
Intrusion-Resilient Secret Sharing

Stefan Dziembowski∗

Department of Computer Science,
University of Rome La Sapienza

Krzysztof Pietrzak

CWI Amsterdam

Abstract

We introduce a new primitive called Intrusion-Resilient Secret Sharing (IRSS), whose security proof exploits the
fact that there exist functions which can be efficiently computed interactively using low communication complexity
in k, but not in k − 1 rounds.

IRSS is a means of sharing a secret message amongst a set of players which comes with a very strong security
guarantee. The shares in an IRSS are made artificially large so that it is hard to retrieve them completely, and
the reconstruction procedure is interactive requiring the players to exchange k short messages. The adversaries
considered can attack the scheme in rounds, where in each round the adversary chooses some player to corrupt and
some function, and retrieves the output of that function applied to the share of the corrupted player. This model
captures for example computers connected to a network which can occasionally be infected by malicious software
like viruses, which can compute any function on the infected machine, but cannot sent out a huge amount of data.

Using methods from the Bounded-Retrieval Model, we construct an IRSS scheme which is secure against any
computationally unbounded adversary as long as the total amount of information retrieved by the adversary is
somewhat less than the length of the shares, and the adversary makes at most k−1 corruption rounds (as described
above, where k rounds are necessary for reconstruction). We extend our basic scheme in several ways in order to
allow the shares sent by the dealer to be short (the players then blow them up locally) and to handle even stronger
adversaries who can learn some of the shares completely.

As mentioned, there is an obvious connection between IRSS schemes and the fact that there exist functions
with an exponential gap in their communication complexity for k and k − 1 rounds. Our scheme implies such a
separation which is in several aspects stronger than the previously known ones.

1 Introduction

Cryptography can be seen as the art of using the intractability of a certain tasks in order to prove security
properties of some schemes. Shannon proved one-time pad encryption to be secure based on an information-
theoretic impossibility result. Practical symmetric encryption was later based on the hardness of inverting functions
[17], and asymmetric encryption was proven possible based on the (conjectured) hardness of number theoretical
problems [9]. Other intractability assumptions that were used include the Heisenberg uncertainty principle [24],
or the impossibility of errorless measurement of some physical phenomena [19], to mention just a few. Therefore
what is bad news in other areas (i.e. the hardness of some problems) can be good news for cryptographers. In
this paper we exploit the intractability of a type of problems which for now have not been used in cryptography,
namely the fact that there exist multiparty functions whose communication complexity has an exponential gap for
k versus k − 1 round protocols. We do so by introducing a new primitive that we call Intrusion-Resilient Secret
Sharing (IRSS), and which can be described as a “secret-sharing scheme that is secure in the Bounded-Retrieval
Model (BRM)”, which is a model that was recently introduced in [7, 13].

∗Supported by the EU Marie-Curie Fellowship MEIF-CT-2006-024300-Cryptosensors.

1

Bounded-Retrieval Model The main idea of BRM is to make cryptographic protocols resilient against attacks
of malicious software like viruses by assuming that the secrets stored on the infected machines are too large to be
retrieved completely. The motivation for this model is as follows: traditional cryptographic protocols are designed
with the assumption that (at least some of) the machines on which they are executed are beyond the control of
the adversary. In the BRM one makes a more pessimistic (and more realistic) assumption that the machines of
the users may fall under the control of the adversary (since he may install malicious software on them). Of course
as long as the adversary is actually controlling the machine there is not much hope for security. Therefore the first
assumption that one makes in this model is that the adversary controls the machine only occasionally. In other
words, there exists periods when the machine is virus-free.

The key assumption is the second one. It comes from an observation that if the secrets stored on the infected
machine M are short, then the adversary can easily retrieve them, create his own copy of M, and run this copy
even when he lost access to the original M. To prevent this type of an attack one makes the secrets stored on
users’ machines so large (10 GB, say), that it is infeasible to download them entirely (the virus can download up
to 5 GB, say). We will use the strongest variant [13] of the BRM where it is assumed that the virus can perform
any computation on the victim’s machine before deciding what to transfer (a weaker notion [8, 7] only allows the
adversary to access some limited number of bits of the secrets stored on the machine).

