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Abstract. We introduce the notion of quasi-Feistel network, which is generalization of the
Feistel network, and contains the Lai-Massey scheme as an instance. We show that some of the
works on the Feistel network, including the works of Luby-Rackoff, Patarin, Naor-Reingold and
Piret, can be naturally extended to our setting. This gives a new proof for theorems of Vaudenay
on the security of the Lai-Massey scheme, and also introduces for Lai-Massey a new construction
of pseudorandom permutation, analoguous to the construction of Naor-Reingold using pairwise
independent permutations.
Also, we prove the birthday security of (2b − 1)- and (3b − 2)-round unbalanced quasi-Feistel
networks with b branches against CPA and CPCA attacks, respectively. This answers an unsolved
problem pointed out by Patarin et al.
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1 Introduction

1.1 Feistel and Lai-Massey

Block cipher is one of the most important primitives of the symmetric-key cryptography. There
are many proposed designs, and many important cryptanalytic results, including differential
cryptanalysis and linear cryptanalysis. Also some heuristic, but powerful methodologies for
giving strength against these attacks are proposed and studied.

Practically, DES, which was a United States federal standard block cipher, was widely used
for a long time, until Rijndael replaced it as the new standard block cipher AES. Despite the
wide usage, and some heuristic arguments of security against a few concrete attacks, still
there was no rigorous proof of security for these practical and popular block ciphers.

The pioneering work of Luby and Rackoff [4] can be considered as a partial remedy for
such a situation. They studied the security of Feistel cipher, when the round functions are
independent random functions. When the size of the block is n, and when the adversary
is restricted to ask q queries, they showed that, when q � 2n/2, 3-round Feistel cipher is
secure against adaptive chosen plaintext attacks (CPA), and 4-round Feistel cipher is secure
against adaptive chosen plaintext and ciphertext attacks (CPCA), even if the adversary is
unconditionally powerful in its computational power.

In theoretical cryptography, the result of Luby and Rackoff implies that pseudorandom
permutations exist, if one-way functions exist. In more practical vein, it gives a partial vali-
dation for the design of Feistel ciphers, for example, DES. Of course, the security of Feistel



cipher in Luby-Rackoff model does not imply the security for any specific, concrete Feistel
ciphers. But the work of Luby and Rackoff shows at least the generic, structural strength of
the basic Feistel design.

The seminal work of Luby and Rackoff was extended in many ways by various cryptogra-
phers. Roughly, these could be classified into the following three categories:

1. Improving the bound: most results on the Luby-Rackoff model considers adversaries within
the birthday bound. However, in a series of papers [6–8, 10, 12–14], Patarin extended the
work of Luby and Rackoff beyond the birthday bound.

2. Simplifying the construction: instead of r independent random functions for r-round Feistel
cipher, some authors studied constructions where only one or two random functions are
used, for example in [9]. Also, Naor and Reingold showed how to simplify the construction
by using pairwise-independent permutations [5].

3. Exploring other structures: instead of the Feistel network, other structures like MISTY
and Lai-Massey were also studied in the Luby-Rackoff model.

Our goal in this paper is to revisit works belonging to the second and the third of the
above categories.

Our starting point is the Lai-Massey scheme. The design of the Lai-Massey scheme has
two interesting aspects.

– Not so much group theoretic: while the Feistel network, or the MISTY structure is based
on a finite abelian group, the Lai-Massey scheme is different. Of course, the structure is
defined in terms of a finite abelian group. But in order to obtain security in the Luby-
Rackoff model, a mapping called orthomorphism is needed. An orthomorphism is defined
for a finite abelian group, but the dependence is only very loose. For example, one may
say that a homomorphism is strongly tied to the underlying group, but an orthomorphism
is not.
Hence, we have at least one structure which is not group-based, but where a security proof
in the Luby-Rackoff model is possible.

– As secure as Feistel: it looks like a coincidence, but the known security of the Lai-Massey
scheme is exactly the same as that of the Feistel network, despite the difference in the
structure. Vaudenay proved that, within the birthday bound, 3-round Lai-Massey scheme
is CPA-secure, and 4-round Lai-Massey scheme is CPCA-secure [20]. This security level
is precisely that of the Feistel network studied by Luby and Rackoff.
This is in contrast to the MISTY structure, where 3-round MISTY structure is not CPA-
secure, and 4-round MISTY structure is not CPCA-secure. In case of MISTY, 4-round
structure is CPA-secure, and 5-round is CPCA-secure.

1.2 Our contribution

In this paper, we show that the above two aspects of the Lai-Massey scheme are not coincident.
We introduce the notion of quasi-Feistel network, which is a natural generalization of the
Feistel network, based on finite quasigroups. We show that this notion contains the original
Feistel network and also the Lai-Massey scheme, and we show that many of the works done
on the Feistel network can be extended naturally to the quasi-Feistel network. Specifically,



1. We show that the original work of Luby and Rackoff [4] can be extended to quasi-Feistel
network; in fact, we generalize this result further to unbalanced cases, and we prove that
(2b − 1)-round b-branched unbalanced (contracting) quasi-Feistel network is CPA-secure
within the birthday bound, and (3b−2)-round is CPCA-secure within the birthday bound.

2. We show that various results on the 3- or 4-round Feistel network using two independent
random functions, stated in Patarin’s Eurocrypt ’92 paper [9], can in fact be lifted to
quasi-Feistel network.

3. We generalize Piret’s results [17], where random permutations, instead of random functions
are used as round functions, to quasi-Feistel network.

4. We also show that the Naor-Reingold construction [5] using pairwise independent permu-
tations can be lifted to our quasi-Feistel setting.

Our first result implies the security of unbalanced Feistel network within the birthday
bound. This was an unsolved problem, which was pointed out by Patarin et al. [15]. Also,
when restricted to the Lai-Massey scheme, this gives an alternative proof of the Vaudenay’s
result in [20].

Together, our results show that most of the works on the security of Feistel cipher in the
Luby-Rackoff model can in fact be lifted to the quasi-Feistel setting. Hence, in the Luby-
Rackoff model, we claim that it is very natural to regard the Lai-Massey scheme and the
Feistel network as belonging to the same family.

Despite Vaudenay’s work and some others, Lai-Massey scheme seems to be less studied,
especially compared with the works on Feistel network in the Luby-Rackoff model. Our results,
especially 2–4 above, show that most of such works on Feistel network in fact can be applied
to the Lai-Massey scheme as well, and quite increase the number of known results on the
Luby-Rackoff security of the Lai-Massey scheme. We believe that the notion of quasi-Feistel
network provides a unifying framework by which to study Lai-Massey scheme, and even the
Feistel network.

It is also our belief that other results on the Feistel network can also be generalized to the
quasi-Feistel setting. For example, it is an interesting open question whether Patarin’s work
on the Feistel network when q � 2n can be extended to the quasi-Feistel network, therefore
also to the Lai-Massey scheme.

1.3 Related work

In our work, we generalize results of Luby-Rackoff [4], Patarin [9], Piret [17], and Naor-
Reingold [5] to quasi-Feistel network. Also, for proof technique, we rely on the ‘Coefficient H
Technique’ of Patarin, among others.

Early on, Schneier and Kelsey noted that the notion of Feistel network can be generalized
by requiring only that ‘one part of the block being encrypted controls the encryption of another
part of the block’ [18]. Thus they introduced the notion of generalized Feistel network, which
does not rely on any group structure. Their notion is very similar to the quasi-Feistel network
in spirit, but their goal was not to prove the security of the generalized construction, and
instead of the round functions fi, the round keys ki are given as input. Our formulation is
crucial for building Luby-Rackoff-like theory. One may see our work as a rigorous treatment
of their ‘generalized Feistel network’.

Vaudenay proved in [20] that 3 and 4-round Lai-Massey scheme is secure against CPA
and CPCA attacks, respectively. Our results on the security of 3 and 4-round quasi-Feistel



network can be directly applied to the Lai-Massey scheme, and in this sense we give a new
proof of Vaudenay’s theorems using different technique. But his work is formulated in terms of
Decorrelation theory [19], and for Lai-Massey scheme, our result is weaker than Vaudenay’s.
For example, the result of Vaudenay allows ‘almost orthomorphisms’.

