
A Block Cipher based PRNG Secure

Against Side-Channel Key Recovery

Christophe Petit1⋆, François-Xavier Standaert1⋆⋆,
Olivier Pereira1⋆⋆, Tal G. Malkin2, Moti Yung2

1UCL Crypto Group, Université catholique de Louvain.
2 Dept. of Computer Science, Columbia University.

e-mails: christophe.petit,fstandae,olivier.pereira@uclouvain.be,
tal,moti@cs.columbia.edu

Abstract. We study the security of a block cipher-based pseudorandom number
generator (PRNG), both in the black box world and in the physical world, separately.
We first show that the construction is a secure PRNG in the black box world,
relying on standard computational assumptions. Then, we demonstrate its security
against a Bayesian side-channel key recovery adversary. As a main result, we show
that our construction guarantees that the success rate of the adversary does not
increase with the number of physical observations, but in a limited and controlled
way. Besides, we observe that, under common assumptions on side-channel attack
strategies, increasing the security parameter (typically the block cipher key size)
by a polynomial factor involves an increase of a side-channel attack complexity
by an exponential factor, as usually expected for secure cryptographic primitives.
Therefore, we believe this work provides a first interesting example of the way the
algorithmic design of a cryptographic scheme influences its side-channel resistance.

1 Introduction

Side-channel attacks are a powerful cryptanalytic technique that exploits data-dependent
physical leakages (e.g. power consumption or electromagnetic radiation) in order to recover
secret data from actual implementations. Following their demonstration in the late 1990s,
a number of countermeasures have been proposed to increase the security of cryptographic
devices. For example, several proposals attempt to reduce the amount of information pro-
vided by any single query to a target device, including noise addition [12], masking [8]
or hiding [17]. In this paper, we adopt a different approach in which we do not try to
affect single query leakages. Assuming that actual side-channel attacks require to combine
several queries to reach high success rates, we rather try to make the efficient combination
of the leakages difficult. Therefore, the approach we propose here can (and sometimes has
to) be efficiently combined with classical countermeasures. In contrast with most ad hoc
solutions to prevent side-channel attacks, we include our security analysis within a theo-
retical framework introduced in [15] and provide generic evaluations for the success rate of
a side-channel key-recovery adversary. But since the actual security of an implementation
can only be shown for practical instances of leakage functions, we also demonstrate exem-
plary contexts in which our construction provides security, from the frequently considered
Hamming weight leakage function to the powerful identity leakage function.

As a case-study, we investigate the design of a pseudorandom generator (PRNG) based
on block ciphers. We believe this example is interesting on its own, as PRNGs are standard
components in many common applications, including authentication in low-power devices,
or re-keying for block ciphers. The construction of a side-channel resistant PRNG was also
considered in the “physically observable cryptography” model of Micali and Reyzin [13].
Our study differs from that one by several important aspects. The most important one
being that our analysis is based on what Micali and Reyzin call a “specialized model”: our

⋆ Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS).
⋆⋆ Postdoctoral Researcher of the Belgian Fund for Scientific Research (F.R.S.-FNRS).



model of side-channel leakages and adversarial power is influenced by the experience gained
in the practice of side-channel attacks. As a result of this specialization, we expect our
construction to be more efficient. We use two chained block ciphers, and our PRNG outputs
a number of bits equal to the block size after each round (rather than one bit per round,
based on any one-way permutation as in the Blum-Micali construction used by Micali and
Reyzin). Our PRNG construction is inspired by well-known re-keying techniques [1] and
protocol-based strategies to withstand side-channel attacks [11]. However, contrary to the
simple arguments given in [10], we use our case-study to illustrate the strong dependency
between a leakage function, the structure of a target algorithm and the combination of the
side-channel observations. In addition we turn our theoretical analysis into quantitative
metrics in order to properly evaluate the security of any implementation of our PRNG.

For these purposes, and as a first step towards the provable security against side-
channel attacks, we clearly separate black box and physical security issues. In a first part
of the paper, we consider our PRNG construction in the classical cryptographic setting and
demonstrate that under some assumptions on its component ciphers, it is a secure PRNG.
Then, we investigate a generic implementation of our primitive. We demonstrate that for
reasonably modeled leakage functions, increasing the number of round observations of the
target device does not increase the success rate of a side-channel key recovery adversary
but in a limited (i.e. controlled) way. Also, by increasing the cipher key size by a polyno-
mial factor, we increase the side-channel attack complexity by an exponential factor. In
addition, our evaluations relate to the amount of randomness (i.e. noise) in the side-channel
observations that can consequently be used as an alternative security parameter, since the
noise is a typical countermeasure to affect single PRNG round leakages. As a matter of fact,
the combination of these results does not imply that our construction is a secure PRNG
in the physical world but that (independently): (i) it is a secure PRNG in the black box
world, and (ii) side-channel key recovery against its implementation is hard. Combining
black box and physical security notions in a unified way is a scope for further research.

Roadmap: This paper is organized as follows. In Section 2, we give an overview of our
PRNG construction. In Section 3, we state standard security definitions, and use them to
show the security of our PRNG in a black box world. In Sections 4 and 5, we turn to the
physical world and investigate the resistance of our PRNG to recovery of its seed, by con-
sidering side-channel attacks. In Section 6, we consider different classical leakage functions,
and show the security of our construction in these specific contexts. Section 7 gives further
insights on the practical security impact of our construction strategy. Eventually, Sections
8 and 9 relax certain assumptions used in our analysis and conclusions are in Section 10.

