
Secure multiparty computation on incomplete networks

SHAILESH VAYA ⋆.

Department of Computer Science and Engineering,
Indian Institute of Technology Madras,

India - 600036

⋆ Most of this work was done at the Department of Computer Science and Engineering, Indian Institute of Technology Madras;
Contact email:vaya@cse.iitm.ernet.in

Abstract. Secure multiparty computation of a multivariate function is a central problem in cryptography. It is
known that secure multiparty computation can be realized bya set ofn parties iff the connectivity of the underlying
(authenticated) communication network is more than twice the number of corrupted parties. This impossibility
result makes secure multiparty computation far less applicable in practice, as most deployed networks have a much
lower degree thanO(n) and one would ideally like to tolerateθ(n) corrupted parties.
This work considers a model for (unconditional) secure multiparty computation for networks of low degrees in
which authenticated channels are available between very few pairs of parties. Not all honest parties can achieve
traditional security guarantees of multiparty computation for this setting. This formulation of secure multiparty
computation, which permits some of the honest parties to be ”sacrificed” is called almost everywhere secure com-
putation. In this work we show how to realize a.e.s.c., on a few special families of incomplete networks, for the case
of Byzantine corruptions.

Keyword(s): secure multiparty computation, Byzantine agreement, almost everywhere agreement, almost
everywhere secure computation, bounded degree networks, fault tolerant networks.

1 Introduction

In secure multiparty computationn players jointly evaluate an arbitraryn-variate polynomial time com-
putable functionf on the vector of their input values. The strong guarantee forsecure MPC is that even
if a fraction of the nodes are controlled by a malicious adversary, all the honest parties should still obtain
their correct output values, without leaking any more information about their individual inputs than what is
revealed by the output values of the corrupted parties. Solutions for this problem were presented in [Yao82]
for n = 2, followed by [GMW87] forn parties.

In [BGW88] and [CCD88], it is shown how to achieve secure multiparty computation against a compu-
tationally unbounded adversary, as long as as least⌊2∗n

3 ⌋+ 1 of the participating parties are guaranteed to
be honest. This result assumes the existence of point-to-point authentication channels between every pair of
parties. Sincereliable let aloneprivate channels are too expensive to realize in general, it is infeasible to
assume networks with direct and private channels between every pair of parties. It is natural to wonder about
the possibility of achieving the guarantees of secure multiparty computation for networks of low degree.

The above question was posed first by [Dol83], and explored further by [DDWY93] who showed that
if there can be at mostt corrupted players, then connectivity of 2∗ t + 1 is both necessary and sufficient to
achieve information theoretically secure multiparty computation. Since one would like to be able to tolerate
as large a fraction of corrupted parties as possible (sayΩ(n)) for networks of degree/connectivity as low as
possible (sayO(1)) - can one still obtain meaningful and usefulintermediateresults?

Since the results of [DDWY93] rule out achieving the strong guarantees of information theoretic secure
multiparty computation or even Byzantine Agreement, [LSP82], [DPPU88] consider the following weaker
form of agreement for networks of low degree:An honest party could be surrounded by a set of corrupted
parties. Such an honest party cannot communicate reliably with the rest of the honest parties, so achieving
byzantine agreement on such networks is not possible. Can westill make any meaningful guarantees about
agreement? What about the possibility of most - but not necessarily all - of the honest parties agreeing
on one single value?. In [DPPU88], the authors propose a relaxation of the agreement problem in which
some of the honest parties may not be able to reach the agreement value. This type of agreement is called
almost everywhere agreement. In [DPPU88], the following definition is proposed for an agreement protocol:
A g(n, t)-agreement protocol, for some functiong(., .), is one whose execution results in all, butg(n, t) of
the honest parties reaching the agreement value, when at most t parties are corrupted by the adversary. The
authors go on to present protocols that achieveg(n, t)-agreement for several different families of networks.

A more generic notion then almost everywhere agreement, relevant to the setting of incomplete net-
works, isalmost everywhere secure computation. This notion of MPC allows a subset of the honest parties
- called sacrificed parties - to not necessarily achieve the canonical guarantees of secure multiparty com-
putation. We distinguish between honest parties which haveno hope of achieving the guarantees of secure
multiparty computation because of the surrounding bad neighborhood, from the parties for which we do not

2

claim the canonical guarantees of secure multiparty computation. The former are called ”doomed”, whereas
the latter also (obviously) include the former are called ”sacrificed” parties. The rest of the (non-sacrificed)
honest parties, which are at least⌊2∗n

3 ⌋+ 1 in number, are required to achieve the canonical guarantees of
secure multiparty computation. Previous work on almost everywhere secure computation give results for the
case of passive corruptions. In this work, we show how to realize almost everywhere secure computation, on
a few special families of networks, handling the case of Byzantine corruptions. We also argue the tightness
of the results achieved by us, in many respects.

1.1 Related works

This work heavily uses the infrastructure developed in the seminal work onalmost everywhere secure agree-
mentby [DPPU88]. Efficient protocols for this goal were presented in [BG89], [BG90]. The protocol in
[Upf92], realizes almost everywhere agreement on constantdegree LPS expanders, while tolerating a lin-
ear number of faults. This protocol has a polynomial round complexity, but each party executes a super-
polynomial time exhaustive search. The almost everywhere agreement protocol in [OR96] is randomized.
It tolerates a linear fraction of randomly located faulty processors, that fail independently with constant
probability.

The notion of almost everywhere secure computation for incomplete networks, and an overall approach
to realize it, was published in [GO08], by Garay and Ostrovsky. The authors present Input indistinguishabil-
ity type definitions for almost everywhere secure computation. This definitional approach was first proposed
in [KKMO94] handling passive corruptions. A hybrid argument was presented in [GO08] to reduce the
privacy of multi-party computation protocol to privacy of perfect secure message transmission channels.

A new model for (unconditional) secure multiparty computation with man-in-the-middle attacks was
proposed in [Vay08]. For this model of secure multiparty computation results were presented in the frame-
work of almost everywhere secure computation. We use the definitional framework in [Vay08] to realize
almost everywhere secure computation on incomplete networks for the case of active corruptions, resolving
the main open problem in this line of research.

Assuming that more than23 parties are honest, it has been shown that it is possible to securely compute
anyn-variate function, [BGW88], [CCD88], [RBO89] in the information theoretic regime. In the computa-
tional model, the results have been given in [GMW87], [Yao82]. Adversary structures extensively used in
this work, were proposed and studied in [FHM99], [HM97], [HM00] and [HMP00].

1.2 Organization of the paper

Section 2 discusses technical subtleties encountered in realizing almost everywhere secure multiparty com-
putation. Section 3 is devoted to terminologies and definitions. Semi-formal definitions of secure multiparty
computation andT -secure computation are presented in subsection 3.2. Section 4, is devoted to semi-formal
definitions and protocols for setting up the communication infrastructure on the incomplete network. The
ancillary results are put together to prove the main theoremin this work namely,T -secure multiparty com-
putation on incomplete networks. We present a brief overview of the proof of the main theorem in Section
5. Finally, we present claims for realizingT -secure computation on a few families of incomplete networks
in Section 6.

2 Technical subtleties in realizingT -secure computation on incomplete networks

In this section we discuss technical subtleties encountered in realizing almost everywhere secure multi-party
computation on incomplete networks. The main protocol for almost everywhere secure computation is ob-
tained by composing a standard protocol for secure multiparty computation, for the information theoretic
regime (like for example [BGW88] or [CCD88]) with several (roughlyO(n2) in number) message transmis-
sion protocols for sending messages between distant nodes of the incomplete networks. These protocols for

3

message transmission are realized using the infrastructure of the incomplete network. These protocols may
not necessarily be unique and quite likely vary in the numberof rounds etc. because of the asymmetry of
the underlying incomplete network. We present an overview of the technicalities encountered in realizing
almost everywhere secure computation for the stand alone model, for the case Byzantine adversary. We also
argue the tightness of our results presented in this work.

2.1 Why the strongest results we hope to achieve are for the stand alone model?

First we shall argue why we are not able to use standard composition theorems for this model of (uncondi-
tional) secure multiparty computation. Without the composition theorems the strongest result one can hope
to achieve is for the stand alone model. But without the composition theorems we have to compose the
main protocol with (several) protocols for realizing secure message transmission protocols on incomplete
networks, for the vanilla model. This makes the proof delicate even for the stand alone model.

We are not able to use standard composition theorems for thismodel because we encounter cases when
only the correctness property (namely, correctness of the commitment of the input value or correctness of
the output value received) or just the privacy property may be compromised for a sacrificed honest party.
Thus the adversary does not get full control over such sacrificed parties. Furthermore, the properties that
are compromised and the extent to which they are compromisedmay depend on the dynamic choices made
by the adversary during the execution of the protocol. Thus,the sacrificed honest parties cannot be guaran-
teed to behave either as fully honest or as corrupted. Composition theorems are statements about the joint
distribution of views of the honest and corrupted parties. But the sacrificed parties may not fall into either
case. Furthermore, their final status often depends on the dynamic choices made by the adversary (Note a
refinement to our definition of security where sacrifice of correctness and sacrifice of privacy property is
defined separately. This refinement is noted in Appendix Subsection A.5). Thus, for this model of secure
computation there is no straightforward way to utilize standard composition theorems. More generally, we
find that there is no clean and satisfactory way to define the interaction of sacrificed parties with the ’Ideal
world functionality’. No wonder our definition, even for thestand alone model, does not adopt the traditional
approach of describing an ”Ideal world process” and comparing it with a ”Real world process”.

Now we describe the specific scenario when the above issue arises. Depending on the choice of nodes
corrupted by the adversary, the secure channels established between distant nodes of the incomplete net-
works utilizing the public discussion channels realized in[DPPU88], [Upf92] and the topology of the un-
derlying incomplete network, the adversary gets the following types of control over a sacrificed party: (1)
Eavesdrop the input value committed to by the party (2) Manipulate the messages sent on the channel so
that the input value committed to by the party is the default value ”d” (3) Arbitrarily control the input value
committed to by the party (4) Manipulate the input value committed to a limited degree only, as some func-
tion of the original value say. For the first three cases the adversary also manages to learn the input value
committed to by the sacrificed parties. However, for scenarios of the fourth type the adversary does not get
to learn the input value but is able to influence the input value committed by the sacrificed party to a limited
degree (Note that the adversary just needs read access to⌊n

3⌋+ 1 channels to extract the input value com-
mitted to by the party or write access to same total number of such channels, including the ones connected
to corrupt parties to be able to manipulate the committed input value of the party to the default value ”d”).
Thus when the fourth type case occurs, the simulator simulating the view of the adversary cannot extract
the actual input value committed to by the sacrificed party and causes the technical issues discussed in the
above paragraph.

2.2 Technicalities encountered in realizing the result forthe stand alone model

Our overall approach for realizing this model of (unconditional) secure multiparty computation is: (1) Con-
struct a complete networkNC from the original incomplete network by adding virtual edges. (2) Adopt a
standard proof of security for the BGW protocol to suit our definition of security for this network. (3) Or-
der all the virtual edges in this network. And, inductively replace the virtual edges with simulations of the

4

PSMT protocol, while proving claims of correctness and privacy of the associated multiparty protocol for
each intermediate network. In realizing this approach we encounter some technical challenges. We highlight
the prominent ones which influence the structure of definitions, protocols and the proofs:

The necessity for adversary structures: Observe that the behavior of the virtual edges is not fixed and
may vary for the same topology of the underlying incomplete network. The behavior depends on the choice
of subset of parties corrupted by the adversary and the actual PSMT protocol employed (Different PSMT
protocols may utilize the infrastructure of the incompletenetwork differently). In particular, the same virtual
edge may behave as a tamperable channel or as an eavesdroppable channel or as an uncorrupted authenti-
cated channel. Even a small variation in the subset of parties corrupted by the adversary may influence a
large number of virtual edges to behave differently. Thus, we are faced with exponential number of vari-
ations. Towards this end we set up adversary structures which fixes the behavior of the virtual edges for
a given choice of subsets of parties corrupted by the adversary. Obviously, for different topologies of the
incomplete networks and different PSMT protocols the adversary structures are quite different. Adversary
structures for which we cannot realize secure function evaluation are called infeasible.

The intermediate networks: We replace one virtual edge at a time, from the original constructed network
NC, by simulation of perfect secure message transmission protocol on the incomplete network. We prove
that the resulting intermediate protocol for the intermediate network is secure. Our proof uses the reduction
argument. For this purpose, we define the functionality of the virtual edges so that it provides the adversary
with more flexibility, compared to the case when the virtual edge is substituted by execution of PSMT
protocol on the incomplete network. For example, an adversary for the former case (of virtual edges) gets
to see the message being sent on the virtual edge earlier, then it would in the latter case. Thus, we start by
handling strictly more powerful adversaries while considering greater number of virtual edges and consider
progressively weaker adversaries as we replace the virtualedges one at a time. This is useful in reducing the
complexity of the reduction argument.

The necessity for super-round and slotting the super-round: The original (unconditional) multiparty
protocol, [BGW88], is synchronous and proceeds in rounds. We adapt this protocol to our case of incomplete
networks, where many pairs of nodes (roughlyΘ(n2)) cannot communicate with each other in a single
round. Thus, we expand each round of the original protocol toa super-round, so that distant parties can
communicate with each other by executing PSMT protocol on the incomplete network. When replacing
virtual edges of the complete network (as described above) by simulation of PSMT on the incomplete
network, we encounter the following technical difficulty:

When transmissions take place on two virtual edges simultaneously, then the messages sent/received/heard
on one may influence the corruption of messages on another edge and vice versa. This is analogous to the
phenomenon of ”cross-talk” between close by wires caused bycapacitance issues in VLSI chips. Handling
this issue, for the case of active corruptions makes the proof of security of the underlying protocol complex.
We go around this problem at the expense of increase in the round complexity of the protocol. We partition
the super-round into slots so that each pair of parties has a dedicated non-overlapping slot. The time slots
are wide enough to send messages on real edges or virtual edges. If there is a real edge in the underlying
network for a given pair of parties then the length of slot is just one round. For the case of virtual edge the
slot allotted is wide enough to execute the PSMT protocol on the underlying network.

Why we need a more complex argument instead of a straightforward hybrid argument? For mali-
cious/active corruptions a straightforward hybrid argument to realize even Input indistinguishability type
definition of privacy (as presented in [GO08]) encounters the following difficulty: During the execution of
(unconditional) secure multiparty protocol, parties needto commit to certain secrets (e.g., the input value

5

during the input commitment phase of [BGW88]). This is achieved by executing a protocol for Verifiable
secret sharing: The committing party shares a secret by sending evaluations of a polynomial to the rest of
the parties. The parties then exchange sub-shares of these shares between themselves to make sure that the
value committed to is valid and can be recovered by the rest ofthe parties. A malicious party may send
incongruent shares of its secret to other honest parties (orpotentially other corrupted parties). When these
honest parties later tally the values of their sub-shares, they do not concur. The parties may then raise an
alarm and incongruencies are reconciled by executing a ”disavowal” protocol in which the committing party
may have to reveal the correct shares of the contending parties to the rest of the parties. This depends on the
choices made by the corrupted parties (as the honest partiesalways execute the protocol meant for them).
Alternatively, a false alarm may be raised by a malicious party which can claim that its sub-share value
does not match with that of another honest party (or perhaps another corrupted party). This may also re-
sult in execution of a ”disavowal” protocol to reconcile thedifferences. The execution of the ”disavowal”
sub-protocol results in a different and lengthier sequenceof steps, compared to when it is not executed at
all. Thus, the actual size of the views of the parties, including those of the corrupted parties, depends on the
number of times the disavowal protocol is executed. Also, the contents of the views of the parties depends on
the particular sequence of steps of disavowal protocol executed. A straightforward hybrid argument cannot
be used to argue indistinguishability between distributions of views, with such divergence.

3 Model and Definitions

In this section we review some standard notations and definitions for (unconditional) secure multiparty
computation andT -secure computation proposed in [Vay08].

Definition 1. A functionδ : N→ [0,1] is called negligible if for all c> 0 and for all large enough k∈N, we
haveδ(k) < k−c.

Definition 2. A distribution ensemble X= {X(k,a)}k∈N,a∈{0,1}∗ is an infinite set of probability distributions,
where X(k,a) is associated with each k∈ N and a∈ {0,1}∗. A distribution ensemble is called binary if it
consists only of distributions over{0,1}.

Definition 3. (Statistical indistinguishability) Distribution ensembles X and Y are called statistically in-
distinguishable if for all sufficiently large k and a, SD(X,Y) = 1

2 ∑a |Prob(X = a)−Prob(Y = b)|< δ(k) for
δ(.) a negligible function.

Power−Set(F) refers to the set of all subsets of a setF . A mixed networkN is referred to as a triplet
(V,E,Ed), whereV refers to a set of vertices, andE refers to the set of undirected edges andEd refers to the
set of directed edges.

3.1 Characteristics of the the adversary

If A corrupts a partyactively, it gains complete control over the party its input value, its random tape,
its program and is free to send arbitrary messages on the behalf of the party, while also receiving all the
messages sent to the party by other parties. The party is saidto bepassivelycorrupted when the adversary
just gains the privilege to receive all the inputs, outputs and messages exchanged by it with other parties.

We assume that the adversary is computationally unbounded.We consider corruptions of parties as well
as channels, passively as well as actively. Towards this endwe set up anadversary structure.

Definition 4. Let T ⊂ {(Xp,Xa,Yp,Ya)|Xp,Xa ⊂V,Yp,Ya ⊂V ∗V, andXp
T

Xa = φ,Yp
T

Ya = φ}, to de-
note a set of quadruplets of subset of parties corrupted passively, subset of parties actively corrupted, subset
of channels passively corrupted and a subset of channels actively corrupted. If the quadruplet of subset of
parties corrupted passively, actively and subset of channels corrupted passively and actively by the adver-
sary belong toT , then the adversary is calledT -restricted.

6

−→
C is used to refer to a quadruplet of corruptions that belong toadversary structureT .