2 Quasi-Feistel network

Let X be a finite set. Then X k denotes the set of all k-tuples of elements of X , for any k.
We denote by Func(X ,Y) the set of all functions f : X → Y, and by Perm(X ) the set of all
permutations f : X → X . We also define Func(X ) def= Func(X ,X ).

Definition 1. We call a function Γ : X × X × Y → X a combiner over (X ,Y), if

– The mapping x 7→ Γ (x, y, z) is a permutation for any y ∈ X , z ∈ Y, and
– The mapping y 7→ Γ (x, y, z) is a permutation for any x ∈ X , z ∈ Y.

Let Γ be a combiner over (X ,Y). If we define, for any z ∈ Y, Γz : X 2 → X by Γz(x, y) def=
Γ (x, y, z), then Γz is a quasigroup for any z ∈ X . This structure is also known as a Latin
square. Therefore, a combiner Γ can be considered as a parametrized family {Γz}z∈Y of
quasigroups.

We’ll use the following notation to denote a combiner Γ :

Γ [[x ? y | z]] def= Γ (x, y, z)

From the properties of the combiner Γ , for any x, y ∈ X , and z ∈ Y, there exists a unique
element a ∈ X satisfying Γ [[a ? y | z]] = x. We’ll denote this a by Γ [[x/y | z]]. Also, we’ll denote
the unique element b ∈ X satisfying Γ [[x ? b | z]] = y as Γ [[x\y | z]]. Then it is clear that the
following lemma holds:

Lemma 1. For any x, y ∈ X , and z ∈ Y, the following equations are satisfied:

x = Γ [[Γ [[x/y | z]] ? y | z]]
x = Γ [[Γ [[x ? y | z]] /y | z]]
y = Γ [[x ? Γ [[x\y | z]] | z]]
y = Γ [[x\Γ [[x ? y | z]] | z]]

Remark 1. In this paper, we’ll only use combiners over (X ,X b−1), for some fixed integer b > 1.
We call them b-combiners over X .

Definition 2. Let b > 1 and r ≥ 1 be fixed integers, and fix a b-combiner Γ over X . Suppose
that P , Q : X b → X b are permutations. Given r functions f1, . . . , fr : X b−1 → X , we define
a function Ψ = Ψ b,rP,Q(f1, . . . , fr) : X b → X b as follows; for x = (x1, x2, . . . , xb) ∈ X b, we
compute y = Ψ(x) by

1. (z0, z1, . . . , zb−1)← P (x).
2. zi+b−1 ← Γ [[zi−1 ? fi(zi · · · zi+b−2) | zi · · · zi+b−2]] for i = 1, . . . , r.
3. y ← Q−1(zr, zr+1, . . . , zr+b−1).

Clearly, Ψ is a permutation, and its inverse is given by



1. (zr, zr+1, . . . , zr+b−1)← Q(y).
2. zi−1 ← Γ [[zi+b−1/fi(zi · · · zi+b−2) | zi · · · zi+b−2]] for i = r, . . . , 1.
3. x← P−1(z0, z1, . . . , zb−1).

We call Ψ a b-branched, r-round quasi-Feistel permutation for f1, . . . , fr with respect to
(P,Q, Γ )

We use the notation Ψ b,rP,Q(f1, . . . , fr) for Ψ , but when P and Q are unimportant, or clear
from the context, then we may simply write Ψ b,r(f1, . . . , fr). Also, Ψ b,r(f1, . . . , fr) can be
considered as a mapping

Ψ b,r : Func(X b−1,X )r → Perm(X b).

We call this mapping a b-branched, r-round quasi-Feistel network with respect to (P,Q, Γ ).
We call X the underlying set, P the pre-processing permutation, and Q the post-processing

permutation.

Remark 2. We call the quasi-Feistel network balanced when b = 2, and unbalanced when
b > 2. Also, often by unquantified ‘quasi-Feistel network’ we refer to the balanced case. When
b = 2, we omit b in the notation Ψ b,r and simply write this as Ψ r.

The above notion of quasi-Feistel network seems to be very natural extension of the
Feistel network. In fact, we feel that, once the general structure is defined by the equation
zi+b−1 ← Γ [[zi−1 ? fi(zi · · · zi+b−2) | zi · · · zi+b−2]], the requirements for the combiner Γ is al-
most forced upon us, in order to obtain a method for constructing secure cryptographic
permutations; if we would like to make the whole construction invertible, then the best way is
to make sure that x 7→ Γ [[x ? y | z]] is invertible. Also, in order to make the whole construction
cryptographically secure, we would like that, once zi−1 and zi · · · zi+b−2 are fixed, the distri-
bution of fi(zi · · · zi+b−2) should have as much influence in determining the value of zi+b−1 as
possible, and the best way to achieve this would be to make y 7→ Γ [[x ? y | z]] invertible. For
example, at the other extreme, if y 7→ Γ [[x ? y | z]] is constant, then the round functions fi
don’t have any influence to the output values, and the resulting permutation is not random
at all.

In the next section, we show that the above construction is a generalization which contains
both Feistel and Lai-Massey constructions as special cases.

3 Examples of quasi-Feistel networks

3.1 Feistel

The r-round Feistel permutation F(x) = F(xL, xR) from round functions f1, . . . , fr :
{0, 1}n → {0, 1}n is defined as follows:

1. L1 ← xL, R1 ← xR.
2. Li+1 ← Ri, Ri+1 ← Li ⊕ fi(Ri), for i = 1, . . . , r.
3. yL ← Lr+1, yR ← Rr+1.
4. Return y = (yL, yR).

Since Li+1 = Ri for i = 1, . . . , r, we may define R0
def= L1 for consistency. Then we can

eliminate Li completely from the above and it becomes



1. R0 ← xL, R1 ← xR.
2. Ri+1 ← Ri−1 ⊕ fi(Ri), for i = 1, . . . , r.
3. yL ← Rr, yR ← Rr+1.
4. Return y = (yL, yR).

So, in this case, the underlying set X is simply {0, 1}n, and the permutations P and Q
are the identity permutation, and the combiner Γ is given by

Γ [[x ? y | z]] = x⊕ y.

Therefore, we see that a Feistel network is a special case of the quasi-Feistel network.

3.2 Unbalanced Feistel network with contracting functions

Similarly, it is also clear that our quasi-Feistel network generalizes the unbalanced Feistel
network with contracting functions, formalized in the paper of Patarin, Nachef, and Berbain
[15]. This case is defined by special b-combiners over {0, 1}n, where

Γ [[x ? y | z]] = x⊕ y.

3.3 Lai-Massey

The Lai-Massey scheme is slightly more involved than Feistel, and we need to do a little
work to fit Lai-Massey into our framework. The Lai-Massey scheme was originally used in the
IDEA cipher [2, 3]. But in this paper, by Lai-Massey scheme, we refer to the version given
by Vaudenay in [20]. This version contains a simple function called orthomorphism, without
which the Lai-Massey scheme suffers a simple distinguishing attack.

Let G be a finite abelian group. An orthomorphism σ : G→ G is a permutation such that
x 7→ σ(x)− x is also a permutation. Given such a σ, we denote σ(x)− x by τ(x). We assume
that all of σ, σ−1, τ , τ−1 are very efficient to compute on G.

The following definition for the mapping y = L(x) is description of r-round Lai-Massey
permutation with orthomorphism σ, corresponding to round functions f1, . . . , fr : G→ G.

1. α1 ← xL, β1 ← xR.
2. αi+1 ← σ(αi + fi(αi − βi)), βi+1 ← βi + fi(αi − βi), for i = 1, . . . , r.
3. yL ← αr+1, yR ← βr+1.
4. Return y = (yL, yR).

We define H : G2 → G2 by

H(x, y) = (σ−1x− y, x− y).

Then,

Theorem 1. The Lai-Massey scheme is an instance of the quasi-Feistel network; the under-
lying set X is the group G, the pre- and post-processing permutations P and Q are both H,
and the combiner Γ is given by

Γ [[x ? y | z]] = z + τ
(
z − x+ y + τ−1(z − x)

)
.