2 Description of the PRNG

The PRNG construction we propose is illustrated in Figure 1. It is a serial combination
of two instances of a block cipher, denoted by E1 and E2 in Fig. 1, placed into the Cipher
Block Chaining encryption mode. The input of the first block cipher is initialized to a
public IV , and each block cipher is initialized with its own master key, denoted k and k∗

respectively, these keys playing the role of seed for the PRNG.

E EmiIV

ki ki*

yi
xi

ki+1 = ki        mi  ki+1 = ki        mi  * *

Fig. 1. Block cipher based PRNG.

2



The execution of one round of our block cipher is as follows: given the input xi of
the first block cipher, and the current value of the keys ki and k∗

i used by the two block
ciphers, an intermediate value mi is computed as Eki

(xi). Then the output of the PRNG
is computed as yi = Ek∗

i
(mi), the keys to be used by the block ciphers in the next round

as ki+1 = ki ⊕ mi and k∗
i+1 = k∗

i ⊕ mi, and the new input for the first block cipher as
xi+1 = IV ⊕ yi. In the following, we refer to k, k∗ as the master keys and to ki, k

∗
i as

the running keys. The construction is generic in the sense that its input/output/key bit
sizes are not specified (but identical): they depend on the actual block cipher chosen to
instantiate the PRNG. The design of this scheme is based upon the following two principles:

1. If the block cipher is “good” in the black box world, then so should the PRNG be.
2. Each running key ki, k

∗
i is used to encrypt only one message. For this purposes, we

assume a fixed public IV (i.e. it cannot be selected by the PRNG user). A way to relax
this assumption and to initialize the PRNG with a public seed is discussed in Section 8.

The goal of this second principle is to make it computationally difficult to combine the
leaked information resulting from different encryption steps. In order to respect that prin-
ciple, the running keys are updated after each round of the PRGN.

3 Black-box Security of our PRNG

This section studies the security of our PRNG in an ideal world, where the only interface
between the adversary and the PRNG occurs through the PRNG output. We show that, in
the ideal cipher model proposed by Shannon [14], an adversary has a negligible probability
to distinguish the output of our PRNG from a random sequence of bits. We first describe
the ideal cipher model and define the security properties we expect from pseudorandom
generators, then discuss the security of our construction.

3.1 Security Notions

Block cipher security. The ideal cipher model has been used in many works, including [4].
In this context, one assumes that block ciphers are random families of permutations. That
is, they consist of random permutations chosen independently for each possible key. More
precisely, suppose K andM are sets. An ideal block cipher is a map E : K×M where, for
each key k ∈ K, the function Ek(·) = E(k, ·) is a random permutation on the message set
M (independent of any other permutation). If E is an ideal block cipher, then E

−1 is its
inverse and E

−1
k (y) is the string x such that Ek(x) = y. In the rest of this paper, we assume

that K =M: the messages and keys used by our block ciphers belong to the same set.

Pseudorandom generator security. A pseudorandom generator is a deterministic algorithm
G that maps elements of a domain K on elements of a larger domain K̂ with the property
that it is hard to distinguish the uniform distribution on K̂ from the distribution on K̂ de-
fined as the image through G of the uniform distribution on K. This hardness is measured
through the notion of prng-advantage of adversaries, that we define as follows, after [18].

Definition 2. Let G : K → K̂ be a pseudorandom generator, and let A be an algorithm
that takes an element of K̂ as input and returns a bit. Consider:

Succ
prng−1
G,A = Pr[A(k̂) = 1 : k̂

R
←− K̂],

Succ
prng−0
G,A = Pr[A(k̂) = 1 : k̂ ← G(k); k

R
←− K],

where x
R
←− X denotes the selection of an element x of the set X according to the uniform

distribution. The prng-advantage of A against G is defined as:

3



Adv
prng
G,A = |Succ

prng−1
G,A − Succ

prng−0
G,A |.

We say that the pseudorandom generator G is secure if the prng-advantage of any “reason-
able” adversary against G is “small enough”. The formal definitions of “reasonable” and
“small enough” are not necessary for the understanding of the following proof sketch.

3.2 Security of our PRNG

We now justify the security of the PRNG we described in Section 2 by relating the security
of this PRNG to the security of the underlying block cipher, in the ideal cipher model.

Security of a single round. We first consider the security of any single round of our PRNG.
For this purpose, we consider the family of PRNGs G = {GX}X∈K, where each GX :
K ×K → K×K ×K is defined as follows:

GX(K, K∗) = (EK(X)⊕K, EK(X)⊕K∗, EK∗(EK(X))).

Here, the index X represents the value used as input for the first block cipher, the first
two parts of the output represent the keys that will be used in the next round, and the
last part of the output represents the visible output of the round. Fix now any adversary
A against GX ∈ G, and consider the probability:

Succ
prng−0
GX ,A = Pr[A(k̂) = 1 : k̂ ← GX(k, k∗); (k, k∗)

R
←− K×K]

Unwinding the definition of GX , this probability can be rewritten as follows:

Succ
prng−0
GX ,A = Pr[A(k1, k

∗
1 , y) = 1 : k

R
←− K; k∗ R

←− K;

m← Ek(X); k1 ← m⊕ k; k∗
1 ← m⊕ k∗; y ← Ek∗(m)].