−→
C is called

feasible corruption, if there exists a subset of honest partiesH : |H| ≥ ⌊2n
3 ⌋+1, such that every two parties

that belong toH are connected via an uncorrupted channel. AFeasible adversary structureT is defined
along the same lines.

3.2 Semi-formal definitions forT -secure computation

We present semi-formal definitions (Please consult SectionA for formal definitions) forT -secure com-
putation. The definitions are for stand alone model (taken from [Vay08]). However, it does not follow the
traditional approach of defining an ”Ideal process” and comparing it with a ”Real process”. The definition
of privacy is an extension of the understanding on which Zero-Knowledge property of protocols are based
(Please refer to Appendix Section C for an elaborate exposition of the definition).

Definition for (unconditional) secure multiparty computat ion in the stand alone model We consider
two phase protocolsΠ = (Π1,Π2): In the first phase parties commit to their input values and inthe second
phase parties evaluate functionf on the vector of input values committed to in the first phase.

We present a semi-formal definition for the canonical requirements of correctness and privacy of a two
phase multiparty protocol, [GMW87]. The correctness is defined with respect to the vector of input values
committed to in the input commitment phase of the protocol, where as privacy is defined for the entire pro-
tocol. First, we define correctness of the input commitment phase:

Semi-formally,

Definition 5. Π1 denotes the input commitment phase of a two phase protocolΠ = (Π1,Π2) if one can
associate with it an n-variate function revealΠ1(), which when applied to the transcripts of the parties (with
the condition that transcripts substituted for the corrupted parties are not necessarily genuine) generated
by the execution ofΠ1 reveals the vector of input values committed to by the parties. Furthermore, all the
honest parties are able to commit to their actual input values (Corresponding formal Definition 11 appears
in the Appendix).

Next, we define two phase computation.

Definition 6. Protocol Π = (Π1,Π2) is a two phase multiparty protocol, whereΠ1 is as qualified in Def-
inition 5, if it satisfies the two conditions: (1) Correctness: Let−→Inp← reveal(−−−→Trans) be the vector inputs
committed to byΠ1. Then, f(−→Inp,−→r1) ≈ Π2(

−→Inp,−→r2), for uniformly chosen sequences of random bits r1, r2

(2) Privacy: There exists a simulator which is given the input values committed to by the the corrupted par-
ties, output value f(

−→
Inp), which generates a distribution of views of the adversary that is indistinguishable

from the distribution generated from real execution of the protocol Π (Corresponding formal Definition 12
appears in the Appendix).

Definitions for T -secure computation on incomplete networksWe extend the previous definition of
the two-phase multiparty computation to incorporate the notion of sacrificed honest parties. Definition for
correctness of input commitment phase incorporating the notion of sacrificed honest parties is as follows.

Definition 7. Let Π1 denote the input commitment phase of a two phase protocolΠ = (Π1,Π2) qualified
by n-variate function revealΠ1() as defined above in Definition 5. Furthermore (1) A subset H of honest
parties of size at least⌊2∗n

3 ⌋+1 are able to commit to their actual input values and the value of revealΠ1()
is same irrespective of whether or not genuine transcripts are substituted for the corrupted and sacrificed
parties. (2)Π1 is allowed to fail with negligible probability (Corresponding formal Definition 13 appears in
the Appendix).

7

Now we defineT -secure computation incorporating the notion of sacrificedhonest parties.

Definition 8. LetΠ = (Π1,Π2) be a two phase multiparty protocol, Definition 7, executed onan incomplete
network N, withA restricted toT . The privacy and correctness condition forΠ are the same as for Defini-
tion 6 except that (1) Only statistical guarantees are made for the correctness condition (2) When proving
the privacy condition only the input values committed by thesacrificed and corrupted parties (which are
together less then or equal to⌊n

3⌋ in number) are given to the simulator (Corresponding formalDefinition
14 appears in the Appendix).

An alternate view of the definition of privacy We discuss how the definition of privacy in this work imply
the input indistinguishability type definitions of privacy. This implies that the results in this work imply the
realization of input indistinguishability type definitions of privacy for maliciously corrupted parties.

Our definition of privacy is that the distribution of the views of the adversary generated from a real
execution of the multiparty protocol when the corrupted andsacrificed parties start with an initial vector of
input values−→y P−H , commit to vector of input values−→x P−H and receive output valueo is indistinguishable
from a distribution of views that could be generated by a simulatorSimwhich is given these values only. This
is interpreted to mean that the adversary can learn nothing more about the input values of the (unsacrificed)
honest parties then what could be learned from the vector of input values−→y P−H , committed input values
−→x P−H and output valueo only (This interpretation is along the lines of Zero-Knowledge Proofs).

Observe that for any two executions of the multiparty protocol for which the corrupted and sacrificed
parties start with the same initial vector of input values−→y P−H, commit to the same vector of input values
−→x P−H and generate the same output valueo, the views of the adversary are indistinguishable because in each
case the views can be generated by the same simulator which isgiven these values only. In other words, the
adversary cannot distinguish between two vectors of input values of the (unsacrificed) honest parties for
which the vector of initial input values, vector of committed input values and the output valueo (which is
same for all parties) of the remaining i.e., sacrificed honest parties and corrupted parties is same. This is
input indistinguishability.

4 Setting up the communication infrastructure on incomplete networks

We describe aTβN,c-Communicability Property of a networkN = (V,E). It essentially says that for every

choice of quadruplet of corruptions
−→
C ∈ T , there exists a large enough subset of honest parties that can com-

municate securely with each other either by way of an edge of the incomplete networkN which corresponds
to a secure channel, or by establishing a secure channel by utilizing the infrastructure of the incomplete
networkN. Note that for different choices of quadruplets

−→
C ∈ T corrupted, the subset of honest partiesH

for which we will be able to guarantee mutually secure communication can and will vary. So alsoTβN,c-
Communicability Property is going to hold for different subsetsH. Our interest will only be in the statistical
guarantees on the size of subsetH for which we can ensure this.

We just present semi-formal definitions of authentic and secure channels: ProtocolβN,pu,pv,c establishes
a T -authentic channel between nodespu and pv iff for all quadruplets

−→
C ∈ T corrupted byA protocol

βN,pu,pv,c establishes an authentic channel betweenpu andpv. T -secure channels are defined along the same
lines (Please consult Appendix Section B for formal definitions).

PropertyTpu,pv,β,c states the requirements for an incomplete networkN, so that for all quadruplets
−→
C ∈ T

corrupted by adversaryA secure channels can be established betweenpu andpv using the infrastructure of
the incomplete network.

Definition 9. Network N possesses PropertyTpu,pv,β,c if the following two conditions hold true:

8

1. For every
−→
C ∈ T corrupted byA , there exists at least two node-disjoint paths with end points pu and

pv such that the paths (a) are of length at most c∗ lg2n, (b) consist only of honest nodes and secure
channels.

2. There exists a (polynomial round) multiparty protocolβ that realizesT -authentic channel from pu to pv

and pv to pu.

Using the local propertyTpu,pv,β,c of networkN, which captures sufficient conditions for feasibility of
establishing channels between two nodespu and pv using the infrastructure of the incomplete networkN,
we define global properties of the incomplete networkN, which makes statistical guarantees about the com-
munication infrastructure of the entire network:

Definition 10. LetA be aT -restricted adversary. An incomplete network N= (V,E) has aTβN,c-Communicability
Property iff
∀
−→
C ∈ T : There exists a large subset of honest parties H: |H|≥ ⌊2∗n

3 ⌋+1such that for every∀pu, pv∈V,

there exists a real edge(pu, pv) in the network N or the network N possesses{
−→
C }pu,pv,βN,c Property 9.

5 T -secure multiparty computation on incomplete networks

This section presents the main theorem which stitches together other subsidiary claims. While we are able
to present a very brief overview of the proof of the main theorem, the proofs of other subsidiary claims have
been relegated to the Appendix. Subsection 4 is devoted to the subsidiary claims while Subsection 5 presents
the main theorem in this work.

Let A be an adversary restricted to adversary structureT .
Now we present the main theorem. It says that if networkN possessesTβN,c-Communicability Property,

then there exists a secure multiparty computation protocolΠN thatT -securely evaluates multivariate func-
tion f on networkN:

Theorem 1. If network N possessesTβN,c-Communicability Property 10, then there exists a two-phase mul-
tiparty computation protocolΠN, that T -securely evaluates function f , on network N, as according to
Definition 14.

The full proof of the theorem is relegated to the Appendix, Section F. We present a brief overview.

Proof. (Sketch) At a very high level, the proof of the main theorem proceeds as follows: We first invoke
Theorem 8 for complete networkNC. Then, we inductively replace each non-existing edge of theincom-
plete networkN by a channel simulated by protocolγ (this channel may behave as secure or authentic or
even tamperable). We make sure that the correctness and privacy conditions hold true for the new multi-
party protocol, which is to be executed over the new incomplete network, and for a new (lighter) adversary
structure. More details follow.

The higher level construction of the protocol and the proof of its security proceed as follows:

Let CN = (V,E,ECN) be the network with set of verticesV constructed by connecting all the pairs of
parties not already connected in the original incomplete network N, by virtual edges (Note, that since the
virtual edges are directed, so for each undirected(u,v) ∈V ∗V−E two directed edges are added toECN).

We fix an (arbitrary) order on all the (directed) virtual edges, in subsetECN , and proceed by induction as
follows:

9

1. Base case: We start by constructing an adversary structure TCN for a complete networkCN using the
adversary structureT for the original incomplete network, networkN, andTβN,c-communicability prop-
erty, 10. Then, we show that there exists a multiparty protocol Π0, 14, thatTCN-securely evaluates
f unction f on the complete networkCN.

2. By induction hypothesis, we are given an intermediate network Ni for which we are given a multiparty
protocolΠi thatTNi -securely evaluates functionf on networkNi (as according to Definition 14).
We are required to present a construction of multiparty protocol Πi+1 to be executed on networkNi+1

(where networkNi+1 is obtained by deleting theith virtual edge from networkNi) and adversary structure
TNi+1 (obtained by removing edgeei from TNi), such that protocolΠi+1 TNi+1-securely evaluates function
f on networkNi+1 (as according to Definition 14).

3. Lastly, note that inductive hypothesis is applied till there are no virtual edges left in the network, i.e.,
Nj = N andTNj = T , the original adversary structure. The multiparty protocol ΠN = Π j , T -securely
evaluate functionf on networkN (as according to Definition 14).

Loosely speaking, the induction hypothesis says that if we can realizeTNi -secure computation on incom-
plete networkNi with r real,v virtual andssimulated channel, then we can realizeTNi+1-secure computation
on networkNi+1 with r real,v−1 virtual ands+1 simulated edges. The proof of correctness and privacy of
the intermediate protocols follow reduction arguments. Wepresent an outline of the proof.

When consideringTNi+1-adversaryAi+1 attacking protocolΠi+1’s execution on networkNi+1, we need
to create aTNi -restricted adversaryAi which attacks protocolΠi. AdversaryAi just internally simulatesAi+1

and forwards messages generated by it to appropriate parties and vice versa. Now note that in networkNi

there is a virtual channelei which is replaced by execution of PSMT protocol that achieves the same pur-
pose as the virtual channel. Obviously, for the latter case the view generated of the honest parties as well as
the adversary is different and grossly speaking larger thenthe former case. For this careful internal simu-
lation is carried out depending on whether the virtual channel being replaced is secure, passively corrupted
or actively corrupted, and whether the transmitting node isa corrupted party or an honest party. We show
that the distribution of the views ofAi+1 generated for these two cases is indistinguishable: (a) When Ai+1

attacks the execution of the protocolΠi+1 on networkNi+1 (b) WhenAi+1 is internally simulated byAi who
attacks execution of protocolΠi on networkNi. For this purpose, it is inductively argued that the Vector of
distribution of views of all the (sacrificed and unsacrificed) honest parties andAi+1 are indistinguishable for
Case (a) and Case (b), after every ”super-round”. This constitutes the main body of the proof and it has the
following highlightable features:

(1) Each super-round of protocolΠi (and protocolΠi+1) is sliced inton∗ (n−1) different slots. Thus,
each ordered pair is allotted a dedicated slot for message transmission. The view of the adversary constructed
up till jth super-round determines the messages the adversary choosesto send in thej + 1th super-round.
Inductively it is made sure that after each individual ”slot” of the ”super-round” also the distribution of the
views of adversaryAi+1 is indistinguishable for the two Cases (a) and (b). (2) At thesame time all the honest
parties go through a clean up phase after every super-round.During the clean up phase all irrelevant inter-
mediate messages generated in the process of execution of the PSMT protocol on the incomplete network
are deleted.

Given the above condition it is relatively straightforwardto prove that protocolΠi+1 is secure. For this
we need to show the correctness of commitment phase, correctness of computation phase and privacy of
protocolΠi+1:

1. To prove the correctness of the Input commitment phasewe need to demonstrate a functionrevealΠi+1

that satisfies the outlined characterization for the Input commitment phase. Recall that we show that
the distribution of the views of the parties are indistinguishable for the two cases, after every super-
round. This holds true after the Input commitment phase also. Thus the distribution of transcripts of
the (unsacrificed) honest parties are also indistinguishable for the two cases (a) and (b), after the Input

10

commitment phase. Now recall that the transcripts of the unsacrificed honest parties are enough to reveal
the set of input values committed to by all the parties. In particular, the same functionrevealΠi for
protocol Πi will extract the same distribution of input values committed to by the parties. Thus, the
function revealΠi+1 = revealΠi will satisfy the requisite characterization of the correctness of the Input
commitment phase of protocolΠi+1.

2. Proof of correctness of the computation phasefollows from comparing the distribution of views of the
honest parties for the two cases, at the termination of the protocol. The vector of distribution of views are
indistinguishable for the two cases after every round. Conditioned to the fact that the inputs committed
to in the Input commitment phase are identical, the outputs must also be the same for every deterministic
function f (and indistinguishable for the case of probabilistic function f). This completes the overview
of the proof of correctness.

3. For theProof of privacy, we transfer the work for the proof of correctness. By Induction Hypothesis,
we have an appropriate simulatorSi that simulated the view ofAi ’s attacking execution of protocol
Πi . Now realize that for the proof of correctness we show howAi internally simulates adversaryAi+1

and its distribution of views are indistinguishable for thetwo Cases (a) and (b). But this is sufficient
for us to demonstrate a simulatorSi+1 that produces distribution of views ofAi+1 attacking protocol
Πi+1’s execution on networkNi+1. SimulatorSi+1 is nothing but SimulatorSi simulatingAi , which in
turn internally simulatesAi+1 as described above. Proof of privacy forΠi+1 follows from existence of
simulatorSi and the indistinguishability of the distribution of views of Ai+1 for the two Cases (a) and
Case (b).

⊓⊔

6 T -secure multiparty computation on a few specific classes of incomplete networks

In this section we describe a class of incomplete networks with which we associate appropriate adversary
structures, for which the networks possessTβN,c-Communicability Property. This sets in place the commu-
nication infrastructure necessary to execute multiparty protocols. We invoke the main theorem 1, to obtain
multiparty protocols thatT -securely evaluate arbitraryn-variate functionf on the corresponding networks.
For this we consider the (infinite) families of incomplete networks considered by [DPPU88], [Upf92] for
the almost everywhere agreement problem.

1. In [Upf92], a protocol was presented that achievesO(t)-agreement, on a class of constant degree ex-
pander graphs, namely LPS expanders. The following Theorem2 is a (minor) restatement of the theorem
from [Upf92].

Theorem 2. There exists
(a) Constantα > 0, µ, q and d, independent of t and n;
(b) An n-vertex d-regular network G, which can be explicitlyconstructed;
(c) A multiparty communication protocolβ(pu, pv,N) with round complexityα.
Such that for any subset̃C, |C̃| ≤ k∗n for some constant k, of faulty nodes in G, communication protocol
β(pu, pv,N) there exists a subset of non-faulty nodes H, where|H| ≥ n−µ∗ |C̃|, such thatβ(pu, pv,N)
establishes{(C̃,φ,φ,φ)}-authentic communication channel between pu and pv. Furthermore,β requires
at most q∗ lg2n communication rounds.

The proof of Theorem 2 says that there exists at least one nodedisjoint path of honest nodes between
every pair of partiespu, pv from subset of honest nodesH, of length at mostd ∗ lg2n. A more generic
observation was made about Theorem 2, [Upf92] in [BBC+06]. Namely, if from an expander graph
a (small) linear fraction of nodes are deleted, there still exists a large enough sized sub-network of
non-faulty nodes which has good expansion properties. Since the good sub-networkG = (H,E′) of our
interest is an expander graph, it has several node disjoint paths passing through only non-faulty nodes of
lengthO(lg2n), connecting every pair of nodes ofG. From this we obtain the following:

11

(a) There exists at least two node disjoint paths of honest nodes between every pair of partiesu, v from
subsetH of length at mostd∗ lg2n.

(b) There exists a multiparty protocolβ(pu, pv,N) that realizes{C̃}-authentic channel between parties
pu andpv for ∀pu, pv ∈ H.

Let ε = sup{χ|n−µ∗χ∗n≥⌊ 2∗n
3 ⌋+1}. Define the following adversary structure:T = {(C̃,φ,φ,φ)|C̃⊂V, |C̃| ≤

⌊ε∗n⌋}. We have the following corollary to Theorem 2:

Corollary 1. Let N be a network from above Theorem 2. Then N possesses theTβ,N-Communicability
Property 10, for adversary structureT .

Putting together Corollary 1 with Theorem 1 we have:

Theorem 3. There exists a multiparty protocolΠ to be executed on network N (LPS expander with n
nodes, as in Theorem 2) whichT -securely evaluates function f , as according to Definition 14.