We prove the Theorem 1 in the Appendix A.



4 Security of unbalanced quasi-Feistel network

We show that (2b − 1)-round, b-branched quasi-Feistel network is CPA-secure within the
birthday bound, and (3b−2)-round, b-branched quasi-Feistel network is CPCA-secure within
the birthday bound. Note that when b = 2, the balanced case, these imply the results of Luby
and Rackoff for 3- and 4-round Feistel ciphers [4]. Also, this shows for the first time that
unbalanced Feistel cipher with contracting functions is secure within the birthday bound.

4.1 (2b − 1)-round construction

Consider an information-theoretic adversary A which has oracle access to a function f : X b →
X b. A may query f q times, and we assume that A never makes pointless queries, that is, it
never makes the same query more than once. After q queries, A outputs 0 or 1. We define

AdvCPA
Ψb,r (A) =

∣∣∣Pr[1← A(Ψ) |Ψ ← Ψ b,r(f1, . . . , fr), where fi
$← Func(X )]

− Pr[1← A(ρ) | ρ $← Func(X b)]
∣∣∣

Then,

Theorem 2. For any fixed integer b > 1, we get the following:

AdvCPA
Ψb,2b−1(A) <

bq(q − 1)
2|X |b−1

.

The proof technique of Theorem 2 is similar to that of Theorem 3 below. Therefore, in
this extended abstract, we will only prove Theorem 3.

4.2 (3b − 2)-round construction

Consider an information-theoretic adversary A which has oracle access to a permutation
π : X b → X b. A may query π or π−1 q times, and again we assume that A never makes
pointless queries, that is, it never makes the same query more than once, and if it queried
π(x) and got y as the answer, then it never queries π−1(y), and vice versa. After q queries, A
outputs 0 or 1. We define

AdvCPCA
Ψb,r (A) =

∣∣∣Pr[1← A(Ψ, Ψ−1) |Ψ ← Ψ b,r(f1, . . . , fr), where fi
$← Func(X )]

− Pr[1← A(ρ, ρ−1) | ρ $← Perm(X b)]
∣∣∣

Then,

Theorem 3. For any fixed integer b > 1, we get the following:

AdvCPCA
Ψb,3b−2(A) <

bq(q − 1)
2|X |b−1

+
q(q − 1)

2|X |b
.

We prove the Theorem 3 in the Appendix B.



Remark 3. Note that
bq(q − 1)
2|X |b−1

+
q(q − 1)

2|X |b
<

bq2

|X |b−1
.

Therefore, Theorems 2 and 3 means that, as long as

q �
√
|X |b−1

b
,

the (2b− 1)-round quasi-Feistel permutation Ψ is indistinguishable to a random permutation
by any CPA-adversary, and the (3b−2)-round quasi-Feistel permutation Ψ is indistinguishable
to a random permutation by any CPCA-adversary.

Remark 4. Naor and Reingold [5] proved results similar to our Theorems 2 and 3. They
showed that, for b-branched unbalanced Feistel network with contracting functions, (b + 1)-
round construction is CPA-secure with essentially the same bound as in Theorem 2, provided
that the first round is replaced by a pairwise independent permutation, and similarly, (b+ 2)-
round construction is CPCA-secure, provided that the first and the last rounds are replaced by
pairwise independent permutations. Our results replaces one round of pairwise independent
permutation with b− 1 rounds of normal quasi-Feistel network.

Remark 5. According to Patarin et al. in [15], there is a chosen plaintext attack for (2b− 1)-
round, b-branched unbalanced Feistel network with contracting functions with the number of
plaintext/ciphertext pair greater than or equal to 2n(b− 3

2
). This is the best known attack for

this case, and this greatly exceeds the birthday bound. Therefore the tightness of our security
proof is yet unknown.

5 Quasi-Feistel network with two random functions

As a consequence of Theorems 2 and 3 from the previous section, we know that 3- or 4-
round (balanced) quasi-Feistel network is CPA-secure or CPCA-secure, respectively, within
the birthday bound, when the round functions are chosen independently and uniformly.

For Feistel network, there were some results where the requirement of round function inde-
pendence was relaxed. For example, in [9], Patarin studied the cases where the round functions
are chosen from two independent random functions, or even a single random function.

We obtained generalization of Patarin’s results for two independent random functions. In
this extended abstract, we’ll give only informal statements below.

5.1 3-round constructions

Suppose that f , g : X → X are independent random functions. Then there are four pos-
sible cases of constucting 3-round quasi-Feistel network with round functions chosen from
f or g: Ψ3(f, f, f), Ψ3(f, f, g), Ψ3(f, g, f), and Ψ3(f, g, g). Among these, it is easy to show
that Ψ3(f, f, f) and Ψ3(f, g, f) are not secure. This is because that they are self-inverses of
themselves when the left and right halves are swapped.

Thus the remaining cases are Ψ3(f, f, g) and Ψ3(f, g, g). We can show that both are CPA-
secure within the birthday bound. Due to the possible internal collision, the upper bound



of advantage of adversaries are slightly increased than in the case of independent random
functions; the common advantage bound for the two cases is

q(3q − 1)
2|X |

,

which is greater than the advantage bound q(q − 1)/|X | for the independent case, which is
from Theorem 2 with b = 2.

5.2 4-round constructions

Similarly, there are eight possible cases of constucting 4-round quasi-Feistel network with
round functions chosen from two independent random functions f and g. As in 3-round cases,
we can easily see that Ψ4(f, f, f, f) and Ψ4(f, g, g, f) are not secure.

This leaves six cases: Ψ4(f, f, f, g), Ψ4(f, f, g, f), Ψ4(f, f, g, g), Ψ4(f, g, f, f), Ψ4(f, g, f, g),
and Ψ4(f, g, g, g). We showed that they are all CPCA-secure within the birthday bound.

6 Quasi-Feistel network with random permutations

In this section, we show that for 3- and 4-round quasi-Feistel network, one can use random
permutations as round functions to obtain security within birthday bound. This generalizes
Piret’s results [17] for Feistel network with random permutations as round functions.

6.1 3-round quasi-Feistel with random permutations

As in previous sections, consider an information-theoretic adversary A with up to q oracle
queries to its oracle f . As usual, assume that A doesn’t make pointless queries. This time we
define,

AdvCPA
Ψ3 (A) =

∣∣∣Pr[1← A(Ψ) |Ψ ← Ψ3(f1, f2, f3), where fi
$← Perm(X )]

− Pr[1← A(f) | f $← Func(X 2)]
∣∣∣

Theorem 4.

AdvCPA
Ψ3 (A) ≤ q(q − 1)

|X | − 1
+
q(q − 1)
|X |

.

We give proof of Theorem 4 in Appendix C.

6.2 4-round quasi-Feistel with random permutations

Similarly, let A be an adversary with oracle access to a permutation π : X 2 → X 2 and its
inverse. A make at most q queries, and A makes no pointless queries. This time we define,

AdvCPCA
Ψ4 (A) =

∣∣∣Pr[1← A(Ψ, Ψ−1) |Ψ ← Ψ4(f1, f2, f3, f4), where fi
$← Perm(X )]

− Pr[1← A(π, π−1) |π $← Perm(X 2)]
∣∣∣

Theorem 5.

AdvCPCA
Ψ4 (A) ≤ 2q(q − 1)

|X | − 1
.

The proof technique of Theorem 5 is similar to that of Theorem 4. Therefore, in this
extended abstract we will omit the proof.



7 Naor-Reingold construction for quasi-Feistel network

In this section we lift the Naor-Reingold construction [5] of 4-round Feistel construction where
pairwise independent permutations are used as first and last rounds, to the quasi-Feistel case.

Definition 3. Let X be a finite set, k an integer (2 ≤ k ≤ |X |), and P a distribution of
permutations on X . If for any k-tuple (x1, . . . , xk) of distinct elements of X , the distribution
(f(x1), . . . , f(xk)) for f $← P is identical to the uniform distribution of distinct k-tuples on
X , then we say that P is k-wise independent.

