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Abstract

Secure multiparty computation of a multivariate function is a central problem in cryptography. It
is known that secure multiparty computation can be realized by a set of n parties iff the connectivity
of the underlying (authenticated) communication network is more than twice the number of corrupted
parties. This impossibility result makes secure multiparty computation far less applicable in practice,
as most deployed networks have a much lower degree than O(n) and ideally one would like to tolerate
θ(n) corrupted parties.

This work proposes a new model for secure multiparty computation for settings where authenticated
channels are not assumed to be available between every pair of parties, and infact may be available
between very few pairs of parties (i.e., networks of low degrees). For such settings, it is clear that not
all honest parties can achieve traditional security guarantees of MPC. Such honest parties which neither
receive their correct outputs, nor maintain the privacy of their inputs are called sacrificed parties. The
new formulation of MPC, which allows some honest parties to be ”sacrificed”, in the manner described
above, is called almost everywhere secure computation.

We show how to adapt standard protocols for unconditional secure MPC, that assume authentication
channels between all pairs of parties, so that they can execute on incomplete networks, with special
properties. Instrumental to our adaptation is a protocol for establishing secure channels between distant
nodes of an incomplete network, using some infrastructure support from the incomplete network. The
challange of designing such a multiparty protocol, can be abstracted as a two party secret key agreement
problem using public broadcast channel.

Key words: Secure multiparty computation, Unconditional secure multiparty computation, Byzan-
tine Agreement, almost everywhere agreement, almost everywhere secure computation, expander graphs,
bounded degree networks, privacy amplification, secret key agreement.
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1 Introduction

In secure multiparty computation n players jointly compute the value of an arbitrary n-variate polynomial
time computable function on their corresponding inputs. The strong guarantee for secure MPC is that even
if a fraction of the nodes are controlled by a malicious adversary, all the honest parties should obtain their
correct outputs, without leaking any more information about their individual inputs, than revealed by the
outputs received by the corresponding parties. Solutions for this problem were given by [Yao82] for two
parties, followed by [GMW87] for n parties.

In [BGW88] and [CCD88], it has been shown how to achieve secure multiparty computation in the
information theoretic regime, as long as as least bn

3
c + 1 of the participating parties are guaranteed to be

honest. This result assume the existence of point to point authentication channel between every pair of
parties. It is natural to wonder how realistic is this assumption? Since reliable, let alone private channels
are too expensive to assume, networks with direct and private channels between every pair of parties are
hard to realize in practical setting. What is the possibility of achieving secure multiparty computation on
such settings?

The above question was first posed by [Dol83] and further explored by [DDWY93], who showed that
if there can be at most t corrupted players, then connectivity of 2 ∗ t + 1 is both necessary and sufficient
to achieve information theoretically secure multiparty computation. Since the number of corrupted parties
can be a constant fraction of the total number of parties, to reflect many practical settings, the connectivity
(by way of authentication channels) of the underlying network demanded to achieve general secure MPC
should also be O(n).

Since the results of [DDWY93] rule out achieving secure multiparty computation or even agreement
for networks of low degree, [DPPU88], pose a weaker question on agreement: An honest party could be
surrounded by a set of parties that are all controlled by the adversary. Clearly, this honest party cannot
even communicate reliably with the rest of the honest parties, so even achieving byzantine agreement on
such networks is not a possibility. Can we still do anything meaningful? What about the possibility of
most of the honest parties agreeing on one value?. [DPPU88] proposes a notion, which allows some of
the honest parties to not reach the agreement value. This type of agreement is called almost everywhere
secure agreement. [DPPU88] makes the following type of statements: g(n, t)-agreement protocol is one
whose execution results in all, but g(n, t) of the honest parties reaching the agreement, for some function
g(., .), when at most t parties are corrupted.

In this work we continue this important line of research. We propose a formulation of secure mul-
tiparty computation, relevant to the setting of incomplete networks, which allows a subset of the honest
parties to not achieve the guarantees of secure multiparty computation. Such honest parties are called sac-
rificed parties. In this new formulation of secure multiparty computation, called almost everywhere secure
multiparty computation, the sacrificed parties are not required to preserve the privacy of their inputs or
to receive their correct outputs, however, all the other honest parties should still be able to achieve the
standard guarantees of secure multiparty computation.

We propose definitions for realizing secure multiparty computation, on incomplete networks, that pos-
sess special properties, and show how to realize these definitions on several different families of networks.
Section 2 is devoted to the discussion of results in this work. Here we highlight the contributions briefly:

Contributions of this work:
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1. We propose a new stand-alone model for the problem of privacy amplification using public broadcast
channel. We argue the inapplicability of the previous techniques developed for this problem and
propose a solution for this problem in the new setting.

2. We show how to realize unconditionally secure multiparty computation on partially connected net-
works. For this, we formally define several new notions, terminologies and concepts.
We define what it means for a multiparty protocol to execute on a partially connected network. We
propose corruption of parties as well as channels by modeling channels as entities, just like parties.
While a corrupted party can behave arbitrarily, as is allowed traditionally, a corrupted channel is
allowed limited deviations in the behavior. While at one end these deviations capture a large class
of adversarial behaviors, at the other, these deviations are not (necessarily) part of the final defini-
tion and do not affect realization of secure multiparty computation on arbitrary partially connected
networks, with special properties.
We define general adversary structures T which capture the limitations of an adversary: Namely, to
choose to corrupt only from a given quadruplets of subsets of parties and channels, actively as well
as passively. We define T -authentic and T -secure channels between a pair of parties pu and pv of
the network N . A multiparty protocol realizes T -secure channel between pu and pv if for all ~C ∈ T
corrupted by the adversary, the multiparty protocol establishes a secure channel between pu and pv.
We propose a definition of unconditionally secure multiparty computation in the stand alone model.
Then we propose a definition along the same lines, for a multiparty protocol to T -securely evaluate
function f on a partially connected network, which captures the notion of sacrificed honest parties
as described above.
Finally, we show how to adapt any multiparty protocol that realizes the first definition to a multi-
party protocol that realizes the definition for partially connected networks and show how to achieve
unconditionally secure multiparty computation on partially connected networks with special com-
municability properties.

The intuition behind our terminologies, definitions and proofs has been discussed in the Section 2,
while all definitions and proofs have been relegated to the appended appendix.
Comparison with results in [Vay06]: Following are the salient differences in this work with respect to
[Vay06]:

1. The definitions presented here are modular. This has been achieved by abstracting important concep-
tual elements from the definition, defining them separately and referring to them in definition under
consideration. Secondly, all notations are defined in the Preliminaries and followed consistently
throughout the work. This has simplified the presentation.

2. In [Vay06], we present a definition for unconditionally secure multiparty computation in which the
input commitment phase is necessitated to be via verifiable secret sharing. We find that this may be
a little restrictive. Here, we present a slightly different definition by associating a function reveal()
with the input commitment phase of the multiparty protocol and characterizing this function. Our
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characterization of correctness of the input commitment phase, in this way is sufficient for us to
refer to the vector of input values committed to by the parties, on which the computation is done.

3. We model corruption of channels by associating with them identities like parties, similar to the
notion of intermediate nodes/parties in [Vay06]. We describe the functionality of these channels for
passive/active/no corruption. We introduce generic adversary structures to model passive and active
corruption of parties and channels throughout the presentation. We also introduce the notion of real
and virtual edges/channels. Behaviorally, these channels are same except that when a message is
sent by a sender along these channels, it takes different number of rounds to reach the receiver.

4. In [Vay06], we define a notion of executability of a multiparty computation Π on a partially con-
nected network N , by making it users responsibility to verify that a party does not send a message
along a channel that does not exist in the partially connected network in any execution. Here, we
relinquish this concern to implementation details and say that if a message to be sent to a given party
pi is put in the out-buffer of a party pj , to be sent through channel (pj, pi), while no such channel
exists, then the message is simply dropped.

To sum it up, the results in this work and [Vay06] are statistically indistinguishable, the negligible gap
being due to the difference in the presentation (which only a computationally unbounded adversor could
have found). A more elaborate comparison with [GO07a] would be drawn once the manuscript becomes
available to us.

1.1 Related works

A more elaborate discussion of related literature is provided in [Vay06] (and the extended abstract). Here
we discuss works that are closely related.

The problem of privacy amplification via public discussion has been studied extensively in [BBR88],
[BBCM95]. Unconditional secure key agreement in this setting was introduced by Bennett, Brassard
and Robert in [BBR88] and generalized by Ahlswede and Csiszar, [RA93] and [Mau93], who introduced
the general information theoretic model. In [BBCM95], [BS94], [CM94], it has been shown that the
assumption, that Eve’s channel ought to be noisier than Bob’s, can be relaxed if a public discussion channel
is available to the parties. In all these works the parties are provided access to mutually correlated random
data and a public discussion channel. Most recently, [DS04], give results on the problem of correcting
errors in a jointly shared secret string without leaking partial information, with very strong guarantees
using strong randomness extractors.

The problem of perfect secure message transmission over partially connected networks was introduced
by Dolev, Dwork, Waarts and Yung in their classic work, [DDWY93]. In [DDWY93] tight bounds are
established on the necessary and sufficient conditions on the connectivity of the communication network
for perfectly secure communication channels to exist between every pair of nodes, for directed and undi-
rected networks. In [DW98], the authors consider the general case when certain number of paths are
directed in one direction and another number of directed paths are directed in another direction. Further
improvements/Trade-offs on message size and round complexity of protocols, of [DDWY93], have been
studied by [SAA96] and [SNR04]. In [OR96], authors allow a negligible probability of failure in trans-
mission of the message. In [GGL91], [FY95] and [FW98], initiate the study of secure communication
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and secure computation in the multicast environment in information theoretic model, for passive as well
as active adversaries. Further results are given on this problem in [WD00].

Secure computation on partially connected networks has been discussed at some length in the intro-
duction. We mention a few other works that realize almost everywhere secure agreement on partially
connected networks, as defined by [DPPU88]. [BG89], [BG90] improve the efficiency of the protocols
for almost everywhere agreement presented in [DPPU88]. In [Upf92], it is shown how to realize almost
everywhere agreement on constant degree networks, namely LPS expanders, tolerating a linear number
of faults. The round complexity of the protocol of [Upf92] is polynomial, though the algorithm to be
executed by each party runs in super-polynomial time. In [OR96], networks of bounded degree and a fully
polynomial almost everywhere agreement protocol which tolerates, randomly located faulty processors,
where processors fail independently with constant probability, with high probability are presented.

Assuming that more than 2
3

parties are honest, it has been shown that it is possible to securely compute
any functionality, [BGW88], [CCD88], [RBO89] in the information theoretic regime. In the computational
model, the results have been given in [GMW87], [Yao82]. Adversary structures, extensively used in this
work, were studied in [FHM99], [HM97], [HM00], [HMP00].

2 Discussion of the results

In this section we shall provide the intuition behind the new notations and definitions proposed in this
work. Subsequently, we shall describe how these definitions are realized in the new setting and provide
intuition behind the proofs of security. Full details have been relegated to the appendix.

All our results are for the stand alone model in the synchronous regime. Our protocols achieve statis-
tical correctness only.

2.1 Some new terminologies and definitions

We model corruption of parties as well as channels. For this we model channels as entities just like
parties and provide a behavioral description of the channels, when they are secure or authentic (passively
corrupted) or tamperable (actively corrupted). These descriptions limit how the behavior of the channels
can deviate under adversarial corruption but is sufficient for us to realize our ultimate goals for partially
connected networks i.e., is necessary for us to keep our proofs modular but only vestigial in the ultimate
scheme. Having, said that, our final definitions of secure computation on partially connected networks, do
allow such corruptions.

We model different types of corruptions by defining a generic adversary structure T , which is a set
of quadruplets of subsets of the following types: subsets of parties corrupted passively, subsets of parties
corrupted actively, subsets of channels corrupted passively and subsets of channels corrupted actively.
Such an adversary is called a T -limited adversary. By a multiparty protocol that T -securely computes
some value is essentially qualifying the adversary which it can resist.
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2.1.1 Secure communication on partially connected networks

We say that a multiparty protocol, executed on network N , realizes a T -authentic channel between two
parties if for all ~C ∈ T corrupted by the adversary, the two parties can exchange messages authentically
by the multiparty execution of such a protocol on partially connected network N . Similarly, we say that
a multiparty protocol realizes a T -secure channel between two parties if for all ~C ∈ T corrupted by the
adversary, the two parties can exchange message securely by the multiparty execution of such a protocol
on partially connected network N .

2.1.2 Secure computation on partially connected networks

We first propose a definition of unconditionally secure multiparty computation in the stand alone setting (in
synchronous regime). For this we define two phase computation as follows: In first phase, parties commit
to their input values and, in the second phase parties compute the function f on the committed input values.
We characterize the correctness of the input commitment phase by associating a function reveal() with
the first phase. The function reveal() takes as input the transcripts of the parties generated so far. It should
reveal the input values committed to by all the parties, as long as the transcripts of the honest parties are
genuine, and irrespective of what transcripts are substituted for the corrupted parties. Furthermore, the
honest parties are able to commit to their original input values. Note, that this characterization is used
only for defining the correctness of computation. The correctness of computation is defined by requiring
the distribution of output values to be indistinguishable from the distribution of evaluations of function f
for honest parties. For the privacy property, it is enough to demonstrate a simulator that takes as input the
input and out values of the corrupted parties and simulates their view so that the resulting distribution is
indistinguishable from the one generated in real execution of the multiparty protocol. This definition is
called Traditional MPC.

Just a slightly different characterization is required for the input commitment phase of secure com-
putation on partially connected networks, where some honest nodes are sacrificed in the following sense:
The sacrificed nodes may not be able to commit to their initial input values, may not preserve the privacy
of their input values and may not obtain their correct output values. The characterization of the input com-
mitment phase for this definition is adapted along the same lines. In particular the characterization ensures
correctness of commitment and computation are guaranteed only for the non-sacrificed honest parties,
which should be greater than b 2∗n

3
c + 1 in number. For the privacy condition, the simulator is provided

with the input and output values of both the corrupted and sacrificed parties. This bounds the amount of
knowledge leaked by the computation process, which appropriately models the privacy requirements of
secure computation on partially connected networks. Lastly, only statistical correctness of commitment
and computation is ensured. This definition is referred to as T -secure evaluation on partially connected
network N , where T is an adversary structure.

