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Abstract

We study the communication complexity of single-server Private Information Retrieval (PIR) protocols
that are based on fundamental cryptographic primitives in a black-box manner. In this setting, we establish
a tight lower bound on the number of bits communicated by the server in any polynomially-preserving
construction that relies on trapdoor permutations. More specifically, our main result states that in such
constructions Ω(n) bits must be communicated by the server, where n is the size of the server’s database,
and this improves the Ω(n/ log n) lower bound due to Haitner, Hoch, Reingold and Segev (FOCS ’07).
Therefore, in the setting under consideration, the naive solution in which the user downloads the entire
database turns out to be optimal up to constant multiplicative factors. We note that the lower bound
we establish holds for the most generic form of trapdoor permutations, including in particular enhanced
trapdoor permutations.

Technically speaking, this paper consists of two main contributions from which our lower bound is
obtained. First, we derive a tight lower bound on the number of bits communicated by the sender during
the commit stage of any black-box construction of a statistically-hiding bit-commitment scheme from a
family of trapdoor permutations. This lower bound asymptotically matches the upper bound provided by
the scheme of Naor, Ostrovsky, Venkatesan and Yung (CRYPTO ’92). Second, we improve the efficiency
of the reduction of statistically-hiding commitment schemes to low-communication single-server PIR, due
to Beimel, Ishai, Kushilevitz and Malkin (STOC ’99). In particular, we present a reduction that essentially
preserves the communication complexity of the underlying single-server PIR protocol.
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1 Introduction

A single-server Private Information Retrieval (PIR) scheme is a protocol between a server and a user. The
server holds a database x ∈ {0, 1}n and the user holds an index i ∈ [n] to an entry of the database. Informally,
the user wishes to retrieve the ith entry of the database, without revealing the index i to the server. The notion
of PIR was introduced by Chor, Goldreich, Kushilevitz and Sudan [4] to model applications that enable
users to query public databases without revealing any information on the specific data that the users wish to
retrieve. Chor et al. showed that in the information-theoretic setting any single-server PIR protocol has the
server communicating at least n bits. Therefore in this setting the naive solution in which the user downloads
the entire database is optimal.

Kushilevitz and Ostrovsky [26] were the first to construct a non-trivial single-server PIR protocol relying
on computational assumptions. Their result initiated a sequence of papers showing that there exist single-
server PIR protocols with poly-logarithmic communication complexity based on specific number-theoretic
assumptions (see, for example, [2, 3, 12, 26, 28, 41], and a recent survey by Ostrovsky and Skeith [35]). The
only non-trivial construction based on general computational assumptions is due to Kushilevitz and Ostrovsky
[27], and is based on enhanced trapdoor permutations. In their construction, however, the server is required
to communicate n − o(n) bits to the user.

Motivated by this ever-growing line of work, we study the communication complexity of single-server
PIR protocols that are based on fundamental primitives. We establish a linear lower bound on the number
of bits communicated by the server in constructions that rely on enhanced trapdoor permutations in a black-
box manner. Therefore, in the setting under consideration in this paper, the naive solution in which the user
downloads the entire database turns out to be optimal up to constant multiplicative factors. In the following
paragraphs, we briefly describe the setting in which our lower bound is proved (a more formal description is
provided in Section 2).

Black-box reductions. As previously mentioned, under widely believed specific number-theoretic assump-
tions, there are very efficient single-server PIR protocols. Therefore, if any of these assumptions holds, the
existence of trapdoor permutations implies the existence of efficient single-server PIR protocols in a trivial
sense. Faced with similar difficulties, Impagliazzo and Rudich [22] presented a paradigm for proving im-
possibility results under a restricted, yet very natural and important, subclass of reductions called black-box
reductions. Informally, a black-box reduction of a primitive P to a primitive Q is a construction of P out
of Q that ignores the internal structure of the implementation of Q and uses it as a “subroutine” (i.e., as a
black-box). In addition, in the case of fully-black-box reductions (see, for example, [36]), the proof of se-
curity (showing that an adversary that breaks the implementation of P implies an adversary that breaks the
implementation of Q), is black-box as well, that is, the internal structure of the adversary that breaks the
implementation of P is ignored.

The strength of cryptographic reductions. Luby [30] provides a classification of the strength of crypto-
graphic reductions into three classes: linearly-preserving, polynomially-preserving and weakly-preserving.
In our setting, this classification comes into play when comparing the size of the server’s database and the do-
main of the trapdoor permutations. Very informally, a reduction of single-server PIR for an n-bit database to a
family of trapdoor permutations is linearly-preserving or polynomially-preserving if it uses trapdoor permuta-
tions over Ω(n) bits. Such a reduction is weakly-preserving if it uses trapdoor permutations over Ω(nε) bits for
some constant 0 < ε ≤ 1. In linearly-preserving and polynomially-preserving reductions we are guaranteed
that breaking the constructed primitive is essentially as hard as breaking the underlying primitive. However,
in weakly-preserving reductions, we are only guaranteed that breaking the constructed primitive is as hard as
breaking the underlying primitive for polynomially smaller security parameters. We refer the reader to [30]
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for a more comprehensive and complete discussion.

1.1 Related Work

Single-server PIR is one of the fundamental primitives in the foundations of cryptography. For example, non-
trivial single-server PIR was shown to imply the existence of Oblivious Transfer protocols [5], and 2-move
low-communication single-server PIR was shown to imply collision-resistant hash functions [23]. Single-
server PIR was also shown to be tightly related to several other aspects of cryptography and complexity
theory (see, for example, [6, 20, 24]). We note that it is far beyond the scope of this paper to present an
exhaustive overview of the ever-growing line of work on single-server PIR, and we refer the reader to the
recent survey of Ostrovsky and Skeith [35] for a more comprehensive discussion.

In the context of black-box reductions, Impagliazzo and Rudich [22] showed that there are no black-
box reductions of key-agrement protocols to one-way permutations, and substantial additional work in this
line followed (see, for example, [7, 13, 14, 37, 39]). Kim, Simon and Tetali [25] initiated a new line of
impossibility results, by providing a lower bound on the efficiency of black-box reductions (rather than on their
feasibility). They proved a lower bound on the efficiency, in terms of the number of calls to the underlying
primitive, of any black-box reduction of universal one-way hash functions to one-way permutations. This
result was later improved, to match the known upper bound, by Gennaro and Trevisan [11], which together
with Gennaro et al. [8, 9] provided tight lower bounds on the efficiency of several other black-box reductions.
Building upon the technique developed by [11], Horvitz and Katz [21] provided lower bounds on the efficiency
of black-box reductions of statistically-hiding and computationally-binding commitment schemes to one-way
permutations. In the above results the measure of efficiency under consideration is the number of calls to the
underlying primitives.

Di Crescenzo, Malkin and Ostrovsky [5] showed that any single-server PIR protocol in which the server
communicates at most n − 1 bits (where n is the size of the server’s database) can be transformed in a fully-
black-box manner to an Oblivious Transfer protocol. Gennaro, Lindell and Malkin [10] (refining Gertner
et al. [13]) ruled out any black-box reduction of Oblivious Transfer to plain (i.e., non-enhanced) trapdoor
permutations. The combination of these two results yields that there are no non-trivial black-box constructions
of single-server PIR from non-enhanced trapdoor permutations. We note that although in this paper we rule
out a more restricted class of constructions (that is, the class of fully-black-box constructions), our result holds
for the most generic form of trapdoor permutations, including in particular enhanced trapdoor permutations.

Very recently, Haitner et al. [18], improving upon the work of Wee [42], proved that any polynomially-
preserving fully-black-box reduction of a statistically-hiding bit-commitment scheme to trapdoor permuta-
tions has Ω(n/ log n) communication rounds (where n is the security parameter). As a corollary, they showed
that any polynomially-preserving fully-black-box reduction of single-server PIR to trapdoor permutations has
Ω(n/ log n) communication rounds, where n is the size of the server’s database. In particular, the server is
required to communicate Ω(n/ log n) bits to the user. Haitner et al. also established similar lower bounds on
the communication complexity of Oblivious Transfer that guarantees statistical security for one of the parties
and for Interactive Hashing.

In a slightly different setting, Ostrovsky and Skeith [34] proved a lower bound on the communication
complexity of single-server PIR protocols with certain algebraic properties. For a class of PIR protocols,
referred to as abelian group algebraic PIR protocols, with user-side communication complexity g(n) and
server-side communication complexity h(n) they proved that g(n)h(n) = Ω(n).

1.2 Our Results

We study the class of black-box constructions of single-server PIR from trapdoor permutations, and establish
a tight lower bound on the number of bits communicated by the server in such constructions. Our main result
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is the following:

Main Theorem (Informal). In any polynomially-preserving fully-black-box construction of a single-server
PIR protocol from trapdoor permutations the server communicates Ω(n) bits, where n is the size of the server’s
database.

As mentioned above, the combination of the results of Di Crescenzo et al. [5] and of Gennaro et al. [10]
rules out the more general class of black-box reductions of single-server PIR with n−1 bits of communication
to trapdoor permutations. This result, however, does not apply to enhanced trapdoor permutations. We note
that our lower bound holds for the most generic form of trapdoor permutations, and in particular for enhanced
trapdoor permutations.1

In addition, we note that our lower bound holds only for constructions which are polynomially-preserving.
The construction of Kushilevitz and Ostrovsky [27], which is based on enhanced trapdoor permutations in a
fully-black-box manner and in which the server communicates n − o(n) bits, is only weakly-preserving (i.e.,
it is significantly easier to break their protocol than to break the security of the underlying family of trapdoor
permutations 2). Thus, the question of whether a tight linear lower bound can be established for weakly-
preserving constructions as well remains open.