Theorem 6. Let P, Q be pairwise independent distribution of permutations on X 2. Let Ψ
be the 2-round quasi-Feistel network of independent random functions f1, f2, with respect to
(P,Q, Γ ). This means that we choose P $← P, Q $← Q, and define Ψ as 2-round quasi-Feistel
network of f1, f2 with respect to (P,Q, Γ ), that is, Ψ ← Ψ2

P,Q(f1, f2). Let ρ $← Perm(X 2) be a
random permutation of X 2.

For any CPCA-adversary A that makes at most q queries, we have

∣∣Pr[1← A(Ψ, Ψ−1)]− Pr[1← A(ρ, ρ−1)]
∣∣ < q2

|X |

Note that one can also prove similar results for CPA-security, where the preprocessing
permutation is chosen randomly from pairwise-independent distribution of permutations.

Remark 6. When we apply Theorem 6 to the Lai-Massey scheme, we see that 2-round Lai-
Massey scheme is CPCA-secure, when pre- and post-processed by pairwise independent per-
mutations. It is a simple consequence of the following obvious fact:

Lemma 2. Let h be a fixed permutation. If P is a pairwise independent distribution of per-
mutations, then h−1 ◦ P ◦ h is also a pairwise independent distribution of permutations. ut

Actually, Naor and Reingold proved that only one random function suffices to make the
4-round Naor-Reingold construction CPCA-secure, when pairwise independent permutations
are used as before. We also have the corresponding theorem:

Theorem 7. Let P, Q be pairwise independent distribution of permutations on X 2, and let
f

$← Func(X ), P $← P, Q $← Q. Then let Ψ ← Ψ2
P,Q(f, f). Finally, let ρ $← Perm(X 2).

For any CPCA-adversary A that makes at most q queries, we have

∣∣Pr[1← A(Ψ, Ψ−1)]− Pr[1← A(ρ, ρ−1)]
∣∣ < 3q2

2|X |
.

We give a brief sketch of proofs for Theorems 6 and 7 in Appendix D.

Remark 7. In fact, as mentioned before, Naor and Reingold also proved corresponding results
for unbalanced Feistel network. Clearly, this can also be generalized to the quasi-Feistel setting
in the similar way, and we’ll omit the details.



8 Quasi-Feistel network and block cipher design

From our results above, we see that most of the works for Feistel network in the Luby-Rackoff
model can be naturally extended to the quasi-Feistel case. Also, quasi-Feistel network includes
the Lai-Massey scheme as an instance. Therefore, we may conclude that, the Lai-Massey
scheme (or for that matter, any other quasi-Feistel network) does not have any advantage
over the Feistel in terms of the Luby-Rackoff model, because both are instances belonging to
the same class, namely the quasi-Feistel network.

Of course, that is not true when we apply a quasi-Feistel network to block cipher design. In
our results, we considered quasi-Feistel ciphers which use random functions as round functions,
or some variations thereof. Therefore, our results cannot be applied to more concrete versions
of quasi-Feistel ciphers. The designer of a block cipher usually gives heuristic estimation for
security against various known attacks, and most of these attacks rely on specific structures
of the block cipher; in terms of our quasi-Feistel network, we cannot talk much about the
security of a quasi-Feistel block cipher, unless the concrete description of the combiner Γ is
specified. Therefore it is not true that all quasi-Feistel networks are equal in these cases.

As an example, consider the specification of the FOX block cipher [1] which is now known
as IDEA NXT. In the security analysis part, the designers considered Luby-Rackoff-like secu-
rity, linear/differential cryptanalysis, integral attacks, statistical attacks, slide and related-key
attacks, and so on. Among these, all we can say at the generic quasi-Feistel network level is
the following:

1. The structure of a quasi-Feistel block cipher has security in the Luby-Rackoff model.
2. When the round functions have sufficiently small differential probabilities, and when the

number of rounds, r, is large enough, a quasi-Feistel block cipher is resistant to the differen-
tial attack; this is simply because, in a quasi-Feistel network, any differential characteristic
on two rounds must involve at least one round function.

Note that the observation on differential characteristic is identical to that of the designers
of FOX block cipher. Also, in general, we cannot say anything about linear cryptanalysis,
unless a concrete specification is given.

Apart from the above two, almost all other attacks rely on specific structures of the block
cipher, therefore even within the family of quasi-Feistel networks, it is quite possible that
some are better than others, in terms of security against various attacks.

9 Conclusion

In this paper, we introduced the notion of quasi-Feistel network, and showed that some of
the works on the Feistel network can be naturally extended to our setting. Also we proved
the birthday security of (2b− 1)- and (3b− 2)-round quasi-Feistel networks against CPA and
CPCA attacks, respectively.

In the quasi-Feistel network, due to the requirement that the round functions should be in-
deed functions, many constraints occur. For example, from the equalityXi = Γ [[Li ? f1(Ri) |Ri]],
we get

Ri = Rj −→ Γ [[Li\Xi |Ri]] = Γ [[Lj\Xj |Rj ]]

These systems of equations are dependent on the specific choice of the actual combiner Γ
used. So, different quasi-Feistel networks produce different systems of equations. Usually these
equations are intertwined in complicated ways.



However, we notice that, only security up to the birthday bound is studied in many works
on the Feistel network. In that case, collision of intermediate values cannot occur with high
probability, therefore most of the equations in the system describing the construction simply
disappear. In this type of works, specific choice of the Feistel combiner Γ [[x ? y | z]] = x ⊕ y
doesn’t really matter that much, and often one may reproduce the proof using an arbitrary
combiner.

In a sense, we might say that, what was done in many works on Feistel was to keep away
from the inner complication of the Feistel network, by avoiding internal collisions as much as
possible when the number of queries is less than the birthday bound. We believe that these
works are in fact not dealing with Feistel network, but actually quasi-Feistel networks, since
only general properties of the quasi-Feistel network as a family, not some specific property of
the Feistel network, are used in the proof.

A notable exception to the above summary is the work of Patarin. Patarin studied the
security of the Luby-Rackoff cipher when q is less than 2n, and possibly greater than the
birthday bound. In this situation, one cannot afford to simply discard problematic cases of
internal collision, and one has to seriously analyze the complicated system of equations. It is
quite possible that in Patarin’s work, some properties exclusive to the Feistel network have
actually been used.

Despite this, it is an interesting open problem whether it is possible to prove Patarin’s
theorem for the quasi-Feistel network, therefore automatically also for the Lai-Massey scheme.
Direct translation of Patarin’s proof to the quasi-Feistel setting seems to be difficult, but one
may hope that some different proof technique could be devised for this generalized situation.

In [15], Patarin et al. gave generic attacks for unbalanced Feistel networks with contracting
functions. The attack modes were KPA and CPA, and they gave attacks for different r, the
number of rounds. In comparison, we showed CPA-security-until-birthday-bound of the case
r = 2b − 1. The attack of Patarin et al. for this case requires the number of queries q much
greater than the birthday bound. It would be an interesting further study to close this gap
between security proofs and the attacks. Also, one may study different types of unbalanced
quasi-Feistel networks.
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A Proof of Theorem 1

Recall that H : G2 → G2 is given by

H(x, y) = (σ−1x− y, x− y).

Then a simple calculation shows that

H−1(s, t) =
(
t− s+ τ−1(t− s),−s+ τ−1(t− s)

)
.

We denote αi − βi by zi. One immediately sees from the definition of Lai-Massey that
σ−1αi+1 − βi+1 = αi − βi = zi. Then we have

(zi−1, zi) = (σ−1αi − βi, αi − βi) = H(αi, βi).

Using H and the Lai-Massey formula

(αi+1, βi+1) = (σ(αi + fi(αi − βi)), βi + fi(αi − βi)) ,

we may compute zi+1 from zi−1, zi, and fi(zi); starting with (zi−1, zi), applying H−1, we get
(αi, βi), from which we compute (αi+1, βi+1), from which we get (zi, zi+1) by applying H. By
expanding the formulas for H and H−1 explicitly, we get

zi+1 = zi + τ
(
zi − zi−1 + fi(zi) + τ−1(zi − zi−1)

)
.

Also, from the above description, it is clear that given zi+1, zi, and fi(zi), we can compute
zi−1.