2. Consider the recursive construction of committee networks of unbounded degree as defined in [DPPU88].
The description for one level of recursive construction is as follows:V containsnε committees, each
committee further consists ofm= nε sub-committees (so on and so forth for 1/ε recursive steps). In-
side, each committee all the sub-committees form a clique i.e., every two sub-committeesAi andA j

are connected. Each such connection represents a meta-edgebetween some matching of nodes of the
sub-committeesAi andA j . For more details the reader is referred to [DPPU88].
Let Gε be a committee graph from [DPPU88] withn nodes. The following theorem was proved in
[DPPU88] for networkGε:

Theorem 4. For everyε > 0 there exists a constant c= c(ε), graphs Gε = (V,E), |V| = n of degree
O(nε) and t-resilient O(t)-agreement protocol t≤ c∗n.

As a corollary to the proof of Theorem 4 from [DPPU88], we obtain the following:

Corollary 2. There exists a constant d, and a family of multiparty protocols β(pu, pv,N), to be executed
on G, such that for every subset of nodesC̃⊂ V, |C̃| ≤ c∗n corrupted byA , there exists a subset S of
honest nodes S⊂V such that,

(a) |S| ≥ n−O(t)
(b) There exists two paths of non-faulty nodes of length at most d∗ lg2 n between pu, pv for all pu, pv ∈S.
(c) For all pu, pv ∈ S multiparty protocolβ(pu, pv,N) realizes{{tildeC,φ,φ,φ}}-authentic channel be-

tween pu and pv.

Define the following adversary structure:T = {
−→
C |
−→
C [0] ⊂ V, |

−→
C [0]

S−→
C [1]| ≤ ε ∗ n,

−→
C [1] =

−→
C [2] =

−→
C [3] = φ}, for networkG, which basically captures all subsets, of passive and active corruptions of
parties, of size at mostε ∗n, such thatn−µ∗ ε ∗n≥ ⌊2∗n

3 ⌋+ 1. We have the following corollary to the
above Corollary 2:

Corollary 3. Let Nε be the committee graph of n nodes andT be an adversary structure as defined
above. Network N possessesTβ,N-Communicability Property 10, for adversary structureT .

Putting together with Theorem 1, we obtain:

12

Theorem 5. There exists a multiparty protocolΠ whichT -securely evaluates function f on committee
graph Nε with n parties, for adversary structureT as defined above, as according to Definition 8.

3. Results of similar nature, as described above, can be stated for butterfly graphs and constant degree
expanders, which can toleratenlg2 n andnδ (for some constantδ) corrupted nodes respectively, using the
results in [DPPU88].

References

[BBC+06] Amitabha Bagchi, Ankur Bhargava, Amitabh Chaudhary, David Eppstein, and Christian Scheideler. The effects of
faults on network expansion.Theory of Computing Systems, 39:903–928, 2006.

[BG89] P. Berman and J. Garay. Asymptotically optimal distributed consensus. InInternational Colloquium in Automaton,
Languages and Programming, ICALP, pages 80–94. Springer Verlag, 1989.

[BG90] P. Berman and J. Garay. Fast consensus on networks of bounded degree. InInternational Workshop on Distributed
Algorithms, pages 321–333, 1990.

[BGW88] M. BenOr, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed
computation. InProceedings of Twentieth annual Symposium of Theory of Computation, STOC, Chicago, Illinois, May
1988. Association for Computing Machinery.

[CCD88] D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols. InProceedings 20th Annual
Symposium on Theory of Computing, STOC, Chicago, Illinois, May 1988. Association for Computing Machinery.

[CFGN96] R. Canetti, U Fiege, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. InTwenty-eighth annual
ACM Symposium on Theory of computing, STOC, pages 639–648, 1996.

[DDWY93] D. Dolev, C. Dwork, O. Waarts, and M. Young. Perfectsecure message transmission.Journal of ACM, JACM, 1993.
[Dol83] D. Dolev. The byzantine generals revisited.Journal of Algorithms, 1(3), 1983.
[DPPU88] C. Dwork, D. Peleg, N. Pippinger, and E. Upfal. Fault tolerance in networks of bounded degree.SIAM Journal on

Computing, 1988.
[FHM99] M. Fitzi, M. Hirt, and U. Maurer. General adversaries in unconditional multi-party computation. InAdvances in

Cryptology, ASIACRYPT’99, Lecture Notes in Computer Science, Singapore, November 1999.
[GM82] S. Goldwasser and S. Micali. Semantic security. InFoundations of Computer Science, FOCS. IEEE, 1982.
[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. InSymposium on

Theory of Computing, STOC. IEEE, 1985.
[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols

with honest majority. InProceedings of nineteenth annual Symposium of Theory of Computation, STOC. ACM, May
1987.

[GO08] J. Garay and R. Ostrovsky. Almost everywhere secure computation. InAdvances in Cryptology, EUROCRYPT, 2008.
[GP96] O. Goldreich and E. Petrank. Quantifying knowledge complexity. InFoundations of Computer Science, FOCS. IEEE,

1996.
[HM97] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable in secure multi-party computation. In ACM

Proceedings of Sixteenth Annual Symposium in principles ofDistributed Computing, 1997.
[HM00] M. Hirt and U. Maurer. Player simulation and general adversary.Structures in Perfect Multiparty Computation, Journal

of Cryptology, 2000.
[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party computation. InAdvances in Cryptology, ASI-

ACRYPT, Lecture Notes in Computer Science, 2000.
[KKMO94] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in multi-party privatecomputa-

tions. InFoundations of Computer Science, FOCS, 1994.
[LSP82] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. InACM Trans on Programming Language

and Systems, volume 4, 1982.
[OR96] M. Ben Or and D. Ron. Agreement in the presence of faults, on networks of bounded degree.Information Processing

Letters, IPL, 57(6):329–334, March 1996.
[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing andmultiparty protocol with honest majority. InACM Symposium

in Theory of Computing, STOC, 1989.
[Upf92] E. Upfal. Tolerating linear number of faults in networks of bounded degree. InSymposium on Principles of Distributed

Computing, PODC, Vancouver, British Columbia, Canada, 1992. ACM.
[Vay06] Shailesh Vaya.Almost everywhere secure computation. PhD thesis, University of California, Los Angeles, December

2006.
[Vay08] Shailesh Vaya. Secure multiparty computation withman-in-the-middle attacks. Inmanuscript. available upon request,

2008.
[Yao82] A. Yao. Protocols for secure computation. InProceedings of twenty third annual Symposium on Foundations of

Computer Science, FOCS. IEEE, 1982.

13

A Formal definitions for T -secure multiparty computation

This section is from [Vay08], where definitions forT -secure computation were presented for secure multi-
party computation handling man-in-the-middle type attacks. We use the same definitional framework in this
work also. We start by reviewing some standard terminologies used in secure multiparty computation.

A.1 Some standard terminologies relevant to secure multiparty computation

Let Π be a multiparty protocol executed byP . We define theViewof a player as the set of inputs, random bits
used by the player and all the messages received by the playerduring the execution of the protocol. Likewise,
theViewof the adversary is the vector of views of the players, corrupted by it. Further, the distribution of
the views of the players/adversary is defined as the distribution of these views generated from executing the
multiparty protocol taken over the different random choices made by the players and the adversary. This
distribution is defined for a vector of inputs given to the parties. Formally,

Let multiparty computation protocolΠ be executed by a set of playersP . ViewΠ,P,A
pj (

−→
C ,
−→
I) refers to

the random variable denoting the view ofp j , when multiparty protocolΠ is executed by the set of players
P with input vector

−→
I , when adversaryA corrupts quadruplet

−→
C . Correspondingly, the random variable

−−→
View

Π,P,A
X (

−→
C ,
−→
I) denotes the vector of views of subset of playersX, constituted from executing protocol

Π amongst set of partiesP with input vector
−→
I . Along the same lines, we define distributions over these

random variables asViewΠ,P,A
pj

(
−→
C ,
−→
I) and

−−−→
View

Π,P,A ,
−→
C

−→
C

(
−→
C ,
−→
I).

The traditional approach to define security of multiparty computation protocols is to describe a Real and
Ideal processes and argue the inability of the adversary to distinguish between the two. The definitions in this
work deviate from this methodology in a subtle way. We base our definitions on the following underlying
understanding: Suppose a multiparty protocol is executed with some subset of corrupted parties. A view of
the honest parties and corrupted parties is generated in theprocess. Based on this view, the adversary may
try to extract knowledge about the inputs of other honest parties.

We require that an indistinguishable distribution of viewsof the adversary be computable just from the
initial input values, committed input values and the outputvalue of the corrupted parties. This amounts to
arguing that the adversary can derive no more knowledge about the input values of the honest parties, then
what can be computationally derived from these values alone. This concludes the proof of privacy property
of the protocol. Inherently, the same argument underlies the traditional definitions of secure multiparty
computation, [GMW87]: There it is shown that the view of the adversary is generated by the simulator
using the different values and it is concluded that adversary can derive no more knowledge about the input
values of the honest parties from its view, then what it couldderive (computationally) from these initial input
values and the output values of the corrupted parties.

As discussed before in our model some honest parties may be sacrificed and not required to receive
the correct output values or maintain the privacy of their initial inputs. By demonstrating that an indistin-
guishable distribution of views of the adversary is computable from the initial input values, committed input
values and the common output value of the sacrificed and corrupted parties, we conclude that the adver-
sary can derive no more knowledge about the input values of the unsacrificed honest parties then what can
be computationally derived from these values alone. The initial values and committed values of the sacri-
ficed parties are considered sacrificed in this sense. This concludes the proof of the privacy property of the
protocol.

We now present the definitions. We start by introducing minimal notations that will be used during the
rest of the section. LetΠ = (Π1,Π2) refer to a two phase multiparty protocol. Let−→y = (y1,y2, . . . ,yn) denote
the vector of input values given to the partiesP , whereyi =−→y [i] ∈ {0,1}∗ refers to the input value of theith

partyPi.

14

A.2 Definition for (unconditional) secure multiparty computation for the stand alone model

We first present the definitions for the stand alone model.
Characterization of correctness of the input commitment phase of a multiparty computation protocol To
characterize the correctness of the Input Commitment phaseof a multiparty protocol the question to ask is
how should the transcripts of the parties relate with each each other at the termination of the Input Com-
mitment Phase. Note that only the transcripts of the honest parties should be relied upon to achieve this
characterization because the transcripts of corrupted parties cannot be trusted and in fact can be manipulated
arbitrarily by the adversary. Thus our characterization should allow the flexibility that the corrupted parties
may possess arbitrary transcript values. The input commitment phase of the multiparty computation protocol
should have the following two properties:

1. Honest parties are able to commit to their initial inputs:All the honest parties are able to successfully
commit to their initial input values they start with, irrespective of the behavior of the adversaryA .

2. Binding for all parties: After the termination of the Input Commitment phase none of the parties are able
to modify the input values committed to, irrespective of howthe corrupted parties may behave from here
on.

We formalize the above requirements for the correctness of the Input Commitment phase as follows:
We associate ann-variate functionrevealΠ1(., ., . . . , .) with Π1, which when applied to the transcripts of
the parties generated by execution ofΠ1 reveals the vector of input values committed to by the parties. This
function should have two additional properties (1) Committed values of the honest parties are the same as the
initial input values they started with (2) The committed values of the corrupted parties, may be different from
their initial input values, but are unmodifiable from after here on, irrespective of how the corrupted parties
choose to behave. This is captured by requiring that the function revealΠ1 has the same output irrespective
of what transcript values are substituted for the corruptedparties. Furthermore, as long as the true transcript
values of at least⌊2∗n

3 ⌋+ 1 honest parties are specified as⌊2∗n
3 ⌋+ 1 inputs ofreveal(), the order in which

these inputs are specified and in which the transcript valuesof the corrupted parties is not important and
does not affect the output value of the functionrevealΠ1(., ., . . . , .). We are now ready to present a formal
definition for the correctness of the input commitment phase.

Let Π1(P ,−→y ,
−→
r1 ,C ,A) refer to the vector of input values committed to byP on the execution ofΠ1,

starting with some vector of input values−→y , randomness−→r , whenA corrupts subsetC ⊂ P .

Definition 11. Let Π = (Π1,Π2) is a two phase multiparty protocol. The input commitment phase Π1 is
correct iff there exists an n-variate function revealΠ1 : {{0,1,⊥}∗}n→{{0,1}∗}n, which can be associated
with Π1 such that it satisfies the following properties.

Let
−−−→
Trans= Π1

Trans(P ,−→y ,
−→
r1 ,C ,A), denote the vector of transcripts ofP , generated by the execution of

Π1. Then,

1. Let−→x = revealΠ1(
−−−→
Trans). ∀Pi < C :−→x [i] =−→y [i] i.e., honest parties are able to corrupt their initial input

values.
2. ∀
−−−→
Trans′ : [(∀Pi < C :

−−−→
Trans′[i] =

−−−→
Trans[i])→ (revealΠ1(

−−−→
Trans′) = revealΠ1(

−−−→
Trans))] i.e., the transcripts

of the honest parties are sufficient to extract the values committed to by all the parties irrespective of the
transcripts of the corrupted parties.

Further, Π1(P ,−→y ,
−→
r1 ,C ,A) = revealΠ1(

−−−→Trans), is used to refer to the vector of input values committed
by Π1.

15

Remark 1.A remark may be useful to view the essentials of functionreveal(). Basically,reveal() is really
only taking a ”set” of transcripts as input. The ordering of the transcripts is not important for it to extract the
actual ”set” of input values committed to by the parties. Butsince we want an ordering of the output values
which we can refer to, the input transcripts to reveal() are also ordered.

Complete definition of vanilla MPC protocols for the stand alone model Let f : ({0,1}∗)n→{0,1}∗ be
ann-ary functionality. Let

−→
I = (i1, i2, . . . , in) denote the vector of input values of the parties.

Definition 12. Let f be an n-ary function as defined above. LetΠ = (Π1,Π2) be a two phase multiparty
protocol, as characterized in Definition 11. Then,Π securely evaluatesf if the following conditions hold
true∀C ⊂ P of parties corrupted byA , for which|P−C | ≥ ⌊2∗n

3 ⌋+1:

1. Correctness: Let−→x refer to the vector of input values committed to by the parties on execution ofΠ1.1.
Then, for all honest parties pi ∈ P−C the following holds true:

Π2(−→x)pi = f (−→x)
2. Privacy: There exists a simulator Sim, which takes as input the subsetC , −→y C , −→x C , f(−→x), adversary

program A , and generates the view of the adversaryA , such that the distribution of the views ofA

generated from real execution ofΠ is indistinguishable from the distribution of the views ofA generated
by Sim:

SA(C ,−→y C ,−→x C , f (−→x))≈
−−→
View

Π,A
C (C ,−→y ,−→x , f (−→x))

for all feasible adversariesA2.

Remark 2.Note that the simulator is given both−→y C and−→x C i.e., the initial input values and the input values
committed to by the corrupted parties and the output valuef (−→x). The simulator aborts and ignores those
sessions when the corrupted parties commit to input values different then−→x C. For information theoretic
regime there is no constraint on the running time of the simulator. The distribution is compared with the
distribution of views of the adversary that are generated from the real execution of the protocol when the
parties start with initial input values−→y and committed to−→x . If the distributions generated from the two
cases are proved indistinguishable, it amounts to saying that the adversary gains no more knowledge about
the input values of other honest parties then what could be computationally derived just from the initial input
values and the committed input values.

A.3 Definition for secure multiparty computation on incomplete networks

To define security of multiparty computation protocols for incomplete network we first propose a model
in which the adversary can corrupt a subset of channels as well. The channels may be corrupted passively
or actively. If the channel between two parties is corruptedpassively, then the new channel is behaviorally
equivalent to anauthentic channel. If the channel between two parties is corrupted actively, then the new
channel is behaviorally equivalent to atamperable channel. The ideal functionality of channels under dif-
ferent types of corruptions is discussed in Subsection B.1.

For this setting not all the honest parties may be guaranteedto receive the correct output values or be
able to preserve the privacy of their input values. Honest parties, for which this is not ensured, are called

1 As defined above, the vector of input values committed to by the parties is specified by vector−→x =
−−−−−−−−−−−−−→
Π1(P ,−→y ,

−→
r1,C ,A) =

revealΠ1(
−−−→Trans)

2 The variable−−→View
Π,A
C (C ,−→x C ,−→y C) is as defined above, at the beginning of the section, and used rather canonically in crypto-

graphic literature

16

sacrificed. Informally, a multiparty protocolΠ T -securely evaluates functionf if for every feasible
−→
C cor-

rupted byA there exists a subset of honest nodesH, |H| ≥ ⌊2∗n
3 ⌋+1, which achieve the canonical guarantees

of multiparty computation. This is ensured if a subset of⌊2n
3 ⌋+ 1 honest parties are able to communicate

with each other via secure communication channels. The weakened guarantees of multiparty computation
protocol are:

1. Correctness of the outputs of the sacrificed honest parties is not guaranteed.
2. Privacy of the inputs as well as outputs of the sacrificed honest parties is not required to be preserved.

For this we require to demonstrate a simulator which is giventhe initial input values and committed
input values of all the corrupted and sacrificed parties and the output value. The simulator should be
able to simulate the view of adversary generated from real executions of the multiparty protocol when
the initial input values and committed input values of the corrupted and sacrificed parties are the same.
The understanding behind this definition of privacy has beendiscussed at the beginning of this section.

Correctness of the input commitment phase:The input commitment phase should have the following
properties to be correct (1) All ”unsacrificed” honest parties should be able to commit to their initial in-
put values, irrespective of the behavior of the corrupted parties (2) Binding: The honest parties share the
committed input values of all the parties, which cannot be modified from after here on irrespective of the
behavior of the malicious parties (3) The phase may fail withsome negligible probability.

Let A be an adversary restricted to adversary structureT , Definition 4. LetP be a set of parties.N refers
to the network,P refers to the set of participating parties.

−→
C refers to the quadruplets of parties and channels

corrupted by the adversaryA .

Definition 13. Let Π = (Π1,Π2) be any two phase multiparty protocol. The input commitment phaseΠ1 is
correct if there exists an n-variate function revealΠ1 : {{0,1,⊥}∗}n→ {{0,1}∗}n, such that the following
conditions hold true for all feasible

−→
C corrupted byA .

