma-Lee algorithm
and ηT pairing over F3m using BREW mobilephones. In our initial implementa-
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tion in F397 , the whole time required for the multiplication is about 80% in the
computation of the pairing. We thus proposed improved Comb method, which is
particularly effective multiplication for BREW mobilephones, namely with fewer
substitution operations. Moreover, we improved the multiplication T ·R in F36m

of the pairing algorithms and we performed loop unrolling in the finite field.
As a result, the processing speed of our optimized pairing implementation

using BREW on 150MHz and 225MHz ARM9 processors achieved under 100
milliseconds. In addition, we represented that the processing speed of ηT pair-
ing is relatively faster than RSA or ECC with the equivalent security. It has
become efficient enough to implement security applications, such as short sig-
nature, ID-based cryptosystems or broadcast encryption, using the pairing on
BREW mobilephones.
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A Function Λ(K) in Algorithm 4

In this appendix, we describe the function Λ(K) used in Algorithm 4 of this
paper.

Algorithm 6 Computation of Λ(K) [20]
INPUT: K = (k5, k4, k3, k2, k1, k0) ∈ F36m

OUTPUT: Λ(K) = K3m+1 ∈ T2(F33m)
1: v0 ← k0k2, v1 ← k3k5, v2 ← k1k2, v3 ← k4k5

2: v4 ← (k0 + k3)(k2 − k5), v5 ← k3k1, v6 ← k0k4

3: v7 ← (k0 + k3)(k1 + k4), v8 ← (k1 + k4)(k2 − k5)
4: c0 ← 1 + v0 + v1 ∓ v2 ∓ v3

5: c1 ← v7 − v2 − v3 − v5 − v6 (m ≡ 1 mod 12)
c1 ← v5 + v6 − v7 (m ≡ −1 mod 12)

6: c2 ← v2 + v3 + v7 − v5 − v6

7: c3 ← v1 + v4 ± v5 − v0 ∓ v6

8: c4 ← v3 + v8 ± v0 − v2 ∓ v1 ∓ v4

9: c5 ← ±v3 ± v8 ∓ v2

10: return C = (c5, c4, c3, c2, c1, c0)