2.2 Secure key agreement with public broadcast channel

The problem description is as follows: N channels are given between two parties, at least one of which
is known to be secure, but it not known which one of these channels is secure. The two parties also
share a public broadcast channel. The two parties need to agree upon a secret random string using this
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infrastructure. We give a simple protocol to achieve this goal: Alice sends blocks of uniformly chosen
random bits over each of the N channels and reveals the entire blocks to Bob, except for hiding one bit,
using the public broadcast channel. Any faulty channel is caught with high probability. Since, at least one
of the N channels is secure, one bit is completely hidden from the adversary. The message bit is sent by
XOR’ing it with bits chosen from blocks found to be uncorrupted, and sending the resulting bit to Bob
via the public broadcast channel. Ofcourse, a bad channel may not necessarily be located this way, but
we are able to securely transmist a bit with high probability and achieve statistically correct transmission
channel between Alice and Bob. Further, optimizations can be done to achieve better message complexity
by using error correcting codes, but that is not the focus of the current work.

2.3 (almost) secure channels on partially connected networks, with special prop-
erties

A network is said to have a special property Tpu,pv ,β,c if for every choice of quadruplet ~C ∈ T corrupted
by A, there exists a path of secure channels connecting uncorrupted notes of length at most c ∗ lg 2n and
multiparty protocol β(pu, pv, N, k, l) realizes T -authentic channel between pu and pv. It can be seen that
if a partially connected network N possesses such a property, then one can abstract the infrastructure of
bit transmission protocol, as discussed above. [Note, that we shall be using this special property only for
the case when there is no (directed/undirected) edge (pu, pv) in the partially connected network.]

Thus, using this infrastructure we describe a multiparty protocol, γ(pu, pv, N, k, l) to be executed on
a partially connected network N , to establish T -secure channel (which achieves statistical correctness)
from pu to pv, along the same lines as the bit transmission protocol.

The proof of privacy is also along the same lines as the bit transmission protocol. Here, we demonstrate
a simulator irrespective of whether ~C ∈ T or ~C /∈ T . When ~C /∈ T , the channel established may be just
authentic or even tamperable. The simulator would be provided with the message being transmitted,
depending on the particular case/sub-case. The simulator for these other cases (i.e. when the channel
established is authentic or tamperable), is needed for technical reasons, to carry out higher levels proof of
security, namely that of multiparty computation on partially connected networks.

2.4 Realizing secure multiparty computation on partially connected networks

We start by assuming that there exists a multiparty protocol that satisfies the traditional definition for
unconditionally secure multiparty computation. Then, we extend the result to unconditionally secure
multiparty computation with corruption of parties as well as channels. The extension is straightforward and
just requires to demonstrate an appropriate adversary attacking the former execution, given an adversary
attacking the multiparty computation execution for the latter case, for both of which the same subset of
honest nodes H of size greater than b 2∗n

3
c+ 1 achieve the multiparty computation results.

For T -secure computation on a partially connected network N , we require that network N possesses a
certain T -communicability property, which ensures that a large fraction of honest node (≥ b 2∗n

3
c+ 1) are

able to securely communicate with each other, irrespective what quadruplet is corrupted by the adversary
from adversary structure T .
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At the high level, construction of a multiparty protocol that T -securely evaluates function f , on par-
tially connected network N goes as follows:(1) We add (directed) virtual edges between every pair of
nodes for which there does not exist any edge in the partially connected network N . This network is
called CN and it provides a straightforward infrastructure for all pairs of parties to communicate with each
other. The virtual and real channels are distinguished in the following sense: It takes α rounds to send a
message along a real channel, while it takes fγ(α, N) rounds for a message sent along the virtual channel
to reach the other party, for some function fγ . Along the same lines we construct an enhanced adversary
structure TCN

from T , by adding (passive/active) corruption of virtual edges, depending on the choice of
quadruplet ~C corrupted by the adversary A, the family of multiparty protocols γ(pu, pv, N, k, c) used for
establishing secure channels on the network N . Now, we adjust the multiparty protocol for the traditional
case, so that each step of it is essentially elongated to fγ(α, N) rounds. All the messages sent in a given
step are received - either via the real channel in α rounds or through the virtual channel in fγ(α, N) rounds,
but before the execution of the next step of the multiparty protocol commences.

The inductive hypothesis starts with a triplet intermediate network Ni, adversary structure TNi
, and

multiparty protocol ΠNi
and constructs the new triplet by removing a virtual channel from the network Ni

and replacing it with a virtual channel by a channel simulated by some multiparty protocol γ (existence of
which follows from the communicability property of the network). It takes at most fγ(α, N) rounds for
the parties to send a message by executing the T -secure channel. It can be verified that the correctness
and privacy property of the multiparty protocol are satisfied for the corresponding subset of honest nodes
Hi at each step.

The I. H. is repeated till all virtual channels have been replaced by simulated channels. Thus, we
have a multiparty protocol that T -securely evaluates function f on the partially connected network N for
adversary structure T discussed above.

The adversary structure T can be limited to corrupt only t parties maliciously and we can then use the
result by observing that communicability property for the resulting adversary structure holds for appropri-
ate classes of networks.

Thus, we achieve t-secure multiparty computation on families of incomplete networks, as considered
in [Upf92], [DPPU88].

Full details of notions, definitions and proofs of security are appended in appendix.

3 Discussion about simulation based definition versus KKMO type
input indistinguishability

I quote from [GO07b] the objection raised by Garay and Ostrovsky about simulation based definition:

”Besides several other issues that would require technical improvement, a salient difference (shortcom-
ing) in [Vay06] is that the simulation based security definition, [Gol02], where the ideal world adversary
(the simulator), besides having access to the inputs of the corrupted parties also has access to the inputs
of the corrupted players that are given up; such a strong assumption makes the proof security relatively
straightforward and gives simulator an unfair advantage compared to the real world execution.”
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A second paragraph from Section 5 is as follows: ”However, in the setting of almost everywhere secure
computation, the simulation based approach encounters the following problem: it is not clear how to de-
fine in a meaningful and network independent way, the simulation and adversarial view of the doomed
players or indeed how to deal with this in a dynamically growing way. It is clear that these nodes are not
part of the nodes for which we guarantee a correct output, but it is not clear what view of these nodes an
adversary gets. Indeed, for some of the doomed honest nodes the adversary could learn all the information
and be able to change their inputs, while for others the adversary would only get partial control.”

The above the objection of Garay and Ostrovsky in essence is about some assumption, namely that
where from is the simulator made available the inputs and outputs of sacrificed nodes. It seems that Garay
and Ostrovsky raise these (kinds of other) objections because they are seeing simulator and the entire set
up of providing the inputs and outputs of corrupted and sacrified parties as something that should ”be
achievable” in real life. However, demonstrating a simulator and the associated set up is only a way
to prove a bound on the amount of knowledge leaked in a protocol execution. Its subtle: There is no
assumption being made here - just a way of ”arguing” that the adversary never gains any more knowledge
from the execution of the protocol, then the inputs and outputs of the sacrificed and corrupted parties -
said another way one could at best have reconstructed the input and output values of these parties from the
view of the adversary.

To sum it up it seems Juan and Rafi, [GO07b], are struggling to understand that simulator is just
an abstract mental construct used to prove certain properties of the MPC protocol and hence state that
simulator is given an unfair advantage over the real world execution. Infact, everything is just fine even
if the adversary does not even possess or is aware of the existence of such a simulator.

Acknowledgments: I’d like to thank Rafail for providing me with financial support for a year, during
which a part of this work was done. I had several useful discussions related to this work with Rafi and
Juan. In particular, my thesis adversor, Rafi, called to our attention the application of cut-and-choose
technique, [Wik00], used in the bit transmission protocol. I also had a few discussions with Rafi and Juan,
on whether to use [KKMO94] style indistinguishability based definition of security, used in [GO07a],
or simulation based definition of security used in this work, [Vay06]. I am grateful to Chandrashekhar
Pandurangan for invaluable advice about the presentation of this submission. Finally, I would like to
express my gratitude towards Prof. P. L. Dhar without whose moral support and encouragement this work
would not be possible.

Remarks on Acknowledgements, in [Vay06]: Some comments have been made in [GO07b] about the
accuracy of acknowledgements made in [Vay06]. For this I would like to bring to light the history of this
work:

Some previous versions and intermediate copies of [Vay06] (available with me with datestamp) which
had UC based definitions contain the same attributions/acknowledgements which have remain unchanged
in all these copies. After UC formulations were ruled out, we had a few discussions about the choice of
simulation paradigm versus KKMO criterion for the stand alone model and went separate ways according
our choices [In that sense I have equal contributions to the definitions of [GO07b] as Rafail and Juan to
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[Vay06], which they have also forgotten to acredit me]. Logs of the emails exchanged with Rafail and Juan
and intermediate documents are available with me (all exchanges took place through email while I was in
India) and I would be happy to share these with any interested third party, to estimate their contributions.
In any case, from the ”fundamental” nature of the recent doubts raised by Garay and Ostrovsky in
[GO07b], that ”it is unfair to provide the simulator inputs/outputs of sacrificed parties”, it is clear that
Juan and Rafi do not comprehend that demonstrating a simulator is just a way of bounding the amount
of relevant knowledge (see previous section) that the adversary can obtain from its view (which can be
reconstructed from this ”relevant knowledge” in polynomial time) and goes on to show the extent to which
Rafi and Juan contributed to the ”central ideas” in [Vay06].

May be I forgot and was not courteous enough to mention how many months Rafi spent formatting,
[Vay06], before filing it with UCLA library - that to me was Rafi’s most important contribution to [Vay06]
and I do feel guilty to not have mentioned this in the previous version.
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A Model and Definitions

We will review some standard terminologies, notations and definitions and follow them up with the new
terminologies and definitions.

A.1 Preliminaries.

A function δ : N → [0, 1] is called negligible if for all c > 0 and for all large enough k ∈ N we have
δ(k) < k−c.

A distribution ensemble X = {X(k, a)}k∈N,a∈{0,1}∗ is an infinite set of probability distributions,
where X(k, a) is associated with each k ∈ N and a ∈ {0, 1}∗. A distribution ensemble is called binary if
it consists only of distributions over {0, 1}.

Definition A.1 The statistical distance, SD(Z1, Z2), between two distributions, Z1 and Z2 is defined as
SD(Z1, Z2) = 1

2

∑
a |Prob(Z1 = a)− Prob(Z2 = a)| < δ(k).

Definition A.2 (Statistical indistinguishability) Distribution ensembles X and Y have a statistical dis-
tance δ, if for all sufficiently large k and a, SD(X(k, a), Y (k, a)) < δ(k). If δ(.) is a negligible function,
ensembles X and Y are called statistically indistinguishable and this is denoted as X ≈ Y .

Power − Set(F ) refers to the set of all subsets of a set F .
A mixed network N is referred to as a triplet (V, E, Ed), where V refers to a set of vertices, and E

refers to the set of undirected edges and Ed refers to the set of directed edges. Whenever not specified,
N will denote a mixed network. Note that E ∩ Ed may not be φ, but we shall always consider networks
where E ∩ Ed = φ.
Power of the adversary We shall focus on static adversaries only, which corrupt a subset of parties before
the execution of the protocol.

If adversary A corrupts a party actively, it gains complete control of it. In particular, the adversary
gains complete control of the party, namely its input tape, its random tape, its program and is free to send
arbitrary messages on the behalf of the party, while also receiving all the messages sent to the party by
other parties.

IfA corrupts a party passively it just obtains the privilege to receive all the inputs, outputs and messages
exchanged by the party with other parties during the execution of the protocol.
Computational versus Information Theoretic setting We assume that the adversary is computationally
unbounded.
Statistical versus Perfect Correctness The protocols in this work, achieve statistical correctness only.
This allows the protocols to fail to achieve the correctness of their outputs with at most a negligible
probability, µ(n), for some negligible function µ(.).
Adversary structures An adversary A is said to be t-limited if it can corrupt at most t honest parties.

We consider corruptions of parties as well as channels, passively as well as actively. For this we use the
notion of adversary structure. Define adversary structure, T ⊂ {(Xp,Xa,Yp,Ya)|Xp,Xa ⊂ V,Yp,Ya ⊂
V ∗ V , and Xp

⋂
Xa = φ,Yp

⋂
Ya = φ}, to denote a set of quadruplets of of the following four types of

subsets: Xp, a subset of parties corrupted passively, Xa, a subset of parties corrupted actively, Yp, a subset
of channels corrupted passively and Ya, a subsets of channels corrupted actively byA.
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An adversary which is restricted to adversary structure, T , is called T -limited adversary or in short
T -adversary.

Let ~C ∈ T be a quadruplet of corruptions byA.

Definition A.3 Let P,A,~C be defined as above. ~C is a feasible vector of corruptions, if there exists a
subset of honest parties H ⊂ P − ~C[0]− ~C[1], such that the following two conditions hold true:

1. |H| ≥ b2n
3
c+ 1

2. ∀Pu, Pv ∈ H : (Pu, Pv) /∈ ~C[2](Pu, Pv) /∈ ~C[3]

A feasible adversary structure T is defined along the same lines.
Modeling a partially connected network of communication channels We recognize communication
channels as entities, similar to parties which may be passively or actively corrupted by the adversary and
behave differently, as a result.

Authentic or Secure channels could be established between a given pair of parties by cryptographic
means, but could also be available due to physical infrastructure of the system. For example, an email
originating from the domain of a deemed institute, is an authenticating message. Similarly, secure channels
could also be realized by Fiber optic cables etc.