We first observe that, in the ideal cipher model, the random selection of a key k followed by
the use of the permutation Ek is equivalent to the use of a randomly selected permutation
P. Therefore, we have that:

Succ
prng−0
GX ,A = Pr[A(k1, k

∗
1 , y) = 1 : k

R
←− K; k∗ R

←− K; P
R
←− Perm(K);

P
∗ R
←− Perm(K); m← P(X); k1 ← m⊕ k; k∗

1 ← m⊕ k∗; y ← P
∗(m)]

Now, we observe that since m and y are computed by applying random permutations on
elements of K, they cannot be distinguished from random elements of K:

Succ
prng−0
GX ,A = Pr[A(k1, k

∗
1 , y) = 1 : k

R
←− K; k∗ R

←− K;

m
R
←− K; k1 ← m⊕ k; k∗

1 ← m⊕ k∗; y ← K]

Eventually, we observe that k1 and k∗
1 are computed as the XOR of independent uniformly

chosen values. As a result, these variables cannot be distinguished from independent and
uniformly distributed values by the adversary:

Succ
prng−0
GX ,A = Pr[A(k1, k

∗
1 , y) = 1 : k1

R
←− K; k∗

1
R
←− K; y

R
←− K]

But this last probability is also equal to Succ
prng−1
GX ,A , which shows that, if the block cipher

adopted in practice essentially behaves like an ideal cipher, no reasonable adversary can
have an important prng-advantage against GX .

4



Security of multiple rounds The behavior of multiple rounds of our PRNG can be seen as
the sequential execution of PRNGs taken from G family, as depicted in Figure 2: at each
step, we select the PRNG indexed by the XOR of the IV and the last part of the output
of the previous step, and use the first two parts of the output of the previous step as seed.
By using a standard hybrid argument, following [7, Theorem 3.3.3] for instance, we obtain
that the prng-advantage of an adversary against n-rounds of our PRNG is bounded by n
times the prng-advantage of a similar adversary against a single instance of any PRNG
in G. In the rest of this paper, we use the notation G

q to denote a q-round version of our
PRNG, and omit the superscript q when it is clear from the context.

y1

G
IV y1 G

IV y2 G
IV yn-1G

IV

y2 y3 yn

k1* k2* k3*

k1 k2 k3 kn-1

kn-1*k*

k

Fig. 2. Multiple rounds of our PRNG.

4 Physical security model and assumptions

This section considers the physical security of the previously described PRNG with respect
to the notion of side-channel key recovery. We first outline our model and definitions. Then,
we detail our assumptions on the physical implementation of the construction, based on
standard practice in the side-channel community. In the remaining of this paper, we mostly
follow the formalism introduced in [13, 15]; we refer to these papers for definitions of a
physical computer, leakage function, and more details on the model.

4.1 Definition of security

When we move to the physical world, a q-round version of our PRNG G
q(K, K∗) with seed

(K, K∗) is associated with a leakage function L
q(K, K∗) that describes what can be mea-

sured during an actual execution of G
q(K, K∗) on a specific physical device.1 In Sections 5

and 6, we will consider different types of leakage functions L
q(K, K∗). Following [13], the

pair P
q(K, K∗) = (Gq(K, K∗), Lq(K, K∗)) constitutes a physical implementation of our

PRNG. We want to analyze the security of a physical implementation P
q(K, K∗) of our

PRNG in front of a side-channel key recovery adversary. The goal of such an adversary A

is to guess a specific function δ of a master key K, K∗ used during the (physical) execution
of P

q(K, K∗). The success rate of A is defined as:

Succ
sc−kr−δ(K,K∗)
Pq(K,K∗),A = Pr[A(Pq(k, k∗)) = δ(k, k∗) : k

R
←− K; k∗ R

←− K]

δ(K, K∗) is traditionally seen as a key classification function, which typically returns one
or two key bytes of a running key Ki, K

∗
i targeted during the side-channel attack. By

considering the standard strategy where all key-bytes are targeted independently, the global
success rate will then be the product of the success rates on each of the targeted key parts.
For instance, since a successful attack against the full n-bit key requires n/8 partial attacks
against 8-bit key classes, we have, e.g.

Succsc−kr−K
Pq(K,K∗),A = (Succ

sc−kr−K[0···7]

Pq(K,K∗),A )n/8 (1)

1 In [13], the leakage function was defined as a function of the internal configuration of the used
device, the measurement parameters, and a random parameter. For simplicity, our notation
considers the measurement parameter as fixed and takes as only input the part of the device
internal configuration that is targeted in the attacks, namely the master keys K, K∗. Finally,
the noise parameter will be explicitly mentioned when required in our analysis.

5



As a result, if we can obtain a construction where the success rate on some part of the key
is bounded, the global success rate will decrease exponentially with the length of the key.

4.2 Circuit model & assumptions

Our model for the physical implementation of the PRNG is pictured in Figure 3. We now
detail the assumptions required for its physical security analysis. Note that a significant
part of these assumptions were selected in order to facilitate the formal investigation of
our construction and will be relaxed in the following of the paper.

1. We consider an iterative block cipher with r identical rounds: R1, R2, . . .Rr. Each round
is made of different operations, e.g. bitwise XORs, s-boxes and diffusion layers in our
picture. A typical example is the Advanced Encryption Standard (AES) Rijndael [6].

2. We assume a fixed (meaning read-only) IV to avoid the possibility of chosen IV attacks.
3. We do not consider the key scheduling algorithm and assume that the cipher initially

has r + 1 independent round keys kj
0, j ∈ [0, r], each belonging to K, and updated

according to the same procedure: kj
i+1 = kj

i ⊕mi.
4. We only consider the leakage of the first block cipher E1 in the PRNG.

miIV

ki

S

S

S

S

S

S

S

S

0

ki
1

ki
r

R1 R2

D D

S

S

S

S

r-1

Rr

D

ki

E*1

Fig. 3. Physical implementation of the PRNG.

5. We consider an adversary targeting the first block cipher round key2 k0
i . From this

point we omit the “0” superscript for all keys, as we will always consider the first
round key. Additionally, we consider an adversary targeting this first round key for
either the first or the last PRNG iteration considered in the attack, namely k0 or kq.