It was shown in [13] how to construct intrusion-resilient protocols for session-key agreement and entity authen-
tication in this model (the construction of [13] was later improved in [5]). Schemes for secret data storage in this
model were considered in [14].1

2 Informal description of IRSS

Notation For a finite set A let A∗ denote the set of all finite sequences whose entries belong to A, i.e. A∗ =⋃∞
i=0Ai. Let “||” denote concatenation of finite sequences. We will overload this symbol and, for sets α0, α1 ⊆ A∗,

write α0||α1 to denote the set {a0||a1 : a0 ∈ α0 and a1 ∈ α1}. Sequence (a1, . . . , an) ∈ A∗ is a subsequence of B ∈
A∗ if there exists sequences B1, . . . , Bn+1 such that B = B1||(a1)|| · · · ||Bn||(an)||Bn+1. For ` ∈ N let (a1, . . . , an)`

denote the sequence of length n` consisting of (a1, . . . , an) repeated ` times. For a sequence A ∈ {0, 1}m, we denote
with A[1, . . . , n] (where n ≤ m) the n-bit prefix of A.

2.1 The two-party case

We start with the two-party case, as it is simpler but already explains the main idea. Then, we describe the
general case which we are going to work with in this paper. A formal definition is given in Sect. 6. Recall the
definition of a standard 2-out-of-2 secret sharing (SS) scheme: we have two players Alice and Bob, and a dealer.
The dealer holds a secret message M ∈ {0, 1}n and wants to share it among Alice and Bob in such a way that (1)
Alice and Bob together can reconstruct M by computing some efficient function reconstruct on their respective
shares TA and TB , and (2) each of the players separately has no information about M . A trivial example of such
a scheme is the one in which the dealer chooses TA randomly from {0, 1}n and sets TB = M ⊕ TA.

The motivation for our work comes from the following observation. Suppose the dealer uses any standard SS
scheme (like e.g. the one described above) to share a short secret M , and the players store their secrets TA and
TB on their machines. Then, an adversary that got temporary access to the machine of Alice and then to the
machine of Bob, can reconstruct M (assuming that he downloaded TA and TB). Our idea is to make the task of
such an adversary significantly harder, by using the methods of the Bounded-Retrieval Model, i.e. the shares TA

and TB will be so large that it is infeasible for the adversary to retrieve them completely. Even though the shares
are large, our scheme will have a quite efficient reconstruction phase, where Alice and Bob will exchange 2` short
messages (i.e. they make ` “loops”, where a loop is a message sent from Alice to Bob followed by a message sent
from Bob to Alice. Here ` is a parameter that can initially be chosen by the dealer). The messages will be rather
short (linear in the length of the shared secret) and the computational cost for Alice and Bob will be reasonable,
in particular both will only have to access a small fraction of their shares.

Roughly speaking, we construct a scheme as above with the security property that the only way to reconstruct the
secret M is to actually make ` loops as in the reconstruct procedure. The adversary we consider is computationally

1In [14] this model was called a Limited Communication Model.

2

unbounded and can corrupt Alice and Bob, but never both at the same time. So he can “hop” between Alice and
Bob, and in each round retrieve some information about the share of the corrupted player. We put two restrictions
on the power of the adversary: (1) a bound on the amount of information the adversary can retrieve, and (2) a
bound on the number of “hops” the adversary can make.

More precisely, we assume that time is divided into rounds and in the ith round the adversary can issue a
“corruption” request. As a result of such a request the adversary gets access to either TA (in which case we say
that he corrupted Alice) or to TB (we say then that he corrupted Bob). The adversary cannot retrieve the share T
of the corrupted player completely, but he can choose any function hi : {0, 1}t → {0, 1}si and retrieve Hi = hi(T).
We say that an adversary is s-bounded if the total length of the Hi’s retrieved from TA is at most s, and the same
holds for the Hi’s retrieved from TB .

Our secret sharing scheme guarantees that unless an s-bounded (where s is huge) adversary “hops” at least `
times Alice to Bob and back, he does not learn any significant information about M . We call an adversary which
never hops ` times back and forth an `-admissible adversary.

2.2 The multi-party case

We now extend the idea from the previous section to the multi-party case. Let P = {P0, . . . , Pa−1} be the set
of players. We define an a-out-of-a-secret sharing scheme, in which a dealer (holding a secret M ∈ {0, 1}n) gives
to each Pi a share Ti ∈ {0, 1}t (where t is a large number). The reconstruction of the secret M requires players
to make ` “loops”, where a loop is a sequence of a short messages, the first sent from player P0 to P1, the second
message (which is computed as a function of the message received from P0 and the share of P1) from player P1 to
P2, and so on until the ath message which is sent from player Pa−1 back to P0. The adversary can adaptively issue
corruption requests: in round i the adversary chooses a player Pci

and a function hi : {0, 1}t → {0, 1}si in order
to learn Hi = hi(Tci

). We now must extend the notion of “`-admissible” and “s-bounded” adversaries to the case
of more than two players.