The main technical contributions. This paper consists of two main contributions from which our lower
bound is immediately obtained. First, we derive a tight lower bound on the communication complexity of
black-box constructions of statistically-hiding bit-commitment schemes from trapdoor permutations. Very re-
cently, Haitner et al. [18] proved that any polynomially-preserving fully-black-box construction of statistically-
hiding bit-commitment scheme from a family of trapdoor permutations has Ω(n/ log n) communication rounds,
where n is the security parameter of the scheme. In particular, this implies a lower bound on the number of bits
communicated by the sender. In this paper we manage to improve their lower bound and prove the following
theorem:

Theorem (Informal) 1.1. In any polynomially-preserving fully-black-box construction of a statistically-
hiding bit-commitment scheme from a family of trapdoor permutations the sender communicates Ω(n) bits
during the commit stage, where n is the security parameter of the scheme.

This lower bound asymptotically matches the upper bound given by the statistically-hiding commitment
scheme of Naor et al. [31].

In addition, we improve the efficiency of the reduction of statistically-hiding commitment schemes to
single-server PIR, presented by Beimel et al. [1]. Our reduction essentially uses the reduction of Beimel et
al. instantiated with a better extractor, which enables us to preserve the communication complexity of the
underlying single-server PIR protocol. As stating this result turns out to involve subtle technical details, here
we only state a very informal statement:

Theorem (Informal) 1.2. There is a linearly-preserving fully-black-box reduction of statistically-hiding com-
mitment schemes to low-communication single-server PIR, which essentially preserves the communication
complexity of the underlying single-server PIR protocol.

1Note that enhanced trapdoor permutations are, seemingly, stronger than plain trapdoor permutations. Therefore, although our
result is weaker in terms of the class of reductions and the bound on the communication complexity, it provides the first evidence
that enhanced trapdoor permutations are not sufficient to construct single-server PIR with sublinear communication (at least from a
black-box perspective).

2Though the security guarantees of the two primitives are still polynomially-related.
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1.3 Paper Organization

In Section 2 we briefly present the notations and formal definitions used in this paper. In Section 3 we
prove our tight lower bound on the number of bits communicated by the sender during the commit stage of
statistically-hiding commitment schemes. In Section 4 we describe an improved reduction of statistically-
hiding commitment scheme to low-communication single-server PIR. Finally, in Section 5 we establish the
lower bound for single-server PIR by combining our main technical contributions.

2 Preliminaries

We denote by Πn the set of all permutations over {0, 1}n. For an integer n, we denote by Un the uniform
distribution over the set {0, 1}n. For a finite set X, we denote by x← X the experiment of choosing an element
of X according to the uniform distribution. Similarly, for a distributionD over a set X, we denote by x ← D
the experiment of choosing an element of X according to the distribution D. For a distribution D we denote
by supp(D) set of elements having non-zero probability underD. The min-entropy ofD is defined as:

H∞(D) = min
x∈supp(D)

(
log

1
PrD [x]

)
.

The statistical distance between two distributions X and Y over Ω is denoted SD(X, Y), and defined as

SD(X,Y) =
1
2

∑

ω∈Ω
|PrX [ω] − PrY [ω]| .

Definition 2.1. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-extractor if for every distribution X over
{0, 1}n with H∞(X) ≥ k the distribution E(X,Ud) is ε-close to uniform. E is a strong (k, ε)-extractor if the
function E′(x, y) = y ◦ E(x, y) is a (k, ε)-extractor (where ◦ denotes concatenation).

In our construction of a statistically-hiding commitment scheme from single-server PIR we will be using
the following explicit construction of strong extractors, which is obtained as a corollary of [40, Corollary 3.4].

Proposition 2.2. For any k ∈ ω(log(n)), there exists an explicit strong (k, 21−k)-extractor EXT : {0, 1}n ×
{0, 1}3k → {0, 1}k/2.

The following standard fact (see, for example [38, Fact 2.6]) will be useful for us in analyzing statistically-
close distributions.

Fact 2.3. If X and Y are two distributions such that SD(X, Y) < ε, then with probability at least 1− 2
√
ε over

x← X it holds that
(
1 − √ε

)
· Pr [X = x] < Pr [Y = x] <

(
1 +
√
ε
)
· Pr [X = x] .

2.1 Trapdoor Permutations

We briefly present the notion of trapdoor permutations, and refer the reader to [15] for a more comprehensive
discussion. A collection of trapdoor permutations is represented by a triplet of the form τ =

(
G, F, F−1

)
.

Informally, G corresponds to a key generation procedure, which is queried on a string td (intended as the
“trapdoor”) and produces a corresponding public key pk. The procedure F is the actual collection of permu-
tations, which is queried on a public key pk and an input x. Finally, the procedure F−1 is the inverse of F:
If G(td) = pk and F(pk, x) = y, then F−1(td, y) = x. In this paper, since we are concerned with providing a
lower bound, we do not consider the most general definition of a collection of trapdoor permutations. Instead,
we denote by Tn the set of all triplets τn =

(
Gn, Fn, F−1

n

)
of the following form:
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1. Gn ∈ Πn.

2. Fn : {0, 1}n × {0, 1}n → {0, 1}n is a function such that Fn(pk, ·) ∈ Πn for every pk ∈ {0, 1}n.

3. F−1
n : {0, 1}n×{0, 1}n → {0, 1}n is a function such that F−1

n (td, y) returns the unique x ∈ {0, 1}n for which
Fn(Gn(td), x) = y.

Our lower bound proof is based on analyzing random instances of such collections. A uniformly dis-
tributed τn ∈ Tn can be chosen as follows: Gn is chosen uniformly at random from Πn, and for each pk ∈ {0, 1}n
a permutation Fn(pk, ·) is chosen uniformly and independently at random from Πn.

Definition 2.4. A family τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor permutations is s(n)-hard if for every prob-
abilistic Turing-machine A that runs in time s(n), and for all sufficiently large n,

Pr
[
Aτ(1n,Gn(td), y) = F−1

n (td, y)
]
≤ 1

s(n)
,

where the probability is taken uniformly over all the possible choices of td ∈ {0, 1}n and y ∈ {0, 1}n, and over
all the possible outcomes of the internal coin tosses of A.

Definition 2.4 refers to the difficulty of inverting a random permutation F(pk, ·) on a uniformly distributed
image y, when given only pk = G(td) and y. Some applications, however, require enhanced hardness con-
ditions. For example, it may be required (cf. [16, Appendix C]) that it is hard to invert F(pk, ·) on y even
given the random coins used in the generation of y. Note that our formulation captures such hardness con-
dition as well and therefore the impossibility results proved in this paper hold also for enhanced trapdoor
permutations.3

2.2 Single-Server Private Information Retrieval

A single-server Private Information Retrieval (PIR) scheme is a protocol between a server and a user. The
server holds a database x ∈ {0, 1}n and the user holds an index i ∈ [n] to an entry of the database. Very
informally, the user wishes to retrieve the ith entry of the database, without revealing the index i to the server.
More formally, a single-server PIR scheme is defined via a pair of probabilistic polynomial-time Turing-
machines (S,U) such that:

• S receives as input a string x ∈ {0, 1}n. Following its interaction it does not have any output.

• U receives as input an index i ∈ [n]. Following its interaction it outputs a value b ∈ {0, 1,⊥}.
Denote by b ← 〈S(x),U(i)〉 the experiment in which S and U interact (using the given inputs and

uniformly chosen random coins), and then U outputs the value b. It is required that there exists a negligible
function ν(n), such that for all sufficiently large n, and for every string x = x1 ◦ · · · ◦ xn ∈ {0, 1}n, it holds that
xi ← 〈S(x),U(i)〉 with probability at least 1 − ν(n) over the random coins of both S and R.

In order to define the security properties of such schemes, we first introduce the following notation. Given
a single-server PIR scheme (S,U) and a Turing-machineS∗ (a malicious server), we denote by view〈S∗,U(i)〉(n)
the distribution on the view of S∗ when interacting withU(i) where i ∈ [n]. This view consists of its random
coins and of the sequence of messages it receives from U, where the distribution is taken over the random
coins of both S∗ andU.

3A different enhancement, used by [17], requires the permutations’ domain to be polynomially dense in {0, 1}n. Clearly, our
impossibility result holds for such an enhancement as well.
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Definition 2.5. A single-server PIR scheme (S,U) is secure if for every probabilistic polynomial-time Turing-
machines S∗ and D, and for every two sequences of indices {in}∞i=1 and { jn}∞i=1 where in, jn ∈ [n] for every n,
it holds that

∣∣∣∣Pr
[
v← view〈S∗,U(in)〉(n) : D(v) = 1

]
− Pr

[
v← view〈S∗,U( jn)〉(n) : D(v) = 1

]∣∣∣∣ ≤ ν(n) ,

for some negligible function ν(n) and for all sufficiently large n.