Hence, we may define the combiner Γ by

Γ [[x ? y | z]] = z + τ
(
z − x+ y + τ−1(z − x)

)
.

Lemma 3. Γ is indeed a combiner over G; x 7→ Γ [[x ? y | z]] and y 7→ Γ [[x ? y | z]] are per-
mutations for any x, y, z ∈ G.

Proof. Since we can invert the above procedure to get (zi−1, zi) from (zi, zi+1), the mapping
x 7→ Γ [[x ? y | z]] should be invertible. Indeed, by manipulating the above formula, we get

Γ [[x/y | z]] = y + z − τ−1(x− z) + σ−1
(
τ−1(x− z)− y

)
.

Also, we see that y 7→ Γ [[x ? y | z]] is invertible for any x, z ∈ G, which is because that y
occurs only once in Γ [[x ? y | z]], and the formula is built by either adding a group element or
taking a permutation. Explicitly, we have

Γ [[x\y | z]] = x− z − τ−1(z − x) + τ−1(y − z).

ut

Now we can prove Theorem 1:

Proof (Of Theorem 1). We give the following equivalent description of the Lai-Massey scheme;
given the input x = (xL, xR) = (α1, β1), we apply H to compute (z0, z1) = H(α1, β1). Then
by the equation

zi+1 = zi + τ
(
zi − zi−1 + fi(zi) + τ−1(zi − zi−1)

)
= Γ [[zi−1 ? fi(zi) | zi]] ,

we compute z2, z3, . . . , zt, zr+1. Finally, we compute the output (αr+1, βr+1) by (αr+1, βr+1) =
H−1(zr, zr+1). ut



B Proof of Theorem 3

First, we’ll show that, often, without loss of generality, we may assume that the pre- and post-
processing permutations P and Q are both identity permutations in the Luby-Rackoff model.
The following Lemma is stated for the case of CPCA-adversary for unbalanced quasi-Feistel
network, but it is clear that one can easily prove corresponding results for other cases.

Lemma 4. Consider a b-branched, r-round unbalanced quasi-Feistel network Ψ with respect
to (P,Q, Γ ). Let’s define Ψ ′ to be the unbalanced quasi-Feistel network with respect to (I, I, Γ ),
where I : X b → X b is the identity permutation I(x) = x. Then, for any CPCA-adversary A,

AdvCPCA
Ψb,r (A) = AdvCPCA

Ψ ′b,r (A).

Proof. We have

Ψ = Q−1 ◦ Ψ ′ ◦ P.

If π is a random permutation, then π′ = Q◦π ◦P−1 is also a random permutation. We see
that the advantage of distinguishing Ψ from π is identical to that of distinguishing Ψ ′ from
π′. ut

Hence, we assume that P = Q = I in this section and also in other parts of this paper.
We prove security of (3b − 2)-round unbalanced quasi-Feistel networks. For convenience,

we would like to introduce some notational conventions for this section. First, we label the
3b− 2 random functions by

f1, f2, . . . , fb−1, g1, g2, . . . , gb, h1, h2, . . . , hb−1.

For inputs xi = (x1
i , x

2
i , . . . , x

b
i) and outputs yi = (y1

i , y
2
i , . . . , y

b
i ), we would like to estimate

the probability that Ψ(xi) = yi for ∀i = 1, . . . , q. Instead of the usual intermediate variables
z
(i)
j for ith input, we’ll re-label the old variables by introducing variables Xj

i and Y j
i . The

correspondence is represented by the following table.

z
(i)
0 z

(i)
1 . . . z

(i)
b−1 z

(i)
b z

(i)
b+1 . . . z

(i)
2b−2 z

(i)
2b−1 z

(i)
2b . . . z

(i)
3b−3 z

(i)
3b−2 z

(i)
3b−1 . . . z

(i)
4b−3

x1
i x2

i . . . x
b
i X1

i X2
i . . . Xb−1

i Y 1
i Y 2

i . . . Y b−1
i y1

i y2
i . . . ybi

The relation between the above new functions and variables are summarized in Table 1.
From our notational conventions, we see that, in order that

Ψ b,3b−2(f1, f2, . . . , fb−1, g1, g2, . . . , gb, h1, h2, . . . , hb−1)(xi) = yi



Table 1. Internal variables for 3b− 2 rounds

Round Function Internal variables

1 f1 x1 x2 · · · xb

2 f2 x2 x3 · · · xb X1

3 f3 x3 x4 · · · xb X1 X2

...

b− 2 fb−2 xb−2 xb−1 xb · · · Xb−4 Xb−3

b− 1 fb−1 xb−1 xb X1 · · · Xb−3 Xb−2

b g1 xb X1 · · · Xb−2 Xb−1

b + 1 g2 X1 X2 · · · Xb−1 Y 1

b + 2 g3 X2 X3 · · · Xb−1 Y 1 Y 2

...

2b− 2 gb−1 Xb−2 Xb−1 Y 1 · · · Y b−3 Y b−2

2b− 1 gb Xb−1 Y 1 Y 2 · · · Y b−2 Y b−1

2b h1 Y 1 Y 2 · · · Y b−1 y1

2b + 1 h2 Y 2 Y 3 · · · Y b−1 y1 y2

...

3b− 3 hb−2 Y b−2 Y b−1 y1 · · · yb−3 yb−2

3b− 2 hb−1 Y b−1 y1 · · · yb−2 yb−1

y1 y2 · · · yb−2 yb−1 yb

holds for ∀i = 1, . . . , q, the following equations should be satisfied:

X1
i = Γ

[[
x1
i ? f1(x2

i · · ·xbi) |x2
i · · ·xbi

]]
X2
i = Γ

[[
x2
i ? f2(x3

i · · ·xbiX1
i ) |x3

i · · ·xbiX1
i

]]
...

Xb−1
i = Γ

[[
xb−1
i ? fb−1(xbiX

1
i · · ·Xb−2

i ) |xbiX1
i · · ·Xb−2

i

]]
Y 1
i = Γ

[[
xbi ? g1(X1

i · · ·Xb−1
i ) |X1

i · · ·Xb−1
i

]]
Y 2
i = Γ

[[
X1
i ? g2(X2

i · · ·Xb−1
i Y 1

i ) |X2
i · · ·Xb−1

i Y 1
i

]]
...

Y b−1
i = Γ

[[
Xb−2
i ? gb−1(Xb−1

i Y 1
i · · ·Y b−2

i ) |Xb−1
i Y 1

i · · ·Y b−2
i

]]
y1
i = Γ

[[
Xb−1
i ? gb(Y 1

i · · ·Y b−1
i ) |Y 1

i · · ·Y b−1
i

]]
y2
i = Γ

[[
Y 1
i ? h1(Y 2

i · · ·Y b−1
i y1

i ) |Y 2
i · · ·Y b−1

i y1
i

]]
...

ybi = Γ
[[
Y b−1
i ? hb−1(y1

i · · · yb−1
i ) | y1

i · · · yb−1
i

]]
From the above, we see that, given (x1

i , . . . , x
b
i) and (y1

i , . . . , y
b
i ), the collection of random

functions (f1, . . . , fb−1) determines the values (X1
i , . . . , X

b−1
i ), and similarly (h1, . . . , hb−1)

determines the values (Y 1
i , . . . , Y

b−1
i ).



Lemma 5. Fix some i, j such that 1 ≤ i < j ≤ q. Also, fix some k such that 1 ≤ k ≤ b.
Then, the probability that by randomly choosing f1, . . . , fb−1,

Xk
i · · ·Xb−1

i = Xk
j · · ·Xb−1

j

holds is at most
1

|X |b−k
.

Proof. The condition
Xk
i · · ·Xb−1

i = Xk
j · · ·Xb−1

j

is equivalent to the following b− k conditions:

Xk
i = Xk

j , Xk+1
i = Xk+1

j , . . . , Xb−1
i = Xb−1

j .

Intuitively, each condition contributes at most 1/|X | to the probability, therefore the overall
probability is at most 1/|X |b−k.