Let
−−−→
Trans= Π1

Trans(P ,−→y ,
−→
r1 ,
−→
C ,A), denote the vector of transcripts of partiesP , generated by the

execution ofΠ1. Let−→x = revealΠ1(
−−−→
Trans). There exists a subset of (unsacrificed) honest partiesH ⊂ P ,

|H | ≥ ⌊2∗n
3 ⌋+1 such that:

1. Honest parties are able to commit to their initial inputs:∀Pi ∈H : xi = yi , with probability greater than
1−µ(n), for some negligible function µ(.).

2. Binding for all the parties:∀
−−−→
Trans′ : (∀Pi ∈H :

−−−→
Trans′[i] =

−−−→
Trans[i])→ (revealΠ1(

−−−→
Trans′)= revealΠ1(

−−−→
Trans)).

Notation: The vector of input values committed to i.e.,revealΠ1(
−−−→
Trans) is denote byΠ1(P ,−→y ,

−→
r1 ,
−→
C ,A).

We allow the input commitment phase of protocol for incomplete networks to fail with a negligible
probability. This is because the protocol uses (almost) secure channels to transmit messages, which may fail
to deliver the correct messages with a negligible probability i.e., behave as corrupted channels with this neg-
ligible probability. Hence, the commitment phase may also fail with a negligible probability. We are ready
to present a full formal definition forT -secure multiparty computation:

Let f : ({0,1}∗)n→ {0,1}∗ be ann-ary functionality.

Definition 14. Let f,−→y ,P,A ,
−→
C be defined as above.

Let Π = (Π1,Π2) be a two-phase multiparty computation protocol, 13. Protocol Π, T -securely evalu-
ates function f if there exists a simulator Sim, such that forall

−→
C ∈ T , (Subsection 4, corrupted byA , there

exists a subset of parties, H⊂ P−
−→
C [0]−

−→
C [1], |H| ≥ ⌊2n

3 ⌋+1 the following holds true:

17

1. Correctness: Let−→x be the vector of input values committed to by the parties, after the execution of input
commitment phaseΠ13. Then, for all pi ∈ H :

Π2(−→x ,
−→
C ,A ,

−→
r2)pi

= f (−→x)4

2. Privacy: Simulator Sim, takes as input
−→
C ,−→y P−H ,−→x P−H , output f(−→x), adversary programA and gen-

erates a distribution of views ofA , such that:

SimA(
−→
C ,T ,N,−→y P−H ,−→x P−H , f (−→x))≈

−−→
View

Π,A
−→
C

(
−→
C ,−→x ,−→y , f (−→x),−→r).

for all feasible adversary structuresT .

Remark 3.

1. The simulator is required to produce a distribution of theviews of the adversaryA . This distribution is
to be shown indistinguishable from the distribution of the views of the adversary generated from real
execution of the protocol given that the initial input values and the committed input values of the parties
are−→y and−→x and output isf (−→x). This is supposed to capture the property that the adversarydoes
not gain any more knowledge about the input values of unsacrificed honest parties, then what can be
computationally derived from just−→y P−H and−→x P−H and f (−→x).

2. The simulator is given the initial input values and the committed input values that the corrupt and sac-
rificed parties start i.e.,−→y P−H and−→x P−H and the output valuef (−→x). We have already discussed the
relevance of providing the simulator with these values in order to produce valid distribution of views
of the adversary. The simulator starts the simulation by initializing the input values of the corrupt and
sacrificed parties as above. At the end of the first phase the corrupt and sacrificed parties have committed
to some input values. If they are the same as−→x P−H , then the simulator proceeds further, else outputs⊥
and aborts the current simulation. The simulator needs to only produce valid distributions conditioned
to the fact that that simulation output is not⊥. For information theoretic regime there is no constraint on
the running time of the simulator.

A.4 Alternate view of the definition of privacy in this work

There is an alternate way to view the definitions of privacy inthis work. For this let us review what we
require for the privacy property to hold: There exists a simulator such that for all initial input values−→y and
committed input values−→x for feasible corruptions the following holds true:

SimA(
−→
C ,T ,N,−→y P−H ,−→x P−H , f (−→x))≈

−−→
View

Π,A
−→
C

(
−→
C ,−→x ,−→y , f (−→x),−→r).

Consider another set of vectors
−→
x′ and

−→
y′ , such that

−→
y′ P−H = −→y P−H and

−→
x′ P−H = −→x P−H and f (−→x) =

f (
−→
x′). For the privacy property to hold we have that:

SimA(
−→
C ,T ,N,

−→
y′ P−H ,

−→
x′ P−H , f (

−→
x′))≈

−−→
View

Π,A
−→
C

(
−→
C ,
−→
x′ ,
−→
y′ , f (

−→
x′) = f (−→x),−→r).

Now observe that the inputs of the simulatorSim for both the cases are same as−→y P−H =
−→
y′ P−H ,

−→x P−H =
−→
x′ P−H and f (−→x) = f (

−→
x′), which implies that the distributions generated by the simulator for

the two cases are also indistinguishable which in turn implies that:
−−→View

Π,A
−→
C

(
−→
C ,−→x ,−→y , f (−→x),−→r)≈

−−→View
Π,A
−→
C

(
−→
C ,
−→
x′ ,
−→
y′ , f (−→x),−→r).

Let us put other known facts about the relations between−→x ,−→y , f (−→x) and
−→
x′ ,
−→
y′ , f (

−→
x′) to interpret what

is achieved here: As long as the initial input values, committed input values of the sacrificed parties and the
corrupted parties, and the output values are same, the distribution of view of the adversary (which is just the
vector of views of the corrupted parties) are indistinguishable for the two cases. What is essentially implied
is input indistinguishability.

3 −→x ←Π1(−→y ,
−→
C ,A,

−→
r1), as defined above

4 The equality condition can be relaxed for probabilistic function to≈.

18

A.5 Further refinement of the definition of security

We have noted previously that a ’sacrificed’ party may just have the correctness property sacrificed or just
the privacy property sacrificed or both the properties sacrificed. Our definitional framework can be easily
extended to take into account such refinements with minor adaptations.

B Ideal functionality for channels, T -authentication channels andT -secure channels

In this section we present the ideal functionality for virtual channels. Subsequently we also present defini-
tions forT -authenticated andT -secure channels on incomplete networks.

B.1 Modelling channels on incomplete networks

Channels realized by physical infrastructure like LAN, fibre optic cables or even WAN can be modelled
as synchronous behavioral entities. We abstract out the functionality of a channel by describing an Ideal
Functionality that captures the essentials of a channel’s behavior. A directed channeleu,v from party pu to
party pv if uncorrupted behaves as a secure channel. The message received by the channeleu,v from partypu

is forwarded to partypv after a few roundsr. This numberr is hardwired in the channel. A channel may be
passively or actively corrupted by the adversary. When passively corrupted the message sent on the channel
is also revealed to the adversary by the channel. When the channel is actively corrupted the message sent on
the channel may be corrupted by the adversary before it is finally sent by the channel to the receiving party.

All edges of the incomplete networks will be modelled as secure channels. If the edge of the network
is undirected, then it will correspond to two channels, a forward directed channel and a backward directed
channel both of which are secure channels.

Let r be a constant, greater than 6, which will be specified later. Let A corrupt
−→
C , as described above,

4. The directed channel fromS to R is referred to byF r
d (S,R,edgeid) and the ideal functionality for this

directed channel fromS to R is as follows:

Definition 15. F r
d(S,R,edgeid), denotes a channel from S to R, with unique identity edgeid , in the syn-

chronous setting and executes as follows:

1. edgeid ∈
−→
C [3]: (Passive corruption) If message(S,R,mesg− id,m) is received from party S in round i,

then Fr
d (S,R,edgeid) records it and forwards the message(S,R,mesg− id,m) to A in round i+ 1, and

to party R in round i+ r−1.
2. edgeid ∈

−→
C [2]: (Active corruption)

(a) If (S,R,mesg− id,m) is received from S in round i, Frd (S,R,edgeid) records the message, round
number etc. and forwards the arrival note(S,R,mesg− id,ARRIVAL) to A in round i+1.

(b) In round i+ j for j > 1 A sends the message(mesgid,READ−N−CORRUPT) or the message
(mesgid,JUST−CORRUPT) to Fr

d(S,R,edgeid) depending on whetherA intends to corrupt the
message in plaintext orA intends to corrupt the message when hidden under a one time pad (where
the latter case models partially corrupted channel). If j< r −4, then Fr

d (S,R,edgeid) records this
message and proceeds further, else ABORT.

(c) In round i+ j + 1, Fr
d (S,R,edgeid) gives message(S,R,edgeid ,mesg) to A , where mesg= m⊕

onetimepad (for a uniformly chosen sequence of random bits onetimepad that is also recorded
with the channel) if the channel Frd (S,R,edgeid) received the choice READ−N−CORRUPT in the
last round or mesg= m if the channel received the choice JUST−CORRUPT in the last round.

19

(d) In round k, k≤ i + r−2, Fr
d (S,R,edgeid) receives message(S,R,mesg− id,m′) to be sent to party R

fromA . Fr
d (S,R,edgeid) checks validity, time stamp’s etc of the message from previous records. If the

choice ofA was JUST−CORRUPT then Frd (S,R,edgeid) forwards message(S,R,mesgid,onetimepad⊕
m′) to R, else it forwards(S,R,mesgid,m′) to R in round i+ r−1.

3. (Secure channel) If message(S,R,mesg− id,m) is received from party S in round i, Frd(S,R,edgeid)
records it and forwards the message(S,R,mesg− id,⊥, |m|) to A in round i+1, and message(S,R,mesg−
id,m) to party R in round i+ r−1.

A few remarks are in place.

Remark 4.

1. The complication in the description of active corruptionarises because the adversary in control of public
discussion channel may not make all the non-faulty paths invalid. In such a case the adversary does not
get to learn the message sent on the channel while is still able to mangle the message being sent.

2. In the proof of the main theorem, we use networks that have two different types of channels:real and
virtual. Messages sent along either of the channels may take different number of rounds to reach the
other party. The need for this distinction is made evident from our need of these channels in the proof
of the main theorem in which we replace each virtual channel by simulation of PSMT protocol that uses
the underlying incomplete network of real channels.

3. Note that when the edgeF r
d (S,R,edgeid) is passively or actively corrupted, the adversaryA is given as

much flexibility as possible to corrupt the message appropriately i.e., the adversary is given as many
number of rounds to corrupt the message before forwarding the message to the receiver. This results
in modelling stronger attack. This flexibility to the adversary is required as we start by assuming a
network that has several virtual channels and a secure protocol for this network. As we replace the
virtual channels with simulations of PSMT establishing channels employing the infrastructure of the
incomplete network, the adversary is tied and becomes weaker. This is done so that we can use the claim
of security for the former network and adapt it to prove security for the latter more realistic network but
with more restricted adversary.

B.2 Definition of T -secure channel

Loosely speaking, a multiparty protocol realizesT -secure channel between nodesu andv, if it realizes a
secure channel betweenu andv, for all

−→
C ∈ T , corrupted by the adversaryA . There are no guarantees about

the type of channel established when
−→
C < T .

There are two properties of a secure channel:CorrectnessandPrivacy. Our interest is to realize almost
correct channels which suffice for our purpose. Privacy property of channels is formalized along standard
lines: A channel is called private iff there exists a (probabilistic) polynomial time simulatorSim which
generates a distribution of views of adversaryA which is indistinguishable from the distribution of views
of A generated during real executions of the protocol. For technical reasons we demonstrate a simulator
even when the channel realized is not private or authentic. For such cases the simulator may be given the
message being transmitted on the channel. This simulator might be invoked to prove security of higher level
protocols.

Let the adversary be restricted to adversary structureT . Let N = (V,E) be an incomplete network.
Let T , N = (V,E) be as above. Let

−→
I = (⊥,⊥, . . . ,mu,⊥, . . . ,⊥) and

−→
O = (⊥,⊥,⊥, . . . ,mv,⊥, . . . ,⊥)

denote vector of inputs and outputs respectively, where
−→
I [i] and

−→
O [i] denote the input and output values of

the ith party. Let
−−→
View

γ,P
C (
−→
I) be defined as above. Letl be a security parameter. Letµ(., .) be a negligible

function.

Definition 16. (T -secure channel) Multiparty protocolγ(pu, pv,N,s,c) realizesT -secure channel between
nodes u and v on network N, if for all input vectors

−→
I , quadruplet

−→
C corrupted byA , such that

−→
C ∈ T , the

20

following conditions hold true:

1. Correctness: I[u] = O[v], with probability≥ 1−µ(l , |I [u]|) for all sufficiently large l.
2. Privacy: There exists a PPT simulator Sim that takes as input, the network topology N,

−→
C , the program

of adversaryA , size of input message|I [u]| and runs in time polynomial in the running time ofA and
generates a distribution of views ofA such that:

SimA(
−→
C)≈

−−→View
Π,P
−→
C

(
−→I).

B.3 Definition of T -authentic channel

For authentic channels we just need to ascertain the correctness property. We add a redundantsimulatability
condition which says that the view of the adversary should besimulatable. There are two cases: (1) When
the sender is corrupted the simulator does not need the message (2) When the sender is not corrupted the
simulator is given the message to be sent to the receiver. Ultimately this simulator will be invoked by a
simulator at a higher level, which will provide it with the requisite message to be sent.

Definition 17. (T -authentic channel) Protocolγ(pu, pv,N,s,c) realizesT -authentic channel between pu

and pv on network N, if for all input vectors
−→
I , all quadruplets

−→
C corrupted byA , such that

−→
C ∈ T , the

following hold true:

1. Correctness:−→I [pu] =
−→
O[pv].

2. Simulatability: There exists a simulator Sim that runs intime polynomial in the running time ofA and
generates a distribution of views ofA that is indistinguishable from the distribution of views ofA gen-
erated from real execution ofγ. Furthermore, the simulator is given the input inp, ⊥ iff pu is not
corrupted. Namely,

SimA ,pu,pv,N(
−→
C , inp, l ,c) ≈

−−→
View

Π,P
−→
C

(
−→
I).

C Conceptual exposition of the definition of privacy in this work

We examine the role of simulator in several different definitions of security of two party or multiparty
protocols and how demonstrating a simulator for these applications is supposed to be understood. We then
present a meta-definition which captures the bare bone ”skeletal” of these definitions. We then explain how
the understanding subsumed in the meta-definition is employed to define security of these protocols and also
this work.

The celebrated work on Zero Knowledge Proofs introduced thefundamental notion of knowledge com-
plexity and defined 0-Knowledge Proofs (ZKP)5. Loosely, a protocol is called a 0-KP if the verifier does
not gain anything from interacting with the prover which it could not have generated by itself, except for
one bit i.e., validity of some statement. This is formalizedas follows: A protocol is ZKP iff there exists a
PPT simulator which given the inputs available to both the parties, the verifier’s program and any auxiliary
values with the verifier, can generate a distribution of transcripts of the verifier which is indistinguishable
from the distribution of transcripts generated in real execution of the protocol. Let us examine this closely
by considering an example.

5 One may want to keep in mind the following sentence from page 295 (second last paragraph) of the historic paper [GMR85]
while formulating the notion of knowledge, ”With this in mind we would like to derive an upper bound (expressed in bits) for
the amount of knowledge that a polynomially bounded machinecan extract from a communication. Further review the definition
for L ∈ KC(f (n))

21

Consider a ZKP in which the verifier is given an auxiliary input Aux but has limited space (i.e., space
bounded). The (cheating) verifier tries to use the auxiliaryinput in order to extricate some extra knowledge
while executing the protocol with the prover. As a result a transcriptT is generated with the verifier. Af-
terwards, due to space constraints the verifier deletes the auxiliary input Aux. Clearly, now the verifier does
not seem to be able to generate an indistinguishable lookingtranscript of the verifier, because the verifier
does not have the auxiliary inputAuxwith it, which the simulator takes as input. Does the same transcriptT
which was earlier considered to convey 0-knowledge, now represent anything more to the verifier ? Why or
why not? How much knowledge is contained in the transcript (of and) for the verifier?6

A statement that is consistently true both before and after the verifier deletes the auxiliary inputAuxfrom
its tape is: Whatever knowledge the verifier could (PPT) computationally derive from the transcriptT, can
also be computationally derived just from the initial inputvalue which is given to both parties, the verifier’s
program and the auxiliary input valueAux. When the verifier also possessed the auxiliary input then this
could be interpreted to mean thatT contained 0-knowledge for the verifier. Similar understanding is used
to define the privacy property of multiparty protocols proved secure via simulation paradigm: An ideal
process and real process are described. In the ideal processthe power of the adversary looks ”somewhat”
curtailed and parties are given access to an ideal functionality, while the simulator simulates the protocol
execution and generates views of all the parties. Distribution of these views of the adversary generated from
the two processes are proved to be indistinguishable for thetwo cases to claim the privacy property of the
protocol. But what is really implied in inferring the privacy property from such a proof, as in [GMW87]
? It is that the view of the adversary (for the ideal process case) could be generated by a (PPTM or just
TM) simulator which is given access only to some input valuesand output values of the corrupted parties.
Nevertheless, aside from these input and output values there are many other messages that are part of the
view of the adversary even for the case of ideal process. So the underlying understanding being made is: The
adversary cannot derive any more knowledge about the input values of the honest parties, then what can be
(PPT) computationally derived just from its own input and output values. This is interpreted as the privacy
property of the protocol.

Towards this end we intend to capture the essence of what demonstrating a simulator implies in defini-
tions of ZKP and some other definitions of multiparty protocols (like the original definition in [GMW87]).
The following meta-definition of simulator chaffs of unnecessary technical jargons, except for capturing the
essential skeletal of these definitions of security:

A simulator is hypothetical mental construct which is used to prove properties that should exist about
the relations between input values, intermediate values and output values generated by the execution of a
multiparty protocol with a given adversary.