6. During each iteration of the PRNG, the adversary obtains two leakages lKi
and lMi

.
As a matter of fact, this does not mean that the adversary is limited in the way he
exploits the side-channel information. It just means that all the information obtained
from the execution of the rounds is translated into information on these two values.
The leakage function abstraction captures the fact that “any kind of information” can
in principle be obtained: it can model any type of implementation.

7. Finally and most importantly, we assume that the information on a running key ki and
the information on the middle point mi cannot be efficiently combined, but through
the key update procedure ki+1 = ki⊕mi. That is, we assume that the cipher E1’s inner
rounds constitute a permutation E

∗
1 that is hard to compute/invert for the adversary.

Among these assumptions, the second one is the most critical from an application point of
view. A way to mitigate it by initializing the PRNG securely with public random seeds is
discussed in Section 8. Assumptions 3, 4 and 5 reduce the amount of information leakage
provided to the adversary and are relaxed in Section 9. We now use these definitions and
assumptions in an analysis of our PRNG construction.

2 Since all rounds are identical and the IV is known, we assume that it is the easiest target, i.e.,
if k0

i cannot be recovered, the other round keys cannot either.

6



5 Security against a Bayesian side-channel adversary

As a matter of fact, the objective of our analysis is to evaluate the physical security of our
PRNG. According to the model in [15], such an evaluation generally requires to consider
both the amount of information leaked by an implementation and the extent to which
an actual adversary can turn this information into a successful key recovery. However,
as explained in the introduction of this paper, our PRNG does not intend to affect the
amount of information that is provided to the adversary during a single round. In fact, the
information available in the physical observations is a parameter of our analysis, hidden in
the leakage function L. By contrast, the PRNG attempts to make the efficient combination
of this information a difficult task. How difficult is the leakage combination can consequently
be measured with a security metric, namely the key-recovery success rate of a side-channel
adversary. For this purpose, we now consider the Bayesian side-channel adversary, which
is the most powerful one, from an information theoretic point of view [5], when a perfect
knowledge of the noise distribution is available. More specifically, we model an adversary
that is provided with generic leakages under the form of a vector of 2q−1 components, each
of them corresponding to the leakage that can be measured during the use of the i-th round
key or of the i-th round value of the middle point mi. Following [15], we then consider that
the random leakage variable obtained from L

q can be expressed as a random vector Lq of
the form (LK(K0), LM (M0), LK(K1), LM (M1), . . . , LK(Kq)),

3 where each LK(Ki), LM (Mi)
is a random variable representing the leakage trace on the use of, respectively, the running
key Ki and the middle point Mi. We also write lq = (lK0 , lM0 , lK1 , . . . , lKq

) to denote any
fixed element in the domain of Lq. Given this specific form of the leakages, a Bayesian
adversary observing a leakage lq selects the key candidate Ki,guess such that Ki,guess :=
arg maxki

Pr[Ki = ki|L
q = lq]. Using the fact that all round keys Ki can be considered as

independent and uniformly distributed (following our black box analysis of Section 3), this
is equivalent to choosing Ki,guess = arg maxki

Pr[Lq = lq|Ki = ki].

We turn now to the generic evaluation of this expression. In order to simplify our anal-
ysis, we first evaluate the probability Pr[Lq = lq|Ki = ki] in the context of deterministic
leakage functions L = Ldet, where the LK(·) and LM (·) functions are deterministic. Then
we extend our analysis to noisy leakage functions of the form L = Ldet +R, where R is noise
occurring on each leakage component according to a noise distribution. That is, the LK(·)
and LM (·) functions are evaluated as the sum of a deterministic function and a random
variable selected according to the noise distribution.

Analysis of deterministic leakages: For each possible values lKi
and lMi

of the deter-
ministic leakage functions LK(Ki) and LM (Mi), let us define a running matrix AlKi and
an update matrix BlMi as:

AlKi (ki, k
′
i) =

{

1, if ki = k′
i and LK(ki) = lKi

;
0, otherwise;

BlMi (ki, ki+1) =

{

1, if LM (ki ⊕ ki+1) = lMi
;

0, otherwise.

The matrix AlKi is a diagonal matrix, with one row (resp. column) for each possible key
in K, and where elements are set to 1 iff the leakage corresponding to the key indexed
by the the current line is equal to leakage corresponding to Ki. In a similar way, the
matrix BlMi has elements equal to 1 in position (ki, ki+1) iff the leakage corresponding to
LM (ki ⊕ ki+1) is equal to4 lMi

. Then, for each possible leakage value lq of Lq, we define
a leakage (directed) graph Glq = (V lq , Elq) as follows. The set of vertices V lq contains
(2q + 2)|K| nodes, referred to by pairs of the form (k, i) where k ∈ K and 0 ≤ i ≤ 2q + 1.
The set Elq is defined by the following edges:

3 The leakage corresponding to Mq is not taken, as it is only useful to attack the q + 1-th round.
4

∑

lKi

AlKi = I2n (identity matrix) and
∑

lMi

BlMi = 1 (all-one matrix).

7



1. ((k, 2i), (k′, 2i + 1)) ∈ Elq (where 0 ≤ i ≤ q) iff AlKi (k, k′) = 1, and
2. ((k, 2i + 1), (k′, 2i + 2)) ∈ Elq (where 0 ≤ i ≤ q − 1) iff BlMi (k, k′) = 1.