Let N = (V, E, Ed) be a network, where V refers to the set of vertices. Each vertex models a party
aka player. E refers to the set of undirected edges in the network, where each edge models a bi-directional
secure communication channel between the corresponding pairs of vertices and Ed refers to the set of
directed edges in the network, where each edge models a directed secure communication channel. We
formalize such channels as follow:

Let r be a constant, greater than or equal to 3, which will be specified later. Let A corrupt ~C, as
described above, A.1. The behavior of entity F r(S, R, edgeid) modeling a bi-directional channel between
S and R for different types of corruptions is defined below:

Definition A.4 Let Fr(S, R, edgeid), denote a bi-directional channel between parties S and R, with
unique identity edgeid, in the synchronous setting as an entity which executes as follows:

If (edgeid ∈ ~C[3]) // Passive corruption 1. If message (S, R, mesg − id, m) is received from party S
in round i, F r(S, R, edgeid) forwards message (S, R, mesg − id, m) to A in round i + 1, and to party R
in round i + r, else

2. If message (R, S, mesg − id, m) is received from party R in round i, F r(S, R, edgeid) forwards
message (R, S, mesg − id, m) toA in round i + 1, and to party S in round i + r. else if (edgeid ∈ ~C[3])
// Active corruption 1. If (S, R, mesg− id, m) is received from S in round i, F r(S, R, edgeid) records the
message (and round number etc.) and forwards message (S, R, mesg − id, m) toA in round i + 1, else

2. If (S, R, mesg−id, m′) is received fromA, F r(S, R, edgeid) checks (validity etc.) if received before
(or same as) round i + r− 1 with previous records (and round numbers etc.) and forwards (S, R, mesg−
id, m′) to R in round i + r, else
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3. If (R, S, mesg− id, m) is received from R in round i, F r(S, R, , edgeid) records this message (and,
round number etc.) and forwards message (R, S, mesg − id, m) toA in round i + 1, else

4. If (R, S, mesg−id, m′) is received fromA, F r(R, S, edgeid) checks (validity etc.) if received before
round i+r−1 with previous records (and round numbers etc.) and forwards message (R, S, mesg−id, m′)
to R in round i+ r. else // Secure channel 1. If message (S, R, mesg− id, m) is received from party S in
round i, F r(S, R, edgeid) forwards message (S, R, mesg − id,⊥, |m|) to A in round i + 1, and message
(S, R, mesg − id, m) to party R in round i + r, else

2. If message (R, S, mesg − id, m) is received from party R in round i, F r(S, R, edgeid) forwards
message (R, S, mesg − id,⊥, |m|) to A in round i + 1, and message (R, S, mesg − id, m) to party S in
round i + r.

The entity F r(S, R, edgeid) modeling a directed channel from S to R is defined along the same lines
as above (where a message is considered by channel edgeid only if received from party S and is to be sent
to party R).

Remark A.5 1. In the proof of the main Theorem, we use networks that have two different types of
channels: real and virtual channels. Messages sent along either of the channels may takes different
number of rounds to reach the other party. The need for this distinction (and the exact number of
rounds associated with each channel) is made more explicit at a later stage, Section D.5.

2. All real channels are undirected and all virtual channels are directed. With each channel is associ-
ated a unique identity, denoted by edgeid. If the set of parties is P = {p1, p2, . . . , pn}, edge identity
edgeid associated with a real channel between pu and pv is (pu, pv) where u < v.

View of a party generated by execution of multiparty protocol Π Let Π be a multiparty protocol
executed by P . We define the View of a player as the set of inputs, random bits used by the player and
all the messages received by the player during the execution of the protocol. Likewise, the View of the
adversary is the vector of views of the players, corrupted by the adversary, constituted on execution of
the multiparty protocol Π. Further, we define a distribution of the views of the players/adversary as the
distribution of the corresponding views constituted from executing the multiparty computation protocol
over different random choices made by the players and the adversary. This distribution is defined for a
vector of inputs given to the parties engaging in a multiparty computation. Formally,

Let multiparty computation protocol Π be executed by a set of players P . V iewΠ,P,A
pj

( ~C, ~I) refers
to the random variable denoting the view of pj , when multiparty protocol Π is executed by the set of
players P with input vector ~I , when adversary A corrupts quadruplet ~C. Correspondingly, the random
variable −−−→V iew

Π,P,A

X ( ~C, ~I) denotes the vector of views of subset of players X , constituted from executing
Π amongst P with input vector ~I .

Similarly, we define distributions over these random variables as View
Π,P,A
pj

(~C,~I) and ~View
Π,P,A,~C

~C (~C,~I).
Synchronous versus Asynchronous protocols All the parties are assumed to be synchronized with re-
spect to a global clock. Computation and Communication is structured in rounds. In each round, each
party does some computation based on the history of messages received so far, its own input, randomness
etc. and sends some messages to other parties on the basis of its computation, which is received by other
parties before the beginning of the next round.
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Distinction between Round and Step The term step is used to denote (possibly) multiple rounds of execu-
tion of a multiparty protocol during which some computation is carried out, with which we may typically
associate some semantic.

For example, consider the BGW protocol, [BGW88]. Each step of the BGW protocol, when executed
on a complete network or clique, can consist of a single ’round’ in which the parties compute certain values
and sends these values to the other parties over secure channels. In the setting of partially connected
networks, two distant parties may communicate by simulating a ’secure channel’ using the rest of the
infrastructure of the partially connected network. So for the case of partially connected networks a ’step’
may consist of several rounds during which a message is securely transmitted between two nodes.
Execution of a multiparty protocol over a partially connected network N When defining multiparty
protocols to be executed over partially connected networks one encounters the issue whether the protocol
can at all be executed over a partially connected network or not in the following sense: Suppose a mul-
tiparty protocol invokes message transmission function for a message to be sent from party u to party v,
while there is no communication channel from party u to party v in the underlying partially connected
network. How do we handle this?

This issue can be handled at various levels. We handle it at the level of message transmission on the
communication channel: Namely, if during the execution of a multiparty protocol Π, a message transmis-
sion function is invoked by party pu to transmit a message to another party pv, in round r, while there is
no underlying (physical) channel from pu to pv, then the message is pushed in the outgoing queue of the
messages to be transmitted, in round r, by the multiparty protocol Π. When the messages are dequeued
from the outgoing queue and sent on the physical links, the message to be sent on the link from pu to pv is
dropped as there is no communication channel in the network, on which to send the message.

A.2 Secret key agreement with a public broadcast channel

We shall formally describe a new model for the problem of secret key agreement. The comparison to
previous models, the applicability of previous results/techniques and solution are all relegated to the next
section.

We are given the following set up:

Given N+1 channels {F r(Alice, Bob, id1), F
r(Alice, Bob, id2), F

r(Alice, Bob, id3), . . . , F
r(Alice, Bob, idN−1), F

r(Alice, Bob, idN ), F r(Alice, Bob, idN+1)},
for some constant r, where ∃i ∈ [N ] : idi /∈ ~C[2], idi /∈ ~C[3], where ~C[2] is the
subset of channels passively corrupted and ~C[3] is the subset of channels actively
corrupted by A. Also, idN+1 ∈ ~C[2]. Here we use ~C to denote quadruplet of
subsets corrupted, for uniformity of presentation, though ~C[0] = ~C[1] = φ.
To design a protocol to simulate a secure channel or an (almost) secure channel
between Alice and Bob availing of the above infrastructure.

We shall formalize what it means for a multiparty protocol to simulate an authentic/secure channel.
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Let Π(k) = (ΠS(k), ΠR(k)) be a PPT protocol that is executed by sender S and receiver R, to transmit
a k bit string. Let ~I = (is,⊥,⊥) denote the vector of inputs, of which element ~I[S] denotes the input
given to S, ~I[R] denotes the input given to party R and ~I[A] denotes the input given toA at the beginning
of the protocol. Here, specifically is ∈ {0, 1}k is a k-bit string given to sender S. Let A be an adversary
attacking Π(k).

Output Specification of protocol Π(k): After execution of Π(k) the parties output their respective
output values, as per the specification of Π(k), andA outputs its entire view generated from the execution
of Π(k).

Let ExecΠ(k),S,R,A,l(~I) denote the vector of outputs of the parties when protocol Π(k) is executed by S

and R with input ~I with adversaryA, where l is some security parameter. In particular, ExecΠ(k),S,R,A,l(~I)[S]

refers to the output of party S, ExecΠ(k),S,R,A,l(~I)[R] refers to the output of party R and ExecΠ(k),S,R,A,l(~I)[A]
refers to the output view of adversary A.

ExecΠ(k),S,R,A,l(~I) denote the distribution of r. v. ExecΠ(k),S,R,A,l(~I) taken over the random choices
made by S, R and A.

A protocol simulates an authentic channel if its execution between the sender and the receiver, results
in receiver outputting the same string as the input given to the sender. The more formal definition is,

Definition A.6 Let~I , ExecΠk ,S,R,A,l(~I), Π(k), A be defined as above.
Protocol Π(k) simulates an authentic channel to send a k bit string, from S to R, if the following holds

true:

∀~I : ~I[S] = ExecΠ(k),S,R,A,l(~I)[R] (1)

Similarly, we can define a secure channel, which will have the additional property of the privacy with
respect to the adversary. the formal definition is,

Definition A.7 Let~I , ExecΠk ,S,R,A,l(~I), Π(k), A be defined as above.
Protocol Π(k) simulates a secure channel to send a k bit string, from S to R, if the following condi-

tions hold true:

1. Correctness:

∀~I : ~I[S] = ExecΠ(k),S,R,A,l(~I)[R]. (2)

2. Privacy:

∀~I1, ~I2 : ~I1[S] 6= ~I2[S] : ExecΠ(k),S,R,A,l(~I1)[A] ≈ ExecΠ(k),S,R,A,l(~I2)[A] (3)

A relaxation to the above definition is to consider protocols that are allowed to fail to achieve the
Correctness condition with at most a negligible probability of error, µ(l), where l is a security parameter.
We call the corresponding channels (almost) authentic and (almost) secure channels.
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A.3 Secure computation on partially connected networks

First, we formalize unconditionally secure multiparty computation on partially connected networks. Our
main definition will admit mixed networks, however the results we achieve are only for undirected net-
works.

A.3.1 Secure multiparty computation

The two requirements for security of multiparty computation are Correctness and Privacy. They are
formalized as follows:

The correctness requirement is formalized by describing an ideal process in which all the participating
parties submit their inputs to a trusted third party Tf which evaluates a multiparty computation function
f on these inputs and returns back output values to the parties. A multiparty computation protocol π
correctly evaluates multiparty function f if the outputs obtained by the honest parties from running the
multiparty computation protocol are same as what they would be from submitting their inputs to the trusted
third party Tf and obtaining the outputs from it.

The privacy requirement is formalized as follows: A multiparty computation protocol π is private if
there exists a PPT simulator S with access to the adversaries program A, input IC and output values OC

of the subset of corrupted parties Tf , that generates a distribution DS of the views of the adversary A that
is indistinguishable from the distribution Dπ of the views of the adversary generated from real executions
of protocol π in which the adversary controls the subset of parties C. We require that the distributions DS

and Dπ are perfectly or statistically indistinguishable.
Handling input values in unconditionally secure multiparty computation: In the UC framework,
[Can05], an ideal functionality, FSEC has been proposed for secure function evaluation for the asyn-
chronous case. This functionality consists of the input commitment phase and the evaluation phase. Once
all the uncorrupted parties have submitted their inputs to Tf , (i.e., essentially committed to their input val-
ues), output is available upon request by any of the parties. The distribution of output values from FSEC

can change significantly depending upon whether, and how many corrupted parties committed to their
input values, when an uncorrupted party requests its output. But this ambiguity with respect to defining
correctness of evaluation of f , is inherent to the asynchronous regime.

Fortunately, this can be handled cleanly in the synchronous regime. Here, the inputs of some of the
parties may be fixed a few rounds earlier than others (till a corrupted party is caught cheating, for example),
but is bound to happen before a certain step for all the parties. Defining correctness of computation of
function f : First, parties commit to their input values, then the parties compute f on the committed input
values. This formulation does not loose any generality.

In [Vay06], the definition presented requires the parties to commit to their input values via some
verifiable secret sharing scheme. This is sufficient, as all known multiparty protocols use the VSS scheme,
but the description looks (if quite interestingly is actually not) somewhat restrictive. Here, we strive for
a generic presentation of the definition for the input commitment phase. We characterize the correctness
of the input commitment phase, by associating a function reveal(., . . . , .) to it and characterizing it. The
privacy requirement is handled separately for the entire protocol.
Correctness of the Input Commitment Phase of a multiparty computation protocol

Π = (Π1, Π2) refers to a two phase multiparty protocol in which, the parties execute Π1 to commit to
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their individual input values, and then execute Π2 to evaluate function f on the input values committed to
by Π1.

Party Pi is given input yi, such that ∀i ∈ [n] : yi ∈ {0, 1}∗. Let ~y = (y1, y2, . . . , yn) represent the input
values given to the parties P .

Let Π1(P, ~y, ~r1, C,A) refers to the vector of input values committed to by P on the execution of Π1,
starting with some vector of input values ~y, randomness ~r, when A corrupts subset C ⊂ P .

The input commitment phase should have the following properties (1) All the honest parties are able
to commit to their input values yi they start with, irrespective of the behavior of the adversaryA, (2) After
the input commitment phase, none of the parties can modify the input values committed to, irrespective
of how the corrupted parties behave. In particular, the distribution on the output values is immediately
defined after the input commitment phase.

The above requirements are captured as follows: If the input values of all the honest, as well as
dishonest parties have been committed to after execution of Π1, then there must exist a function revealΠ1 ,
associated with Π1, which when applied on the transcripts of the computations of the parties, reveals
the input values committed to by the parties - with the additional property that these committed values
are the same as the initial inputs of the honest parties, and may be different from the initial values of
the corrupted parties, but unmodifiable from after here on, irrespective of the behavior of the corrupted
parties. Furthermore, this should hold even if arbitrary transcripts (different from the ones generated) are
substituted for the malicious parties. Note, that this characterization does not specify which of the inputs
of reveal are from the honest parties (But just that b 2∗n

3
c + 1 of the input values should be from honest

parties). The domain of function reveal() is the vector of all feasible transcripts of the parties, and the
range is the vector of all feasible input values on which function f is to be evaluated. Formal description
follows.

Definition A.8 Π = (Π1, Π2) is a two phase multiparty protocol, to be executed by n parties P , while
adversary A corrupts C, of which Π1 denotes the input commitment phase, if there exists an n-variate
function revealΠ1 : {{0, 1,⊥}∗}n → {{0, 1}∗}n, associated with Π1, which satisfies the following:

Let
−−−−→
Trans = Π1

Trans(P, ~y, ~r1, C,A), denote the vector of transcripts of parties P , generated by exe-
cution of Π1, as defined above.

1. Let ~x = revealΠ1(
−−−−→
Trans). ∀Pi /∈ C : xi = yi.

2. ∀
−−−−→
Trans′ : [(∀Pi /∈ C :

−−−−→
Trans′[i] =

−−−−→
Trans[i])→ (revealΠ1(

−−−−→
Trans′) = revealΠ1(

−−−−→
Trans))].