2.3 Commitment Schemes

A commitment scheme is a two-stage interactive protocol between a sender and a receiver. Informally, after
the first stage of the protocol, which is referred to as the commit stage, the sender is bound to at most one
value, not yet revealed to the receiver. In the second stage, which is referred to as the reveal stage, the sender
reveals its committed value to the receiver. More formally, a commitment scheme is defined via a triplet of
probabilistic polynomial-time Turing-machines (S,R,V) such that:

• S receives as input the security parameter 1n and a string x ∈ {0, 1}k. Following its interaction, it outputs
some information decom (the decommitment).

• R receives as input the security parameter 1n. Following its interaction, it outputs a state information
com (the commitment).

• V (acting as the receiver in the reveal stage4) receives as input the security parameter 1n, a commitment
com and a decommitment decom. It outputs either a string x′ ∈ {0, 1}k or ⊥.

Denote by (decom|com) ← 〈S(1n, x),R(1n)〉 the experiment in which S and R interact (using the given
inputs and uniformly chosen random coins), and then S outputs decom while R outputs com. It is required
that for all n, every string x ∈ {0, 1}k, and every pair (decom|com) that may be output by 〈S(1n, x),R(1n)〉, it
holds that V(com, decom) = x.5 In the remainder of the paper, it will often be convenient for us to identify
V with R, and refer to a commitment scheme as a pair (S,R).

The security of a commitment scheme can be defined in two complementary ways, protecting against ei-
ther an all-powerful sender or an all-powerful receiver. In this paper, we deal with commitment schemes of the
latter type, which are referred to as statistically-hiding commitment schemes. In order to define the security
properties of such schemes, we first introduce the following notation. Given a commitment scheme (S,R)
and a Turing-machine R∗, we denote by view〈S(x),R∗〉(n) the distribution on the view of R∗ when interacting
with S(1n, x). This view consists of R∗’s random coins and of the sequence of messages it receives from
S. The distribution is taken over the random coins of both S and R∗. Note that whenever no computational
restrictions are assumed on R∗, without loss of generality we can assume that R∗ is deterministic.

Definition 2.6. A commitment scheme (S,R) is ρ(n)-hiding if for every deterministic Turing-machine R∗,
and for every two sequences of strings {xn}∞i=1 and {x′n}∞i=1 where xn, x′n ∈ {0, 1}k(n) for every n the ensembles
{view〈S(xn),R∗〉(n)} and {view〈S(x′n),R∗〉(n)} have statistical difference at most ρ(n) for all sufficiently large n. Such
a scheme is statistically-hiding if it is ρ(n)-hiding for some negligible function ρ(n).

Our lower bound for commitment schemes holds in fact under a weaker hiding requirement. We derive
our results even for commitment schemes in which the sender is statistically protected only against an honest
receiver. Such schemes are referred to as statistically-hiding honest-receiver commitment schemes. Formally,

4Note that there is no loss of generality in assuming that the reveal stage is non-interactive. This is since any such interactive
stage can be replaced with a non-interactive one as follows: The sender sends its internal state to the receiver, who then simulates the
sender in the interactive stage.

5Although we assume perfect completeness, it is not essential for our results.
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it is only required that the statistical difference between the ensembles {view〈S(xn),R〉(n)} and {view〈S(x′n),R〉(n)}
is some negligible function of n.

Definition 2.7. A commitment scheme (S,R,V) is µ(n)-binding if for every probabilistic polynomial-time
Turing-machine S∗ it holds that the probability that ((decom, decom′)|com) ← 〈S∗(1n),R(1n)〉 (where the
probability is over the random coins of both S∗ and R) such that V(com, decom) , V(com, decom′) and
V(com, decom),V(com, decom′) , ⊥ is negligible in n for all sufficiently large n. Such a scheme is
computationally-binding if it is µ(n)-binding for some negligible function µ(n), and is weakly-binding if it
is (1 − 1/p(n))-binding for some polynomial p(n).

2.4 Black-Box Reductions

A reduction of a primitive P to a primitive Q is a construction of P out of Q. Such a construction consists of
showing that if there exists an implementation C of Q, then there exists an implementation MC of P. This is
equivalent to showing that for every adversary that breaks MC , there exists an adversary that breaks C. Such a
reduction is semi-black-box if it ignores the internal structure of Q’s implementation, and it is fully-black-box
if the proof of correctness is black-box as well, i.e., the adversary for breaking Q ignores the internal structure
of both Q’s implementation and of the (alleged) adversary breaking P. Semi-black-box reductions are less
restricted and thus more powerful than fully-black-box reductions. A taxonomy of black-box reductions was
provided by Reingold, Trevisan and Vadhan [36], and the reader is referred to their paper for a more complete
and formal view of these notions.

We now formally define the class of constructions considered in this paper. Our results in the current
paper are concerned with the particular setting of fully-black-box constructions of single-server PIR and of
statistically-hiding commitment schemes from trapdoor permutations. We focus here on specific definitions
for these particular primitives and we refer the reader to [36] for a more general definition.

When examining efficiency measures of fully-black-box constructions, an essential parameter for such
characterizations, as introduced by Haitner et al. [18], is the security-parameter-expansion of the construc-
tion. Consider, for example, a fully-black-construction of a commitment scheme from a family of trapdoor
permutations. One ingredient of such a construction is a machine A that attempts to break the security of
the trapdoor permutation family given oracle access to any malicious sender S∗ that breaks the security of
the commitment scheme. Then, A receives a security parameter 1n (and possibly some additional inputs) and
invokes S∗ in a black-box manner. The standard definition does not restrict the range of security parame-
ters that A is allowed to invoke S∗ on. For example, A may invoke S∗ on security parameter 1n2

, or even
on security parameter 1Θ(s(n)), where s(n) is the running time of A. In this paper, we will use the notion
`(n)-expanding for short, and note that according to Luby’s classification [30], any polynomially-preserving
reduction is O(n)-expanding in our terminology.

Definition 2.8. A fully-black-box `(n)-expanding construction of a single-server PIR scheme from an s(n)-
hard family of trapdoor permutations is a triplet of probabilistic oracle Turing-machines (S,U, A) for which
the following hold:

1. Correctness: For every family τ of trapdoor permutations, (Sτ,Uτ) is a single-server PIR scheme.

2. Black-box proof of security: For every family τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor permutations
and for every probabilistic polynomial-time Turing-machine S∗, if S∗ with oracle access to τ breaks the
security of (Sτ,Uτ), then

Pr
[
Aτ,S

∗
(1n,Gn(td), y) = F−1

n (td, y)
]
>

1
s(n)

,
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for infinitely many values of n, where A runs in time s(n) and invokes S∗ on security parameters which
are at most 1`(n). The probability is taken uniformly over all the possible choices of td ∈ {0, 1}n and
y ∈ {0, 1}n, and over all the possible outcomes of the internal coin tosses of A.

Definition 2.9. A fully-black-box `(n)-expanding construction of a weakly-binding and statistically-hiding
honest-receiver commitment scheme from an s(n)-hard family of trapdoor permutations is a triplet of proba-
bilistic oracle Turing-machines (S,R, A) for which the following hold:

1. Correctness: For every family τ of trapdoor permutations, (Sτ,Rτ) is a statistically-hiding honest-
receiver commitment scheme.

2. Black-box proof of binding: For every family τ =
{
τn =

(
Gn, Fn, F−1

n

)}∞
n=1

of trapdoor permutations
and for every probabilistic polynomial-time Turing-machine S∗, if S∗ with oracle access to τ breaks the
binding of (Sτ,Rτ), then

Pr
[
Aτ,S

∗
(1n,Gn(td), y) = F−1

n (td, y)
]
>

1
s(n)

,

for infinitely many values of n, where A runs in time s(n) and invokes S∗ on security parameters which
are at most 1`(n). The probability is taken uniformly over all the possible choices of td ∈ {0, 1}n and
y ∈ {0, 1}n, and over all the possible outcomes of the internal coin tosses of A.

We remark that the above correctness requirements are very strict and are not essential for our results. For
example, in the setting of commitment schemes, for every τ such that the protocol (Sτ,Rτ) is a weakly-binding
statistically-hiding honest-receiver commitment scheme, we construct a malicious senderS∗ which breaks the
binding property of the scheme. Therefore, we could have dealt with weaker correctness requirements as well,
but stating such a weaker requirement in a meaningful way turns out to be quite subtle.

3 Communication Lower Bound for Statistically-Hiding Commitment Schemes

In this section we prove a lower bound on the communication complexity of fully-black-box constructions
of statistically-hiding commitment schemes from trapdoor permutations. We establish a lower bound on the
number of bits communicated by the sender during the commit stage of any such scheme. Since we are
interested in proving an impossibility result for commitment schemes, it will be sufficient for us to deal with
bit-commitment schemes. We prove the following theorem:

Theorem 3.1. In any fully-black-box O(n)-expanding construction of a weakly-binding statistically-hiding
honest-receiver bit-commitment scheme from a family of trapdoor permutations, the sender communicates
Ω(n) bits during the commit stage.

The proof of Theorem 3.1 follows the approach and technique of Haitner at el. [18] who constructed
a “collision-finding” oracle in order to derive a lower bound on the round complexity of statistically-hiding
commitment schemes. Given any fully-black-box O(n)-expanding construction (S,R, A) of a weakly-binding
statistically-hiding honest-receiver bit-commitment scheme from a family of trapdoor permutations τ, we
show that relative to their oracle the following holds: (1) there exists a malicious sender S∗ that breaks the
binding of the scheme (Sτ,Rτ), and (2) if the sender communicates o(n) bits during the commit stage of
(Sτ,Rτ), then the machine A (with oracle access to S∗) fails to break the security of τ.
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3.1 The Oracle

We briefly describe the oracle constructed by Haitner et al. [18] and state its main property. The oracle is of
the form O = (τ,Samτ), where τ is a family of trapdoor permutations (i.e., τ = {τn}∞n=1, where τn ∈ Tn for
every n), and Samτ is an oracle that, very informally, receives as input a description of a circuit C (which may
contain τ-gates) and a string z, and outputs a uniformly distributed preimage of z under the mapping defined
by C. As discussed in [18], several essential restrictions are imposed on the querying of Sam that prevent it
from assisting in inverting τ.