An example of such a graph is in Figure 4. Finally, for every key k0 and leakage vector lq,
we define the set of keys that possibly gave rise to the leakages:

Sq(k0, l
q) = {(K1, K2 ..., Kq) ∈ {0, ..., 2n − 1}q|LM (k0 ⊕K1) = lM0 ,

LK(K1) = lK1 , LM (K1 ⊕K2) = lM1 , LK(K2) = lK2 , . . . , LK(Kq) = lKq
}

000

K0 K0 K1 K1 K2 K2 K3 K3 K4 K5K4 K5

001

010

011

100

101

110

111

Fig. 4. Leakage graph for n = 3, with a Hamming weight leakage function providing the observed
leakage l5 = {1, 1, 2, 2, 0, 3, 3, 1, 2, 1, 1}. The bold edges enlighten the four elements of S5(001, l5).

It directly follows that Pr[Lq = lq|K0 = k0] = |Sq(k0, l
q)|/2nq. From the graphical

representation of Figure 4, |Sq(k0, l
q)| can be interpreted as the number of paths from left

to right starting at K0 = k0 in the graph associated with lq. Similarly, for every k0, lq and
every 0 ≤ p ≤ q, the number of paths from k0 to kp in the graph associated to lq equals
np(kp, k0, l

q) = |{(K1, K2 ...Kp) ∈ Sp(k0, l
p)|Kp = kp}| where lp corresponds to the first p

components of lq. Looking at the example of Figure 4, we have that n3(111, 001, l5) = 2 and
n5(010, 001, l5) = 4. Define the vector np(k0, l

q) = (np(0, k0, l
q), np(1, k0, l

q), . . . , np(2
n −

1, k0, l
q))t and define ek0 as a column vector containing all zeros but a one in position ko.

We finally get:

|Sq(k0, l
q)| =

∑

kq

nq(kq, k0, l
q) = (1 . . . 1) nq(k0, l

q)

np+1(k0, l
q) = AlKp+1 BlMp np(k0, l

q)

n0(k0, l
q) = AlK0 ek0

And by combining the equations above, we express the leakage probabilities:

Pr[Lq = lq|K0 = k0] =
|Sq(k0, l

q)|

2nq
=

(1...1) AlKq ·BlMq−1 ...AlK1 · BlM0 · AlK0 · ek0

2nq
(2)

Pr[Lq = lq|Kq = kq] =
(1...1) AlK0 ·BlM0 ...AlKq−1 · BlMq−1 · AlKq · ekq

2nq
(3)

Analysis of noisy leakages: The previous analysis can be easily extended to noisy
leakages by defining the leakage vector as a sum of its deterministic part and a random
noise variable vector: Lq = L

q

det + R. It directly yields:

Pr[Lq = lq|K0 = k0] =
∑

l
q

det

Pr[Lq = lq|Lq

det = l
q

det] Pr[Lq

det = l
q

det|K0 = k0]

=
∑

l
q

det

Pr[R = lq − l
q

det] Pr[Lq

det = l
q

det|K0 = k0]

8



If we define the noisy running matrix ClKi and noisy update matrix DlMi as5:

ClKi =
∑

lKi,det

Pr[RKi
= lKi

− lKi,det] ·A
lKi,det

DlMi =
∑

lMi,det

Pr[RMi
= lMi

− lMi,det] ·B
lMi,det

We then find:

Pr[Lq = lq|K0 = k0] =
(1 · · · 1)ClKq DlMq−1 · · ·ClK1 DlM0 ClK0

2nq
,

The expression above is similar to Equation (2). The equivalent of Equation (3) can also
be derived. Intuitively, ClKi (ki, ki) contains the probabilities that a running key candidate
ki gives rise to an actual leakages lKi

, and DlMi (ki, ki+1) contains the probabilities that
any consecutive running key candidates ki, ki+1 give rise to an actual leakages lMi

.

Generic expression for the success rate From the above probabilities, it is straight-
forward to derive a generic expression for the success rate of the Bayesian adversary. For
a given leakage value lq, its probability of right guess for Ki is exactly maxki

Pr[Ki =
ki|Lq = lq], so the success rate for Ki is:

Succsc−kr−Ki

Pq(K,K∗),A =
∑

lq

Pr[Lq = lq] ·max
ki

Pr[Ki = ki|L
q = lq]

=
∑

lq

Pr[Lq = lq] ·max
ki

Pr[Lq = lq|Ki = ki] Pr[Ki = ki]

Pr[Lq = lq]

=
1

2n

∑

lq

max
ki

Pr[Lq = lq|Ki = ki]

In particular, using the expressions derived above, we get:

Succsc−kr−K0

Pq(K,K∗),A =
1

2n(q+1)

∑

lq

||ClKq DlMq−1 · · ·ClK1 DlM0 ClK0 ||1 (4)

Succ
sc−kr−Kq

Pq(K,K∗),A =
1

2n(q+1)

∑

lq

||ClK0 DlM0 · · ·ClKq−1 DlMq−1 ClKq ||1 (5)

Looking at the two equations above, we see that the success rate strongly depends on
the leakage function and probability distributions. For most leakage functions, analytical
evaluation seems difficult when the number of rounds increases. In order to illustrate the
validity of our construction in the physical world, the next section consequently details this
success rate for certain practically relevant leakage functions.

6 Security against particular leakage functions

We first show a context in which it is possible to derive asymptotical upper bounds on the
success rate, which is enough to prove asymptotic security. Then, we consider two leakage
functions for which we provide a simulation-based analysis. In particular, we selected:

1. A Hamming weight leakage function such that all the leakages are of the form L(x) =
WH(x). In this context, we demonstrate that increasing the number of observed rounds
does not improve the success rate: Succsc−kr−K0

Pq(K,K∗),A = Succsc−kr−K0

P1(K,K∗),A
, for every q.

5 Similarly as for deterministic leakages,
∫

lK
ClK = I2n and

∫

lM
DlM = 1 .