To be more precise, let’s choose the functions f1, . . . , fk−1 arbitrarily. This determines
X1
i , . . . , Xk−1

i . Then,

Xk
i = Γ

[[
xki ? fk(x

k+1
i · · ·xbiX1

i · · ·Xk−1
i ) |xk+1

i · · ·xbiX1
i · · ·Xk−1

i

]]
Xk
j = Γ

[[
xkj ? fk(x

k+1
j · · ·xbjX1

j · · ·Xk−1
j ) |xk+1

j · · ·xbjX1
j · · ·Xk−1

j

]]
We claim that the probability for Xk

i = Xk
j to hold is at most 1/|X |. To prove this, we

divide the cases. First, conside the case when

xk+1
i · · ·xbiX1

i · · ·Xk−1
i = xk+1

j · · ·xbjX1
j · · ·Xk−1

j . (1)

In this case, suppose that Xk
i = Xk

j holds. Then,

xki = Γ
[[
Xk
i /fk(x

k+1
i · · ·xbiX1

i · · ·Xk−1
i ) |xk+1

i · · ·xbiX1
i · · ·Xk−1

i

]]
= Γ

[[
Xk
j /fk(x

k+1
j · · ·xbjX1

j · · ·Xk−1
j ) |xk+1

j · · ·xbjX1
j · · ·Xk−1

j

]]
= xkj

Then xki = xkj , and this implies that

xki x
k+1
i · · ·xbiX1

i · · ·Xk−1
i = xkjx

k+1
j · · ·xbjX1

j · · ·Xk−1
j .

Then we have Xk−1
i = Xk−1

j and

xki x
k+1
i · · ·xbiX1

i · · ·Xk−2
i = xkjx

k+1
j · · ·xbjX1

j · · ·Xk−2
j .

Repeating this, we conclude that x1
i · · ·xbi = x1

j · · ·xbj which contradicts that the inputs are
all distinct. Hence, we conclude that when (1) holds, no function fk can make Xk

i = Xk
j ,



hence the probability is 0. Next, consider the case when (1) does not hold. In this case, when
fk(xk+1

i · · ·xbiX1
i · · ·X

k−1
i ) is determined, we have

fk(xk+1
j · · ·xbjX1

j · · ·Xk−1
j )

= Γ
[[
xkk\Xk

j |xk+1
j · · ·xbjX1

j · · ·Xk−1
j

]]
= Γ

[[
xkk\Xk

i |xk+1
j · · ·xbjX1

j · · ·Xk−1
j

]]
= Γ

[[
xkk\Γ

[[
xki ? fk(x

k+1
i · · ·xbiX1

i · · ·Xk−1
i ) |xk+1

i · · ·xbiX1
i · · ·Xk−1

i

]]
|xk+1

j · · ·xbjX1
j · · ·Xk−1

j

]]
Then, we can choose fk freely, except that the value for xk+1

j · · ·xbjX1
j · · ·X

k−1
j is constrained

by the above formula. Then the probability is 1/|X |.
Then, regardless of whether (1) holds or not, the probability that Xk

i = Xk
j holds is less

than or equal to 1/|X |. Choose any fk which satisfies the equation.
Now, we see that the exact same argument can be used to show that the probability

that Xk+1
i = Xk+1

j holds is less than or equal to 1/|X |. Choose any fk+1 which satisfies the
equation. Continuing in this way, the probability that all of b− k equations

Xk
i = Xk

j , Xk+1
i = Xk+1

j , . . . , Xb−1
i = Xb−1

j

are satisfied is less than or equal to 1/|X |b−k. ut

Corollary 1. Fix some i, j such that 1 ≤ i < j ≤ q. Also, fix some k such that 1 ≤ k ≤ b.
Then, the probability that by randomly choosing h1, . . . , hb−1,

Y 1
i · · ·Y k−1

i = Y 1
j · · ·Y k−1

j

holds is at most
1

|X |k−1
.

Proof. The functions h1, . . . , hb−1 defines the variables Y 1
i , . . . , Y b−1

i . The proof is essentially
the same as the Lemma 5. ut

Corollary 2. Fix some i, j such that 1 ≤ i < j ≤ q. Also, fix some k such that 1 ≤ k ≤ b.
Then, the probability that by randomly choosing f1, . . . , fb−1, h1, . . . , hb−1,

Xk
i · · ·Xb−1

i Y 1
i · · ·Y k−1

i = Xk
j · · ·Xb−1

j Y 1
j · · ·Y k−1

j

is at most
1

|X |b−1
.

Proof. The condition

Xk
i · · ·Xb−1

i Y 1
i · · ·Y k−1

i = Xk
j · · ·Xb−1

j Y 1
j · · ·Y k−1

j

is equivalent to two conditions

Xk
i · · ·Xb−1

i = Xk
j · · ·Xb−1

j and Y 1
i · · ·Y k−1

i = Y 1
j · · ·Y k−1

j .

The two conditions are independent, and the probability that each holds are at most

1
|X |b−k

and
1

|X |k−1
, respectively.

ut



Corollary 3. The probability that

Xk
i · · ·Xb−1

i Y 1
i · · ·Y k−1

i = Xk
j · · ·Xb−1

j Y 1
j · · ·Y k−1

j

does not hold for any 1 ≤ i < j ≤ q and any 1 ≤ k ≤ b is at least

1− bq(q − 1)
2|X |b−1

.

ut

The Corollary 3 gives us a guarantee that no internal collision occurs with at least that
probability.

In order to prove Theorem 3, we need the following Theorem 8. Note that this estimation
of transition probability from given inputs to given outputs is the core of Patarin’s ‘coefficient
H technique’.

Theorem 8. Let xi ∈ X b, 1 ≤ i ≤ q be distinct inputs, and let yi ∈ X b, 1 ≤ i ≤ q be distinct
outputs.

Let’s denote by h the probability that Ψ , the b-branched, (3b− 2)-round unbalanced quasi-
Feistel permutation for 3b− 2 random functions, satisfies ∀i, 1 ≤ i ≤ q,

Ψ(xi) = yi.

Then we have

h ≥ 1
|X |bq

(
1− bq(q − 1)

2|X |b−1

)
.

Proof. With probability at least

1− bq(q − 1)
2|X |b−1

,

we may choose random functions f1, . . . , fb−1, h1, . . . , hb−1 such that

Xk
i · · ·Xb−1

i Y 1
i · · ·Y k−1

i 6= Xk
j · · ·Xb−1

j Y 1
j · · ·Y k−1

j

for any 1 ≤ i < j ≤ q and any 1 ≤ k ≤ b. Then the probability that we may choose random
functions g1, . . . , gb so that

Y 1
i = Γ

[[
xbi ? g1(X1

i · · ·Xb−1
i ) |X1

i · · ·Xb−1
i

]]
Y 2
i = Γ

[[
X1
i ? g2(X2

i · · ·Xb−1
i Y 1

i ) |X2
i · · ·Xb−1

i Y 1
i

]]
...

Y b−1
i = Γ

[[
Xb−2
i ? gb−1(Xb−1

i Y 1
i · · ·Y b−2

i ) |Xb−1
i Y 1

i · · ·Y b−2
i

]]
y1
i = Γ

[[
Xb−1
i ? gb(Y 1

i · · ·Y b−1
i ) |Y 1

i · · ·Y b−1
i

]]
holds for i = 1, . . . , q is equal to (1/|X |b)q. Putting all of the above together, we get the
result. ut

Now we are ready to go back to proof of the Theorem 3:



Proof (Of Theorem 3). The queries of A to its oracle π have form π(xi) or π−1(yi). We
may write the queries as πεi(Qi), and denote by σi the answer of the oracle to the query.
Then (ε1, Q1) is dependent only to A, and (ε2, Q2) is dependent to A and σ1, and (ε3, Q3) is
dependent to A and σ1, σ2, and so on. Finally A(π), the answer of A is dependent only to
A and σ1, . . . , σq; if π′ : X b → X b is another permutation such that π′εi(Qi) = σi, then A’s
queries to both π and π′ would be identical, and the answers would be identical, therefore
A(π) = A(π′).