Let us see how we arrived at this meta-definition. First see that the distribution of transcripts generated
by simulatorSimby interacting with verifier’s programV can be produced just by a single Turing Machine
U which is given the following auxiliary inputs: A string of bits encoding the program of the simulatorSim,
a string of bits encoding the program of the verifierVer. The Turing machineU takes as input, the input
valueI and the auxiliary value of the verifierAux. U is also given a random tape.U simulates internally the
interaction between the simulator and the verifier by interpreting the stringsSimandVer as two procedures
which have separate tapes/memories for performing read andwrite, but who are also given a common
shared memory corresponding to the interactive tapes for communication.U detects when the simulation
has failed and verifier needs to be rewound to an earlier stateand does this when necessary by maintaining
a stack. Finally,U outputs a distribution of transcripts. It is easily seen that U runs in time polynomial in the
running times of the original simulatorSimand the verifierVer and produces the output in one shot without
interactive computation of any kind.

6 Going by the ”hint” formulation of quantifying knowledge, [GP96], certainly the transcript contains no more knowledgethen
the size of the input value and the auxiliary inputAux. We mention this as a perspective of what’s being asked or understood.
That’s all.

22

The output of Turing MachineU on inputI ,Aux is the requisite distributionDI
u i.e.,U(I ,Aux)r = DI

u≈
P↔V(I ,Aux). Looked another wayU is a Turing Machine which is just computing the value of a probabilis-
tic function f unc(., .) whose domain is all possible tuplets that correspond to values that can be assigned to
I ,Auxand range is a distribution of transcripts of the verifier. Furthermore,f unc(I ,Aux)r ≈ P↔V(I ,Aux).
The property of functionf unc(., .) that it is PPT computable is interpreted to mean that the verifier does not
derive anything more computationally from interacting with the prover, then what could be derived by the
verifier itself. We emphasize the point here that the verifiermay or may not have access to the simulator or
the auxiliary values to participate in the simulation at thetime of simulation. However, it is the property of
the function func(.,.) i.e., PPT computability off unc(., .) that matters here and which we care about. In other
words, the simulator is merely an ”abstract” construct which has nothing to do with what may or may not be
achievable/available in reality and is used only to demonstrate how the initial input, auxiliary input, string
encoding verifier’s program relate to the intermediate and output values i.e., the transcripts generated in the
execution of the protocol. What is achieved by demonstrating such a simulator is a proof of some properties
of the ”existing” relations between the different values possessed by possibly different parties. This method-
ology is ”constructive” (we demonstrate an algorithm). Theinteresting property that the functionf unc(., .)
possesses from our perspective is that it is PPT computable.

This understanding is extended to the case of multiparty protocols in a straightforward manner. In multi-
party protocols the adversary can be in control of several parties. Here too a simulator may be demonstrated
that is given just the input values, intermediate values andoutput values to compute a distribution of (entire)
views of the adversary. These values may or may not be available with the verifier. But what is established
by the demonstration of such a simulator is that the output ofthe simulator given these values and the final
output transcript of the verifier are related by way of computational indistinguishability. What is of impor-
tance here is the interpretation of proving such a fact. Whatdoes it amount to? Simulator may not exist in
reality or it may not be feasible to execute the simulator in reality due to whatever reasons: may be because
some values which we are interested in relating to belong to the honest parties (which may not cooperate) or
may not be available with the verifier. However, these proofsare interpreted as properties of cryptographic
protocols. For example, if a simulator is demonstrated which is given some input values, some intermediate
values and output values (generated in real execution of theprotocol) to generate a distribution of the views
of the adversary, then this inference is made along the same lines as the example above i.e., The adversary
cannot derive anything more computationally about the input values of honest parties, then what could be
derived from these input values, intermediate values and output values alone.

This completes the discussion of the underlying understanding behind the definitions of security in this
work. One may find it interesting to relate the discussion with measures of knowledge complexity that have
been studied by Goldreich Petrank, [GO08]. One of the complexity measures proposed there was to give
the simulator a hint. The knowledge complexity of a given ”value” is defined as the length of the shortest
hint required to for a PPTM to generate the appropriate value(or an indistinguishably looking distribution
of them). This formulation is sufficient for one to define security of protocols the way it has been done here.
However we emphasize, our interest is not in quantization ofknowledge in terms of bits, yet be able to make
such statements like, the adversary cannot computationally derive anything more from its view about the
inputs of some other (honest) parties, then what it could just computationally derive fromx, y or z, which
as pointed above is the underlying understanding behind thesimulation paradigm based definitions also.
The property that we prove about the interrelations of different values generated in the execution of the
multiparty protocol is enough for us to infer the privacy property of the protocol (which is along the same
lines as several known definitions of security). More discussions relevant to the exact definition of security
of the multiparty protocol for a.e.s.c. precede the definitions themselves.

In retrospective, what we have achieved here is a separationof what is real and concrete (the parties,
protocol or some values etc.) from what is purely abstract (the simulator), in the process questioning and
dissolving the belief about the existence of a ”real” simulator and issues related to considering the feasibility
of execution of the simulator in ”reality” (for example by seeking ”feasible” inputs to feed it with etc.). Stated
simply, simulators do not ”really” exist but relations likePPT computability or just computability between

23

different values generated in the execution of a multipartyprotocol do and some properties of these relations
are interesting from the perspective of cryptography. An alternate view of the definitions is presented in
Subsection A.4 that the reader might find easier to digest butwe emphasize the importance of the discussion
in this section.

D RealizingT -Secure channels on incomplete networks

In this section we present multiparty protocols that utilize the infrastructure of incomplete networks to es-
tablish authentic or secure channels on the incomplete network. For the sake of completeness and readability
we include again some of the properties that a network is required to possess so that these channels can be
realized.

Let N = (V,E,Ed) be an incomplete network. LetA be aT -restricted adversary. A multiparty protocol
γ(pu, pv,N,s,c) realizesT -secure channel betweenpu andpv, if for all

−→
C ∈ T , γ realizes an (almost) secure

channel betweenpu andpv (Formal Definition 16). Dropping the privacy condition fromT -secure channel,
we obtain the relaxed notion ofT -authentic channel (Corresponding formal Definition 17 appears in the
Appendix).

D.1 The message transmission protocol

In this subsection we present a multiparty protocol that establishesT -secure channels between appropriate
pair of nodes of an incomplete networkN when the adversary isT -restricted. LetN represent the commu-
nication infrastructure given to the set of partiesV, with the Special PropertyTpu,pv,β,c.

Definition 18. Network N possesses PropertyTpu,pv,β,c, if the following two conditions hold true:

1. For every
−→
C ∈ T , corrupted byA , there exists a path of secure channels, connecting uncorrupted nodes,

of length at most c∗ lg2 n from pu to pv.
2. There exists a multiparty protocolβ(pu, pv,N) that realizesT -authentic channel between pu and pv.

(The channel established byβ is also referred to as the additional channel between pu and pv.)

Remark 5.The first condition of the special property can be relaxed so that it requires only a single path
connecting honest nodes using secure channels - in which case the privacy condition would hold only
for completelyhonest parties, whereas the above condition guarantees privacy againstsemi-honestparties,
[CFGN96]. In [Vay06], it was shown how to construct a family of networks (with weakened parameters) for
which two node-disjoint paths of faulty nodes are guaranteed, using another family of networks where only
a single path of non-faulty nodes is guaranteed. However, asdiscussed in the last section its use was only
for Upfal graphs, [Upf92], for which we have observed stronger guarantees, [BBC+06] (Please consult last
section of Appendix).

We present a multiparty protocolγ(pu, pv,N,s,c) to establish an (almost) secure channel between nodes
pu and pv on networkN, which possesses the aboveTpu,pv,β,c Property: Several protocols can be employed
for this purpose. The protocol for PSMT from [GO08] uses error correcting codes. The protocol presented
here is based on elementary ideas for bit transmission, and is easily extended for message transmission.
Roughly, the idea for the bit transmission protocol is the following: In Step 1 all paths of length at most
c∗ lg2 n between nodespu andpv in networkN are used to send sequences of uniformly chosen random bits.
In the rest of the protocolγ(pu, pv,N,s,c), only T -authentic channel(s) are used for exchanging messages
betweenpu, pv. First, except for hiding a single bit from each rest of the block is revealed to the receiver
via the public authentication channel. The receiver then intimates the sender of faulty channels which are
excluded. The randomness contribution from each of the non-faulty channels is then XORRED with the
message bit and sent to the received over the public authentication channel.

24

Now we present a multiparty protocolγ(pu, pv,N,s,c) for nodepu to send a single bit message to node
pv, securely using the infrastructure of networkN = (V,E). Let l(n) be some polynomial inn, which will
be defined according to the guarantee of security made forγ. We make a few highlighting remarks about the
features of the multiparty protocolγ(pu, pv,N,s,c):

1. Recall the definition of (physically realized) authenticand secure channels of networkN, in Section 3.
Each of these channels is parametrized by variabler, which refers to the number of rounds after which
a message sent by the sender, along the channel, reaches the receiver.

2. EachStepof γ(pu, pv,N,s,c) consists of multiple rounds. The first step consists of a total number of
(c∗ lg2 n) ∗ r rounds, where the constantc depends on network topologyN. A message sent over the
additional channelrealized byβ(pu, pv,N) takesr ∗ rβ,N rounds.

3. The protocolγ(pu, pv,N,s,c) runs for a total ofc∗ lgn∗r + 5∗ rβ ∗ r + 2∗ r rounds. No messages are
exchanged in the last two rounds. The presence of constant 2∗ r is due to technical reasons, to carry out
higher level proofs of multiparty computation.

25

MPC protocol γ(pu, pv,N,s,c): Setup Phase.
Enumerate all paths of length at mostc∗ lg2n betweenpu andpv in networkN. Let

PA= {pa1, pa2, . . . , paw} be the set of paths,w in number. The setPAand the
path-ids etc. are known to all the parties of the network as a result of the set up

phase.

1. pu→ pv : Along each pathpai ∈ PA, ∀i ∈ [n] betweenpu and pv, send a block
of k(w,s) uniformly chosen random bits, for some polynomialk(., .) that will
be specified later. (After forwarding the block to the next node on the path, the
intermediate node deletes the block.)

2. pu→ pv : For each of thew paths, choose an integerip ∈ {1. . .k(w,s)} uniformly
at random and send this set of integers to the nodepv over theadditional channel,
realized by multiparty protocolβ(pu, pv,N).

3. pv→ pu : Nodepv hides theithp bit from the respective block of random bits, and
sends the rest of the block topu over theadditional channel.

4. pu→ pv : Nodepu identifies thefaultypaths, as follows:pu checks for mismatch
between the block created after removing the hidden bit (i.e., ithp bit) from the
respective block sent in Step 1, and the block sent in Step 3 (for the same path).
If all the paths are identified asfaulty, then pu sends a messagePROTOCOL-
ABORT to pv over theadditional channel. Otherwise, letb∗ =

Lg
j=1bi j be the

exclusive-or of the hidden bits from all the paths identifiedas non-faulty. The
nodepu sends the following to nodepv over theadditional channel:

(a) The subset of the identities of all the paths identified asnon-faulty.
(b) If mo is the bit to be sent, sendbo = mo⊕b∗ over theadditional channelto

nodepv.

5. pv: Let b′o be the bit received in the previous Step.pv receives the identities of all
the ”non-faulty” paths and computes the XOR of the ”hidden” bits of the blocks
sent over each of the paths in previous Step i.e., its own values ofbi j ’s and the bit
b′o received in the previous Step.
Nodev extracts the bit for each of thel(s) parallel executions and accepts the
majority as its output value.

We will conclude with the following theorem that characterizesγ. The proofs of correctness and pri-
vacy/simulatability are presented in the next two section D.2

Theorem 6. Let N= (V,E) be an incomplete network with Property 9 defined above. Then,protocolγ(pu, pv,N,s,c)
realizes aT -secure channel between pu and pv.

D.2 Simulation of γ

It is useful to be able to establish secure channels between distant nodes of an incomplete network so that
these nodes can communicate with each other. And, this is interesting primitive to achieve by itself. But
there is a more important and global view of the scheme of affairs i.e., namely the goal to realize secure
multiparty computation on incomplete networks for which the simulation ofγ is found necessary. For this
let us briefly revise that the way we achieve this is following: First we define a network corresponding to
the incomplete networkN which has virtual channels connecting all ordered pairs of nodes that not already
connected to each other via an edge in the original incomplete network. We then inductively replace such
virtual channels channels by PSMT protocols, while provingsecurity of intermediate protocols at every

26

intermediate step. Let’s just work with the replacement of the first channel of the incomplete network (the
rest will have similar reasonings/implications).

The simulator for the base case assigns random inputs to the honest unsacrificed parties and the relevant
inputs (that it is provided with) for the sacrificed and corrupted parties. It is easy to see how the simulation
is carried from here. Now when the first virtual channel is replaced by a PSMT, several cases arise: The
directed channel simulated may be from a corrupted party to acorrupted party, or unsacrificed honest party
or sacrificed party. Similar cases can exist when the sender is unsacrificed honest party or a sacrificed party.
Thus total of 9 cases can exist. We will see that for some of thecases the simulator that we demonstrate for
γ may require inputs from outside and for other cases the simulator may not require any inputs from outside
i.e., some higher level simulator that invokes this basic simulator for γ. Nevertheless, the simulator forγ
is given the input message to be transmitted whenever the sending party is an honest party, irrespective of
whether it is sacrificed or unsacrificed. For the corrupted sender the message is generated by adversary so the
simulation becomes trivial. For the honest parties, the message is always given to the simulator (it received
from the simulator for higher level where the message is actually generated). Nevertheless, it is important to
show that for channels which are secure the adversaries’s view are indistinguishable for the two cases when
a messagem or another messagem′ ,m is sent on the secure channel. This is important because evenfor
the corresponding ideal functionality it is not possible toextract the message that was actually sent on the
channel. It is important that the privacy of such a message bepreserved from the adversary because should
the adversary obtain enough number of such messages, then itwill be able to extract the input of some honest
party, say, which it should not have and which in turn would make the views of the adversary generated from
the real execution of the protocol indistinguishable from the views of the adversary generated via simulation
- leading the proof of privacy to fall apart.

Now, let’s get back to where we were at. Namely, we are going toshow simulation for all cases: When
the sender is an honest sacrificed or unsacrificed party then the simulator will be given the message to be
sent and when the sender is a corrupted party then the simulator is not given the message to be sent as
this message is supposed to be generated for the adversary. These simulators will be invoked to complete
simulation at the higher level. There is one more distinction we would need to make, namely that when the
channel to be simulated is a secure chennal then the simulator will not be given any input but only the length
of the message. Indistinguishability of the simulated viewof the adversary from the one generated from real
execution of the PSMT would then imply that the message was sent privately over the channel.

The proofs from here on are relatively straightforward except quite tedious technically. Now, let us prove
the simulatability property of protocolγ for all the different cases.
Simulatability of adversaries view for multiparty γ(pu, pv,N,s,c). When the channel simulated byγ(pu, pv,N,s,c)
is to be proved secure, then the simulator is only given the length of the message and not the message. The
simulator is given the message being transmitted on the channel for all other cases. We consider each case
separately and qualify it accordingly.

Claim. Let multiparty protocolγ(pu, pv,N,s,c) be executed on networkN with PropertyTpu,pv,β,c, 18.
There exists a simulator, that runs in time polynomial in running time of A and generates a distri-

bution of views ofA that is indistinguishable from distribution of views ofA generated from executing
γ(pu, pv,N,s,c) on N, for all quadruplets

−→
C ∈ C corrupted byA .

Proof. Let A corrupt quadruplet
−→
C ∈ T . Depending on the subset of nodes corrupted byA , we shall have

several cases and the behavior of the simulator may be different for each case.
We shall divide the proof according to the choice of parties and channels corrupted byA , and whether

additional channel simulated byβ(pu, pv,N) is authentic or tamperable. In either case, there exists a simula-
tor Simβ that generates a distribution of views ofA that is indistinguishable from the views ofA generated
from real execution of multiparty protocolβ. (In particular, as discussed above, whenpu is honest then the
simulator shall be given the input message to be sent bypu if the channel to be simulated is not secure and
if pu is faulty thenA itself is the generator of the message).

27

We consider all the cases:

1. Nodespu, pv are honest and there exists at least one path of non-faulty nodes of length at mostc∗ lg2 n
betweenpu andpv: In this case simulatorSimβ is given as input the message to be sent.

(a)
−→
C ∈ T (Most difficult case: Secure channel) In this case we demonstrate a simulator that simulates
the view of the adversaryA , but takes no input i.e. is a Zero-Knowledge simulator, thusproving
perfectPrivacyproperty for the established channel.
The simulator S . The simulatorS is given as input

−→
C corrupted by the adversaryA and whether the

additional channel is authentic or tamperable. Note that for the MPC protocolγ(pu, pv,N,s,c), only
pu receives an input message and onlypv outputs an output value, the rest of the parties just partici-
pate in the protocolγ(pu, pv,N,s,c) without taking any inputs or producing any outputs. Next, also
note thatthe input message bitis used only in the last Step of the protocol - the rest of the steps only
involve exchanging uniformly random bits. The simulation of the protocol is quite straightforward
from hereon.
We are going to show the simulation of execution of one sequence of steps of protocolγ(pu, pv,N,s,c).
The extension tol(s) independent parallel repetitions for each different message bit or repetition for
amplification is a straightforward extension. Note, that inthis case the simulator is given as input the
length of the message.
The simulatorS simulates the role of all the honest parties,pu and pv as it is. In the first step
the simulator chooses a sequence of uniformly chosen randombits for each path and simulates
the sending of this sequence of uniformly chosen random bitsalong the path as follows: When an
intermediate party sends a message to an adversary corrupted party, the simulator sends the message
to A which may modify the message before passing it to the next honest party (which is simulated
by the simulator). Then,S chooses the identity of one bit from each sequence of random bits and
invokes the simulatorSimβ for simulating sending this set of identities frompu to pv through an
authentic channel. In the next step the simulator takes all the sequences, in their entire ties except
for the hidden bits (in previous step) and invokesSimβ for simulating sending this set of identities
from pu to pv through an authentic channel simulated by protocolβ.
In the next step the simulator identifies the faulty paths based on the corrupted blocks in first Step,
and invokes the simulatorSimβ for simulating sending the identities of these paths through an au-
thentic channel simulated by protocolβ.
Now since we are given that there exists at least one non-faulty path in networkN betweenpu andpv

we know that one at least random bit is completely hidden fromthe adversary - there may be more
but at least one is completely hidden. The simulator computes the XOR of all of these hidden bits
(chosen from all non-faulty paths) withr ′ and invokes simulatorSimβ on this input.
[Simulation forparallel repetitions for the same bit or for different repetitions for different message
bits is a straightforward extension - the proof follows by use of hybrid argument, la [GM82]]
Observe thatSimβ and hence simulatorSimrun in time polynomial in the running time of the adver-
saryA .
Proof of indistinguishability ofA ’s view. Intuitively, the argument is as follows: During thesimu-
lation of the first few steps of the protocol only uniformly chosen random bits are used(exchanged
between) the parties. Now, for the choice of

−→
C ∈ T there is one path secure from the adversary.