9



2. A generalized Hamming weight leakage function, such that all the leakages are of the
form: L(x) = WH(S(x[0···7])) + R, where S is a known substitution box, e.g., the AES
Rijndael one, and R ∼ N (µ, σ2) is a Gaussian distributed random noise with mean µ
and variance σ2. We note that for this example, only 8 key bits are targeted.

3. A noisy identity leakage functions such that the leakages are of the form: L(x) =
x[0···7] + R with R ∼ N (µ, σ2). It is potentially the most powerful type of leakage
function and typically relates to the context of template attacks [5]. If the noise variance
is null, its success rate Succsc−kr−K0

Pq(K,K∗),A = 1, for every q.

6.1 Hamming weight leakages

We assume that all keys are bit strings of length n. For each leakage values 0 ≤ lKi+1 , lMi
≤

n, let us define the matrices Z lKi+1
,lMi := AlKi+1 BlMi . Since Hamming weight leakages are

distributed as binomials, these matrices Z lKi+1
,lMi have C

lKi+1
n non-zeros rows with the

same Hamming weight. Moreover, for every 0 ≤ l ≤ n, the Hamming weight of each column
of Z of which the index has Hamming weight equal to l is the same, which we denote by

hl
Z . We now show by induction that Pr[Kq = kq|Lq = lq] = 1/C

lKq

n if WH(kq) = lKq
and 0

otherwise. Equivalently (by Bayes’ law), we show that Pr[Lq = lq|Kq = kq] = 2n ·Pr[Lq =

lq]/C
lKq

n or 0 depending if WH(kq) = lKq
or not. The assertion is trivial for q = 0. Using

Equation (3), we can compute:

Pr[Lq+1 = lq+1|Kq+1 = kq+1] =
1

2n

∑

kq

Z lKq+1
,lMq (kq, kq+1) · Pr[Lq = lq|Kq = kq];

=

{

Pr[Lq=lq]

C
lKq
n

· h
lKq+1

Z if WH(kq+1) = lKq+1

0 otherwise.

Then, we have:

Pr[Lq+1 = lq+1] =
∑

kq+1

Pr[Lq+1 = lq+1|Kq+1 = kq+1]

=
∑

kq+1|WH (kq+1)=lKq+1

h
lKq+1

Z Pr[Lq = lq]

C
lKq

n

=

{

C
lKq+1
n Pr[Lq+1 = lq+1|Kq+1 = kq+1] if WH(kq+1) = lKq+1 ;

0 otherwise.

The success rate can finally be computed as:

Succ
sc−kr−Kq

Pq(K,K∗),A =
∑

lq

Pr[Lq = lq] ·max
kq

·Pr[Kq = kq|L
q = lq]

=

n
∑

lkq =0

Pr[LKq
= lKq

] ·
1

C
lkq

n

=

n
∑

lkq =0

1

2n
=

n + 1

2n
,

This expression (see also [16]) is independent of q: this demonstrates that the success rate
of the Bayesian adversary does not increase if he gets more leakages. We note that the
result is quite intuitive: if we know WH(k0) and learn WH(k1) and WH(k0 ⊕ k1) for some
random k1, the information we get about the value of k0 is null.

10



6.2 Generalized Hamming weight and identity leakages

The previous section showed that for a Hamming weight leakage function, the success rate
of a Bayesian side-channel adversary against our PRNG is independent of the number of
PRNG rounds. Of course, for most practical leakage functions, this is not true anymore.
In this section, we consequently intend to investigate more practical examples. Namely, we
consider the previously defined generalized Hamming weight and a noisy identity leakage
functions. As already mentioned, a practical drawback of actual leakage functions is that
the sums in Equations (4) and (5) may be hard to compute exhaustively. Therefore, as a
first step towards the analysis of practical leakage functions, this section evaluates them
by simulations in which only a random part of the sums is covered. For this purpose, we
restrict the side-channel adversary and specify the target implementation as follows.

First, and as suggested by the definition of security in Section 4.1, we consider adver-
saries performing divide-and-conquer attacks in order to successively recover small parts
of the key (formalized by the notion of key classes in the definition). Let us for example
assume a reasonable adversary trying to successively identify 8 key bits from a running key.
Targeting larger parts of the key than 8 bits is feasible but would not change our conclu-
sions: 8-bit parts of the key are usual target size for side-channel attacks. Second, we define
a b-bit architecture as an implementation of the PRNG in which b-bit operations are per-
formed in parallel. An interesting consequence of this context is that if b > 8, then the other
bits in the implementation are not targeted by the adversary, although they participate to
the leakage emanations. Therefore, they produce what is usually referred as algorithmic
noise. Since the PRNG inputs are not under control of the adversary, it is not possible
to switch this noise source off (e.g. by feeding the device with constant inputs). In our
simulations, we assumed the un-targeted b− 8 bits in the implementations to be normally
distributed with mean b−8

2 and variance b−8
4 . Otherwise said, the size of the architecture

is a way (among others) to parameterize the amount of noise in the simulations.

We simulated the success rate of the Bayesian side-channel adversary, for different b
values and the previously defined generalized Hamming weight and identity leakage func-
tions. In particular, we considered 8, 16, 32, 128-bit architectures for the AES-128 and a
256-bit architecture of the AES-256. The results are in Figure 5, from which we conclude:

0 5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

number of queries

su
cc

es
s 

ra
te

AES128, 8−bit architecture

AES128, 32−bit architecture

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of queries

su
cc

es
s 

ra
te

AES128, 16−bit architecture

AES128, 32−bit architecture

AES128, 128−bit architecture

AES256, 256−bit architecture

Fig. 5. Attack success rates: generalized Hamming weight and identity leakage functions.