Hence, if the queries of A to its oracle π are (εi, Qi), and if the answers it gets are σi, then
we may write A(σ1, . . . , σq), instead of A(π). Let’s define

P1
def= Pr[1← A(Ψ, Ψ−1) |Ψ ← Ψ b,3b−2(f1, . . . , f3b−2), where fi

$← Func(X )]

P ∗∗1
def= Pr[1← A(π, π−1) |π $← Perm(X b)]

Note that by definition, AdvCPCA
Ψb,3b−2(A) = |P1 − P ∗∗1 |.

If N is the number of σ1, . . . , σq such that 1← A(σ1, . . . , σq), then

P ∗∗1 =
Number of π ∈ Perm(X b) such that 1← A(π)

Number of π ∈ Perm(X b)

=
∑

σ1,...,σq
1←A(σ1,...,σq)

Number of π ∈ Perm(X b) compatible with σ1, . . . , σq
Number of π ∈ Perm(X b)

=
∑

σ1,...,σq
1←A(σ1,...,σq)

(|X |b − q)!
(|X |b)!

=
N

|X |bq
(

1− 1
|X |b

)(
1− 2

|X |b

)
· · ·
(

1− q−1
|X |b

)
Hence, we get

N

|X |bq
= P ∗∗1

q−1∏
i=1

(
1− i

|X |b

)

≥ P ∗∗1

(
1−

q−1∑
i=1

i

|X |b

)

= P ∗∗1

(
1− q(q − 1)

2|X |b

)
(2)

Then,

P1 =
∑

σ1,...,σq
1←A(σ1,...,σq)

Pr [(f1, . . . , f3b−2) is compatible with σ1, . . . , σq]

≥
∑

σ1,...,σq
1←A(σ1,...,σq)

1
|X |bq

(
1− bq(q − 1)

2|X |b−1

)
=

N

|X |bq

(
1− bq(q − 1)

2|X |b−1

)

≥ P ∗∗1

(
1− q(q − 1)

2|X |b

)(
1− bq(q − 1)

2|X |b−1

)
> P ∗∗1 −

(
bq(q − 1)
2|X |b−1

+
q(q − 1)

2|X |b

)
.



If we switch the outputs 1 and 0 of A, in the same way we also get,

1− P1 > 1− P ∗∗1 −
(
bq(q − 1)
2|X |b−1

+
q(q − 1)

2|X |b

)
From the above two inequalities, we finally get

AdvCPCA
Ψb,3b−2(A) = |P1 − P ∗∗1 | <

bq(q − 1)
2|X |b−1

+
q(q − 1)

2|X |b
.

ut

C Proof of Theorem 4

In order to prove Theorem 4, we need some preparations.
We know that without loss of generality, we may set P = Q = I.

Lemma 6. Suppose that Li, Ri, Xi, Si, Ti ∈ X are given, for i = 1, . . . , q, such that (Li, Ri)
are distinct. Also suppose that the following five conditions are satisfied;

Ri = Rj ←→ Γ [[Li\Xi |Ri]] = Γ [[Lj\Xj |Rj ]] (C1)
Xi are distinct (C2)
Si are distinct (C3)

Γ [[Ri\Si |Xi]] are distinct (C4)
Γ [[Xi\Ti |Si]] are distinct (C5)

Then, the number of 3-tuples (f1, f2, f3) ∈ Perm(X )3 satisfying

Xi = Γ [[Li ? f1(Ri) |Ri]]
Si = Γ [[Ri ? f2(Xi) |Xi]]
Ti = Γ [[Xi ? f3(Si) |Si]]

is equal to
(|X | − q + r)! · (|X | − q)! · (|X | − q)!

where r is the number of independent equations of form Ri = Rj.

Proof. In other words, q − r = |{Ri | i = 1, . . . , q}|.
f1 is free as a permutation except for the prescribed q − r points. Therefore there are

precisely (|X | − q + r)! such functions f1, satisfying Xi = Γ [[Li ? f1(Ri) |Ri]]. Similarly there
are (|X | − q)! f2’s, and (|X | − q)! f3’s. ut

Lemma 7. Suppose that Li, Ri ∈ X are given, for i = 1, . . . , q, such that (Li, Ri) are
distinct. Then the number of q-tuples (X1, . . . , Xq) satisfying

Ri = Rj ←→ Γ [[Li\Xi |Ri]] = Γ [[Lj\Xj |Rj ]] (C1)

is equal to
|X |!

(|X | − q + r)!

where r is the number of independent equations of form Ri = Rj.



Proof. If we set
Xi = Γ [[Li ? f(Ri) |Ri]] ,

then the condition (C1) is equivalent to

Ri = Rj ←→ f(Ri) = f(Rj).

Let Ri1 , Ri2 , . . . , Riq−r be any set of q − r representative elements for {Ri | i = 1, . . . , q}.
Then, choosing Xi satisfying (C1) is equivalent to choosing distinct f(Rij ), j = 1, . . . , q − r.
There are exactly

|X | · (|X | − 1) · · · (|X | − (q − r − 1)) =
|X |!

(|X | − q + r)!

such choices. ut

Lemma 8. Suppose that Li, Ri ∈ X are given, for i = 1, . . . , q, such that (Li, Ri) are
distinct. Then the number of three q-tuples (X1, . . . , Xq), (S1, . . . , Sq), (T1, . . . , Tq) satisfying

Ri = Rj ←→ Γ [[Li\Xi |Ri]] = Γ [[Lj\Xj |Rj ]] (C1)
Xi are distinct (C2)
Si are distinct (C3)

Γ [[Ri\Si |Xi]] are distinct (C4)
Γ [[Xi\Ti |Si]] are distinct (C5)

is at least
|X |! · |X |2q

(|X | − q + r)!
·
(

1− q(q − 1)
(|X | − 1)

− q(q − 1)
|X |

)
where r is the number of independent equations of form Ri = Rj.

Proof. By Lemma 7, The number of choices for Xi, Si, Ti satisfying (C1) is

|X |! · |X |2q

(|X | − q + r)!
,

because (C1) does not depend on Si, Ti, so these can be freely chosen.
Then, in order to find a lower bound for tuples satisfying all of (C1), . . . , (C5), we have to

find an upper bound for tuples satisfying (C1) but not some of (C2), . . . , (C5). First, consider
the case where (C1) holds but (C2) is not true.

Fix an arbitrary i, j such that 1 ≤ i < j ≤ q. Consider the case when (C1) holds and also
Xi = Xj is true. In the proof of Lemma 7, we may set Ri1 = Ri, and Ri2 = Rj . We have |X |
choices for f1(Ri1), but once this is chosen, the value for f2(Ri2) is fixed due to the equation
Xi = Xj . Therefore, there are at most

|X | · (|X | − 2) · · · (|X | − (q − r − 1)) =
|X |!

(|X | − q + r)! · (|X | − 1)

choices in total. Since there are q(q − 1)/2 choices for i < j, and |X |2q unrestricted choices
for Si and Ti, there are at most

|X |! · |X |2q · q(q − 1)
(|X | − q + r)! · 2(|X | − 1)



choices where (C1) is true but (C2) is false.
Next, consider the case when (C1) is true but (C3) is false. In this case, Xi can be chosen

just like Lemma 7, but, unrelated to the choices for Xi, the choices for Si should satisfy
Si = Sj for some i < j. Therefore, the number of choices is at most

|X |! · |X |2q · q(q − 1)
(|X | − q + r)! · 2|X |

.

We can argue almost identically for the case when (C1) is true but (C4) is false; the
number of choices for this case is again at most

|X |! · |X |2q · q(q − 1)
(|X | − q + r)! · 2|X |

Finally, the analysis for the case when (C1) is true but (C5) is false can be handled
identical to the case when (C1) is true but (C2) is false; the number is again at most

|X |! · |X |2q · q(q − 1)
(|X | − q + r)! · 2(|X | − 1)

Therefore, there are at least

|X |! · |X |2q

(|X | − q + r)!
− |X |! · |X |2q · q(q − 1)

(|X | − q + r)! · 2(|X | − 1)

− |X |! · |X |
2q · q(q − 1)

(|X | − q + r)! · 2|X |

− |X |! · |X |
2q · q(q − 1)

(|X | − q + r)! · 2|X |

− |X |! · |X |2q · q(q − 1)
(|X | − q + r)! · 2(|X | − 1)

=
|X |! · |X |2q

(|X | − q + r)!
·
(

1− q(q − 1)
(|X | − 1)

− q(q − 1)
|X |

)
choices where all of (C1), . . . , (C5) are true. ut

Now we are ready to prove Theorem 4. The proof is similar to that of Theorem 3, but we
have to be carefully introduce the extra variable Xi into our probability estimation.