The uniformly chosen random bit from this path remains secure from A and is used to hide the
message bit used in the last step ofγ. But the XOR of a random bit with the message bit creates a
(”random” looking) bit that is indistinguishable from a random bit. Thus, the view ofA generated
by the simulator or in the real execution ofγ is indistinguishable. Details follow.
We show that the distribution of the views ofA generated by the above simulator, which dozen’t
take any input, is indistinguishable from the distributionof the views of the adversary generated
from execution ofγ(pu, pv,N,s,c) with some arbitrary messagem.

28

For this we show that this is the case after simulation of every step ofγ. First, notice that the adversary
plays an active role in formulating its view only in the first step - after the first step of protocol
γ(pu, pv,N,s,c) the adversary is passive and just passively collects all messages (since the additional
channel simulated byβ is authentic). We are going to show indistinguishability ofthe distribution of
adversaries view after every step ofγ(pu, pv,N,s,c).
In the first step notice that theprobability with which the adversary chooses to corrupt the blocks
of uniformly chosen random bits sent on the faulty paths is the same whether its a real execution of
γ(pu, pv,N,s,c) or the simulation. In particular, theprobability with which the adversary chooses to
corrupt the blocks, sent on some particular paths, at some particular corrupted nodes and at some par-
ticular positions is exactly the same for the simulation of the ideal world as it is in the real execution
of γ(pu, pv,N,s,c) given that the blocks were chosen uniformly at random. Thus,the distribution of
views of the adversaryA generated after the real execution of first step ofγ(pu, pv,N,s,c) or after the
simulation of the first step ofγ(pu, pv,N,s,c) by the simulator is exactly the same or a Distinguish
er may be constructed using the adversaries program which can distinguish between two sources of
uniformly random bits - contradiction.
Now notice that the adversary dozen’t contribute actively in the constitution of its view, after the first
step of the protocol, as it just receives all the messages exchanged betweenpu andpv onT -authentic
channel.
Fix a viewVw of the adversary constituted up till Step 1. We know that the probability that this has
been picked from such views generated from real execution ofprotocolγ(pu, pv,N,s,c) or from ideal
world simulation is equal i.e.,12.
Observe also that for protocolγ(pu, pv,N,s,c) every view of the honest parties generated till Step
1, that is compatible to the same view of the adversary generated till Step 1, is equally likely to be
from real life execution ofγ(pu, pv,N,s,c) or from ideal world simulation. Thus we can fix a given
view of the honest parties as well as the view of the adversarytill Step 1 and this is equally likely to
be from real world execution of protocolγ(pu, pv,N,s,c) or from ideal world simulation.
Observe that once the view of the honest parties and the adversary is fixed for Step 1, if the same
random choices are made for nodespu andpv during Step 2 through Step 5 in real execution ofβ as
well as in simulation by the simulatorSimβ, the view of the adversary generated is identical.
So the distribution of the views of the adversary generated so far (i.e., up to Step 5 ofγ(pu, pv,N,s,c)),
constituted from real execution or ideal world simulation are identical.
The Step 6 needs a slightly different analysis because in this step messages are sent from nodepu

to pv which depend on the actual messagem. This messagem is available to the nodepu in the real
world execution ofγ(pu, pv,N,s,c) but not to the simulator because the simulator is not given any
input. Observe that for this case, that since there exists atleast one path of non-faulty nodes between
nodespu andpv along which a block of uniformly random bits was sent in Step 1, therefore at least
one random bit is secure from the adversary. This random is also used to hide the ”message bit” in
Step 6. Let this random bit ber0. The adversaries view for this step would ber0⊕mi for real world
execution and a uniformly chosen random bitr ′ for the simulation. However sincer0 is a uniformly
chosen random bit completely hidden from the adversary (just like r ′ is uniformly chosen random
bit uncorrelated to the rest of the view of the adversary) andhence uncorrelated to the rest of the
view of the adversaryr0⊕mi ≈ r ′. This completes the argument for the indistinguishabilityof the
distribution of the views ofA generated from execution of one sequence of Steps 1 through Step 6,
of protocolγ(pu, pv,N,s,c).
To take into account the view ofA constituted froml(s) different parallel executions repeated,
for each of ther different message bits, the construction of a hybrid argument, a la [GM82], is
straightforward.
Thus the distribution of the views of the adversary generated from the real world execution of
γ(pu, pv,N,s,c) is indistinguishable from the distribution of the views of the adversary generated
from the ideal world simulation by the simulator.

29

(b)
−→
C < T i.e., Channel simulated byβ betweenpu andpv is not secure.
In this case the channel established between partiespu and pv by protocolγ(pu, pv,N,s,c) is not
secure but may be arbitrarilytamperable. This could happen for several different reasons: (1) There
is no path of perfectly secure channels betweenpu andpv; (2) The public authentication channel is
under the control of the adversary. All these cases fall under the case of a tamperable channel for
which we need to prove the simulatability condition but not Zero-Knowledge simulatability.
This is seen as follows: In Step 1,pu may be able to send a block of uniformly chosen random bits to
pv, using the path of non-faulty nodes betweenpu andpv, which may be perfectly hidden from the
adversary. However, in the subsequent steps the adversary,which has full control over the additional
channel, not only receives the messages sent bypu but has full control for the rest of the steps of
the protocol. The adversary may be able to getpu and pv to agree on arbitrary message (or it may
be possible that adversary does not get all non-faulty pathsdeclared ”faulty” by use of the public
discussion channel and the random bits from at least one of the non-faulty paths is used for hiding
the message being sent on the channel. For this case, although we prove no new properties about the
privacy of the channel, the channel may behave as not eavesdroppable but corruptible. But except
for showing the simulation (which gets the input from higherlevel simulator) we just do not care
because we do not need to prove that the demonstrated simulator is not Zero-Knowledge because
we do not need to claim this property for the proof of privacy).
Since we are not required to demonstrate a Zero-Knowledge simulator for this case we do not face
any hardships. As before ifpu is honest then the simulator gets the message from a higher level
simulator which is simulating the partypu and the simulation becomes straightforward from after
here on, else ifpu is faulty thenpu possess the message and carrying out the simulation poses no
problems.

2. Nodepu is corrupted. Recall that onlypu is supposed to receive an input message forγ(pu, pv,N,s,c).
In this casepu itself is controlled byA . In particular, theA itself possesses the message thatpu intends
to transmit topv, which can be honest or corrupted.
First note that the simulator is only given the quadruplet

−→
C corrupted byA for this case. All we need

to note is that the honest nodes only make uniformly random choices when/if they are required to make
such choices during the execution ofγ(pu, pv,N,s,c). Otherwise, they are just limited to forwarding
messages exchanged on the authentic channel. Thus the simulator does not need any information or
message for simulating the role of the honest nodes in this case - it is the adversary who needs the
message and it also possesses the message. The adversary controlled pu may not execute the protocol as
required and abort or send unexpected/arbitrary messages but all this is perfectly simulated.

3. Otherwise. This means that (a)pu is honest and, (b) That either, (1)pv is corrupted or, (2) There exists no
path of non-faulty nodes of length at mostc∗ lg2n betweenpu andpv in networkN or, (3) The channel
realized byβ is not authentic. In either of the three caseswe will not be required to prove that the protocol
γ(pu, pv,N,s,c) realizes a secure/private channel between nodes pu and pv for this case. Since, we are
not required to prove that the channel realized byγ is not private it is enough for us to demonstrate
a simulator that takes as input the messagem that pu intends to send topv. Depending on the other
conditions full or no information about the messagem may get leaked to the adversary just as it would
in the execution of protocolγ(pu, pv,N,s,c). For this case, we demonstrate a simulator that is given as
input the duple{m,

−→
C}, which will be sufficient for the the higher level simulator.But construction of

such a simulator is quite straightforward, as noted above, because once the simulator possesses the only
input any party is given in the execution ofγ, the simulator just simulates the role of all honest parties
”exactly” as in the real execution of protocolγ, while sending the messages to be sent to the corrupt
parties to the adversary and vice-versa receiving too. If the simulator makes the same random choices
for the honest parties and the adversary makes the same random choices for the corrupted parties, for the
ideal world simulation as well as real world execution of protocol γ(pu, pv,N,s,c), then the adversary is
going to end up with exactly the same view. Hence the distributions of the views of the adversary for the

30

two cases would also be indistinguishable. Otherwise, a contradiction would result due to the existence
of a distinguish er that distinguishes between two sources of uniformly chosen random bits.

D.3 Correctness of protocolγ

We are going to show that protocolγ(pu, pv,N,s,c) described above realizes aT -secure channel between
pu andpv.

Theorem 7. Let N = (V,E) be an incomplete network with Property 18 defined above. Then, protocol
γ(pu, pv,N,s,c), executed on N, realizes aT -secure channel between pu and pv.

Proof. Recall the definition ofT -secure andT -authentic channels from Section 3. We shall show that chan-
nel realized byγ(pu, pv,N,s,c) is secure:

1. Privacy: We demonstrate a simulator that runs in time polynomial in the running time of adversaryA ,
such that for every input vector

−→
I , such that∀ j ∈ [n], j , u : I [j] = φ and I [u] = m∈ {0,1}r (herem

is the message to be sent frompu to pv), subsetC of nodes corrupted by the adversaryA such that
C∈ T, the simulatorSimtakes as input the subsetC, network topologyN and generates a distribution of
views ofA that is indistinguishable from the distribution of views ofA generated from real execution
of γ(pu, pv,N,s,c).
The existence of such a simulator follows as a corollary to Theorem D.2. In particular we are considering
case 1a, for which the simulator does not take

−→
I as the input. This completes the proof of privacy.

2. (almost) Correctness: It is given to us that Protocolβ(pu, pv,N) realizes aT -authentic channel frompu

to pv.
We have to prove that the channel realized byγ(pu, pv,N,s,c) is (almost) correct whenA chooses to
corrupt quadruplet

−→
C ∈ T . For this just observe thatN possesses the property, 18: Thus for each

−→
C ∈ T ,

the protocolγ(pu, pv,N,s,c) is equivalent to the bit transmission protocol, D.1.
We shall show a simple lower bound on the probability ofpu andpv agreeing on the same bit. We shall
do it in two steps. First, we shall prove a lower bound on the probability of the event that all the channels
chosen to hide bit ’b’ in Step 4 are good i.e., were not manipulated by the adversary. Then, we shall do
a standard probability amplification using Checkoff’s bound.
Define Xi to be the event that Channelidi was faulty and chosen. Correspondingly, defineXi for all
i ∈ [N]. Then, the probability of choosing at least one faulty channel is Pr[X =

S

i∈N Xi]. This is upper
bounded by the Union bound,Pr[X = ∪i∈NXi]≤ ∑i=N

i=1 Pr[Xi].
The probability that a faulty channelidi was chosen for transmission isPr[Xi]≤

1
k(N,s) . Thus, in the worst

case we havePr[X =
S

i∈N Xi] ≤
N

k(N,s) as the upper bound of choosing at least one faulty channel. The

probability that all the channels chosen are good isPr[
lineX] ,

Pr[
lineX]≥1− N

k(N,s)

In this case we are assured of a good transmission i.e., the minimum probability of a good transmission
is 1− N

k(N,s) . If k(N,s) is chosen to beN∗ f (s) for some functionf (.), then this expression evaluates to
Pr[

lineX]≥1− N
k(s)≥1− 1

f (s)

The probability thatpv receives incorrect bit in Step 5,Pr[X], is at most 1
f (s) . pu and pv repeat Step 1

through Step 5,l(s) times and take the majority value as the answer. By Checkoff’s bound, the proba-
bility that pu andpv agree on dissimilar bits is:Pr(b′ , b)≤ exp(−µ∗ δ2

2), whereδ = 1
2−

1
2∗(f (s)−1) and

µ= l(s)∗ (1− 1
f (s)).

The transmitted bit is correct with probability at least 1−exp
−(f (s)−2)2∗l (s)
8∗ f (s)∗(f (s)−1) . For f (s) = 3 andl(s) = s, the

probability of transmitting a bit correctly is at least 1−expO(s).

31

The analysis of Correctness condition is the same as that of the bit transmission protocol in, withN =
w,s= l channels and other suitable parameters for security.
The above analysis is to send a single bit message over the channel. To send messagem= (m0,m1, . . . ,mo, . . . ,m|m|)
(Wheremi represents theith bit of m) from nodepu to nodepv, execute Step 1 through Step 5,parallel
for each bit,l(s) times concurrently. Theoth bit computed in this manner is accepted as themγ

o bit of
messagem.
If the messagemu sent bypu and the messagemv received bypv are different with a non-negligible
probability, then by a straightforward hybrid argument at least one bit of the message must differ with a
non-negligible probability, contradicting the above analysis.

From the above we have that multiparty protocolγ(pu, pv,N,s,c) realizes aT -secure channel between
pu andpv.

E T -secure computation on complete networks

In this section we shall prove that if there exists an unconditionally secure multiparty protocol in the vanilla
model, which allows only for corruption of parties, according to Definition 12, then there exists an uncon-
ditionally secure multiparty computation protocol executed on a complete network in the model that allows
for corruption of parties as well as channels, actively as well as passively, according to Definition 14.

Let f be ann-variate function andΠ be an unconditionally secure multiparty protocol for evaluating
function f as long as at least⌊2∗n

3 ⌋+1 parties are honest. The following claim is well known:

Claim. There exist multiparty computation protocol that securelyevaluatesn-variate functionf according
to Definition 12.

The three distinguishing features of Definition 14 with respect to Definition 12 are that in Definition
14: (1) AdversaryA is allowed to corrupt parties as well as channels, passivelyas actively, so an adversary
structureT is introduced, Definition 4 (2) The multiparty computation protocol assumes only an incomplete
communication network that connects the parties. (3) Guarantees only statistical correctness and not perfect
correctness.

Let NC be a complete undirected network.

Theorem 8. There exists a multiparty computation protocolΠ′ that T -securely evaluates function f ac-
cording to Definition 14, on a complete network NC for all adversariesA restricted to a feasible adversary
structuresT .

Proof. Let Π be a multiparty protocol as per Claim E. We show that the protocol Π′ = Π, T -securely
evaluates functionf on complete networkNC, as according to Definition 14, for all feasible adversary
structuresT .

Let
−→
C ∈ T . Since

−→
C is a feasible quadruplet of corruptions, then there exists asubset of honest parties

H ⊂ P, |H| ≥ ⌊2∗n
3 ⌋+1, such that∀pu, pv ∈ H : (pu, pv) <

−→
C [2]

S−→
C [3].

We need to make sure that executing protocolΠ′ on NC, while the adversaryA ′ corrupts
−→
C , achieves

the correctness and privacy condition of Definition 14.
For Correctness: It is enough to show that for every strategyof A ′ that corrupts quadruplet

−→
C as above, on

execution of protocolΠ′ on NC, there exists a correspondingA that corrupts parties in subsetP−H while
parties executeΠ, such that the (distribution of the) view of the honest parties is indistinguishable for the
two cases. This strategy of adversaryA is as follows: The adversaryA internally simulatesA ′ for all the
maliciously corrupted parties (i.e., those belonging to the subset

−→
C [0]), simulatesA ′ for all the passively

corrupted parties (i.e., those belonging to the subset
−→
C [1]) and internally simulates the protocolΠ′ for

all the remaining sacrificed honest parties (i.e., parties belonging to the subsetP−H −
−→
C [0]−

−→
C [1]) and

32

appropriately simulatesA ′ for passively and actively corrupted channels interconnecting the parties from
subsetH to the parties in subsetP−H and transmits messages on other (uncorrupted) channels connecting
to H from P−H.

It is easy to verify that the distribution of the views of the (unsacrificed) honest partiesH are indistin-
guishable for the two cases and hence the distribution of transcripts of these parties at the end of the input
commitment phase are indistinguishable. Therefore, it maybe easily verified thatrevealΠ′ = revealΠ, will
achieve the characterization of the input commitment phaseof protocolΠ′. Now conditioned to the fact that
the input values actually committed to by the parties are thesame for the two cases, the output value is same
and the (unsacrificed) honest parties receive identical output values for the two cases. The correctness of
protocolΠ′ then follows from the correctness of protocolΠ, which satisfies the Definition 12 as according
to the Claim E.
For Privacy: For the privacy condition it is enough to demonstrate an appropriate simulatorS′. The simulator
is given the starting input values and the input values committed to by the parties in subsetP−H. By
Definition 12, there exists a simulatorSthat generates the distribution of views of the parties in subsetP−H
(which is of size at most⌊n

3⌋) indistinguishably. The same simulator, slightly modifiedas described next, is
invoked here as well. The view ofA ′ generated by the corrupted channels in the new case, ”looks”enhanced
but is just a trivial extension because the simulatorS′ is given the input and output values of all the parties
in subsetP−H and simulates the sacrificed honest parties by itself.

If the distributions of views ofA ′ generated by the above simulator, and the distribution of views ofA ′

generated during the real execution of protocolΠ′ have a non-negligible difference, then it translates to a
non-negligible difference in the corresponding distributions generated, forA , by simulatorSfor proving the
privacy property as according to Definition 12 - contradiction.