1. Increasing the size of the architecture generally decreases the success rate. This is
caused by the increased amount of noise in the side-channel measurements.

2. For the investigated leakage functions, increasing the number of observed rounds does
not significantly improve the success rate, which saturates after very few rounds. The
exact saturation value of the success rate is typically dependent on the structure of the
leakage function. For instance, considering the identity leakage function, the success
rate saturates after less than 5 queries, around 0.12 for a 128-bit architecture imple-
menting AES-128 and around 0.08 for a 256-bit architecture implementing AES-256.

11



7 Practical consequences of our analysis

The simulations we performed in the previous section show that our construction al-
lows bounding the success rate on a single byte of the key. This result is of practical
importance as it allows using our observation of Equation 1 and to deduce that the
global success rate will increase exponentially with the length of the key. For instance,
if we go back to the the architectures we mentioned in the previous paragraphs, we ob-
tain that Succsc-kr-K

AES128,A ≃ (0.12)16 = 2−48 and Succsc-kr-K
AES256,A ≃ (0.08)32 = 2−116 for

the corresponding two architectures, which seems quite reasonable for practical applica-
tions. We see that the success rate decreases both because of more algorithmic noise:

Succ
sc-kr-K[0···7]

AES128,A ≃ 0.12 → Succ
sc-kr-K[0···7]

AES256,A ≃ 0.08, and because of the increased key size
(which is the dominant factor). These results show that even a pessimistic identity leakage
function with a reasonable amount of noise allows to reach low success rates. We conjecture
that these conditions hold for many practical instances of our construction and therefore
lead to implementations practically secure against side-channel attacks.

8 Secure initialization of the PRNG with a public seed

A practical limitation in the assumptions of Section 4.2 is the fixed IV that prevents the
straightforward initialization of the PRNG by a regular user. In this section, we conse-
quently illustrate the possibility to initialize our PRNG with a public seed in the side-
channel context, as usually required in higher-level protocols. For example, such an ini-
tialization is useful in a side-channel resistant authentication process, since it allows to
challenge the PRNG with various random seeds. Similarly, it can be used to re-synchronize
two devices securely. Looking back at Figure 1, the main constraint is that the initialization
should not allow the adversary to encrypt an arbitrary number of plaintexts with the same
running key ki, k

∗
i , as in a standard side-channel attack. A solution, illustrated in Figure 6,

is to use two initial vectors IV0 and IV1. Then, a public n-bit random number r is selected
of which we denote the different bits as r(i). This solution holds in two steps:

1. Initialization: n cycles of the PRNG are executed, without outputting any block yi.
The initial vector is selected as follows: zi = IV0 if r(i) = 0 and zi = IV1 if r(i) = 1.

2. Generation: after the initialization process, the IV if fixed at IV0 again and the PRNG
outputs the yi blocks, as in the original description in Section 2.

The black box properties of this initialization process are mainly similar to those of the
original PRNG description. Assuming “good” block ciphers in our construction, it is ex-
pected that the 2n possible random numbers r give rise to 2n different internal states of the
PRNG after the initialization. Because of place constraints, we let the formal investigation
of this process as a scope for further research. Similarly, our physical security analysis also
holds. The only difference is that the adversary now obtains the leakages corresponding to
two input values xi,0 and xi,1, for each running key ki, k

∗
i . Since in our previous analysis for

the PRNG, the amount of information provided to the side-channel adversary is hidden in
the leakage function abstraction, the PRNG with initialization process just has to consider
more (but still limited) information leakages. Therefore, if sufficient noise is present in the
measurements, a sufficient security level can be reached, as in the previous sections.

9 Relaxing the assumptions

As previously mentioned, the assumptions 3, 4 and 5 in Section 4.2 reduce the power of
the side-channel adversary. In this section, we illustrate that relaxing these assumptions
has the same effect as initializing the PRNG: it increases the amount of leakages provided
to an adversary. But as long as a sufficient amount of noise can be inserted in the physical
observations, this does not change our conclusions. In particular:

12



E1 E2mi
IV0

ki ki*

yi
xi

ki+1 = ki        mi  ki+1 = ki        mi  * *

IV1

r(i)

zi

Fig. 6. Secure initialization of the PRNG.

3. Actual block ciphers do have a key scheduling algorithm and its execution generally
leaks information. Considering this additional leakage source can be integrated thanks
to the leakage function abstraction in the values lKi

and lMi
.

4. Similarly, exploiting the leakages of the block cipher E2 in our construction can give
rise to additional leakages on k0

i . For example, if a master key is such that k0
0 = kr

0 , the
key update involves that this equality will hold for any pair k0

i , kr
i . This leads to more

information leakages6 which can again be reflected in the values lKi
and lMi

.
5. Finally, our analysis considers an adversary targeting the first or last iteration of the

PRNG. An improved adversary would try to recover an intermediate key, taking advan-
tage of both the leakage of the previous and forthcoming iterations. This has a similar
effect as the observation of an additional plaintext in the initialization process.

In summary, those assumptions have to be considered in practice, if an actual implementa-
tion is to be designed and its security is to be quantified (e.g. by determining the maximum
success rate allowed). But they do not affect our main theoretical result, i.e. for reasonable
leakage functions, the success rate of a partial key recovery is bounded for our construction.

10 Conclusions and open problems

This paper presents a block cipher-based PRNG secure against side-channel key recovery. It
is based on a re-keying strategy that allows keeping the information leaked to a side-channel
adversary under control. Compared to most recent ad hoc countermeasures to prevent side-
channel attacks, our proposal has the security advantage of being systematically analyzed
against a Bayesian side-channel adversary, which is usually assumed to be the strongest
one from an information theoretic point of view. Compared to the physically secure PRNG
proposed in [13] by Micali and Reyzin, our proposal is inspired by considerations from
experience in side-channel analysis, and is expected to be much more efficient.