Description of Sam. The oracle Sam receives as input a query of the form Q = (Cτ
next,C

τ, z), and outputs
a pair (w′, z′) where w′ is a uniformly distributed preimage of z under the mapping defined by the circuit Cτ,
and z′ = Cτ

next(w
′). We impose the following restrictions:

1. z was the result of a previous query with Cτ as the next-query circuit (note that this imposes a forest-like
structure on the queries).

2. The circuit Cτ
next is a refinement of the circuit Cτ, where by a refinement we mean that Cτ

next(w) =

(Cτ(w), C̃τ(w)) for some circuit C̃τ and for every w. In particular, this implies that Cτ and Cτ
next have

the same input length. Given a query Q, we denote this input length by m(Q), and when the query Q is
clear from the context we will write only m.

3. Each query contains a security parameter 1n, and Sam answers queries only up to depth depth(n), for
some “depth restriction” function depth : N → N which is a part of the description of Sam. The
security parameter is set such that a query with security parameter 1n is allowed to contain circuits with
queries to permutations on up to n bits. Note that although different queries may have different security
parameters, we ask that in the same “query-tree”, all queries will have the same security parameter
(hence the depth of the tree is already determined by the root query).

In order to impose these restrictions, Sam is equipped with a family sign = {signk}∞k=1 of (random)
functions signk : {0, 1}k → {0, 1}2k that will be used as “signatures” for identifying legal queries as follows:
in addition to outputting (w′, z′), Sam will also output the value sign(1n,Cτ

next, z
′, dep + 1), where dep is

the depth of the query, 1n is the security parameter of the query, and by applying the “function” sign we
actually mean that we apply the function signk for the correct input length. Each query of the form Q =

(1n,Cτ
next,C

τ, z, dep, sig) is answered by Sam if and only if Cτ
next is a refinement of Cτ, dep ≤ depth(n) and

sig = sign(1n,Cτ, z, dep).
Finally, Sam is provided with a family of (random) permutationsF = { fQ}, where for every possible query

Q a permutation fQ is chosen uniformly at random from Πm(Q). Given a query Q = (1n,Cτ
next,C

τ, z, dep, sig),
the oracle Sam uses the permutation fQ ∈ F in order to sample w′ as follows: it outputs w′ = fQ(t) for
the lexicographically smallest t ∈ {0, 1}m such that Cτ( fQ(t)) = z. Note that whenever the permutation fQ is
chosen from Πm uniformly at random, and independently of all other permutations in F , then w′ is indeed
a uniformly distributed preimage of z. In this paper, whenever we consider the probability of an event over
the choice of the family F , we mean that for each query Q a permutation fQ is chosen uniformly at random
from Πm(Q) and independently of all other permutations. A complete and formal description of the oracle is
provided in Figure 1.

Definition 3.2. We say that a circuit A queries the oracle Samτ,F ,sign
depth up to depth d, if for every Sam-query

Q = (1n,Cπ
next,C

π, z, dep, sig) that A makes, it holds that dep ≤ d.

One of the main properties of the oracle Sam, as proved in [18], is the following: any circuit with oracle
access to Sam that tries to invert a random trapdoor permutation, fails with high probability. More specifically,
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On input Q = (1n,Cτ
next

,Cτ, z, dep, sig), Samτ,F ,sign
depth

acts as follows:
1. If Cτ = ⊥, then output (w′, z′, sig′) where w′ = fQ(0m), z′ = Cτ

next(w
′), and sig′ = sign(1n,Cτ

next, z
′, 1).

2. Else, if Cτ
next is a refinement of Cτ, dep ≤ depth(n) and sig = sign(1n,Cτ, z, dep), then

(a) Find the lexicographically smallest t ∈ {0, 1}m such that Cτ( fQ(t)) = z.

(b) Output (w′, z′, sig′) where w′ = fQ(t), z′ = Cτ
next(w

′), and sig′ = sign(1n,Cτ
next, z

′, dep + 1).

3. Else, output ⊥.

Figure 1: The oracle Sam.

Haitner et al. managed to relate this success probability to the maximal depth of the Sam-queries made by the
circuit, and to the size of the circuit. They proved the following theorem:

Theorem 3.3 ([18]). For every circuit A of size s(n) that queries Sam up to depth d(n) such that s(n)3d(n)+2 <

2n/8, for every depth restriction function depth and for all sufficiently large n, it holds that

Pr td←{0,1}n ,τ,F
y←{0,1}n ,sign

[
Aτ,Samτ,F ,sign

depth (Gn(td), y) = F−1
n (td, y)

]
≤ 2

s(n)
.

3.2 Breaking Low-Communication Statistically-Hiding Commitment Schemes

We show that a random instance of the oracle Sam can be used to break the binding of any statistically-hiding
commitment scheme. Specifically, for every bit-commitment scheme (S,R) which is (1) weakly-biding, (2)
statistically-hiding against an honest-receiver, and (3) has oracle access to a family τ of trapdoor permutations,
we construct a malicious sender S∗ which has oracle access to Samτ,F ,sign

depth , and breaks the binding of (Sτ,Rτ)
with sufficiently high probability over the choices of τ, F and sign. Formally, the following theorem is proved:

Theorem 3.4. For any statistically-hiding honest-receiver bit-commitment scheme (S,R,V) with oracle ac-
cess to a family of trapdoor permutations in which the sender communicates at most c(n) bits during the
commit stage, and for any polynomial p(n), there exists a polynomial-time malicious sender S∗ such that

Prτ,F ,sign,rR


((decom, decom′)|com)←

〈
S∗ Samτ,F ,sign

depth (1n),Rτ(1n, rR)
〉

:

Vτ(com, decom) = 0,Vτ(com, decom′) = 1

 > 1 − 1
p(n)

,

for all sufficiently large n, where depth(n) =
⌈

c(n)
log n

⌉
+ 1.

In what follows we introduce the notation used in this section. We proceed with a brief presentation of
the main ideas underlying the proof of Theorem 3.4. Then, we formally describe the malicious sender S∗ and
analyze its success probability in order to prove Theorem 3.4.

Notations. Let (S,R) be a bit-commitment scheme with oracle access to a family of trapdoor permutations.
We denote by b ∈ {0, 1} and rS, rR ∈ {0, 1}∗ the input bit of the sender and the random coins of the sender
and the receiver, respectively. We denote by c(n) the maximal number of bits communicated from the sender
to the receiver in the commit stage with security parameter 1n. In addition we denote by d(n) the number of
communication rounds in the scheme with security parameter 1n, and without loss of generality we assume
that the receiver makes the first move. Each communication round consists of a message sent from the receiver
to the sender followed by a message sent from the sender to the receiver. We denote by qi and ai the messages
sent by the receiver and the sender in the i-th round, respectively, and denote by ad+1 the message sent by
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Input: (b, r )
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S Input: rR

dq

da

d+1a

Figure 2: A d-round bit-commitment scheme.

the sender in the reveal stage. Finally, we let āi = (a1, . . . , ai) and q̄i = (q1, . . . , qi). A generic d-round
bit-commitment scheme is described in Figure 2.

Although the sender is a probabilistic polynomial-time Turing-machine, in order to interact with the oracle
Sam we need to identify the sender with a sequence of polynomial-size circuits S 1, . . . , S d+1 as follows. In
the first round, S sends a1 by computing a1 = S 1(b, rS, q1). Similarly, in the following rounds, S sends ai by
computing ai = S i(b, rS, q̄i).

Finally, in order to simplify the notation regarding the input and output of the oracle Sam, in this section
we ignore parts of the input and output of Sam: we ignore the security parameter and the “signatures”
(since our malicious sender S∗ will only ask legal queries), and consider queries of a simplified form Q =

(Cτ
next,C

τ, z), and answers that consist only of w′ (i.e., an answer consists only of a uniformly distributed
preimage of z under the mapping defined by Cτ). In addition, in what follows it will be more intuitive to
replace z in the queries by its preimage w, but this is clearly not essential.

A brief overview. Informally, recall that the oracle Sam described in Section 3.1 acts as follows: Sam is
given as input a query Q = (Cnext,C, z), and outputs a pair (w′, z′) where w′ is a uniformly distributed preimage
of z under the mapping defined by the circuit C, and z′ = Cnext(w′). In addition, we imposed the restriction that
there was a previous query (C, ·, ·) that was answered by (w, z) (note that this imposes a forest-like structure
on the queries), and we only allow querying Sam up to depth O(n/ log n).