Finally, it is easy to verify the correctness of commitment phase for protocolΠ′ for the new set up, as
according to Definition 14, if original protocolΠ satisfies the correctness of commitment phase as according
to Definition 12 (Basically, the functionreveal() translates is same and the difference is only in weakening
the requirement from all honest parties being able to successfully commit to their initial input values, to at
least⌊2∗n

3 ⌋+ 1 of the honest parties being able to commit to their initial input values, except for negligible
probability).

Remark 6.We note again that the simulatorSand simulatorS′ is required to produce appropriate distribution
of the views only for the case when the input values, committed input values and the output values are the
same as for the real execution of the protocol. In particular, the (unsacrificed) honest parties are always
able to commit to their given input values, the sacrificed honest parties and the corrupted parties may not
necessarily commit to their original input values which they start with. However, we discard simulations
when the committed input values for corrupted and sacrificedparties are different then given to the simulator
(What values have been committed to by the corrupted and sacrificed parties in the commit phase is verified
at the end of the first phase of the protocol as the simulator can compute the committed input values for
these parties from its own view) and are only required to produce the simulation for the case when the input
values committed to by these (corrupted and sacrificed) parties is the one given as only that case is required
to correspond to the output values - given to the simulator. Therefore, we only consider the simulated output
distribution of the views of the adversaryA ′ conditioned to the above fact.

F Almost everywhere secure multiparty computation

In this section we present the full proof of the main Theorem 1. In general, a formal proof of a claim or
a lemma has been preceded by intuitive discussion. For the sake of completeness we shall state the main
theorem again. The theorem says that if networkN possesses,TβN,c-communicability property, then there
exists a secure multiparty computation protocolΠN thatT -securely evaluates functionf on networkN:

33

Theorem 9. If network N possessesTβN,c-Communicability Property, 10, then there exists a multiparty
computation protocolΠN, that T -securely evaluates function f , on network N, as according to Definition
14.

Proof. The proof of this theorem is delicate for the primary reason that we need a protocol to realize secure
channels between distant nodes of the networkN using the infrastructure of the network, to simulate any
traditional information theoretic multiparty protocol, e.g. BGW, but are not allowed to use any protocol
composition theorems.

At a very high level construction of the multiparty protocoland the proof of its security goes as follows:

1. LetCN = (V,E,ECN) be the network on set of verticesV constructed by connecting all the ordered pairs
of nodes not already connected in networkN, by virtual edges (Note, that since the virtual edges are
directed, so for each(u,v) ∈V ∗V−E two directed edges with opposite directions are added toECN).
Now fix an arbitrary order on all the (directed) virtual edges, in subsetECN , and proceed by induction as
follows:

(a) Base case: We start by describing an adversary structureTCN for a complete networkCN as a function
of adversary structureT , networkN, andTβN,c-communicability property, 10.
Then, we show that there exists a multiparty protocolΠCN , 13, to be executed on the complete
networkCN, thatTCN-securely evaluatesf , as according to Definition 14.

(b) By induction hypothesis, we are given an intermediate network Ni for which we are given a multi-
party protocolΠNi , such that protocolΠNi , TNi -securely evaluatesf , on networkNi, as according to
Definition 14.
We show construction of multiparty protocolΠNi+1, thatTNi+1 securely evaluates functionf on net-
work Ni+1 (where networkNi+1 is networkNi with the ith virtual edgeei removed from the network
Ni and adversary structureTNi+1 is the same as adversary structureTNi except that edgeei is not
present in adversary structureTNi+1. This is because there is no edgeei in networkNi+1), as accord-
ing to the Definition 14.

(c) Lastly, note that the inductive hypothesis is applied till there are no virtual edges in the network that
can be replaced by simulated channels, i.e., tillNj = N andTNj = T , whereT is the original adver-
sary structure which allows networkN to possess certain communicability property. The multiparty
protocolΠN = ΠNj will T -securely evaluate functionf on networkN, as according to Definition
14.

Basically, at each step we shall replace a virtual channel, by a simulated channel that does precisely the
same function7 using the infrastructure of networkN i.e., is authenticif the original corruption makes it
authentic, is secureif the original corruption issecureand istamperableif the original edge istamperable.
Loosely speaking, the I. H. says that if we can realizeTNi -secure computation on incomplete networkNi

with r real,v virtual andssimulated channel, then we can realizeTNi+1-secure computation on networkNi+1

with r real,v−1 virtual ands+1 simulated edges.
Following will be theoutline of the rest of the proof:

1. Ordering of the edges: We shall define an arbitrary ordering of the edges not present in the networkN.
2. Round structuring of the protocols
3. Construction of the sequence of networksNi

4. Construction of Adversary structuresTNi

7 Actually, this isalmost precisely, because with at most negligible probability theT ′-secure channel may fail to deliver the
message and the originally perfect edge is replaced by a statistically perfect edge.

34

5. Statement and Proof of the Base Case
6. Inductive hypothesis discussion and formalization
7. Proof of Inductive hypothesis

An ordering of virtual channels: Consider the subset of edges that are not present in the network N. These
edges will be referred to as virtual edges and this subset of edges is referred to asEv = {(pu, pv)|(pu, pv),(pv, pu) <
Eand(pu, pv) < Ed}. Now, consider an arbitrary ordering of these virtual edgesbelonging to subsetEv,
ev

0 = φ,ev
1 = (pu,1, pv,1),ev

2 = (pu2, pv2), . . . ,e
v
l = (pul , pvl), such thatl = |Ev|.

Construction of network Ni,∀i ∈ {0, . . . , l−1}: NetworkN0 =CN = (V,E,Ed
S

Ev). NetworkNi is defined
recursively in terms of networkNi−1 as follows:Ni = (V,E,Ei = Ei−1−ev

i).
Adversary structure TNi : The intuition behind the construction of adversary structures for eachi is as fol-
lows:

Let γ(pu, pv,N,s,c) be a multiparty protocol used to establish a channel frompu to pv for (pu, pv) < Ei

using the infrastructure of networkN. Depending on the choice of
−→
C corrupted by the adversary, the channel

established byγ(pu, pv,N,s,c) may be (almost) secure, (almost) authentic or tamperable.
Thus, the tuplet(γ(pu, pv,N,s,c),

−→
C) essentially determines the type of channel established betweenpu

andpv on networkN. An alternative way to look at this is to let edge(pu, pv) always exist in the network, but
let the adversary structure be enhanced depending on the type of channel realized byγ(pu, pv,N,s,c) from
pu to pv. So, if on corruption of quadruplet

−→
C , γ(pu, pv,N,s,c) realizes an (almost) secure channel, then

the new adversary structure contains the same
−→
C . However, if on corruption

−→
C , γ(pu, pv,N,s,c) realizes

an (almost) authentic channel frompu to pv, then this is equivalent to assuming a secure channel between
pu and pv, passively corrupted byA i.e., in the new adversary structure

−→
C is enhanced to include(pu, pv)

i.e., (pu, pv) ∈
−→
C′ [2] in the new adversary structure(pu, pv). If the channel realized byγ(pu, pv,N,s,c) is

tamperable, then(pu, pv) is added to
−→
C [3], for each

−→
C . This is how the adversary structure is constructed

for the base case networkN0 = CN, which has all the virtual edges of subsetEv.
To define the adversary structure for the rest of the networkswe work backwards fromTCN . But this is

straightforward as the networkNi does not possess the edgeev
i which is present in the networkNi−1 and

is identical otherwise. So the virtual channelev
i is not present in the corresponding adversary structure for

networkNi i.e.,TNi = {
−→
C |∃
−→
C
′
∈ TNi−1s.t.

−→
C [0] =

−→
C
′
[0],
−→
C [1] =

−→
C
′
[1],
−→
C [2] =

−→
C
′
[2]−ev

i ,
−→
C [3] =

−→
C
′
[3]−

ev
i }

Round structuring of multiparty protocols: Our goal is to adapt a multiparty computation protocol that
satisfies Definition 14, for a complete network to a multiparty computation protocol that is to be executed
on an incomplete network, that possess some special communicability properties, and satisfies definition 14.

Even if we assume that there exists a multiparty protocol that establishes (almost) secure channel be-
tween some ordered pair of nodes of the incomplete network there arises the followingsynchronizationissue
with respect to using it for realizing secure function evaluation: Suppose it takesα rounds to send a message
from party pu to party pv along a channel (realized via physical infrastructure) of the incomplete network.
To send messages between distant nodes of the network, multiparty protocolγ(pu, pv,N,s,c) is executed for
this purpose and may run infγ(α,N) rounds, for some functionfγ, to deliver a message from partypu to
party pv. So we need to synchronize message transmissions to executethe original protocol for this we need
to stretch an original round to several rounds.
Initial Tentative Blow up:
Consider the multiparty protocolΠec from Theorem 8, which is restructured to run on the complete net-
work,CN described above, as follows: Each Step of protocolΠec is now expanded tofγ(α,N) rounds. If in
protocolΠec the message was delivered between two parties in one round, now it is delivered inα rounds
or fγ(α,N) rounds depending on whether the message is sent along areal channelor avirtual channel. This
is explained below:

35

Definition 19. For a real channel, Fr(S,R,edge− id), r = α.
For a virtual channel, Fr(S,R,edge− id), r = fγ(α,N), for some function fγ (which is defined as the

maximum number of rounds taken by the multiparty protocolγ over all pairs of pu,pv for network N).

Double blow up:
We need another level of blow up in the total number of rounds.This blow up comes from needing to
allocate a separate ”slot” of ”rounds for transmission” to each ordered pair of nodes of the network. This
slotting is necessary as the view of the adversary generatedfrom sending messages on one virtual channel
influences the view of the adversary generated from sending messages on another virtual channel and these
views can affect each other in the way the adversary chooses to corrupt messages on the other channel. Thus,
slotting of a super-round for message transmission has beendone to keep a cleaner account of the view of
the adversary and for general tidiness of the proof.

More specifically, each round of the original multiparty protocol is now referred to as astepor asuper-
round and shall consists of twophases. Intuitively, the first phase of the super-round shall correspond to
transmissions by honest (or passively corrupted) parties and the second phase shall correspond to transmis-
sions by maliciously corrupted parties. This technicalityis required to enable ”rushing” adversary which is
given the flexibility to first see the message on other channels, before deciding what messages to send on
other channels.

Each phase will consist of(α + 1)+ n2 ∗ fγ(α,N) rounds. Now, each phase of the multiparty protocol
will be broken down into several slots ordered as follows: one slot of(α + 1) rounds, followed byn2 slots
of fγ(α,N) rounds each. The idea being that each real or virtual channelbetween any pair of nodes will
have two unique slots to which it will correspond to, on whicha message can be transmitted. Furthermore,
no ”real” activity as far as transmission of the original (like BGW, CCD) multiparty protocol messages is
concerned will correspond to other rounds/slots which are not allotted to a given edge/channel. The real
edge(i, j) will correspond to the first slot (of(α+1) rounds) and then2 +2th slot (of (α+1) rounds). The
virtual edge(i, j) will correspond to the 1+n∗ i + jth slot (of (fγ(α,N) rounds) and 2+n2 +n∗ i + jth slot
(of fγ(α,N) rounds).

Traditionally, the advantage provided to the adversary by letting it see the messages from other parties
before letting it decide what message to send is called ”rushing”. And, the need for division of each super-
round into two phases and allocation of two slots for each directed channel is to capture this advantage given
to the adversary in a clean and clear cut manner and is easily understood by the following easy to see claim:

Claim. Let T be a feasible adversary structure. Then, there exists a multiparty protocolΠ′ thatT -securely
evaluatesn-variate functionf , on networkN, with re real andn2−1− re virtual edges.

Furthermore, the message transmission on all the real and virtual edges is scheduled for(α + 1)+ n2 ∗
fγ(α,N)+ (α+1)+n2 ∗ fγ(α,N) slots, as discussed above. And, ifpu is an honest node then it transmits a
message during its allotted slot in the first phase of the super-round and ifpu is a corrupted node then it may
transmit its message during its slot in the second phase: of the super-round (The nodes do not distinguish
between honest and corrupted nodes based on which slots other nodes transmit).

It is easy to see that if the protocol is secure against an adversary whose corrupted parties transmit only
during their slots corresponding to the second phase of the super-round, then the protocol is secure against
an adversary whose corrupted nodes transmit during their slots corresponding to the first phase or the second
phase of the super-round. Thus it suffices to consider security against only the former types of adversaries
(As the other simpler to emulate cases follow from this case).

We begin with the main proof, considering the Base case first.
Base case for networkN0 = CN: For the base case we have the complete networkN0. As discussed above,
all the edges inN0 which are also present in the incomplete networkN are referred to asreal channels, while
the rest of the edges are referred to asvirtual channels.

The adversaryA is restricted to adversary structureTCN , as described above.

36

We are given that networkN possesses theTβN,c-Communicability Property, 10. Because of the Com-
municability Property 10 of networkN, the adversary structureTCN is feasible. By Theorem 8, there exists a
multiparty protocolΠec, thatTCN-securely evaluates functionf , on networkCN, as according to Definition
14, for every feasible adversary structureTCN .

We adapt the multiparty protocolΠec to the round structure F, as described above It is easy to see that the
new multiparty protocolΠN0, executed on networkN0 (where corrupted and honest parties send messages
as according to the round structure as described above 19),TN0-securely evaluates functionf , as according
to Definition 14 (whereTN0 = TCN).
Statement of Induction Hypothesis.Let Πi be a multiparty protocol, to be executed on networkNi, that
TNi -securely evaluates functionf , as according to Definition 14. Then, there exists a multiparty protocol
Πi+1, to be executed on networkNi+1, thatTNi+1-securely evaluates functionf , as according to Definition
14 (where the construction of networkNi+1 and the adversary structureTNi+1 has been discussed above).
Proof of the Inductive Hypothesis:First note that the only difference between networkNi andNi+1 is that
in networkNi there is a virtual channeleu,v

i = (pu, pv) betweenpu and pv, which is not present in network
Ni+1. Similarly, the only difference in adversary structureTNi andTNi+1 is that edgeev

i is not passivelyor
activelycorrupted in adversary structureTNi+1, as in fact it does not even exist in networkNi+1.

We shall show how to adapt protocolΠi to be executed on networkNi+1 to protocolΠi+1 to be executed
on Ni+1.

Description ofΠi+1: The multiparty protocolΠi+1 is exactly the same as protocolΠi except for the
following difference which corresponds to the difference in the underlying topology of the networkNi+1 on
which it is to be executed, with respect to networkNi: The virtual edgeev

i+1 in the networkNi does not be-
long to networkNi+1. This translates to the following difference in protocolΠi+1 with respect toΠi: When
messagem is to be sent on the virtual channeleu,v

i+1 = (pu, pv), the parties execute protocolγ(pu, pv,N,s,c)
instead of sending it on the virtual channeleu,v

i+1, which does not exist in the networkNi+1, in their appro-
priate slot of the appropriate phase, as according to the round structuring described in F. Now, we prove the
following claim about multiparty protocolΠi+1:

Claim. Multiparty protocol Πi+1, TNi+1-securely evaluates functionf on networkNi+1, as according to
Definition 14.

Proof. We shall prove that the multiparty protocolΠi+1, TNi+1-securely evaluates the functionf , as accord-
ing to Definition 14.

First, review the the difference in adversary structureTNi with respect to the adversary structureTNi+1,
as discussed above.

We shall demonstrate an adversaryAi that attacks multiparty protocolΠi ’s execution on networkNi,
such that protocolΠi+1 TNi+1-secure evaluates functionf on networkNi+1, as according to Definition 14, if
protocolΠi TNi -securely evaluates functionf on networkNi+1. For this we have to prove the following two
properties of protocolΠi+1:

1. Correctness: To prove the correctness condition of protocol Πi+1 = (Πi+1(1),Πi+1(2)) we need to prove
the correctness of the commitment phaseΠi+1(1) and the correctness of the computation phaseΠi+1(2)
of the protocol.
The correctness of the commitment phaseΠi+1(1) of protocolΠi+1 is straightforward, and follows from
observing that same function reveal() associated with the commitment phase of protocolΠi has the
requisite properties for protocolΠi+1(1) also.
For the correctness for the computation phase, we need to prove that for the vector of input values−→x
committed to by the parties, the output of the honest partiesis f (−→x), except for negligible probability.8

8 Note, that only statistical correctness is required for this phase because the channel simulated by protocolγ are (almost) secure
and not perfectly secure. Hence, replacing one perfectly secure channel by an (almost) secure channel would allow negligible

37

We prove the correctness condition by a reduction argument.In particular, we prove that protocolΠi+1 is
correct if protocolΠi is correct. For this we describe an adversaryAi that attacks (execution of) protocol
Πi as follows:

AdversaryAi internally simulatesAi+1 by providing it with all the messages that corrupted parties
receive from the honest parties during the execution of protocol Πi. Furthermore,Ai sends the messages
generated by these corrupted parties to be sent to the respective honest parties. Corruption of channels
is handled in a similar manner, whereAi just hands the respective messages toAi for handling. It can
be seen that this simulation can be carried out since the topology of the networksNi is identical to the
topology of networkNi+1, except that we have to take care of one important difference: In network
Ni there is a virtual channel corresponding to edgeeu,v

i+1 = (pu, pv) between nodespu and pv (which
may be secure, authentic or tamperable depending on the adversary structure), while there is no such
corresponding channel in networkNi+1. However, in protocolΠi+1 when a message is to be sent on
the channeleu,v

i+1 the parties execute protocolγ for message transmission, chosen from the family of of
message transmission protocolsγ, for transmitting message from nodepu to nodepv using only the
infrastructure of incomplete networkN.
We shall prove thatAi can carry out an (almost) perfect internal simulation of adversary programAi+1

taking into account this subtle but not negligible difference. The proof is by induction on the number of
steps or super-rounds of execution of the protocol. We shallshow that the following two conditions are
simultaneously true by induction on the number of Steps of MPC protocolΠi ,Πi+1:9

(a) The distribution of views ofAi+1, internally simulated byAi attacking protocolΠi ’s execution on
network Ni is indistinguishable from the distribution of views of adversary Ai+1 attacking protocol
Πi+1’s execution on network Ni+1, after every step.