Our analysis is based on a hybrid approach, considering the black box computational
security and the physical security (modeled by the notion of side-channel key recovery)
separately. Our construction allows bounding the success rate of side-channel adversaries
when a divide-and-conquer strategy is used to target specific parts of the key. As a result,
we obtain that the physical security against side-channel adversary can be increased expo-
nentially, by polynomially increasing the PRNG security parameter, as usually expected
for cryptographic designs. We believe the analysis technique we adopted is not specific to
our PRNG construction but could be re-used on schemes where the analyzed leakages are
associated to rekeying through a XOR operation.

Open problems include the sound combination of the black box and physical security
in a unified way, the investigation of alternative internal structures for the PRNG (e.g. by
changing the key update procedure) and its actual physical implementation. In particular,
an interesting question is to determine the minimum architecture size (e.g. 8-bit, 32-bit,
128-bit, . . . ) required for the PRNG to provide actual security. As a first target, we suggest

6 Note that a way to improve this is to have different updates for the keys ki and k∗i .

13



an AES Rijndael-based FPGA implementation of the PRNG using a 128-bit loop archi-
tecture. Additionally, our PRNG can be combined with former countermeasures against
side-channel attacks, in order to determine how to provide practical security at the lowest
implementation cost. It would finally be interesting to consider the use of our approach for
the construction of other cryptographic primitives.

Acknowledgements: We thank Krzysztof Pietrzak, Dennis Hofheinz and Eike Kiltz from
CWI for having pointed out a mistake in a previous version of this paper. We also thank
Benoit Libert from UCL Crypto Group for interesting discussions.

References

1. M. Abdalla, M. Bellare, Increasing the Lifetime of a Key: A Comparative Analysis of the
Security of Re-Keying Techniques, in the proceedings of Asiacrypt 2000, LNCS, vol 1976, pp
546-559, Kyoto, Japan, December 2000.

2. M. Bellare, J. Kilian, P. Rogaway, The Security of the CBC Message Authentication Code,
Journal of Computer Systems, vol 61, num 3, pp 362-399, 2000.

3. M. Bellare, T. Kohno, A Theoretical Treatment of Related-Key Attacks: RKA-PRPs, RKA-
PRFs, and applications, in the proceedings of Eurocrypt 2003, Lecture Notes in Computer
Science, vol 5656, pp 491-506, Warsaw, Poland, May 2003.

4. J. Black, P. Rogaway, T. Shrimpton, Black-Box Analysis of the Block-Cipher-Based Hash-
Function Constructions from PGV, in the proceedings of CRYPTO 2002, LNCS, vol 2442,
pp 320-335, Santa Barbare, USA, August 2002.

5. S. Chari, J. Rao, P. Rohatgi, Template Attacks, in the proceedings of CHES 2002, LNCS,
vol 2523, pp 13-28, Redwood City, CA, USA, August 2002.

6. FIPS 197, “Advanced Encryption Standard,” Federal Information Processing Standard,
NIST, U.S. Dept. of Commerce, November 26, 2001.

7. O. Goldreich, Foundations of Cryptography, vol 1, Cambridge U. Press, 2001.
8. L. Goubin, J. Patarin, DES and Differential Power Analysis, in the proceedings of CHES

1999, LNCS, vol 1717, pp 158-172, Worcester, MA, USA, August 1999.
9. M. Luby, C. Rackoff, How to Construct Pseudorandom Permutations from Pseudorandom

Functions, SIAM J. of Computing, vol 17, num 2, pp 373-386, 1988.
10. P. Kocher, Design and Validation Strategies for Obtaining Assurance in Countermeasures

to Power Analysis and Related Attacks, in the proceedings of the NIST Physical Security
Workshop, Honolulu, Hawai, September 2005.

11. P. Kocher, Leak Resistant Cryptographic Indexed Key Update, US Patent 6539092.
12. S. Mangard, Hardware Countermeasures against DPA - A Statistical Analysis of Their Effec-

tiveness, in the proceedings of CT-RSA 2004, Lecture Notes in Computer Science, vol 2964,
pp 222-235, San Francisco, CA, USA, February 2004.

13. S. Micali, L. Reyzin, Physically Observable Cryptography, in the proceedings of TCC 2004,
LNCS, vol 2951, pp. 278-296, Cambridge, Massachusetts, USA, February 2004.

14. C.E. Shannon, Communication theory of secrecy systems, in Bell Systems Technical Journal,
vol 28, num 4, pp 656-715, 1949.

15. F.-X. Standaert, T.G. Malkin, M. Yung, A Formal Practice-Oriented Model for the Analysis
of Side-Channel Attacks, Cryptology ePrint Archive, Report 2006/139, 2006.

16. F.-X. Standaert, E. Peeters, C. Archambeau, J.-J. Quisquater, Towards Security Limits in
Side-Channel Attacks, in the proceedings of CHES 2006, Lecture Notes in Computer Science,
vol 4249, pp. 30–45, Yokohama, Japan, October 2006.

17. K. Tiri, M. Akmal, I. Verbauwhede, A Dynamic and Differential CMOS Logic with Signal
Independent Power Consumption to Withstand Differential Power Analysis on Smart Cards,
in the proceedings of ESSCIRC 2003.

18. A.C. Yao, Theory and Applications of Trapdoor Functions (Extended Abstract), in the pro-
ceedings of FOCS 1982, pp. 80–91.

14