Further, Π1(P, ~y, ~r1, C,A) = revealΠ1(
−−−−→
Trans), denotes the vector of input values committed to by Π1.

Remark A.9 1. The function reveal() formalized above has the salient property that it allows the
adversary to delete its transcript generated from execution of Π1, generate arbitrary transcript on
its own and yet not be able to affect the input values committed to by the transcripts of the honest
values. (This allows the adversary to behave arbitrarily during the input commitment phase, as well
as the computation phase, as long as the adversary is limited to corrupting at most n

3
parties.
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2. Take for example the BGW protocol. Depending on the specification of the protocol, the cheating
parties could be made to commit to d0 or d1 6= d0 etc.. Depending on these specifications, different
distributions of the transcripts would be generated by the execution of the input commitment phase
of the BGW protocol. However, the function revealΠ1() for the BGW protocol is independent to
such specification.

We now present a formal definition of unconditionally secure multiparty computation protocol in the
stand alone model, for the synchronous setting.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality, where fi(z1, . . . , zn) denotes the ith el-
ement of f(z1, . . . , zn). For C = {i1, . . . , it} ⊂ [n], we let fC(z1, . . . , zn) denote the subsequence
fi1(z1, . . . , zn), . . . , fit(z1, . . . , zn).

Let ~I = (i1, i2, . . . , in) be the vector of input values, where input value ij is given to party Pj.

Definition A.10 Let f be an n-ary function as defined above. Let Π = (Π1, Π2) be a two phase multiparty
protocol, as characterized in A.8. Then, Π securely evaluates f , if the following holds true ∀C ⊂ P of
parties corrupted by A, such that |P − C| ≥ b 2∗n

3
c+ 1:

1. Correctness: Let ~x be the vector of input values committed to by execution of Π1.1. Then,

Π2(~x,A)P−C ≈ f(~x, r)P−C

2. Privacy: There exists a PPT simulator S, that runs in time polynomial in the complexity ofA, which
takes as input the subset C, ~yC and f(~x, r)C , adversary program A, and generates the view of A,
such that the distribution of the views of A generated from real execution of Π is indistinguishable
from the distribution of the views ofA generated by S:

SA(C, ~yC, f(~x, r)C) ≈ ~V iew
Π,A

C (C, ~x, ~y)

for all feasible adversariesA2.

A.4 Secure multiparty computation with corruption of parties and channels on a
partially connected network

As an intermediate step to defining secure multiparty computation over partially connected network we
propose a model for secure multiparty computation, in which the adversary can corrupt a subset of parties,
as well as a subset of secure channels connecting these parties. The channels between the parties may be
corrupted passively or actively. If the channel between two parties is corrupted passively, then the new
channel is behaviorally equivalent to an authentic channel. If the channel between two parties is corrupted
actively, then the new channel is behaviorally equivalent to a tamperable channel.

1As defined above, the vector of input values committed to by the parties is specified by vector ~x =
−−−−−−−−−−−−→
Π1(P , ~y, ~r1, C,A) =

revealΠ1(
−−−−→
Trans)

2The variable −−−→V iew
Π,A

C (C, ~x, ~y) is as defined above, at the beginning of the section, and used rather canonically in crypto-
graphic literature
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How to model the corruption of channels? Let ~C denote a quadruplet of corruption as according to
adversary structure, Definition A.1.

As described above, if there exists a secure channel, with identity sec − id, between parties Pu and
Pv, represented by F r(Pu, Pv, sec − id), then passive corruption of this channel makes it behaviorally
equivalent to Fr(Pu, Pv, sec − id), with sec − id ∈ ~C[2] and active corruption of this channel makes it
behaviorally equivalent to Fr(Pu, Pv, sec − id), with sec − id ∈ ~C[3]. Since we are only interested in
static corruptions, the behavior of the channels is fixed once the adversary has corrupted a subset of nodes
and edges at the beginning of the protocol.

We note that for this setting not all honest parties are guaranteed to receive their correct output values
or are able to preserve the privacy of their input values. Honest parties, for which this is not ensured,
are called sacrificed. Informally, we say a multiparty protocol Π executed on network N , T -securely
evaluates function f , if for every feasible ~C, corrupted by A, there exists a subset of honest nodes H for
which we achieve the guarantees of multiparty computation i.e., all the parties in H receive their correct
output values, while maintaining the privacy of their input values. At least b 2n

3
c + 1 honest parties should

be able to communicate via pairwise secure communication channels for this to happen.
For this, we are required to realize secure communication channels between distant pairs of nodes of a

partially connected network, when the network has some special properties.

A.4.1 Secure communication over partially connected networks

In a partially connected network of low degree it may not be possible to establish secure channels between
every pair of honest parties. For example, consider a partially connected network in which an honest
node is surrounded by corrupted parties. This honest node is segregated from the rest of the network.
Obviously, it is not possible to establish a secure channel between this honest node and any other honest
node of the network. Considering the limitations of our setting we relinquish such hopes and focus on
achieving statistical guarantees which may be sufficient for our purpose.

Our focus is not on the identities of the nodes which may belong to the clique of honest nodes H ,
such that each pair of parties belonging to H shares a secure communication channels, but on bounding
the size of subset H for choices of quadruplet ~C of parties corrupted by A. For this we first focus on
establishing secure channels between a given pair of nodes of the network, as long as the corrupted parties
and channels belong to a certain subset.

Multiparty protocol is said to realize T -secure channel between u and v, if it realizes a secure channel
between u and v, for all ~C ∈ T , corrupted by A. There are no guarantees made about the type of channel
realized when ~C /∈ T .

There are two properties of a secure channel: Correctness and Privacy. Here, we allow the protocol to
fail to achieve correctness with a negligible probability of error and target (almost) correctness instead of
perfect correctness. For privacy condition we demonstrate a simulator Sim, running in time polynomial
in the running time of adversary A, such that the distribution of views of A generated by real executions
of the protocol is indistinguishable from the distribution of the views generated by the simulator Sim.
We demonstrate such a simulator even if the channel realized by the multiparty protocol is not private or
authentic - this is for technical reasons as the simulator may be invoked while proving security of higher
level protocols. Message being transmitted between the parties is made available to the simulator in case
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the channel realized is authentic or tamperable. Only the size of the message transmitted is made available
in case the channel realized is secure.

Now, we formalize the above setting and define a T -secure channel on a partially connected network
N .

A.4.2 Definition of T -secure channel

Let adversary be restricted to adversary structure T .
Let N = (V, E) be a partially connected network. Let ~I = (⊥,⊥, . . . , mu,⊥, . . . ,⊥) and

~O = (⊥,⊥,⊥, . . . , mv,⊥, . . . ,⊥) denote corresponding vectors of inputs and outputs.
Let −−−→V iew

γ,P

C (~I) be defined as above.

Definition A.11 (T -secure channel) Let~I, ~O and N be as defined above. Let l be a security parameter.
Multiparty protocol γ(pu, pv, N, s, c) executed on network N , realizes T -secure channel between

nodes u and v, if for all input vectors ~I , quadruplet ~C corrupted by A, such that ~C ∈ T , the follow-
ing conditions hold true:

1. Correctness: I[u] = O[v] with probability ≥ 1 − µ(l, |I[u]|), for all sufficiently large l, for some
negligible function µ().

2. Privacy: There exists a simulator Sim that takes as input, the network topology N , ~C, the program
of adversary A, size of input message |I[u]|, and runs in time polynomial in running time of A and
generates a distribution of views ofA such that:

SimA( ~C) ≈
−−−→
V iew

Π,P

~C (~I).

A.4.3 Definition of T -authentic channel over partially connected networks

The definition of a multiparty protocol that realizes an authentic channel over a partially connected network
N = (V, E) is formalized along similar lines. For the authentic channel, we relax the privacy condition of
the definition of T -secure channel.

We also add a simulatability condition which says that the view of the adversary should be simulatable
for any protocol realizing the authentic channel on the partially connected network. Since the simulator
is given as input the message being transmitted, the simulatability condition follows trivially for this case.
We would invoke this simulator, while proving security of higher level protocols.

Definition A.12 (T -authentic channel) Let~I, ~O and N be as defined above and l be a security parameter.
Protocol γ(pu, pv, N, s, c) executed on network N , realizes T -authentic channel between pu and pv, if

for all input vectors ~I , all quadruplets ~C corrupted by A, such that ~C ∈ T , the following conditions hold
true:
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1. Correctness: ~I[pu] = ~O[pv].

2. Simulatability: There exists a simulator Sim that runs in time polynomial in the running time of
A and generates a distribution of views of A that is indistinguishable from the distribution of
views of A generated from a real execution of γ. Furthermore, Sim is given input inp = ~I[pu]

iff pu /∈ ~C[0]
⋃

~C[1], else inp = ⊥. Namely,

SimA,pu,pv,N( ~C, inp, l, c) ≈
−−−→
V iew

Π,P
~C (~I).

A.4.4 Unconditional secure multiparty computation with corruption of parties as well as channels

We now formalize a definition of unconditionally secure multiparty computation which models corruption
of parties, as well as channels, passively as well as actively. As discussed above, we model this by sacri-
ficing a few honest nodes in the following manner:

1. Correctness of the outputs of the sacrificed honest parties is not guaranteed.

2. Privacy of the inputs as well as outputs of the sacrificed honest parties is not required to be preserved.
For this we show a simulator, which when given the input and output values of all the corrupted
parties as well as the sacrificed honest parties is able to simulate the view of A generated from real
execution of the multiparty protocol. Essentially, this puts a bound on the amount of knowledge on
the input values of the honest parties, that can be leaked during the computation process in the worst
case.

First, we give a relaxed description of the two-phase multiparty computation which incorporates the
notion of the sacrificed honest parties as described above. We present a weaker characterization of the
correctness of commitment of input values, than given above to incorporate sacrificing of honest parties.
The new characterization is that (1) there exists a subset of honest parties H of size ≥ b 2∗n

3
c + 1, which

should be able to commit to their initial input values, and which together share the committed input values
of all the parties. (2) the phase may fail with negligible probability.

Let A be an adversary restricted to adversary structure T , Definition A.1.

Definition A.13 Π = (Π1, Π2) is a two phase multiparty protocol, executed on network N by set of par-
ties P , while A controls ~C, where Π1 denotes the input commitment phase, if there exists an n-variate
function revealΠ1 : {{0, 1,⊥}∗}n → {{0, 1}∗}n, associated with Π1, for which Π1 and revealΠ1 satisfy
the following:

Let
−−−−→
Trans = Π1

Trans(P, ~y, ~r1, ~C,A), denote the vector of transcripts of parties P , generated by the
execution of Π1, as defined above. There exists a subset of honest parties H ⊂ P , |H| ≥ b 2∗n

3
c + 1 for

which the following two conditions hold true:
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1. Let ~x = revealΠ1(
−−−−→
Trans).

∀Pi ∈ H : xi = yi, with probability greater than 1− µ(n), for some negligible function µ(.).

2. ∀
−−−−→
Trans′ : (∀Pi ∈ H :

−−−−→
Trans′[i] =

−−−−→
Trans[i])→ (revealΠ1(

−−−−→
Trans′) = revealΠ1(

−−−−→
Trans)).

Further, let Π1(P, ~y, ~r1, ~C,A) = revealΠ1(
−−−−→
Trans), denote the vector of input values committed to by

Π1.

We allow the input commitment phase of the multiparty protocols executed on partially connected
networks to fail with a negligible probability. This relaxation is a must as we only establish (almost)
secure channels on the partially connected network, which may fail to deliver their correct messages with
at most negligible probability, and hence the input commitment phase may also fail with a negligible
probability.

We formalize unconditionally secure multiparty computation on partially connected networks.
Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality, where fi(z1, . . . , zn) denotes the ith element

of f(z1, . . . , zn). For C = {i1, . . . , it} ⊂ [n] = {1, . . . , n}, we let fC(z1, . . . , zn) denote the subsequence
fi1(z1, . . . , zn), . . . , fit(z1, . . . , zn).

Definition A.14 Let f, ~y, P,A, ~C be defined as above.
Π = (Π1, Π2) is a two-phase multiparty computation protocol, A.13, executed on network N , T -

securely evaluates f if for all ~C ∈ T , A.1, corrupted by A, there exists a subset of parties, H ⊂
P − ~C[0]− ~C[1], |H| ≥ b2n

3
c+ 1, for which the following condition holds true:

1. Correctness: Let ~x be the vector of input values committed to, by the parties, after the execution of
input commitment phase Π1.3 Then,

Π2(~x, ~C,A, ~r2)H ≈ f(~x,~r)H

2. Privacy: There exists a simulator S, that runs in time polynomial in the complexity ofA, which takes
as input ~C, ~y ~C , f(~x) ~C and adversary programA and generates distribution of views ofA, such that:

SA( ~C, ~yP−H, f(~x,~r)P−H) ≈
−−−→
V iew

Π,A
~C ( ~C, ~y, ~r1 ◦ ~r2), where ~r1, ~r2 refer to the sequence of random

bits used during phase Π1 and Π2, respectively.

for all feasibleA.

3~x← Π1(~y, ~C,A, ~r1), as defined above
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B Secret key agreement by public discussion - revisited

We shall propose a solution to the problem of secret key agreement via public discussion, proposed in sub
subsection A.2.

B.1 (almost) secure channel using an authentic channel

We present a protocol that realizes an (almost) secure channel from Alice to Bob in the model proposed in
subsection A.2. Alice and Bob share the following N + 1 channels:

{F r(Alice, Bob, id1), F
r(Alice, Bob, id2), F

r(Alice, Bob, id3), . . . , F
r(Alice, Bob, idN−1), F

r(Alice, Bob, idN ), F r(Alice, Bob, idN+1)}.

for some constant r ≥ 3, where ∃i ∈ [N ] : idi /∈ ~C[2]
⋃ ~C[3] and idN+1 ∈ ~C[2] i.e., Channel idN+1 is

given to be authentic and at least one of the N channels is known to be secure.
We describe a protocol for transmitting a single bit message m from Alice to Bob (almost) correctly.

Protocol Π1 = (ΠAlice
1 , ΠBob

1 ) is described below. Alice → Bob : refers to the step in which Alice does
computation and sends some messages to Bob.
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1. Alice → Bob : Along each channel F r(Alice, Bob, idj), ∀j ∈ [N ],
Alice sends a block of uniformly chosen sequence of random bits of
length k(N, s).
Here k(N, s) is some polynomial in N, s, specified later.