Given a statistically-hiding bit-commitment scheme in which the sender communicates c(n) bits during
the commit stage, we assume without loss of generality that the commit stage of the scheme has c(n) com-
munication rounds, where in each round the sender communicates a single bit to the receiver. The malicious
sender S∗ operates as follows: it chooses a random input w (consisting of random coins and a random com-
mitted bit), and during the first log n rounds it simulates the honest sender. In these log n rounds, it receives
log n messages q1, . . . , qlog n from the receiver. Then, S∗ constructs the circuit Cq1,...,qlog n that receives as in-
put the sender’s input w and outputs the log n sender’s messages corresponding to the receiver’s messages
q1, . . . , qlog n. This circuit is used to query Sam for a random input w1. It may be the case, however, that w1
is not consistent with the actual messages a1, . . . , alog n that S∗ sent in the first log n rounds. In this case, S∗
“rewinds” Sam for a polynomial number of times, and since the total length of the sender’s messages in these
log n rounds is only log n bits, then with sufficiently high probability S∗ will obtain a consistent w1. Now,
in the next log n rounds the malicious sender S∗ simulates the honest sender with input w1, and at the end
of these log n rounds it will query (and rewind) Sam again for another consistent input wlog n+1, and so on.
Finally, after completing the commit stage, S∗ queries Sam to obtain two random inputs wc(n) and w′c(n) which
are consistent with the transcript of the commit stage. Since the commitment scheme is statistically-hiding,

11



with probability roughly half they can be used to break the binding of the protocol. A crucial point in this
description, is that S∗ queries Sam only up to depth c(n)/ log n (S∗ used Sam to obtain c(n)/ log n values
w1,wlog n+1, . . . ,wc(n)). Therefore, if c(n) = o(n), then an oracle Sam that answers queries only up to depth
c(n)/ log n cannot be used to invert a random trapdoor permutation, according to Theorem 3.3.

A formal description ofS∗. Given a bit-commitment scheme (S,R) in which the sender communicates c(n)
bits during the commit stage, we assume without loss of generality (and for simplicity of the presentation)
that the scheme has c(n) communication rounds (i.e., d(n) = c(n)) where in each round during the commit
stage the sender communicates a single bit to the receiver (i.e., each of a1, . . . , ad(n) is one bit). Furthermore,
in order to simplify the description of S∗, we assume that log n is an integral value (where 1n is the security
parameter given as input to S∗) and that c(n) = M · log n + 1 for some integer M = M(n). We stress that these
assumptions are not at all essential, but avoiding them will result in a more complicated description. On input
1n, the malicious sender S∗ with oracle access to Samτ,F ,sign

depth interacts with the honest receiver R as follows.

1. The commit stage:

(a) In the first round S∗ receives R’s message q1, and computes the description of the circuit C1 =

S 1(·, ·, q1) obtained from the circuit S 1 by fixing q1 as its third input. Then, S∗ queries Samτ,F ,sign
depth

with (C1,⊥,⊥), receives an answer w1 = (b1, r1) and sends a1 = S 1(b1, r1, q1) to R.

(b) In every round i ∈ {2, . . . , log n}, S∗ simulates the honest sender S with input w1. That is, S∗
receives R’s message qi and replies with ai = S i(b1, r1, q̄i).

(c) In round log n + 1, S∗ receives R’s message qlog n+1, and computes the description of the circuit
Clog n+1 = S log n+1(·, ·, q̄log n+1) obtained from the circuit S log n+1 by fixing q̄log n+1 as its third in-
put. Then, S∗ queries Samτ,F ,sign

depth with (Clog n+1,C1,w1) for t = 2n5c(n)p(n) times and receives
t answers. If one of these answers is consistent with the transcript of the protocol so far, then
denote the first such answer by wlog n+1 = (blog n+1, rlog n+1), and in this case S∗ sends the mes-
sage alog n+1 = S log n+1(blog n+1, rlog n+1, q̄log n+1) to R. Otherwise, S∗ aborts the execution of the
protocol.

(d) In the remainder of the commit stage S∗ acts as follows:

i. For every k and in every round i ∈ {(k − 1) log n + 2, . . . , k log n}, the malicious sender S∗
simulates the honest sender S with input w(k−1) log n+1.

ii. For every integer k and in every round k log n + 1 the malicious sender S∗ receives R’s mes-
sage qk log n+1, and computes the description of the circuit Ck log n+1 = S k log n+1(·, ·, q̄k log n+1)
obtained from the circuit S k log n+1 by fixing q̄k log n+1 as its third input. Then, S∗ queries
Samτ,F ,sign

depth with (Ck log n+1,C(k−1) log n+1,w(k−1) log n+1) for t = 2n5c(n)p(n) times and receives
t answers. If one of these answers is consistent with the transcript of the protocol so far,
then denote the first such answer by wk log n+1 = (bk log n+1, rk log n+1), and in this case S∗ sends
ak log n+1 = S k log n+1(bk log n+1, rk log n+1, q̄k log n+1) to R. Otherwise, S∗ aborts the execution of
the protocol.

2. The reveal stage:

(a) S∗ queries Samτ,F ,sign
depth with (⊥,Cd(n),wd(n)) for n times, and receives n pairs

{(
b( j)

d(n)+1, r
( j)
d(n)+1

)}n

j=1
.

If there exist j0, j1 ∈ [n] such that b( j0)
d(n)+1 = 0 and b( j1)

d(n)+1 = 1, then S∗ outputs the two values

decom = S d(n)+1
(
b( j0)

d(n)+1, r
( j0)
d(n)+1, q̄d(n)

)

decom′ = S d(n)+1
(
b( j1)

d(n)+1, r
( j1)
d(n)+1, q̄d(n)

)
.
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Otherwise, S∗ aborts the execution of the protocol.

Two minor technical details were omitted from the description. First, according to the description of
Sam (Section 3.1), whenever Sam is queried multiple times with the same input, it returns the exact same
answer. Thus, whenever S∗ queries Sam more than once with the same input, S∗ has to make sure that the
queries are all different (for example, by artificially embedding the query number to one of the circuits in the
query). Second, in order for S∗’s queries to be legal, it should hold that the circuit Ck log n+1 is a refinement
of the circuit C(k−1) log n+1 for every integer k (as discussed in Section 3.1). This can be done very easily by
embedding the description of each C(k−1) log n+1 inside each Ck log n+1 (i.e., the output of Ci is the sequence of
bits āi instead of only the bit ai).

We proceed by arguing that the malicious sender S∗ successfully completes the commit stage with high
probability. Then, given that S∗ has successfully completed the commit stage, we prove that the transcript of
the commit stage is distributed identically to the transcript of the commit stage in an honest execution of the
protocol. This enables us to use the fact that the commitment scheme is statistically-hiding, and therefore a
random transcript can be revealed both as a commitment to b = 0 and as a commitment to b = 1, with almost
equal probabilities.

Lemma 3.5. The malicious sender S∗ successfully completes the commit stage with probability at least 1 −
1/(n3 p(n)) over the choices of τ,F , sign and rR.

Proof. The malicious sender S∗ may abort the commit stage only in rounds of the form k log n + 1. For every
integer 1 ≤ k ≤ c(n)−1

log n we denote by Ek the event in which S∗ aborts in round k log n + 1 of the commit stage.
Then, the probability that S∗ fails to complete the commit stage is

Pr



c(n)−1
log n⋃

k=1

Ek

 ≤
c(n)−1
log n∑

k=1

Pr [Ek] ,

where the probability is taken over the choices of τ,F , sign and rR. We show that for every 1 ≤ k ≤ c(n)−1
log n it

holds that Pr [Ek] ≤ 1/(n3c(n)p(n)), which yields the correctness of the lemma. For simplicity, we first con-
sider the case k = 1, and then show that the exact same argument generalizes for general k in a straightforward
manner.

At the beginning of the protocol, after receiving q1 from the receiver,S∗ queries Sam with Q1 = (C1,⊥,⊥)
and receives an answer w1 = (b1, r1). The description of Sam implies that w1 is uniformly distributed among
all possible inputs of the sender. S∗ then uses w1 to simulate the honest sender during the first log n rounds by
sending the bit ai = S i(b1, r1, q̄i) in each of these rounds. In round log n + 1, the malicious sender S∗ queries
Sam with (Clog n+1,C1,w1) for t = 2n5c(n)p(n) times and receives t answers. We claim that since each ai

is a bit and we consider here only log n of them, then at least one of these answers will be consistent with
the transcript of the protocol so far with high probability. Moreover, we show that this holds for any random
coins of the receiver, and therefore from this point on we fix the random coins of the receiver. Note that by
the description of Sam and the circuit C1, these t answers are chosen independently and uniformly at random
from all possible inputs of the sender (Sam outputs each of these t answers using a different permutation from
the family F provided to Sam, and each permutations in this family is chosen independently and uniformly
at random). Since the random coins of the receiver are fixed, the values a1, . . . , alog n can be viewed as a
deterministic function of the input w1. Let us denote this function by h : {0, 1}q(n) → {0, 1}log n, where q(n)
is the bit-length of the sender’s input. Then, it remains to analyze success probability of S∗ in the following
experiment:

• t + 1 values w1,w
(1)
log n+1, . . . ,w

(t)
log n+1 ∈ {0, 1}q(n) are chosen independently and uniformly at random.
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• S∗ is successful if h(w1) = h
(
w(i)

log n+1

)
for some i ∈ [t].

In order to analyze this experiment, we consider a set of “bad” inputs for h. This set consists of all inputs w
for which the set h−1(h(w)) is very small relative to {0, 1}q(n) (less than some polynomial fraction). In case that
w1 is not in this bad set, then S∗ has a very high success probability, and the probability that w1 is in this set
is rather low. More formally, let

BAD =

w ∈ {0, 1}q(n) :

∣∣∣h−1(h(w))
∣∣∣

2q(n) ≤ 1
2n4c(n)p(n)

 ,

then since the range of h contains at most n elements, we have that

Pr [w1 ∈ BAD] ≤ n · 1
2n4c(n)p(n)

=
1

2n3c(n)p(n)
.