Proof (Of Theorem 4). Let’s define

P1
def= Pr[1← A(Ψ) |Ψ ← Ψ3(f1, f2, f3), where fi

$← Perm(X )]

P ∗1
def= Pr[1← A(f) | f $← Func(X 2)]

Note that by definition, AdvCPA
Ψ3 (A) = |P1 − P ∗1 |.

The queries of A to its oracle f have form f(τi). Let’s denote by σi the answer of the
oracle to the query f(τi). Then τ1 is dependent only to A, and τ2 is dependent to A and σ1,
and τ3 is dependent to A and σ1, σ2, and so on. Finally A(f), the answer of A is dependent
only to A and σ1, . . . , σq; if f ′ : X 2 → X 2 is another function such that f ′(τi) = σi, then A’s



queries to both f and f ′ would be identical, and the answers would be identical, therefore
A(f) = A(f ′).

Hence, if the queries of A to its oracle f are τi, and if the answers it gets are σi, then we may
write A(σ1, . . . , σq), instead of A(f). Let N be the number of q-tuples (σ1, . . . , σq) satisfying
1← A(σ1, . . . , σq). Then, If N is the number of σ1, . . . , σq such that 1← A(σ1, . . . , σq), then

P ∗1 =
Number of f ∈ Func(X 2) such that 1← A(f)

Number of f ∈ Func(X 2)

=
∑

σ1,...,σq
1←A(σ1,...,σq)

Number of f ∈ Func(X 2) compatible with σ1, . . . , σq
Number of f ∈ Func(X 2)

=
∑

σ1,...,σq
1←A(σ1,...,σq)

(|X |2)|X |
2−q

(|X |2)|X |2

=
N

|X |2q

Then,

P1 =
Number of (f1, f2, f3) such that 1← A(Ψ3(f1, f2, f3))

|Perm(X )|3

=
∑

σ1,...,σq
1←A(σ1,...,σq)

Number of (f1, f2, f3) compatible with σ1, . . . , σq
|Perm(X )|3

=
∑
σi

1←A(σi)

∑
Xi/(C1)

Number of (f1, f2, f3) compatible with Xi, σi
|Perm(X )|3

≥
∑

Xi,σi/(C1),...,(C5)
1←A(σi)

Number of (f1, f2, f3) compatible with Xi, σi
|Perm(X )|3

=
∑

Xi,σi/(C1),...,(C5)
1←A(σi)

(|X | − q + r)! · (|X | − q)! · (|X | − q)!
(|X |!)3

(∵ Lemma 6)

= (No. of Xi, σi, satisfying (C1), . . . , (C5) and 1← A(σi))

· (|X | − q + r)! · (|X | − q)! · (|X | − q)!
(|X |!)3

We have to estimate the number of Xi, σi satisfying (C1), . . . , (C5) and also 1← A(σi).
By Lemma 7, There are

N · |X |!
(|X | − q + r)!

choices for Xi, σi satisfying (C1) and 1← A(σi). It is because that, for each N choices of σi
with 1← A(σi), one can choose Xi by Lemma 7.

By Lemma 7 and Lemma 8, There are at most

|X |! · |X |2q

(|X | − q + r)!
·
(
q(q − 1)
|X | − 1

+
q(q − 1)
|X |

)



choices for Xi, σi satisfying (C1) but not satisfying some of (C2), . . . , (C5). Therefore, the
number of Xi, σi satisfying all of (C1), . . . , (C5) and also 1← A(σi) is at least

N · |X |!
(|X | − q + r)!

− |X |! · |X |2q

(|X | − q + r)!
·
(
q(q − 1)
|X | − 1

+
q(q − 1)
|X |

)
=

|X |!
(|X | − q + r)!

(
N − |X |2q

(
q(q − 1)
|X | − 1

+
q(q − 1)
|X |

))
=

|X |!
(|X | − q + r)!

(
|X |2q · P ∗1 − |X |2q

(
q(q − 1)
|X | − 1

+
q(q − 1)
|X |

))
=
|X |! · |X |2q

(|X | − q + r)!

(
P ∗1 −

q(q − 1)
|X | − 1

− q(q − 1)
|X |

)
When we put this into the above, we get

P1 ≥ (No. of Xi, σi, satisfying (C1), . . . , (C5) and 1← A(σi))

· (|X | − q + r)! · (|X | − q)! · (|X | − q)!
(|X |!)3

=
|X |! · |X |2q

(|X | − q + r)!

(
P ∗1 −

q(q − 1)
|X | − 1

− q(q − 1)
|X |

)
· (|X | − q + r)! · ((|X | − q)!)2

(|X |!)3

=
(
P ∗1 −

q(q − 1)
|X | − 1

− q(q − 1)
|X |

)(
|X |q · (|X | − q)!

|X |!

)2

≥ P ∗1 −
q(q − 1)
|X | − 1

− q(q − 1)
|X |

.

By switching the outputs 1 and 0 of A, we obtain

1− P1 ≥ 1− P ∗1 −
q(q − 1)
|X | − 1

− q(q − 1)
|X |

.

These two inequalities prove the Theorem 4. ut

D Proof sketch of Theorems 6 and 7

In the proof of Theorem 3 in Appendix B, we used Theorem 8 crucially. For the balanced case,
that is when b = 2, Theorem 8 estimates the transition probability for given input/output
pairs for 4-round unbalanced quasi-Feistel permutation. When we choose pre- and post-
processing permutations P , Q randomly from pairwise independent distributions, we can
prove the analogue of Theorem 8 for 2-round balanced quasi-Feistel network.

Lemma 9. Let x(i) = (x(i)
L , x

(i)
R ) ∈ X 2, 1 ≤ i ≤ q be distinct inputs, and let y(i) = (y(i)

L , y
(i)
R ) ∈

X 2, 1 ≤ i ≤ q be distinct outputs.
Let P, Q be pairwise independent distributions of permutations on X 2. Let f1, f2

$←
Func(X ), and let P $← P, Q $← Q.

Let’s denote by h the probability that ∀i, 1 ≤ i ≤ q,

Ψ2
P,Q(f1, f2)(x(i)) = y(i).

Then we have

h ≥ 1
|X |2q

(
1− q(q − 1)

|X |

)
.



Remark 8. Note that when b = 2, the inequality in the Theorem 8 is identical to the above
inequality.

Proof. Let’s define random variables Li, Ri, Si, Ti on X , i = 1, . . . , q, by (Li, Ri)← p(x(i)),
(Si, Ti)← q(y(i)).

Since P is pairwise independent distribution of permutations, we know that for any given
i 6= j, the probability that Ri = Rj is at most 1/|X |. So, the probability that Ri are not
distinct is at most q(q − 1)/(2|X |). Hence, the probability that Ri are distinct is at least

1− q(q − 1)
2|X |

.

Similarly, the probability that Si are distinct is again at least

1− q(q − 1)
2|X |

.

Now, under the condition that Ri are distinct and Si are distinct, the probability that

Si = Γ [[Li ? f1(Ri) |Ri]]
Ti = Γ [[Ri ? f2(Si) |Si]]

holds for ∀i = 1, . . . , q is exactly |X |−q · |X |−q. Combining all of the above, we get

h ≥ 1
|X |2q

(
1− q(q − 1)

2|X |

)2

≥ 1
|X |2q

(
1− q(q − 1)

|X |

)
.

ut

Now the proof of Theorem 6 is simple; we argue essentially identical to the proof of
Theorem 3, but use Lemma 9, instead of Theorem 8.

Then, the proof of Theorem 7 is also easy; we again estimate the transition probability as
in Lemma 9, but this time we have to consider the probability that Ri = Sj . The rest of the
proof is identical to that of Theorem 6.