2. Alice → Bob : For each channel F r(Alice, Bob, idj), ∀j ∈ [N ], Al-
ice chooses an integer ip ∈ {1, . . . , k(N, s)} uniformly at random and
sends the set of these integers to channel F r(Alice, Bob, idN+1).

3. Alice → Bob : ∀j ∈ [N ], Alice hides ithp bit of the sequence sent
through channel F r(Alice, Bob, idj) in previous Step and reveals the
rest to Bob by sending to channel F r(Alice, Bob, idN+1).

4. Bob→ Alice : Bob identifies the faulty channels as follows:

Channel idj is identified as faulty if the subsequence sent along the
ith channel in Step 3, is different from the corresponding sequence re-
ceived from Alice (excepting the hidden bit specified in Step 2) along
ith channel in Step 1.
Bob reveals the identities of the channels identified as faulty, by sending
them to channel F r(Bob, Alice, idN+1).

5. Alice → Bob : Alice excludes all the faulty channels and chooses the
hidden ithp bits of the good channels and computes an exclusive-OR of
them with the bit m to be sent and sends the resulting bit c to channel
F r(Alice, Bob, idN+1)

6. Bob : Let the bit received by Bob in the previous step be c. Bob com-
putes the exclusive-OR of the hidden bits at its own end and extracts
c⊕ b∗ as the bit meant for it.

7. Alice and Bob repeat the above steps parallely l(s) times. Bob accepts
the majority value as its output value.

We shall prove that protocol Π(1) described above realizes an (almost) secure channel for transmitting
a single bit message from Alice to Bob, as according to the definitions given in subsection A.2.
Theorem B.1 Protocol Π(1) simulates an (almost) secure channel between Alice and Bob.

Proof: We have to prove the following two conditions:
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1. Privacy: To prove that the communication channel, simulated between Alice and Bob by the above
protocol, is private we need to show that the distribution of the views of the adversary when bit
m =′ 0′ is sent through the channel is indistinguishable from the distribution of the views of the
adversary when bit m =′ 1′ is sent i.e.,

ExecΠ(1),Alice,Bob,A,l(
−−−−→
(′0′,⊥))[A] ≈ ExecΠ(1),Alice,Bob,A,l(

−−−−→
(′1′,⊥))[A]

First, observe that Step 5 is the only step when Alice sends a message to Bob that is dependent on
input bit m. More specifically, the message sent by Alice to Bob in Step 5 is m⊕bij⊕ . . .. Since it is
known that one of the N channels is secure with respect to A, one such random bit bij used in Step
5 to hide the message bit in the last step is uncorrelated with respect to the view of the adversary.
Hence, m⊕ bij ⊕ . . . is uncorrelated with the rest of the view of the adversary. Thus, the following
two distributions are (perfectly) indistinguishable:

ExecΠk,S,R,A,l(~I1)[A] ≈ ExecΠk,S,R,A,l(~I2)[R]

2. (almost) Correctness:
Prrs,rr

(Re(Ch, Πs, rs, b, Πr, rr) 6= m) = µ(s) (4)
for some negligible function µ(.) and security parameter s.
We shall show a simple lower bound on the probability of Alice and Bob agreeing on the same bit.
We shall do it in two steps. First, we shall prove a lower bound on the probability of the event that
all the channels chosen to hide bit ’b’ in Step 4 are good i.e., were not manipulated by the adversary.
Then, we shall do a standard probability amplification using Chernoff’s bound.
Define Xi to be the event that Channel idi was faulty and chosen. Correspondingly, define Xi for all
i ∈ [N ]. Then, the probability of choosing at least one faulty channel is Pr[X =

⋃
i∈N Xi]. This is

upper bounded by the Union bound, Pr[X = ∪i∈NXi] ≤
∑i=N

i=1 Pr[Xi].
The probability that a faulty channel idi was chosen for transmission is Pr[Xi] ≤

1
k(N,s)

. Thus, in
the worst case we have Pr[X =

⋃
i∈N Xi] ≤

N
k(N,s)

as the upper bound of choosing at least one
faulty channel. The probability that all the channels chosen are good is Pr[X], Pr[X] ≥ 1− N

k(N,s)

In this case we are assured of a good transmission i.e., the minimum probability of a good transmis-
sion is 1 − N

k(N,s)
. If k(N, s) is chosen to be N ∗ f(s) for some function f(.), then this expression

evaluates to Pr[X] ≥ 1− N
k(s)
≥ 1− 1

f(s)

The probability that Bob receives incorrect bit in Step 5, Pr[X], is at most 1
f(s)

. Alice and Bob
repeat Step 1 through Step 5, l(s) times and take the majority value as the answer. By Chernoff’s
bound, the probability that Alice and Bob agree on dissimilar bits is: Pr(b′ 6= b) ≤ exp(−µ ∗ δ2

2
),

where δ = 1
2
− 1

2∗(f(s)−1)
and µ = l(s) ∗ (1− 1

f(s)
).

The transmitted bit is correct with probability at least 1−exp
−(f(s)−2)2∗l(s)
8∗f(s)∗(f(s)−1) . For f(s) = 3 and l(s) = s,

the probability of transmitting a bit correctly is at least 1− expO(s).
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Protocol Π(1) simulates a private and (almost) correct and hence (almost) secure channel to transmit a
one bit message from Alice to Bob. 2

Remark B.2 The extension to send messages of arbitrary length is straightforward. One can use error
correction codes to reduce the bit complexity of the above protocol, but our focus here is not on the
efficiency of the protocol but just an existential result, that we can deploy later.

C (almost) Secure channels on partially connected networks

Let the adversary be restricted to some adversary structure T . We give a multiparty protocol that es-
tablishes T -secure channels between a pair of nodes of a partially connected network N as long as the
adversary corrupts ~C ∈ T .

Let N = (V, E) represent the communication infrastructure available between the set of parties V ,
with the following Special Property (Tpu,pv,β,c):

Definition C.1 Network N possesses Property Tpu,pv,β,c, if the following two conditions hold true:

1. For every ~C ∈ T , corrupted by A, there exists a path of secure channels, connecting uncorrupted
nodes, of length at most c ∗ lg2 n from pu to pv.

2. There exists a multiparty protocol β(pu, pv, N) that realizes T -authentic channel between pu and
pv. (The channel established by β is also referred to as the additional channel between pu and pv.)

Now we describe a multiparty protocol γ(pu, pv, N, s, c) for node pu to send a single bit message to
node pv, securely using the infrastructure of network N = (V, E). Let l(n) be some polynomial in n,
which will be defined according to the guarantee of security made for γ.

We make a few highlighting remarks about the features of the multiparty protocol γ(pu, pv, N, s, c):

1. Recall the definition of (physically realized) authentic and secure channels of network N , in Section
A. Each of these channels is parameterized by variable r, which refers to the number of rounds after
which a message sent by the sender, along the channel, reaches the receiver.

2. Each Step of γ(pu, pv, N, s, c) consists of multiple rounds. The first step consists of a total number
of (c ∗ lg2 n) ∗ r rounds, where the constant c depends on network topology N . A message sent over
the additional channel realized by β(pu, pv, N) takes r ∗ rβ,N rounds.

3. The protocol γ(pu, pv, N, s, c) runs for a total of c ∗ lgn ∗r + 5 ∗ rβ ∗ r + 2 ∗ r rounds. No messages
are exchanged in the last two rounds. The presence of constant 2 ∗ r is due to technical reasons, to
carry out higher level proofs of multiparty computation.
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MPC protocol γ(pu, pv, N, s, c): Setup Phase.
Enumerate all paths of length at most c ∗ lg2 n between pu and pv in network
N . Let PA = {pa1, pa2, . . . , paw} be the set of paths, w in number. The set

PA and the path-ids etc. are known to all the parties of the network as a
result of the set up phase.

1. pu → pv : Along each path pai ∈ PA, ∀i ∈ [n] between pu and pv, send
a block of k(w, s) uniformly chosen random bits, for some polynomial
k(., .) that will be specified later. (After forwarding the block to the
next node on the path, the intermediate node deletes the block.)

2. pu → pv : For each of the w paths, choose an integer ip ∈
{1 . . . k(w, s)} uniformly at random and send this set of integers to the
node pv over the additional channel, realized by multiparty protocol
β(pu, pv, N).

3. pv → pu : Node pv hides the ithp bit from the respective block of random
bits, and sends the rest of the block to pu over the additional channel.

4. pu → pv : Node pu identifies the faulty paths, as follows: pu checks for
mismatch between the block created after removing the hidden bit (i.e.,
ithp bit) from the respective block sent in Step 1, and the block sent in
Step 3 (for the same path).
If all the paths are identified as faulty, then pu sends a message
PROTOCOL-ABORT to pv over the additional channel. Otherwise,
let b∗ =

⊕g

j=1 bij be the exclusive-or of the hidden bits from all the
paths identified as non-faulty. The node pu sends the following to node
pv over the additional channel:

(a) The subset of the identities of all the paths identified as non-faulty.
(b) If mo is the bit to be sent, send bo = mo ⊕ b∗ over the additional

channel to node pv.

5. pv: Let b′o be the bit received in the previous Step. pv receives the
identities of all the ”non-faulty” paths and computes the XOR of the
”hidden” bits of the blocks sent over each of the paths in previous Step
i.e., its own values of bij ’s and the bit b′o received in the previous Step.
Node v extracts the bit for each of the l(s) parallel executions and ac-
cepts the majority as its output value.

Simulatability of adversaries view for multiparty γ(pu, pv, N, s, c). If network N possesses certain
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Property Tpu,pv,β,c, C.1, multiparty protocol γ(pu, pv, N, s, c) realizes a T -secure channel between pu and
pv. For technical reasons, we demonstrate a simulator that simulates the view of the adversary for all the
different cases and not just when ~C ∈ T . This simulator is invoked while proving the security of higher
level protocols.

When the channel simulated by γ(pu, pv, N, s, c) is to be proved secure, then the simulator will not
be given any knowledge about the message being transmitted, except for the length of the message. The
simulator is given the message being transmitted on the channel for all other cases. We consider each case
separately and qualify it accordingly.

Theorem C.2 Let multiparty protocol γ(pu, pv, N, s, c) be executed on network N with Property Tpu,pv,β,c,
C.1.

There exists a simulator, that runs in time polynomial in running time of A and generates a distri-
bution of views of A that is indistinguishable from distribution of views of A generated from executing
γ(pu, pv, N, s, c) on N , for all quadruplets ~C ∈ C corrupted by A.

Proof: Let A corrupt quadruplet ~C ∈ T . Depending on the subset of nodes corrupted by A, we shall
have several cases and the behavior of the simulator may be different for each case.

We shall divide the proof according to the choice of parties and channels corrupted byA, and whether
additional channel simulated by β(pu, pv, N) is authentic or tamperable. In either case, there exists a
simulator Simβ that generates a distribution of views of A that is indistinguishable from the views of
A generated from real execution of multiparty protocol β. (In particular, when pu is honest, then the
simulator is given the input message to be sent by pu to pv and if pu is faulty, thenA itself is the generator
of the message).

We consider each case separately:

1. Nodes pu, pv are honest and there exists at least one path of non-faulty nodes of length at most
c ∗ lg2 n between pu and pv In this case simulator Simβ is given as input the message to be sent.

(a) ~C ∈ T In this case we demonstrate a simulator that simulates the view ofA but takes no input
i.e. is a Zero-Knowledge simulator, thus providing perfect Privacy to the channel established.
The simulator S. The simulator S is given as input ~C corrupted by the adversary A and
whether the additional channel is authentic or tamperable. Note that for the MPC protocol
γ(pu, pv, N, s, c), only pu receives an input message and only pv outputs an output value, the
rest of the parties just participate in the protocol γ(pu, pv, N, s, c) without taking any inputs
or producing any outputs. Next, also note that the input message bit is used only in the last
Step of the protocol - the rest of the steps only involve exchanging uniformly random bits. The
simulation of the protocol is quite straightforward from hereon.
We are going to show the simulation of execution of one sequence of steps of protocol
γ(pu, pv, N, s, c). The extension to l(s) independent parallel repetitions for each different mes-
sage bit or repetition for amplification is a straightforward extension. Note, that in this case
the simulator is given as input the length of the message.
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The simulator S simulates the role of all the honest parties, pu and pv as it is. In the first step
the simulator chooses a sequence of uniformly chosen random bits for each path and simulates
the sending of this sequence of uniformly chosen random bits along the path as follows: When
an intermediate party sends a message to an adversary corrupted party, the simulator sends the
message toA which may modify the message before passing it to the next honest party (which
is simulated by the simulator).
Then, S chooses the identity of one bit from each sequence of random bits and invokes the
simulator Simβ for simulating sending this set of identities from pu to pv through an authentic
channel.
In the next step the simulator takes all the sequences, in their entireties except for the hidden
bits (in previous step) and invokes Simβ for simulating sending this set of identities from pu

to pv through an authentic channel simulated by protocol β.
In the next step the simulator identifies the faulty paths based on the corrupted blocks in first
Step, and invokes the simulator Simβ for simulating sending the identities of these paths
through an authentic channel simulated by protocol β.
Now since we are given that there exists at least one non-faulty path in network N between pu

and pv we know that one at least random bit is completely hidden from the adversary - there
may be more but at least one is completely hidden. The simulator computes the XOR of all
of these hidden bits (chosen from all non-faulty paths) with r ′ and invokes simulator Simβ on
this input.
[Simulation for parallel repetitions for the same bit or for different repetitions for different
message bits is a straightforward extension - the proof follows by use of hybrid argument, la
[GM82]]
Observe that Simβ and hence simulator Sim run in time polynomial in the running time of the
adversary A.
Proof of indistinguishability of A’s view. Intuitively, the argument is as follows: During
the simulation of the first few steps of the protocol only uniformly chosen random bits are
used(exchanged between) the parties. Now, for the choice of ~C ∈ T there is one path secure
from the adversary. The uniformly chosen random bit from this path remains secure from A
and is used to hide the message bit used in the last step of γ. But the XOR of a random bit with
the message bit creates a (”random” looking) bit that is indistinguishable from a random bit.
Thus, the view of A generated by the simulator or in the real execution of γ is indistinguish-
able. Details follow.
We show that the distribution of the views of A generated by the above simulator, which
doesn’t take any input, is indistinguishable from the distribution of the views of the adversary
generated from execution of γ(pu, pv, N, s, c) with some arbitrary message m.
For this we show that this is the case after simulation of every step of γ. First, notice that
the adversary plays an active role in formulating its view only in the first step - after the
first step of protocol γ(pu, pv, N, s, c) the adversary is passive and just passively collects all
messages (since the additional channel simulated by β is authentic). We are going to show
indistinguishability of the distribution of adversaries view after every step of γ(pu, pv, N, s, c).
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In the first step notice that the probability with which the adversary chooses to corrupt the
blocks of uniformly chosen random bits sent on the faulty paths is the same whether its a
real execution of γ(pu, pv, N, s, c) or the simulation. In particular, the probability with which
the adversary chooses to corrupt the blocks, sent on some particular paths, at some particular
corrupted nodes and at some particular positions is exactly the same for the simulation of
the ideal world as it is in the real execution of γ(pu, pv, N, s, c) given that the blocks were
chosen uniformly at random. Thus, the distribution of views of the adversary A generated
after the real execution of first step of γ(pu, pv, N, s, c) or after the simulation of the first step
of γ(pu, pv, N, s, c) by the simulator is exactly the same or a Distinguisher may be constructed
using the adversaries program which can distinguish between two sources of uniformly random
bits - contradiction.
Now notice that the adversary doesn’t contribute actively in the constitution of its view, after
the first step of the protocol, as it just receives all the messages exchanged between pu and pv

on T -authentic channel.
Fix a view Vw of the adversary constituted up till Step 1. We know that the probability that this
has been picked from such views generated from real execution of protocol γ(pu, pv, N, s, c)
or from ideal world simulation is equal i.e., 1

2
.