Therefore, the probability that S∗ aborts in round log n + 1 can be upper bounded as follows

Pr [E1] ≤ Pr [w1 ∈ BAD] + Pr [E1 | w1 < BAD]

≤ 1
2n3c(n)p(n)

+

(
1 − 1

2n4c(n)p(n)

)t

=
1

2n3c(n)p(n)
+

(
1 − 1

2n4c(n)p(n)

)2n5c(n)p(n)

≤ 1
2n3c(n)p(n)

+ exp(−n)

≤ 1
n3c(n)p(n)

.

More generally, in every round of form k log n + 1 for k > 1, the malicious sender S∗ holds some input
w(k−1) log n+1, which is uniformly distributed among all inputs of the sender. This w(k−1) log n+1 was used byS∗ to
simulate the honest sender in rounds (k−1) log n+1, . . . , k log n. Then, S∗ uses Sam to sample independently
and uniformly at random t elements from the set of all inputs that are consistent with the transcript of the
protocol in the first (k−1) log n rounds. Therefore, it is only required that one of these inputs will be consistent
with w(k−1) log n+1 on the answers it provided in rounds (k − 1) log n + 1, . . . , k log n and the same argument as
before goes through, with the only difference that in this case the function h is defined only over the set of
inputs which are consistent with the first (k − 1) log n rounds (and not over the whole set {0, 1}q(n)).

In the following lemma we show that given that S∗ has successfully completed the commit stage, the
transcript of the commit stage is distributed identically to the transcript of the commit stage in an honest
execution of the protocol. Formally, we define two the following two distributions:

• D∗n = view〈S∗,R〉(n) is the distribution of the view of R in the commit stage when interacting with the
malicious sender S∗(1n). This view consists of R’s random coins and of the sequence of messages it
receives from S∗. The distribution is taken over R’s random coins and over the uniform choice of τ,F
and sign.

• Dn = view〈S,R〉(n) is the distribution of the view of R in the commit stage when interacting with the
honest sender S(1n, b, rS). This view consists of R’s random coins and of the sequence of messages
it receives from S. The distribution is taken over the random coins of R and S, and over the uniform
choice of b ∈ {0, 1} and τ.
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Lemma 3.6. Given that S∗ successfully completed the commit stage, the distributionsDn andD∗n are identi-
cal.

Proof. We show that the distributionsDn and D∗n assign equal probabilities to every triplet (rR, q̄d, ād) given
that S∗ did not abort during the commit stage. More specifically, we prove by induction on 1 ≤ i ≤ d that
PrDn

[
rR, q̄d, ād

]
= PrD∗n

[
rR, q̄d, ād

]
.

For i = 1, clearly we have that PrDn

[
rR, q1

]
= PrD∗n

[
rR, q1

]
since rR is distributed exactly the same in the

two cases, and q1 is a deterministic function of rR. Therefore we only have to show that PrDn

[
a1|rR, q1

]
=

PrD∗n
[
a1|rR, q1

]
. In the first round, the malicious sender S∗ queries Samτ,F ,sign

depth with Q = (C1,⊥,⊥), and

receives w1 = (b1, r1). Note that by the description of Samτ,F ,sign
depth and of F , there is a random permutation

fQ which corresponds to Q, and Samτ,F ,sign
depth outputs (b1, r1) = fQ(0m), which is a uniformly distributed value.

That is, S∗ sends a1 = S 1(b1, r1, q1) for a uniformly distributed pair (b1, r1) exactly as the honest sender S
should do.

Assume now that the claim holds for i − 1, i.e., PrDn

[
rR, q̄i−1, āi−1

]
= PrD∗n

[
rR, q̄i−1, āi−1

]
. Again, we

have that PrDn

[
qi|rR, q̄i−1, āi−1

]
= PrD∗n

[
qi|rR, q̄i−1, āi−1

]
, since in both cases qi is a deterministic function

of rR, q̄i−1 and āi−1. It remains to show that PrDn

[
ai|rR, q̄i, āi−1

]
= PrD∗n

[
ai|rR, q̄i, āi−1

]
. At this point we

have to distinguish between two possible cases. The first case is that in the current round S∗ computes ai by
simulating the honest sender using an input w which has already been sampled in an earlier round. Therefore
the distribution of the resulting ai is exactly as if the honest sender S had input w to begin with, and the
lemma follows inductively. The second case is that in the current round S∗ queries Samτ,F ,sign

depth multiple times
with some query Q and obtains some w which is consistent with the transcript of the protocol up to this
point. Note that by the description of Samτ,F ,sign

depth and of F , the permutation fQ which corresponds to Q was
chosen uniformly at random from Πm and independently of all the other permutations in F . Therefore, w is
uniformly distributed among all inputs which are consistent with the protocol’s transcript until this point, and
therefore the distribution of the resulting ai is exactly as if the honest sender S had input w to begin with.
Thus, PrDn

[
ai|rR, q̄i, āi−1

]
= PrD∗n

[
ai|rR, q̄i, āi−1

]
, which yields the correctness of the lemma.

We conclude the proof of Theorem 3.4 by combining Lemmata 3.5 and 3.6, and by exploiting the
statistical-hiding property of the commitment scheme.

Proof of Theorem 3.4. Assuming that the malicious sender S∗ has successfully completed the commit
stage, then in the reveal stage S∗ uses Samτ,F ,sign

depth in order to sample uniformly and independently at random

n input pairs
{(

b( j)
d+1, r

( j)
d+1

)}n

j=1
from the set of all input pairs which are consistent with the transcript of the

commit stage. We prove that with overwhelming probability these inputs enable S∗ to reveal both to b = 0
and to b = 1.

Denote by D0
n = view〈S(0),R〉(n) the distribution of the honest receiver’s view in the commit stage when

interacting with the honest sender S(1n, 0, rS). This view consists of its random coins and of the sequence
of messages it receives from S, and the distribution is taken over the random coins of R and S and over
the choice of τ. Similarly, let D1

n = view〈S(1),R〉(n). Then, the assumption that the commitment scheme is
statistically-hiding against an honest receiver, implies that the statistical difference between the distributions
D0

n andD1
n is some negligible function ρ(n).

We define a set of “good” transcripts. This set consists of all transcripts of the commit stage which enable
S∗ to reveal both to b = 0 and to b = 1 with overwhelming probability. We show that with overwhelming
probability the transcript is in this set. Formally, we define

GOOD =
{
trans :

(
1 −

√
ρ(n)

)
· PrD0

n
[trans] < PrD1

n
[trans] <

(
1 +

√
ρ(n)

)
· PrD0

n
[trans]

}
.
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Note that for every transcript trans of the commit stage and for every j ∈ [n], it holds that

Prτ,F ,rR
[
b( j)

d+1 = 0
∣∣∣∣ trans

]

Prτ,F ,rR
[
b( j)

d+1 = 1
∣∣∣∣ trans

] =
Prτ,F ,rR

[
b( j)

d+1 = 0 ∧ trans
]

Prτ,F ,rR
[
b( j)

d+1 = 1 ∧ trans
] =

PrD0
n

[trans]

PrD1
n

[trans]
,

where the second equality follows from Lemma 3.6. The definition of the set GOOD implies that if trans ∈
GOOD, then for all sufficiently large n it holds that

min
{
Prτ,F ,rR

[
b( j)

d+1 = 0
∣∣∣∣ trans

]
,Prτ,F ,rR

[
b( j)

d+1 = 1
∣∣∣∣ trans

]}
> 1/3 .

Therefore,

Prτ,F ,rR
[
S∗ fails in the reveal stage

∣∣∣ trans ∈ GOOD
]
< 2 ·

(
2
3

)n

,

since a failure occurs only in the case that all n input pairs sampled in the reveal stage have b( j)
d+1 = 0, or that

they all have b( j)
d+1 = 1. It remains to show that the transcript is in GOOD with overwhelming probability.

Lemma 3.6 and the fact that the statistical distance between the distributionsD0
n andD1

n is at most ρ(n) imply
that

Prτ,F ,rR [trans ∈ GOOD] = PrDn [trans ∈ GOOD]

=
1
2
·
(
PrD0

n
[trans ∈ GOOD] + PrD1

n
[trans ∈ GOOD]

)

≥ 1
2
·
(
2 · PrD0

n
[trans ∈ GOOD] − ρ(n)

)

> 1 − 2
√
ρ(n) − ρ(n)

2
,

where the last inequality follows from Fact 2.3. Therefore,

Pr
[S∗ fails in the reveal stage

] ≤ Pr [trans < GOOD] + Pr
[
S∗ fails in the reveal stage

∣∣∣ trans ∈ GOOD
]

≤ 2
√
ρ(n) +

ρ(n)
2

+ 2 ·
(
2
3

)n

.

Finally, Lemma 3.5 states that S∗ successfully completes the commit stage with probability at least 1 −
1/(n3 p(n)), and therefore

Prτ,F ,sign,rR


((decom, decom′)|com)←

〈
S∗ Samτ,F ,sign

depth (1n),Rτ(1n, rR)
〉

:

Vτ(com, decom) = 0,Vτ(com, decom′) = 1



> 1 −
(

1
n3 p(n)

+ 2
√
ρ(n) +

ρ(n)
2

+ 2 ·
(
2
3

)n)

> 1 − 1
p(n)

,

for all sufficiently large n.