(b) The distribution of the views of the honest parties Hi, generated from execution of protocolΠi is in-
distinguishable from the distribution of the views of the honest parties Hi+1 generated from execution
of protocolΠi+1, after every step.

First, fix a vector of corruptions
−→
C by the adversaryAi+1 for either execution. Now we shall proceed by

induction on the number of stepsj. We note here that the base casej = 0 has the same argument, albeit
simplified, so we directly proceed with the induction hypothesis.
By induction hypothesis, assumeViewHi ,Πi , j ≈ ViewHi+1,Πi+1, j and ViewAi ,Πi , j ≈ ViewAi+1,Πi+1, j after
Step j. Then, after Stepj +1,ViewHi ,Πi , j+1≈ViewHi+1,Πi+1, j+1 andViewA ,Πi , j+1≈ViewA ,Πi+1, j+1.
Internal simulation of adversary Ai+1 by Ai for step j +1: For this we have the following four cases:
(1) Honest parties sending messages to other honest parties(2) Honest parties sending messages to cor-
rupted parties (3) Corrupted parties sending messages to honest parties (4) Corrupted parties sending
messages to other corrupted parties (As stated in claim F we can assume that for adversaryAi+1 attack-
ing protocolΠi+1, the corrupted parties scheduled to initiate the process ofsending their messages for
this step first wait to receive all the messages sent by the honest parties in the first half of the Step/super-
round and then send their messages during their slots in the latter part of the Step/super-round). We
discuss each case separately:

(a) Honest partypu sending messages to another partypv: We have four cases (a) Messages sent over
the real channel in a single hop: In this case the view of the adversary is simply not affected (b)
Message sent over virtual channels other then channeleu,v

i+1: In this case the virtual channel could
be uncorrupted, then the view of the adversary is unaffected. Else, the virtual channel could be
(passively or actively) corrupted. In either case the adversary Ai simply forwards the message to
Ai+1. In the latter case,Ai+1 responds back with the message to be forwarded to the other honest

probability of error in the transmission translating to an overall at most negligible probability of error for the correctness of
computation.

9 The reader may recall the distinction on Step/super-round,phase, slots and rounds previously made, 19.

38

party in roundr−210 which is then forwarded byAi to the virtual channel which in turn forwards
it to party pv. (c) Message sent bypu to pv by the execution of protocolγ(pu, pv,N,s,c). Again this
could be done (almost) securely or the execution results in passive corruption of the message by the
adversary or active corruption. For the first case intermediate messages are received by the corrupted
parties and these are forwarded byAi as it is toAi+1, which subsequently forwards it back toAi so
the message can be forwarded to the next honest party along whatever relevant path of nodes on
the underlying networkN. This results in neitherAi nor Ai+1 learning anything intelligible from the
execution ofγ. In the second caseAi and henceAi+1 shall learn the message value at an appropriate
round. In the third case,Ai+1 is in fact able to corrupt the message being sent from nodepu to pv

by the execution of protocolΠi. Now, the way the internal simulation ofAi+1 by Ai has been set
up,Ai+1 has whatever maximum amount of knowledge it needs for further forwarding the corrupted
message along the path at this round as it has during the execution of protocolΠi+1.

Finally, we have case (d) When the message is sent frompu to pv over the virtual channeleu,v
i+1 which

is in networkNi+1 but not in networkNi. We note that this is the first case in which the protocolΠi+1

differs from protocolΠi and for which simulation ofAi+1 may be non-trivial. For this case, recall
that in protocolΠi+1 message transmission protocolγ(pu, pv,N,s,c) is executed betweenpu andpv

utilizing the underlying infrastructure of the networkN to send the message. Note that for protocol
Πi this transmission is taking place over the virtual channeleu,v

i+1. We have the following three cases:
eu,v

i+1 is secure,eu,v
i+1 is passively corrupted, oreu,v

i+1 is actively corrupted. (1) Wheneu,v
i+1 corresponds

to a secure channel, thenAi simply runs the simulator for protocolγ(pu, pv,N,s,c) and since the
transmitted message is hidden from the adversary in this case so the adversaryAi also does not need
any message to carry out a perfect simulation of adversaryAi+1’s view. (2) Wheneu,v

i+1 is passively
corrupted, then the adversaryAi starts the simulation ofAi+1’s view by invoking the simulator for
γ(pu, pv,N,s,c) for this case, without possessing the message. Meanwhile,Ai+1 gets the message
sent over the channel in the second round byeu,v

i+1. It uses this message in appropriate round to
complete the simulation ofAi+1’s view for the execution ofγ(pu, pv,N,s,c). (3) Finally, for the last
caseeu,v

i+1 is actively corrupted by the adversaryAi+1. In this case,Ai starts the simulation of the view
of Ai+1 for the execution of protocolγ(pu, pv,N,s,c). Meanwhile,Ai receives the signal from the
virtual channel that it has received some message sent by thehonest partypu, while it continues to
simulateAi+1 for the first few steps of protocolγ(pu, pv,N,s,c), till Ai+1 clears the intent whether it
is going to corrupt the ”plain” message or the message hiddenby the one time pad.Ai then specifies
this intent to the virtual channel, which returns it with (1)message in clear which is then used to
simulate the rest of the execution of protocolγ(pu, pv,N,s,c) (2) message hidden under one time pad
which is used to simulate the rest of the execution of protocol γ(pu, pv,N,s,c). Whatever message
(after corruption) is forwarded byAi+1 in the simulation ofγ is then forwarded to the virtual channel
in roundr−2 when then forwards it to the appropriate sender in the next round (after XORRing the
received message with the one time pad with which it initially hid the message if the case was of
corruption with eavesdropping). We argue that the view of the adversaryAi+1, during the execution
of protocolΠi is as enhanced and indistinguishable from the view that would have been constituted
during the execution ofΠi+1 as necessary and sufficient to corrupt the message appropriately.

(b) Corrupted partypu sending a message to another nodepv: Note, that wlog we have assumed that cor-
rupted parties send their messages during the second half ofthe phase after they have received/overheard
whatever messages they could have, and which were sent by thehonest parties i.e., by roundr all the
messages sent by the honest parties have been received by theother relevant parties and the views
of the adversaryAi, Ai+1 has been as updated as it could have been in this respect. The second lag of
this step starts in roundr +1 and terminates in final round 2∗ r +1 of this step.

10 We note here that because of the choice of our parameters by round r−3 of a step all the messages sent by the honest parties
are received by the adversary much before this round. The adversary is then in a position to compute appropriate messagesto be
sent to other corrupted parties or honest parties based on this data.

39

The internal simulation ofAi+1 by Ai is rather straightforward for this case asAi and henceAi+1’s
has already received all the requisite messages sent by the honest parties in the first half of this step
and hence it has the appropriate view, that it would have while executing protocolΠi+1, for Ai+1

to compute the messages that need to be forwarded over the individual channels/to the appropriate
parties.Ai extracts all the different messages that would be sent byAi+1 by forward simulation (in
just one computational phase of a single roundAi can do this as it has the control over the clock of
Ai+1. And, since the corrupted parties are the only parties that are scheduled to send messages in this
part of the step, so the entire simulation ofAi+1 can be carried out without any participation by the
honest parties) of a copy ofAi+1. Ai then carries out the requisite simulation of adversaryAi+1 for
this step, while sending all the extracted messages to appropriate destinations like virtual channels
or real channels or through executions of protocolγ(pu, pv,N,s,c).

Let us verify that the distribution of the views of the honestpartiesHi+1 = Hi and the adversaryAi+1

after execution of Stepj +1 of protocolΠi on networkNi andΠi+1 on networkNi+1 are statistically in-
distinguishable11, after the clean up at the end of Stepj +1 follows from the correctness of construction
of the simulations described above. In particular, by inductive hypothesis the messages chosen to be sent
by the honest parties at the beginning of the first phase of theStep j +1 have identical (with negligible
difference) distribution for the two cases of protocolΠi ’s execution onNi andΠi+1’s execution on net-
work Ni+1. Now by simulatability ofγ the view ofAi+1 are updated indistinguishably for this phase (for
all the three types of channelseu,v

i+1) for the two cases.
For the second phase of Stepj +1 the participation of the honest parties is only passive i.e., the honest
parties are not involved in sending any non-trivial messages i.e., the role of the honest parties is of
dummies and in fact can be simulated trivially. Since only corrupted parties send messages during the
second phase of the protocolΠi+1, the messages to be sent by the corrupted parties are not influenced by
any other external factors except the corrupted parties themselves. Since the views ofAi+1 are identically
distributed at the end of the first phase of the Stepj + 1, and all participation by honest parties may as
well be seen as participation by dummies, it is easily seen from the above description of protocolΠi+1

that the messages chosen to be sent by the corrupted parties controlled byAi+1 are identically distributed
and identically influenced for the two cases: When protocolΠi is executed on networkNi and when
protocolΠi+1’s executed on networkNi+1, after transmission on each of the channels the views ofAi+1

are identically distributed for the two cases.
Finally, after the cleaning up phase of the Stepj + 1, which involves deleting all intermediate garbage
messages etc., it follows from the above argument that the views of the honest parties are also identically
distributed for the two cases, when protocolΠi is executed on networkNi or when protocolΠi+1 is
executed on networkNi+1. This implies that the distribution of the views of the unsacrificed honest
parties at the termination of the input commitment phase formed for the two cases are indistinguishable.
Furthermore, if honest parties start with the same initial inputs then they commit to the same input
values for both the cases. In particular,revealΠi+1 = revealΠi (Given these facts, it is easy to verify the
correctness of the input commitment phase ofΠi+1). The correctness of the computation phase follows
from the same reasoning that the distribution of the views ofthe unsacrificed honest parties are same for
the two cases. In particular, conditioned on the fact that the parties commit to the same input values the
output value for the two cases is same, which completes the proof of correctness ofΠi+1.
This completes the inductive hypothesis for the correctness.

2. Privacy: For this we demonstrate a simulator that simulates the views ofAi+1, attackingΠi+1’s execution
on networkNi+1, such that the distribution of views ofAi+1 generated by the simulator is indistinguish-
able from the distribution of the views ofAi+1 generated from real execution of protocolΠi+1.

11 Note that the last step of the protocolγ is aclean upphase in which all honest parties delete all intermediate messages exchanged,
transmitted, forwarded etc. during the execution of protocol γ. Now semi-honest parties may not necessarily delete such values
but they are not supposed to consider these values as part of their views on the basis of which do further computations - which is
a requisite for their ”honest” looking behavior. Thus, for all the purpose of discussing distribution of views of the honest parties,
we may just consider that after the execution ofγ phase - the clean up phase deletes all the intermediate messages

40

We shall employ induction hypothesis for the following adversaryAi , as described in the Correctness
condition proved above, that attacksΠi, while internally simulatingAi+1. By induction hypothesis, there
exists a simulatorSimi that takes as input the identities, input and output values of the parties in subset
P−Hi, adversary programAi , networkNi,

−→
C i and generates a view (or more specifically distribution of

views) ofAi that is indistinguishable from the view (or specifically distribution of views) ofAi generated
from real execution ofΠi on networkNi with same parameters. LetSimi be such a simulator.
SimulatorSimi+1 for Ni+1,Πi+1,Ai+1 simulates adversaryAi+1 as follows: First note that the simulator
Simi+1 is given the same set of input and output values of party setP−Hi+1 = P−Hi asSimi (except
that
−→
C i may contain the virtual channel(pu, pv) unlike

−→
C i+1).

In general at the end of an execution, adversaryAi outputs its input tape and read tapes as the output
and this is considered as the output of the adversary. In the adversary programAi described above,Ai

(indistinguishably) internally simulatesAi+1 for generating the messages to be sent to the honest parties
etc.. We make another enhancement to this adversary program: On terminationAi outputs, whatever
is outputted byAi+1 (instead of its own read tapes, input tapes). Since, we have shown that in the
proof of the correctness condition above,Ai perfectly simulates the view ofAi+1 and, hence simulator
Simi is going to output the view ofAi+1, generated in the process, whose distribution will be perfectly
indistinguishable from the distribution of views ofA i+1 generated from real execution ofΠi+1. (The
picture looks like this: EarlierSimi ↔ Ai(Ai+1) and nowSimi+1 = Simi(Ai)↔ Ai+1.)
The proof of correctness of simulatorSimi+1 follows from the proof of correctness of simulatorSimi,
and the proof of correctness of internal simulation of adversary Ai+1 by Ai given above, otherwise it
would contradict the correctness of either of them.

This proves the induction hypothesis.

The I. H. can be invoked till there exists a virtual channel inthe network that can be replaced by a
simulated channel. So, successive applications of I. H. results in networkNl = N which is the original
incomplete networkN under consideration.

Putting together with the base case, we have that ifN is a network, that possessesTβN,c-Communicability
Property, 10, then there exists a multiparty computation protocolΠN, to be executed onN, thatT -securely
evaluates functionf , as according to Definition 14.

Remark 7.Probabilistic functions can be handled in similar manner asdeterministic functions with minor
enhancements/considerations. For the case of probabilistic functions, the simulator keeps with it the set of
output values that belong to the equivalence class corresponding to the output value of the function. Based
on the random choices made by it during the simulation while simulating the honest and sacrificed parties
or by the messages received by it from the parties corrupted by the adversary this subset of possible output
values may get reduced. The simulator takes this into account and works with the reduced sized equivalence
class. The rest of the simulation proceeds as it is.

G Construction of networks when even the honest parties are also honest-but-curious

In [Vay06], I showed construction of networks that provide security against hones-but-curious parties given
that the original network may not. This is not required for any of the networks for we achieve almost
everywhere secure multiparty computation but may be usefulfor other networks. [Note that in [Vay06] this
construction was used for networks considered by Upfal, [Upf92], however I observed that even for LPS
expanders considered by Upfal the construction is not necessary as [BBC+06] observed a general result
from Upfal’s theorem: For any expander if a small linear fraction of nodes is deleted, then the resulting
network is still has a (smaller sized) subnetwork which has good enough expansion properties. For LPS
expanders, the subsets of nodes for which Upfal, [Upf92], guarantees pairwise authentic channels (just like
[DPPU88]) is exactly this subnetwork. Thus, several node disjoint paths of lengthc∗ lg2n are guaranteed
between every pair of nodes of this subnetwork, all of which are also non-faulty and so this construction

41

is not needed. Nevertheless, we present here a way of constructing networks which for which just a single
path of non-faulty nodes is guaranteed to construct networks for which at leat two node disjoint paths of
non-faulty nodes will be ensured, at the cost of tolerating slightly lesser (a constant fraction) number of
corruptions.

The following lemma is taken verbatim from [Vay06] but can beadjusted to our setting ofT adversaries.

Lemma 1. Let N= (V,E) be a network with n nodes. LetΠ be a protocol such that for t-restricted adver-
saries there exists a subset S∈V, |S| ≥ n− f (t) such that,∀u,v∈ S:

1. Π simulates a public reliable channel between nodes u and v;
2. there exists a secure path of non-faulty nodes of length O(lg2 n) between nodes u and v.

Then there exists a network N′ = (V ′,E′), |V ′| = 2∗n, and a protocolΠ′ such that for t-restricted ad-
versaries there exists a subset S∈V, |S| ≥ n− f (t) such that,∀u,v∈ S:

1. Π′ simulates a public reliable channel between nodes u and v;
2. there exists at least two node-disjoint paths of non-faulty nodes of length O(lg2 n) between u and v;
3. |S′| ≥ 2∗n−O(f (t)).

Proof. NetworkN′ with 2∗n is constructed as follows: Take two copies of networkN of sizen each. Call
themN1 andN2. DefineV ′ = V1

S

V2 and add edges between the isomorphic nodes of networkN1 andN2.
The resulting network is calledN′.

Both sub-networks,N1 andN2, satisfy the premises of the theorem.
Let T1 be the set of malicious nodes inN1 and letIso(T1) be the set of nodes inN2 that is isomorphic to

setT1. Correspondingly, define setsT2, Iso(T2) for subnetworkN2. Let T ′ = T1
S

T2.
LetS1 be the subset of nodes inN1 such that,∀ : u,v∈S1, protocolΠ simulates a reliable channel between

u andv and there exists a path of lengthO(lg2 n) betweenu andv. Let subsetS2 be defined analogously for
networkN2.

Now, ∀u,v ∈ S1− Iso(T2)
S

S2− Iso(T1), u , v, we show that a public reliable channel and two node-
disjoint paths of non-faulty nodes of lengthO(lg2 n) exists between nodesu, v. We have the following cases:

1. u,v ∈ S1− Iso(T2) : A public reliable channel and a path of non-faulty nodes of lengthO(lg2n) nodes
between nodesu andv is given to us by the premises of the theorem.
The second path is as follows: 1)u→ u′, whereu′ is the node inN2 isomorphic to nodeu in N1, connected
by an edge inE′. 2) u′→ v′ :, wherev′ is the node inN2 isomorphic to nodev, connected by a path of
non-faulty nodes of lengthO(lg2n), and 3)v′→ v, the edge inE′.

2. u,v∈ S2− Iso(T1) : Similar to case 1.
3. u∈ S1− Iso(T2), v∈ S2− Iso(T1) : Let v′ be the node inN1 that is isomorphic to nodev. Using protocol

Π we can simulate a reliable channel between nodesu andv′. Next, the message received byv′ through
this channel is forwarded to nodev. The two paths of non-faulty nodes of lengthO(lg2n) are as follows.
(a) u→ u′, whereu′ in N2 is isomorphic tou, followed byu′ v: a path of non-faulty nodes of length

O(lg2n).
(b) u v′, wherev′ is the node isomorphic tov in N1, followed byv′→ v.

4. u∈ S2− Iso(T1), v∈ S1− Iso(T2) : Similar to case 3.

Let us estimate the size of the subsetS′ = S1− Iso(T2)
S

S2− Iso(T1):
|S′| ≥ n− f (t1)− f (t2)+n− f (t2)− f (t1) = 2∗n−O(f (t)), ast1, t2≤ t and f is a monotonically increasing
function.

42