Observe also that for protocol γ(pu, pv, N, s, c) every view of the honest parties generated till
Step 1, that is compatible to the same view of the adversary generated till Step 1, is equally
likely to be from real life execution of γ(pu, pv, N, s, c) or from ideal world simulation. Thus
we can fix a given view of the honest parties as well as the view of the adversary till Step 1
and this is equally likely to be from real world execution of protocol γ(pu, pv, N, s, c) or from
ideal world simulation.
Observe that once the view of the honest parties and the adversary is fixed for Step 1, if the
same random choices are made for nodes pu and pv during Step 2 through Step 5 in real
execution of β as well as in simulation by the simulator Simβ , the view of the adversary
generated is identical.
So the distribution of the views of the adversary generated so far (i.e., up to Step 5 of γ(pu, pv, N, s, c)),
constituted from real execution or ideal world simulation are identical.
The Step 6 needs a slightly different analysis because in this step messages are sent from node
pu to pv which depend on the actual message m. This message m is available to the node pu

in the real world execution of γ(pu, pv, N, s, c) but not to the simulator because the simulator
is not given any input. Observe that for this case, that since there exists at least one path of
non-faulty nodes between nodes pu and pv along which a block of uniformly random bits was
sent in Step 1, therefore at least one random bit is secure from the adversary. This random is
also used to hide the ”message bit” in Step 6. Let this random bit be r0. The adversaries view
for this step would be r0 ⊕ mi for real world execution and a uniformly chosen random bit
r′ for the simulation. However since r0 is a uniformly chosen random bit completely hidden
from the adversary (just like r′ is uniformly chosen random bit uncorrelated to the rest of
the view of the adversary) and hence uncorrelated to the rest of the view of the adversary
r0 ⊕ mi ≈ r′. This completes the argument for the indistinguishability of the distribution of
the views ofA generated from execution of one sequence of Steps 1 through Step 6, of protocol
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γ(pu, pv, N, s, c).
To take into account the view ofA constituted from l(s) different parallel executions repeated,
for each of the r different message bits, the construction of a hybrid argument, a la [GM82], is
straightforward.
Thus the distribution of the views of the adversary generated from the real world execution
of γ(pu, pv, N, s, c) is indistinguishable from the distribution of the views of the adversary
generated from the ideal world simulation by the simulator.

(b) ~C /∈ T i.e., Channel simulated by β between pu and pv is not authentic. In this case the channel
established between parties pu and pv by protocol γ(pu, pv, N, s, c) is not secure but may be
arbitrarily tamperable. This can be seen as follows: In Step 1, pu may be able to send a block
of uniformly chosen random bits to pv, using the path of non-faulty nodes between pu and
pv, which may be perfectly hidden from the adversary. However, in the subsequent steps the
adversary, which has full control over the additional channel, not only receives the messages
sent by pu but has full control for the rest of the steps of the protocol. The adversary may be
able to get pu and pv to agree on arbitrary message bit.
In this case since the message m that pu intends to send to pv is completely revealed to the
adversary A, we provide the simulator S with the message m that pu intends to send to pv.
Once the simulator possesses the message m itself, it can simulate all the honest parties, ditto
as if they were participating in real execution of protocol γ and can thus perfectly simulate the
view ofA.

2. Node pu is corrupted. Recall that only pu is supposed to receive an input message for γ(pu, pv, N, s, c).
In this case pu itself is controlled by A. In particular, the A itself possesses the message that pu in-
tends to transmit to pv, which can be honest or corrupted.
First note that the simulator is only given the quadruplet ~C corrupted by A for this case. All we
need to note is that the honest nodes only make uniformly random choices when/if they are required
to make such choices during the execution of γ(pu, pv, N, s, c). Otherwise, they are just limited to
forwarding messages exchanged on the authentic channel. Thus the simulator does not need any
information or message for simulating the role of the honest nodes in this case - it is the adversary
who needs the message and it also possesses the message. The adversary controlled pu may not
execute the protocol as required and abort or send unexpected/arbitrary messages but all this is
perfectly simulated.

3. Otherwise. This means that (a) pu is honest and, (b) That either, (1) pv is corrupted or, (2) There
exists no path of non-faulty nodes of length at most c ∗ lg2 n between pu and pv in network N or, (3)
The channel realized by β is not authentic.
In either of the three cases we will not be required to prove that the protocol γ(pu, pv, N, s, c) realizes
a secure/private channel between nodes pu and pv for this case. Since, we are not required to prove
that the channel realized by γ is not private it is enough for us to demonstrate a simulator that takes
as input the message m that pu intends to send to pv. Depending on the other conditions full or no
information about the message m may get leaked to the adversary just as it would in the execution
of protocol γ(pu, pv, N, s, c).
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For this case, we demonstrate a simulator that is given as input the tuple {m, ~C}, which will be
sufficient for the the higher level simulator.
But construction of such a simulator is quite straightforward, as noted above, because once the sim-
ulator possesses the only input any party is given in the execution of γ, the simulator just simulates
the role of all honest parties ”exactly” as in the real execution of protocol γ, while sending the mes-
sages to be sent to the corrupt parties to the adversary and vice-versa receiving too. If the simulator
makes the same random choices for the honest parties and the adversary makes the same random
choices for the corrupted parties, for the ideal world simulation as well as real world execution of
protocol γ(pu, pv, N, s, c), then the adversary is going to end up with exactly the same view. Hence
the distributions of the views of the adversary for the two cases would also be indistinguishable.
Otherwise, a contradiction would result due to the existence of a distinguisher that distinguishes
between two sources of uniformly chosen random bits.

2

We are going to show that protocol γ(pu, pv, N, s, c) described above realizes a T -secure channel
between pu and pv.

Theorem C.3 Let N = (V, E) be a partially connected network with Property C.1 defined above. Then,
protocol γ(pu, pv, N, s, c), executed on N , realizes a T -secure channel between pu and pv.

Proof: Recall the definition of T -secure and T -authentic channels from section A. We shall show that
channel realized by γ(pu, pv, N, s, c) is secure:

1. Privacy: We demonstrate a simulator that runs in time polynomial in the running time of adversary
A, such that for every input vector ~I , such that ∀j ∈ [n], j 6= u : I[j] = φ and I[u] = m ∈ {0, 1}r

(here m is the message to be sent from pu to pv), subset C of nodes corrupted by the adversary A
such that C ∈ T , the simulator Sim takes as input the subset C, network topology N and generates
a distribution of views of A that is indistinguishable from the distribution of views of A generated
from real execution of γ(pu, pv, N, s, c).
The existence of such a simulator follows as a corollary to Theorem C.2. In particular we are
considering case 1a, for which the simulator does not take ~I as the input. This completes the proof
of privacy.

2. (almost) Correctness: It is given to us that Protocol β(pu, pv, N) realizes a T -authentic channel from
pu to pv.
We have to prove that the channel realized by γ(pu, pv, N, s, c) is (almost) correct when A chooses
to corrupt quadruplet ~C ∈ T . For this just observe that N possesses the property, C.1: Thus for
each ~C ∈ T , the protocol γ(pu, pv, N, s, c) is equivalent to the bit transmission protocol, B.1.
The analysis for correctness condition is the same as that of the bit transmission protocol in Section
B, with N = w, s = l channels and other suitable parameters for security. From Section B, we have
that the channel realized by γ(pu, pv, N, s, c) between pu and pv is correct, except for negligible
probability of error, µ(l), for security parameter l and hence almost correct.
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From the above we have that multiparty protocol γ(pu, pv, N, s, c) realizes a T -secure channel between
pu and pv.

2

How to extend the protocol and analysis to send messages of arbitrary lengths? To send message
m = (m0, m1, . . . , mo, . . . , m|m|) (Where mi represents the ith bit of m) from node pu to node pv, execute
Step 1 through Step 5, parallely for each bit, l(s) times parallely.

The oth bit computed in this manner is accepted as the mγ
o bit of message m.

The analysis of the correctness condition of the protocol remains (more or less) the same. More
specifically, the message is sent correctly over the channel iff each bit of the message is sent correctly. To
ensure that the entire message gets sent correctly, we ensure that each bit of the message is sent correctly.

Suppose with message complexity O(l) we are able to ensure that the message m is sent correctly with
probability 1− µ(l), for some negligible function µ(.). The probability of making an error, while sending
the entire message m over the channel is at most 1− (1− µ(l))|m| ≤ |m| ∗ µ(l), which is also negligible.
[To reduce the probability of error, back to µ(l), the number of parallel executions of Step 1 to Step 6 of
the bit-transmission protocol may be increased by an additive factor of O(lg |m|) rounds.]

D Almost everywhere secure computation

In this section we shall show how to realize the notion of almost everywhere secure computation on a class
of partially connected networks that possess special properties.

D.1 Realizing almost everywhere secure computation on partially connected net-
works with special properties

The proof for realizing almost everywhere secure computation on networks with special properties in-
volves several smaller components. We shall break it into two parts: (1) Assuming unconditionally se-
cure multiparty computation, we show how to realize almost everywhere secure computation on complete
networks with parties as well as channel corruptions (2) Assuming (1), we show how to realize almost
everywhere secure computation on partially connected networks with special properties.

D.1.1 Corruption of parties as well as channels

We shall prove that if there exists an unconditionally secure multiparty protocol in the vanilla model, which
allows only for corruption of parties, according to Definition A.10, then there exists an unconditionally
secure multiparty computation protocol executed on a complete network in the model that allows for
corruption of parties as well as channels, actively as well as passively, according to Definition A.14.

Let f be an n-variate function and Π be an unconditionally secure multiparty protocol for evaluating
function f as long as at least b 2∗n

3
c + 1 parties are honest. The following claim is well known:

Claim D.1 There exist multiparty computation protocol that securely evaluates n-variate function f ac-
cording to Definition A.10.
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The three distinguishing features of Definition A.14 with respect to Definition A.10 are that in Defini-
tion A.14 : (1) Adversary A is allowed to corrupt parties as well as channels, passively as actively, so an
adversary structure T is introduced, A.1 (2) The multiparty computation protocol assumes only a partially
connected communication network that connects the parties. (3) Guarantees only statistical correctness
and not perfect correctness.

Let NC be a complete undirected network.

Theorem D.2 There exists a multiparty computation protocol Π′ that T -securely evaluates function f
according to Definition A.14, on a complete network NC for all adversaries A restricted to a feasible
adversary structures T .

Proof: Let Π be a multiparty protocol as per Claim D.1. We show that Π′ = Π executed on NC

T -securely evaluates f , as according to Definition A.14, for all feasible adversary structures T .
Let ~C ∈ T . Since ~C is a feasible quadruplet of corruptions, Definition A.3, then there exists a subset

of honest parties H ⊂ P , |H| ≥ b 2∗n
3
c + 1, such that ∀pu, pv ∈ H : (pu, pv) /∈ ~C[2]

⋃
~C[3].

We need to make sure that executing protocol Π′ on NC , while the adversary A′ corrupts ~C, achieves
the correctness and privacy condition of Definition A.14.
For Correctness: It is enough to show that for every strategy of A′ that corrupts quadruplet ~C as above,
on execution of protocol Π′ on NC , there exists a corresponding A that corrupts parties in subset P −H
while parties execute Π, such that the (distribution of the) view of the honest parties is indistinguishable
for the two cases. This strategy of adversary A is as follows: The adversary A internally simulatesA′ for
all maliciously corrupted parties (i.e., in subset ~C[0]), simulates the protocol for honest parties on the rest
of the corrupted parties (i.e., in subset P − H − ~C[0]) and appropriately simulates A′ for passively and
actively corrupted channels between the parties in subset H and P −H and the internal channels between
the parties in subset P − H , before the messages are (received from or) sent to the honest parties in H ,
while executing multiparty protocol Π.

Correctness is straightforward or contradiction is achieved about the correctness of Π, which satisfies
Definition A.10 as in Claim D.1.
For Privacy: For the privacy condition it is enough to demonstrate an appropriate PPT simulator. The
simulator is given the input and output values of all the parties in subset P − H . Clearly, by Definition
A.10, there exists a simulator that simulates the view of the parties in subset P − H (which is of size at
most bn

3
c) indistinguishably. The same simulator (slightly modified as described next) is invoked here as

well. Clearly, the view generated by channel corruptions and passive corruptions of the parties, in the new
case, ”looks” enhanced but is just a trivial extension because the simulator is given the input and output
values of all the parties in subset P −H .

If the distributions of views of A′ generated by the above simulator, and the distribution generated
during the real execution of protocol Π′ have a non-negligible difference, then it translates to a non-
negligible difference in the corresponding distributions generated for Definition A.10 - a contradiction.