16



3.3 Proof of Theorem 3.1

In this short section we combine Theorems 3.3 and 3.4 and derive the proof of Theorem 3.1. Let (S,R,V, A)
be a fully-black-box O(n)-expanding construction of a weakly-binding statistically-hiding honest-receiver bit-
commitment scheme from an s(n)-hard family of trapdoor permutations, in which the sender communicates at
most c(n) bits during the commit stage. Denote by p(n) the polynomial for which the scheme is (1 − 1/p(n))-
binding. From this point on, we fix the depth restriction function depth : N→ N of the oracle Sam to be the
function depth(n) =

⌈
c(n)
log n

⌉
+ 1. Theorem 3.4 states that there exists a polynomial-time malicious sender S∗

such that

Prτ,F ,sign,rR


((decom, decom′)|com)←

〈
S∗ Samτ,F ,sign

depth (1n),Rτ(1n, rR)
〉

:

Vτ(com, decom) = 0,Vτ(com, decom′) = 1

 > 1 − 1
p(n)

,

for all sufficiently large n. Thus, the fully-black-box construction guarantees that

Pr td←{0,1}n ,τ,F
y←{0,1}n ,sign

[
Aτ,S

∗,Samτ,F ,sign
depth (Gn(td), y) = F−1

n (td, y)
]
>

1
s(n)

,

for infinitely many values of n, where A runs in time s(n), and the probability is taken also over all the
possible outcomes of the internal coin tosses of A. By converting the Turing-machine A to a circuit family,
and by incorporating the description of S∗ into this family, we obtain that there exists a circuit A∗ of size at
most, say, s∗(n) = (s(n))2 such that

Pr td←{0,1}n ,τ,F
y←{0,1}n ,sign

[
A∗ τ,Samτ,F ,sign

depth (Gn(td), y) = F−1
n (td, y)

]
>

1
s(n)

>
2

s∗(n)
,

for infinitely many values of n. The assumption that the construction is O(n)-expanding (i.e., that A when given
security parameter 1n invokes S∗ on security parameters which are at most 1O(n)), guarantees that A uses S∗
in a way such that Sam is queried up to depth at most depth(n) = O

(
c(n)
log n

)
. This means that also the circuit A∗

queries Sam up to depth at most depth(n). We conclude the proof by observing that if s∗(n)3depth(n)+2 < 2n/8,
then the existence of the circuit A∗ contradicts Theorem 3.3, and therefore s∗(n)3depth(n)+2 ≥ 2n/8, i.e., c(n) =

Ω
( n log n

log s(n)

)
= Ω(n).

4 Refining the Relation Between Single-Server PIR and Commitment Schemes

The relation between single-server PIR and commitment schemes was first explored by Beimel et al. [1],
who showed that any single-server PIR protocol in which the server communicates at most n/2 bits to the user
(where n is the size of the server’s database), can be used to construct a weakly-binding statistically-hiding bit-
commitment scheme. In particular, this served as the first indication that the existence of low-communication
PIR protocols implies the existence of one-way functions. In this section, we refine the relation between these
two fundamental primitives by improving their reduction. Informally speaking, our reduction essentially uses
the reduction of Beimel et al. instantiated with a better extractor. This enables the following improvements:
(1) the communication complexity of the PIR protocol is essentially preserved, (2) given a single-server PIR
protocol in which the server communicates n − k bits, it is possible to commit to Ω(k) bits while executing
the underlying single-server PIR protocol only once, and (3) whereas the construction of Beimel et al. was
presented for single-server PIR protocols in which the server communicates at most n/2 bits, our construction
can rely on single-server PIR in which the server communicates up to n − ω(log n) bits.

In what follows we state our main theorem in the current section, and then turn to formally describe the
construction and prove Theorem 4.1.
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Theorem 4.1. Let d(n) ∈ ω(log n), k(n) ≥ 2d(n), and let P be a single-server PIR protocol in which the
server communicates n − k(n) bits, where n is the size of the server’s database. Then, there exists a weakly-
binding statistically-hiding commitment scheme COMP for d(n)/6 bits, in which the sender communicates
less than n − k(n) + 2d(n) bits during the commit stage. Moreover, the construction is fully-black-box and
linearly-preserving.

The construction. Fix d(n), k(n) and P as in Theorem 4.1. Figure 2 describes our construction of the
commitment scheme COMP = (S,R). In the construction we use a strong

(
d(n)/3, 21−d(n)/3

)
-extractor EXT :

{0, 1}n × {0, 1}d(n) → {0, 1}d(n)/6 whose existence is guaranteed by Proposition 2.2. The correctness of COMP
follows directly from the correctness of P. In addition, notice that the total number of bits communicated by
the sender in the commit stage is the total number of bits that the server communicates in P plus the seed
length and the output length of the extractor EXT. Thus, the sender communicates less than n − k(n) + 2d(n)
bits during the commit stage.

Protocol COMP = (S,R)

Joint input: security parameter 1n.
Sender’s input: s ∈ {0, 1}d(n)/6.

Commit stage:

1. S chooses a uniformly distributed x ∈ {0, 1}n.

2. R chooses a uniformly distributed index i ∈ [n].

3. S and R execute the single-server PIR protocol P for database of length n, where S acts as the server
with input x and R acts as the user with input i. As a result, R obtains a bit xi ∈ {0, 1}.

4. S chooses a uniformly distributed seed t ∈ {0, 1}d(n), computes y = EXT(x, t) ⊕ s, and sends (t, y) to R.

Reveal stage:

1. S sends (s, x) to R.

2. If the ith bit of x equals xi and y = EXT(x, t) ⊕ s, then R outputs s. Otherwise, R outputs ⊥.

Figure 2: A construction of a commitment scheme from any low-communication single-server PIR protocol.

Proof intuition. The commit stage consists of the sender and the receiver choosing random inputs x ∈
{0, 1}n and i ∈ [n], respectively, and executing the PIR protocol P on these inputs. As a consequence, the
receiver obtains a bit xi, which by the correctness of P is the ith bit of x. Now, notice that since the sender
communicated only n − ω(log n) bits, then the random variable corresponding to x still has ω(log n) min-
entropy from the receiver’s point of view (with high probability). We take advantage of this fact, and exploit
the remaining min-entropy of x in order to hide the committed string s in a statistical manner (note that since it
is required to reveal the seed of the extractor during the commit stage, we need a strong extractor). The formal
proof of the hiding property is similar to that of Lu [29] in the bounded storage model, which is in turn based
on ideas that were used for constructing pseudorandom generators for space bounded computations [33]. We
note that the proof of hiding does not rely on any computational properties of the underlying PIR protocol P,
but only on the assumed bound on the number of bits communicated by the server in P. The binding property
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follows from the security of the PIR protocol: in the reveal stage, the sender must send a value x whose ith bit
is consistent with the bit obtained by the receiver during the commit stage – but this bit is not known to the
sender.

Lemma 4.2. The scheme COMP is statistically hiding.

Proof. We have to show that for any computationally unbounded receiverR∗ and for any two strings s0 and s1,
the statistical distance between the distributions {view〈S(s0),R∗〉(n)} and {view〈S(s1),R∗〉(n)} (see Definition 2.6)
is negligible in n. The transcript of the commit stage consists of the transcript transP of the execution of P
and of the pair (t,EXT(x, t)⊕ s), where s is the committed string. Note that since transP is independent of the
committed string, it is sufficient to prove that the statistical distance between the distribution of (t,EXT(x, t))
given transP and the uniform distribution is negligible in n.

We argue that due to the bound on the number of bits communicated by the server in P, even after exe-
cuting P, the database x still has sufficient min-entropy in order to guarantee that (t,EXT(x, t)) is sufficiently
close to uniform. More specifically, let R∗ be an all-powerful receiver (recall that without loss of generality
such an R∗ is deterministic), and denote by X the random variable corresponding to the value x in the scheme
COMP. The following claim states the with high probability X has high min-entropy from R∗’s point of view.

Claim 4.3. It holds that

PrtransP←COMP
[
H∞(X | transP) <

k(n)
6

]
< 2−

k(n)
4 ,

where transP is the transcript of the embedded execution of P in COMP.

Proof. For any value of r, the random coins used by S in the execution of P, let fr : {0, 1}n 7→ {0, 1}n−k(n) be
the function that maps x to the value of transP generated by the interaction of (S(x, r),R∗), and let Col(x, r) def

=

{x′ ∈ {0, 1}n : fr(x′) = fr(x)}. Since fr has at most 2n−k(n) possible outputs, it follows that

Prx,r

[
|Col(x, r)| < 2

k(n)
2 +1

]
<

2n−k(n) · 2 k(n)
2 +1

2n = 21− k(n)
2 . (4.1)

Let
BAD =

{
transP : Prx,r

[
|Col(x, r)| < 2

k(n)
2 +1

∣∣∣∣ transP
]
> 2

k(n)
4 · 21− k(n)

2

}
,

then a standard averaging argument yields

PrtransP←COMP [transP ∈ BAD] ≤ 2−
k(n)

4 .