Furthermore, it is easily verified that if Π is a two phase protocol as according to Definition A.10, then
so is Π′ as according to Definition A.14 (Basically, the function reveal() translates as such, the difference
is only in weakening the requirement from all honest parties being able to successfully commit to their
initial input values, to at least b 2∗n

3
c + 1 honest parties being able to commit to their initial input values,

except for negligible probability). 2
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D.1.2 Almost everywhere secure computation

The definition of almost everywhere secure computation has been provided in the Section A on Models
and Definitions. In this section we shall show how to realize this definition on networks which have certain
special properties.

Now we present the main theorem of this work. The proof of this theorem is somewhat long. In
general, a formal proof of a claim or a lemma has been preceded by intuitive discussion.

First, we describe a TβN ,c-Communicability Property of an undirected network N = (V, E). Essen-
tially, it says that for every choice of quadruplet of corruptions ~C ∈ T , there exists a large enough number
of honest nodes that can communicate securely with each other, so that secure multiparty computation can
be carried out. This is formalized as follows:

Definition D.3 LetA be a T -limited adversary, as defined in A.1. A partially connected network N has a
TβN ,c-Communicability Property, iff the following condition holds true:

∀ ~C ∈ T : ∃H ⊂ V : |H| ≥ b2∗n
3
c + 1 : ∀pu, pv ∈ H : [(pu, pv) /∈ E

⋃
Ed → Network N possesses

Property { ~C}pu,pv,βN ,c, C.1].

The next theorem says that if N possesses, TβN ,c-communicability property, described above, then
there exists a secure multiparty computation protocol ΠN that T -securely evaluates f on N :

Theorem D.4 If network N possesses TβN ,c-Communicability Property, D.3, then there exists a multiparty
computation protocol ΠN , that T -securely evaluates function f , on network N , as according to Definition
A.14.

Proof: The proof of this theorem is somewhat long and delicate for the primary reason that we need a
protocol to realize secure channels between distant nodes of the partially connected network N , using the
infrastructure of N , but are not allowed to use any composition theorems (Please refer to discussion in the
section on Model and Definitions for this).

The higher level construction of the protocol and the proof of its security proceed as follows:

1. Let CN = (V, E, ECN
) be the network on vertex set V constructed by connecting all the pairs of

parties not already connected in N , by virtual edges (Note, that since the virtual edges are directed,
so for each (u, v) ∈ V ∗ V − E two directed edges are added to ECN

).
We fix an order on all the (directed) virtual edges, in subset ECN

, and proceed by induction as fol-
lows:

(a) Base case: We start by describing an adversary structure TCN
for a complete network CN as a

function of adversary structure T , network N , and TβN ,c-communicability property, D.3.
Then, we show that there exists a multiparty protocol ΠCN

, A.13, to be executed on the com-
plete network CN , that TCN

-securely evaluates f , as according to Definition A.14.
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(b) By induction hypothesis, we are given an intermediate network Ni for which we are given a
multiparty protocol ΠNi

, such that protocol ΠNi
, TNi

-securely evaluates f , on network Ni, as
according to Definition A.14.
We are required to give a construction of multiparty protocol ΠNi+1

to be executed on network
Ni+1 (where network Ni+1 is network Ni with the ith virtual edge ei removed from the network
Ni) and adversary structure TNi+1

(which is basically adversary structure TNi
except that edge

ei is not present in adversary structure TNi+1
because there is no ei in Ni+1), such that multiparty

protocol ΠNi+1
executed on network Ni+1, TNi+1

-securely evaluates function f , as according
to Definition A.14.

(c) Lastly, note that inductive hypothesis will be applied till there are no virtual edges in the net-
work that can be replaced by simulated channels, i.e., till Nj = N and TNj

= T , the original
adversary structure which allows network N to possess certain communicability property. The
multiparty protocol ΠN = ΠNj

will T -securely evaluate function f on network N , as accord-
ing to Definition A.14.

Basically, at every inductive step we shall replace a virtual channel, by a simulated channel that does
precisely the same function4 using the infrastructure of network N i.e., is authentic if the original corrup-
tion makes it authentic, is secure if the original corruption is secure and is tamperable if the original edge
is tamperable. Loosely speaking, the I. H. says that if we can realize TNi

-secure computation on partially
connected network Ni with r real, v virtual and s simulated channel, then we can realize TNi+1

-secure
computation on network Ni+1 with r real, v− 1 virtual and s + 1 simulated edges (where adversary struc-
ture TNi+1

is identical to TNi
, except that the virtual edge replaced in the last step, is not part of adversary

structure TNi+1
for it does not exist in network Ni+1).

Following will be the outline of the rest of the proof:

Outline of the proof:

1. Ordering of edges: Next, we shall define an ordering of the missing edges of the network N .

2. Round structuring protocols

3. Construction of the sequence of networks Ni

4. Adversarial structures TNi

5. Statement and Proof of the Base Case

6. Inductive hypothesis discussion and formalization

7. Proof of Inductive hypothesis
4Actually, this is almost precisely, because with negligible probability the T ′-secure channel may fail to deliver the message

and the originally perfect edge is replaced by a statistically perfect edge.
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An ordering of virtual channels: Consider the set of edges, Ed which is null for the network N , Ed =
{(pu, pv)|∀u, v : (pu, pv) /∈ E}. Consider an arbitrary ordering over this set of virtual edges, e0 = φ,
e1 = (pu,0, pv,0), e2 = (pu1 , pv1), . . . , el = (pul

, pvl
). Note, that the original network N contains only the

real edges (which are all undirected, btw).
Construction of network Ni, ∀i ∈ {0, . . . , l− 1}: Network N0 = CN . Network Ni is defined as follows:
Ni = (V, E, Ei), where V = P , Ei = Ei−1 − ei.
Adversary structure TNi

: The intuition behind the construction of adversary structures for each i is as
follows:

Let γ(pu, pv, N, s, c) be a multiparty protocol used to establish a channel from pu to pv for (pu, pv) /∈ Ei

using the infrastructure of network N . Depending on the choice of ~C corrupted by the adversary, the
channel established by γ(pu, pv, N, s, c) may be (almost) secure, (almost) authentic or tamperable.

Thus, the pair (γ(pu, pv, N, s, c), ~C) essentially determines the type of channel established between pu

and pv on network N . An alternative way to look at this is to let edge (pu, pv) always exist in the network,
but let the adversary structure be enhanced depending on the type of channel realized by γ(pu, pv, N, s, c)

from pu to pv. So, if on corruption of quadruplet ~C, γ(pu, pv, N, s, c) realizes an (almost) secure channel,
then the new adversary structure contains the same ~C. However, if on corruption ~C, γ(pu, pv, N, s, c)
realizes an (almost) authentic channel from pu to pv, then this is equivalent to assuming a secure chan-
nel between pu and pv, passively corrupted by A i.e., in the new adversary structure ~C is enhanced to
include (pu, pv) i.e., (pu, pv) ∈ ~C ′[2] in the new adversary structure (pu, pv). If the channel realized by
γ(pu, pv, N, s, c) is tamperable, then (pu, pv) is added to ~C[3], for each ~C. This is how the adversary
structure is constructed for the base case network CN , which has all the virtual edges, starting from the
adversary structure T for network N .

Now, we work backwards: The adversary structure TNi
, for network Ni is constructed from the ad-

versary structure TNi−1
for network Ni−1 by just removing the channel ei from ~C[2] or ~C[3] for each

vecC ∈ TNi−1
.

Round restructuring: Our goal is to adapt a multiparty computation protocol that satisfies Definition
A.14, for a complete network to a multiparty computation protocol that is to be executed on a partially
connected network, with special properties, that satisfies Definition A.14.

Even if we assume that there exists a multiparty protocol that establishes (almost) secure channel
between some pair of nodes of the partially connected network there arises the following synchronization
issue with respect to using it for realizing secure function evaluation: Suppose it takes α rounds to send a
message from party pu to party pv along a channel (realized through may be physical infrastructure) of the
partially connected network. To send messages between distant nodes of the network, multiparty protocol
γ(pu, pv, N, s, c) is executed for this purpose and may run in fγ(α, N) rounds, for some function f , to
deliver a message from party pu to party pv.

Consider the multiparty protocol Πec from Theorem D.2, which is restructured to run on the complete
network, CN described above, as follows: Each Step of protocol Πec is now expanded to fγ(α, N) rounds.
If in protocol Πec the message was delivered between two parties in one round, now it is delivered in α
rounds or fγ(α, N) rounds depending on whether the message is sent along a real channel or a virtual
channel. This is explained below:
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Definition D.5 For a real channel, Fr(S, R, edge− id), r = α.
For a virtual channel, F r(S, R, edge− id), r = fγ(α, N), for some function fγ (which will roughly be

the maximum number of rounds taken by multiparty protocol γ over all pairs of pu,pv for network N ).

Base case for network N0 = CN : For the base case we have the complete network N0. As discussed
above, all the edges in N0 which are also present in partially connected network N denote real channels,
while the rest denote virtual channels.

The adversary A is restricted to adversary structure TCN
, as described above.

We are given that network N possesses the TβN ,c-Communicability Property, D.3. Because of the
Communicability Property D.3 of network N , the adversary structure TCN

is feasible.
By Theorem D.2, there exists a multiparty protocol Πec, that TCN

-securely evaluates function f , on
network CN , as according to Definition A.14, for every feasible adversary structure TCN

.
We adapt multiparty protocol Πec to the round structure D.1.2, as described above5. It follows that the

new multiparty protocol ΠN0 , executed on N0 (with round structure, D.5), TN0-securely evaluates function
f , as according to Definition A.14 (where TN0 = TCN

).
This completes the proof for the Base Case.

Induction Hypothesis. Let Πi be a multiparty protocol, to be executed on network Ni, that TNi
-securely

evaluates f , as according to Definition A.14.
Then, there exists a multiparty protocol Πi+1, to be executed on network Ni+1, that TNi+1

-securely
evaluates function f , as according to Definition A.14 (where construction of network Ni+1 and adversary
structure TNi+1

has been discussed above).
Proof of Inductive Hypothesis: First note that the only difference between network Ni and Ni+1 is that
in Ni there is a virtual edge/channel ei = (pu, pv) between pu and pv, which is not present in network
Ni+1. Similarly, the only difference in adversary structure TNi

and TNi+1
is that edge ei is not passively or

actively corrupted in adversary structure TNi+1
(as it does not even exist in Ni+1).

We shall show how to adapt Πi to multiparty protocol Πi+1 to be executed on Ni+1.
Description of Πi+1: The multiparty protocol Πi+1 to be executed on Ni+1 is exactly the same as Πi ex-

cept for the following difference: In Πi when some message m is sent from party pu to pv along the virtual
channel (pu, pv) of Ni, while in Πi+1 the message is sent from pu to pv, by execution of γ(pu, pv, N, s, c)
on network N . (It is easily verified that both protocols Πi and Πi+1 follow the round structure, D.1.2).

We need to only make sure that the new protocol Πi+1 satisfies the correctness and privacy condition,
as according to Definition A.146.

Claim D.6 Multiparty protocol Πi+1, to be executed on network Ni+1, TNi+1
-securely evaluates f , as

according to Definition A.14.

Proof: Fix any quadruplet ~Ci+1 ∈ TNi+1
corrupted byAi+1. We shall prove that execution of multiparty

protocol Πi+1, achieves the correctness and privacy condition, Definition A.14. For this we invoke the
Inductive Hypothesis.

5Basically, this implies that for any execution of multiparty protocol, following such a round structure D.1.2, on network N ,
a message is transmitted on virtual channel from party pu to party pv only in round≡ 0 mod fγ(α, N)th and reaches the other
party in next round≡ 0 mod fγ(α, N)th

6Here the correctness condition includes both the correctness of input commitment phase, as well as the evaluation phase
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First, let ~Ci corrupted byAi be defined from ~Ci+1 as follows: ~Ci[0] = ~Ci+1[0], ~Ci[1] = ~Ci+1[1].
If γ(pu, pv, N, s, c) simulates an authentic channel between pu and pv for corrupted quadruplet ~Ci,

then ~Ci[2] = ~Ci+1[2]
⋃

ei, else if γ(pu, pv, N, s, c) simulates a tamperable channel between pu and pv,
then ~Ci[3] = ~Ci+1[3]

⋃
ei, else ~Ci[2] and ~Ci[3] are identical to ~Ci+1[2] and ~Ci+1[3], respectively. Clearly,

~Ci ∈ TNi
.

1. Correctness: For the correctness condition we demonstrate an adversary Ai that attacks MPC pro-
tocol Πi’s execution on network Ni, that corrupts ~Ci, such that for the same initial vector of inputs
(and uniformly chosen randomness) given to the honest parties and the adversary - the distribution
of outputs of the honest parties Hi+1 = Hi (where Hi is as determined according to the definition
A.14) would be indistinguishable7 from the case when all the parties were executing multiparty
protocol Πi+1 on Ni+1 with adversary Ai+1 corrupting ~Ci+1.
This would prove the correctness condition.
Consider the followingAi that attacks protocol Πi: Ai internally simulatesAi+1 by providing it all
the messages that corrupted parties receive from the honest parties during the execution of protocol
Πi and sending messages generated by it to the appropriate honest parties (which are all simulated
by Ai). It can be seen that this can be done since the topology of the networks Ni and Ni+1 are
almost identical except for one difference: In network Ni there is a channel (pu, pv) between pu and
pv (which may be secure, authentic or tamperable), while for network Ni+1, the same channel is
simulated by γ to send a message from pu to pv. We shall show a perfect internal simulation ofAi+1

by adversary Ai, taking into account this difference.
We shall prove the following two conditions are simultaneously true by induction on the number of
Steps of MPC protocol Πi, Πi+1 executed:8

(a) The view of adversary Ai+1, internally simulated by adversary Ai attacking protocol Πi’s
execution is indistinguishable from the view of Ai+1 attacking protocol Πi+1 execution after
every step.

(b) The view of the honest parties Hi, generated from execution of protocol Πi is indistinguishable
from the view of the honest parties Hi+1 generated from execution of protocol Πi+1 after every
step.

To prove this let us assume that the above conditions are true up to execution of Step j of protocol
Πi,Πi+1 i.e., V iewHi,Πi,j ≈ V iewHi+1,Πi+1,j

9 and V iewAi,Πi,j ≈ V iewAi+1,Πi+1,j. Then we shall
prove that the above conditions hold true even after the execution of Step j + 1 i.e.V iewHi,Πi,j+1 ≈
V iewHi+1,Πi+1,j+1 and V iewA,Πi,j+1 ≈ V iewA,Πi+1,j+1.

7Note, this indistinguishability would only be statistical because the channel simulated by γ are (almost) secure and not
perfectly secure, replacing a perfectly secure channel by an (almost) secure channel would allow negligible probability of error
in correctness conditions.

8The reader may recall the distinction on Step and rounds previously made, D.5 i.e., each Step consists of fγ(α, N) rounds.
9As noted above Hi+1 = Hi
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Internal Simulation of adversary Ai+1 by Ai: First we demonstrate the internal simulation of
adversary Ai+1 by Ai. All the messages sent to adversary Ai controlled parties by other parties are
forwarded by Ai to Ai+1 as it is. In addition, Ai runs the simulator for protocol γ(pu, pv, N, s, c)
demonstrated in C.2 with Ai+1. It has been noted in Theorem C.2 that this simulator does not take
any input till the last and final step of protocol γ(pu, pv, N, s, c), when the actual message is hidden
by random bits and sent from pu to pv along the additional channel. So up till the last step the simu-
lation can be carried byA′ without any issues. For the simulation of the last step of γ(pu, pv, N, s, c)
we have the following cases: The virtual edge (pu, pv) is passively or actively corrupted by the ad-
versary Ai+1 or the virtual edge (pu, pv) is secure. In case the (pu, pv) is corrupted, in anyway, then
the adversaryAi+1 would have received the message sent to channel (pu, pv), after the first round of
this Step itself (Please refer to the definitions of various channels in the Second section) and so the
simulation can be carried out for the rest of the protocol γ(pu, pv, N, s, c). (Of course, this message
that the corrupted channel (pu, pv) receives i.e., is received byAi in the second round is not revealed
to adversaryAi+1 till it is necessary to do so during the simulation of protocol γ(pu, pv, N, s, c).) In
case the virtual channel (pu, pv) is (almost) secure10, but party pv is corrupted, then too adversary
Ai+1 would have received the message from (pu, pv) at the end of the second round of this Step.
Hence for all cases the adversary Ai+1 can successfully carry the simulation of Ai for protocol
γ(pu, pv, N, s, c).
Now let us verify that the view of the honest parties of subset Hi+1 = Hi and the adversary Ai+1

after Step j + 1 of protocol Πi and Πi+1.
We have the following cases to analyze:

pu is an honest node: First, review the important feature D.1.2 of MPC protocol Πi+1 described
above: The message m to be sent by honest party pu to party pv in Step j + 1 by execution of
γ is fixed at the end of Step j. Since (V iewHi,Πi,j, V iewA,Πi,j) ≈ (V iewHi,Πi+1,j, V iewA,Πi+1,j),
therefore message m to be sent from node pu to pv during Step j + 1 for protocol Πi and Πi+1 is
also indistinguishable.
Protocol Πi+1 is just protocol Πi and γ executed simultaneously but which do not influence each
other i.e., the view of the honest parties generated from one doesn’t influence the view of the honest
parties generated from another (once the message m to be sent is fixed at the beginning of Step
j + 1).
For this case, we have the following sub-cases:

(a) Virtual channel (pu, pv) is corrupted. For this case the simulator of protocol γ, C.2, executed
by adversary A′ doesn’t need the message m till step 5 of γ (much more than c ∗ lgn rounds).
However the message m is received by the adversary Ai in the first round of Step j + 1 from
pu.

10This is just modeling the case of when the adversary receives the message for otherwise it is meaningless to have a secure
channel with pv corrupted
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The views of the honest parties Hi+1 = Hi, constituted from execution of Πi ⊂ Πi+1 (i.e.,
excepting execution of γ(pu, pv, ..)) and adversaryAi+1 are indistinguishable after every round
for both Ni and Ni+1. The view of adversaryAi+1 is indistinguishably simulated byAi because
Ai indistinguishably simulates γ and forwards all messages received from other honest parties
and hence outputs indistinguishable messages to be sent to honest parties. Honest parties view
in turn is indistinguishably augmented for networks Ni and Ni+1 (excluding execution of γ)
which output indistinguishable messages to be sent in the next round. Moreover since at the
last round of Step j + 1 the honest parties have deleted all extra messages (and random blocks
etc.) from execution of γ the views of the honest parties are indistinguishable for Πi executed
on Ni and Πi+1 executed on Ni+1.

(b) Or else party pv is corrupted. In this case the adversary Ai receives the message m from
channel (pu, pv) in the second round of Step j + 1, and can hence carry the internal simulation
of A as required. The rest of the analysis of this case is identical to the case above.

(c) Or else pu is honest, and (pu, pv) is a secure virtual channel. In this case the protocol γ sends
message m from node pu to node pv perfectly securely on network N . Thus the adversary A′

can simulate the view of adversaryA perfectly without access to message m at all. The rest of
the analysis for this case is identical to the first case.

pu is corrupted. In this case the adversary Ai+1 attacking Πi+1 has large number of rounds (and,
flexibility) before which it must commit to a message to be sent to node pv. It is also possible that
the message committed or sent to node pv is completely bogus. The adversary Ai shall extract the
message it intends to send to pv by internally simulating Ai+1 and, then sends the message to the
virtual channel (pu, pv) (or if it too is corrupted, then to node pv).
For this the argument is as follows: The view of Ai+1 and the honest parties in subset Hi+1 is
indistinguishable after each round of Step j+1 for Πi’s execution on network Ni, or Πi+1’s execution
on network Ni+1. After some rounds (the number of which may depend on how the adversaryAi+1

behaves for corrupt node pu), the adversary Ai is successful in extracting the message that Ai+1

intends to send to node pv. Then it sends the extracted message to virtual channel (pu, pv) or directly
to node pv if virtual (pu, pv) is also corrupted, in the following round. (Note, each honest party has
computed the message it intends to send to other parties at the beginning of the Step and this remains
unchanged by whatever messages it receives during the Step.)
The same message is also extracted by party pv during execution of γ of Πi+1. At the end of Step
j + 1 all the extra messages, due to the execution of γ are deleted by the honest nodes - leaving a
clean state - this is the last step of the protocol γ. Thus, for this case also the distribution of views
of the honest parties and the adversary Ai+1 are indistinguishable after Step j + 1. This completes
the proof of Induction Hypothesis.
Putting together, we have that the distribution views of the set of honest parties Hi when Πi is
executed on network Ni with Ai+1 attacking the execution, is indistinguishable to the (distribution)
of views of honest parties Hi, when Πi+1 is executed on network Ni+1 with Ai+1 attacking the
execution.
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Hence, the distribution of outputs generated by the honest parties Hi+1 = Hi for the two cases are
indistinguishable. Thus, if Πi satisfies the correctness conditions, as described in definition A.14,
then so does Πi+1.

2. Privacy: For this we demonstrate a simulator that simulates the views of Ai+1, attacking Πi+1’s
execution on network Ni+1, such that the distribution of views of Ai+1 generated by the simulator
is indistinguishable from the distribution of the views of Ai+1 generated from real execution of
protocol Πi+1.
We shall employ induction hypothesis for the following adversary Ai, as described in the Cor-
rectness condition proved above, that attacks Πi, while internally simulating Ai+1. By induction
hypothesis, there exists a simulator Simi that takes as input the identities, input and output values of
the parties in subset P −Hi, adversary program Ai, network Ni, ~Ci and generates a view (or more
specifically distribution of views) of Ai that is indistinguishable from the view (or specifically dis-
tribution of views) of Ai generated from real execution of Πi on network Ni with same parameters.
Let Simi be such a simulator.
Simulator Simi+1 for Ni+1, Π

i+1,Ai+1 simulates adversary Ai+1 as follows: First note that the
simulator Simi+1 is given the same set of input and output values of party set P −Hi+1 = P −Hi

as Simi (except that ~Ci may contain the virtual channel (pu, pv) unlike ~Ci+1).
In general at the end of an execution, adversary Ai outputs its input tape and read tapes as the
output and this is considered as the output of the adversary. In the adversary program Ai described
above,Ai (indistinguishably) internally simulatesAi+1 for generating the messages to be sent to the
honest parties etc.. We make another enhancement to this adversary program: On termination Ai

outputs, whatever is outputted by Ai+1 (instead of its own read tapes, input tapes). Since, we have
shown that in the proof of the correctness condition above, Ai perfectly simulates the view of Ai+1

and, hence simulator Simi is going to output the view of Ai+1, generated in the process, whose
distribution will be perfectly indistinguishable from the distribution of views of Ai+1 generated
from real execution of Πi+1. (The picture looks like this: Earlier Simi ↔ Ai(Ai+1) and now
Simi+1 = Simi(A′)↔ A.)
The proof of correctness of simulator Simi+1 follows from the proof of correctness of simulator
Simi, and the proof of correctness of internal simulation of adversary Ai+1 by Ai given above,
otherwise it would contradict the correctness of either of them.

This proves the induction hypothesis. 2

The I. H. is invoked only till there exists a virtual channel in the network that can be replaced by a
simulated channel. So, successive applications of I. H. results in network Nl = N which is the original
partially connected network N under consideration.

Putting together with the base case, we have that if N is a network, that possesses TβN ,c-Communicability
Property, D.3, then there exists a multiparty computation protocol ΠN , to be executed on N , that T -
securely evaluates function f , as according to Definition A.14. 2
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E Almost everywhere secure computation on some specific classes
of networks

In this section we shall describe a class of partially connected networks and associated adversary structures
T , for which the partially connected networks possess TβN ,c-Communicability Property, as described in
Section D.3. Using the Main Theorem D.4, we shall obtain multiparty protocols that T -securely evaluates
(an arbitrary n-ary) function f on the corresponding network N .

We shall consider the (infinite) families of partially connected networks previously considered by
[DPPU88], [Upf92] for the almost everywhere agreement problem.

1. In [Upf92], a protocol was given that achieves O(t)-agreement, on a class of constant degree ex-
pander graphs, namely LPS expanders. The following Theorem E.1 is a (minor) restatement of
theorem from [Upf92].

Theorem E.1 There exists

(a) Constant α > 0, µ, q and d, independent of t and n;

(b) An n-vertex d-regular network G, which can be explicitly constructed;

(c) A multiparty communication protocol β(pu, pv, N) with round complexity α.

Such that for any subset C̃, |C̃| ≤ k ∗ n for some constant k, of faulty nodes in G, communication
protocol β(pu, pv, N) there exists a subset of non-faulty nodes H , where |H| ≥ n − µ ∗ |C̃|, such
that β(pu, pv, N) establishes {(C̃, φ, φ, φ)}-authentic communication channel between pu and pv.
Furthermore, β requires at most q ∗ lg2 n communication rounds.

Two observations can be made from Theorem E.1 and its proof:

(a) There exists a path of honest nodes between every pair of parties u, v from subset H of length
at most d ∗ lg2 n.

(b) There exists a multiparty protocol β(pu, pv, N) that realizes {C̃}-authentic channel between
parties pu and pv for ∀pu, pv ∈ H .

Let ε = sup{χ|n−µ∗χ∗n≥b 2∗n
3

c+1}. Define the following adversary structure: T = {(C̃, φ, φ, φ)|C̃ ⊂

V, |C̃| ≤ ε ∗ n}.
We have the following corollary to Theorem E.1:

Corollary E.2 Let N be a network from above Theorem E.1. Then N possesses the Tβ,N -Communicability
Property D.3, for adversary structure T .
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Putting together Corollary E.2 with Theorem D.4, we have that:

Theorem E.3 There exists a multiparty protocol Π to be executed on network N (LPS expander
with n nodes, as in E.1) which T -securely evaluates function f , as according to Definition A.14.

Note that since the algorithm of [Upf92], for establishing authentic channel between distant nodes of
the network, run in super-polynomial time, therefore in the above multiparty protocol honest parties
also run in super-polynomial time.

2. Consider the recursive construction of committee networks of unbounded degree as defined in
[DPPU88]. The description for one level of recursive construction is as follows: V contains nε

committees, each committee further consists of m = nε sub-committees (so on and so forth for
1/ε recursive steps). Inside, each committee all the sub-committees form a clique i.e., every two
sub-committees Ai and Aj are connected. Each such connection represents a meta-edge between
some matching of nodes of the sub-committees Ai and Aj . For more details the reader is referred to
[DPPU88].
Let Gε be a committee graph from [DPPU88] with n nodes. The following theorem was proved in
[DPPU88] for network Gε:

Theorem E.4 For every ε > 0 there exists a constant c = c(ε), graphs Gε = (V, E), |V | = n of
degree O(nε) and t-resilient O(t)-agreement protocol t ≤ c ∗ n.

As a corollary to the proof of Theorem E.4, from [DPPU88], we have the following:

Corollary E.5 There exists a constant d, and a family of multiparty protocols β(pu, pv, N), to be
executed on G, such that for every subset of nodes C̃ ⊂ V, |C̃| ≤ c ∗ n corrupted by A, there exists
a subset S of honest nodes S ⊂ V such that,

(a) |S| ≥ n−O(t)

(b) There exists a path of non-faulty nodes of length at most d∗ lg2 n between pu, pv for all pu, pv ∈
S.

(c) For all pu, pv ∈ S multiparty protocol β(pu, pv, N) realizes {{tildeC, φ, φ, φ}}-authentic
channel between pu and pv.

Define the following adversary structure: T = { ~C| ~C[0] ⊂ V, | ~C[0]
⋃

~C[1]| ≤ ε ∗ n, ~C[1] = ~C[2] =
~C[3] = φ}, for network G, which basically captures all subsets, of passive and active corruptions of
parties, of size at most ε ∗ n, such that n− µ ∗ ε ∗ n ≥ b 2∗n

3
c+ 1.

We have the following corollary to the above Corollary E.5:
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Corollary E.6 Let Nε be the committee graph of n nodes and T be an adversary structure as defined
above. Network N possesses Tβ,N -Communicability Property D.3, for adversary structure T .

Putting together with Theorem D.4, we have:

Theorem E.7 There exists a multiparty protocol Π which T -securely evaluates function f on com-
mittee graph Nε with n parties, for adversary structure T as defined above, as according to Defini-
tion A.14.

3. Results of similar nature, as described above, can be stated for butterfly graphs and constant de-
gree expanders, which can tolerate n

lg2 n
and nδ corrupted nodes respectively, using the results in

[DPPU88].
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