Denote by Ur the random variable corresponding to r in the execution of COMP. Then, the following
holds for every value of x and transP:

Pr [X = x | transP] (4.2)

= Pr
[
X = x ∧ |Col(X,Ur)| < 2

k(n)
2 +1

∣∣∣∣ transP
]

+ Pr
[
X = x ∧ |Col(X,Ur)| ≥ 2

k(n)
2 +1

∣∣∣∣ transP
]

≤ Pr
[
|Col(X,Ur)| < 2

k(n)
2 +1

∣∣∣∣ transP
]

+ 2−
(

k(n)
2 +1

)
.

Note that if H∞(X | transP) < k(n)/6 for some transP, then there exists an x for which

Pr [X = x | transP] ≥ 2−
k(n)

6 ,
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and therefore Equation 4.2 implies that

Pr
[
|Col(X,Ur)| < 2

k(n)
2 +1

∣∣∣∣ transP
]
> 2−

k(n)
6 − 2−

(
k(n)

2 +1
)
> 21− k(n)

4 .

Thus,

PrtransP←COMP
[
H∞(X | transP) <

k(n)
6

]

≤ PrtransP←COMP
[
Pr

[
|Col(X,Ur)| < 2

k(n)
2 +1

∣∣∣∣ transP
]
> 21− k(n)

4

]

≤ PrtransP←COMP [transP ∈ BAD]

≤ 2−
k(n)

4 .

Now, since d(n) ∈ ω(log n) and k(n)/6 ≥ d(n)/3, Claim 4.3 implies that with probability 1 − neg(n), the
extractor EXT guarantees that the statistical distance between the pair (t,EXT(x, t)) (given transP) and the
uniform distribution is at most 21−d(n)/3 (which is again negligible in n). Therefore the scheme COMP is
statistically-hiding. More specifically, for every string s ∈ {0, 1}d(n)/6 it holds that

SD
({transP, t,EXT(X, t) ⊕ s}, {transP,U7d(n)/6})

≤ Pr
[
H∞(X | transP) <

k(n)
6

]

+SD
(
{transP, t,EXT(X, t) ⊕ s}, {transP,U7d(n)/6}

∣∣∣∣∣ H∞(X | transP) ≥ k(n)
6

)

≤ 2−
k(n)

4 + 21− d(n)
3 .

Therefore, for any two strings s0, s1 ∈ {0, 1}d(n)/6 we have

SD
({

view〈S(s0),R∗〉(n)
}
,
{
view〈S(s1),R∗〉(n)

})
= SD ({transP, t,EXT(X, t) ⊕ s0}, {transP, t,EXT(X, t) ⊕ s1})

≤ 2 ·
(
2−

k(n)
4 + 21− d(n)

3

)
,

which is negligible in n as required.

Lemma 4.4. The scheme COMP is weakly binding.

Proof. We show that the scheme COMP is (1−1/n2)-binding. Given any malicious sender Snd∗ that violates
the binding of the commitment scheme COMP with probability at least 1 − 1/n2, we construct a malicious
server Srv∗ that breaks the security of the single-server PIR protocol P.

As an intermediate step, we first construct a malicious server that has a non-negligible advantage in
predicting a uniformly chosen index held by the user in P. More specifically, we construct a malicious
server Srv∗ and a predictorD′ such that

Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) = i

]
≥ 1

n
+

1
n2 ,

where the probability is taken over the uniform choice of i ∈ [n] and over the coin tosses of Srv∗, D′ andU.
Recall that view〈Srv∗,U(i)〉(n) denotes the distribution on the view of Srv∗ when interacting with U(i) where
i ∈ [n]. This view consists of its random coins and of the sequence of messages it receives fromU.
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The malicious server Srv∗ follows the malicious sender Snd∗ in the embedded execution of P in COMP.
Following the interaction, Srv∗ proceeds the execution of Snd∗ to obtain a pair (t, y) and two decommitments
(x1, s1) and (x2, s2). If x1 = x2, then Srv∗ fails. Otherwise, denote by j ∈ [n] the minimal index such that
x1[ j] , x2[ j]. Now, the predictorD′ outputs a uniformly distributed value i′ from the set [n] \ { j}.

In order to analyze the success probability in predicting i, note that if (x1, s1) and (x2, s2) are valid decom-
mitments and s1 , s2 (i.e., S∗ broke the binding of COMP), then it must hold that x1 , x2. In this case, let
j ∈ [n] be the minimal index such that x1[ j] , x2[ j], then it must be the case that i , j, as otherwise R will not
accept the two decommitments. Therefore, when the predictorD′ outputs a uniformly distributed i′ ∈ [n] \ { j}
it will output i with probability 1/(n − 1). Thus,

Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) = i

]
≥

(
1 − 1

n2

)
· 1

n − 1

=
n + 1

n2

=
1
n

+
1
n2 .

In the remainder of the proof, we apply a rather standard argument in order to be fully consistent with
Definition 2.5 of the security of single-server PIR. That is, we need to show that there exists a pair of indices
i, j ∈ [n], a malicious server Srv∗ and a distinguisherD such that

∣∣∣∣Pr
[
v← view〈Srv∗,U(i)〉(n) : D(v) = 1

]
− Pr

[
v← view〈Srv∗,U(j)〉(n) : D(v) = 1

]∣∣∣∣ ≥ 1
p(n)

,

for some polynomial p(n). We prove that this holds for independently and uniformly chosen i, j ∈ [n] (and
therefore there exist i and j for which this holds) where Srv∗ is the malicious server described above, and
D = Di, j is a distinguisher that usesD′ as follows:

• IfD′ outputs i, thenD outputs 1.

• IfD′ outputs j, thenD outputs 0.

• Otherwise,D outputs a uniformly distributed b ∈ {0, 1}.
Then,

Pr
[
v← view〈Srv∗,U(i)〉(n) : D(v) = 1

]

= Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) = i

]
+

1
2
· Pr

[
v← view〈Srv∗,U(i)〉(n) : D′(v) < {i, j}

]

≥ 1
n

+
1
n2 +

1
2
· Pr

[
v← view〈Srv∗,U(i)〉(n) : D′(v) < {i, j}

]
,

and

Pr
[
v← view〈Srv∗,U(j)〉(n) : D(v) = 1

]

= Pr
[
v← view〈Srv∗,U(j)〉(n) : D′(v) = i

]
+

1
2
· Pr

[
v← view〈Srv∗,U(j)〉(n) : D′(v) < {i, j}

]

=
1
n

+
1
2
· Pr

[
v← view〈Srv∗,U(j)〉(n) : D′(v) < {i, j}

]
,

where the last equality holds since both i and j are independently chosen. Finally, note that

Pr
[
v← view〈Srv∗,U(i)〉(n) : D′(v) < {i, j}

]
= Pr

[
v← view〈Srv∗,U(j)〉(n) : D′(v) < {i, j}

]
,
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and therefore
∣∣∣∣Pr

[
v← view〈Srv∗,U(i)〉(n) : D(v) = 1

]
− Pr

[
v← view〈Srv∗,U(j)〉(n) : D(v) = 1

]∣∣∣∣ ≥ 1
n2 .

5 Communication Lower Bound for Single-Server PIR

Is this section we combine the results from sections 3 and 4, and derive an immediate proof of our main result,
formally stated as follows:

Theorem 5.1. In any fully-black-box O(n)-expanding construction of a single-server PIR protocol from a
family of trapdoor permutations, the server communicates Ω(n) bits to the user, where n is the size of the
server’s database.

Proof. Assume towards a contradiction that there exists a fully-black-box O(n)-expanding construction of a
single-server PIR protocol from a family of trapdoor permutations in which the server communicates o(n)
bits, where n is the size of the server’s database. By applying Theorem 4.1 with parameters k(n) = n − o(n)
and d(n) = log2 n (actually any d(n) = ω(log n) suffices) we obtain a fully-black-box O(n)-expanding weakly-
binding statistically-hiding bit-commitment scheme from a family of trapdoor permutations, in which the
sender communicates o(n) bits during the commit stage, where n is the security parameter of the scheme.
However, the existence of such a scheme contradicts Theorem 3.1.

5.1 On extending the lower bound to weakly-preserving constructions

Our result does not rule out weakly-preserving (fully-black-box) constructions of single-server PIR from
trapdoor permutations in which the sender communicates o(n) bits to the user. We note that although weakly-
preserving reductions guarantee much weaker security than polynomially-preserving reductions, investigating
lower bounds for such reductions is still a very interesting research topic. Even more so as the sole construc-
tion to date of a single-server PIR protocol from trapdoor permutations uses such a reduction. A possible
step towards tightening our bound is to first provide an improved lower bound on the communication com-
plexity of statistically-hiding commitment schemes that allow the sender to commit to more than a single bit.
Whereas in Section 4 we proved that any low-communication single-server PIR implies a statistically-hiding
commitment scheme that allows the sender to commit to a relatively long string, our lower bound on the
communication complexity of statistically-hiding commitment schemes in Section 3 serves as a bottleneck: it
does not take into consideration the number of committed bits (the lower bound is only in terms of the security
parameter).

It is quite possible that a much tighter lower bound can be proved for string-commitment schemes. Such
a lower bound may extend the result of the current paper to the setting of weakly-preserving reductions, and
prove the optimality of the single-server PIR protocol of Kushilevitz and Ostrovsky [27]. We note that the
statistically-hiding commitment scheme of Naor et al. [31] (which is constructed from one-way permutations
in a fully-black-box manner) can be used to commit to O(log n) bits while the sender communicates O(n) bits
(see, for example, [32]).
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