Let σ := (Pc1 , . . . , Pcw) denote the sequence of players the adversary chooses to corrupt in consecutive rounds
and let h1, . . . , hw be the retrieval functions. We say that the adversary is s-bounded, if for every player Pj , the
total length of the Hi’s where Pci

= Pj is at most s. We say that the adversary is `-admissible, if he never chooses
a corruption sequence σ such that (P0, . . . , Pa−1)`||(P0) is a subsequence of σ. Observe that any adversary which
is not `-admissible can easily learn the secret by evaluating the reconstruction procedure (thus retrieving only very
few bits). An example of a possible corruption sequence produced by a 3-admissible (but not by a 2-admissible)
adversary is depicted below (what the last row in the table means will be explained later):

i = 1 2 3 4 5 6 7 8 9 10 11
Pci = P1 P0 P2 P1 P2 P2 P0 P1 P0 P2 P0

cpl i = 0 1 1 2 3 3 4 5 5 6 7
(1)

2.3 Extensions

Our “basic” construction of an IRSS scheme is given in Sect.7. We also propose some variations of the basic
scheme which are more efficient or achieve security against even stronger adversaries.

Local Share Expansion The size of the shares T0, . . . , Ta−1 of an IRSS must be large as it directly implies the
retrieval-bound of the adversaries we want to tolerate. Having to store such large shares (say, 10GB) on a local
computer is, given the extremely low price of storage, not a big issue (see Sect. 2.4), but getting such large shares
from the dealer to the players might be a problem. In Sect. 8 we show how to construct schemes in which the
dealer sends to the players quite short messages τ0, . . . , τa−1. Then, each player Pi after receiving τi computes his
share Ti using a long locally generated random string ρi. Of course for this to work we need to assume that τi can
be reliably erased and that during the distribution phase (more precisely: until the τi’s get erased) the adversary
does not corrupt any of the players.

Complete Leaks Our basic IRSS scheme is based on a so called BSM-secure function (BSM for Bounded Storage
Model), which is a special kind of extractor. We cannot prove this scheme secure against adversaries which can

3

retrieve some of the shares completely, but in Sect.9 we observe that if the BSM-secure function has the special
property of being a permutation, then the scheme can be proven secure even against such adversaries. We give a
generic construction (a two round Feistel network) to construct a BSM-secure permutation from any BSM-secure
function (in fact, this construction works for any kind of extractors).

Computational power of the adversary In general the schemes considered in this paper are information-
theoretically secure. The only exception is Sect. 11, where we introduce a computationally-secure variant of
IRSS. The advantage of the scheme constructed in Sect. 11 is that it is significantly more efficient (in terms of
communication complexity) than the other schemes in the paper, especially if the shared secret M is large.

2.4 Practical aspects

In this section we describe possible scenarios in which our schemes may be used in practice. Although our
initial motivation was presented in the context of PCs connected to the Internet, our schemes can also be used in
other environments, where highly-sensitive data needs to be shared among a group of users. Clearly, feasibility
of our assumptions depends on the relation between the costs of storing and downloading data. Let us note, that
currently the price of storing 10GB is extremely low (a 500GB hard disc costs around 100e), while downloading
several GBs in an unnoticeable way can be considered infeasible in many settings.

Distribution phase We imagine two ways in which the shares can be distributed. The first is to use the basic
scheme and have the players obtain their large shares directly from the dealer on some physical device like a DVD
disc. The other possibility is to use the “local-share-expansion” trick, where the players only abtain small amounts
of data from the dealer. These short messages can for example be transmitted by trusted links over the Internet.
The drawback of this solution is that we must assume that the players reliably erase the τi’s (in particular, in the
sharing phase all the players need to be trusted). One also must be careful about how the channels that transmit
τi’s are secured. It is not enough to use any standard encryption method, since if the adversary eavesdrops the
ciphertext and later corrupts Pi then he may simply retrieve the key and decrypt τi. Hence, we need to use a
forward-secure encryption scheme (see e.g. [10]). Or, if we also want to be secure against corruptions that occurred
before the τi’s were sent, we can use the intrusion-resilient scheme of [13, 5].

Reconstruction phase Also the reconstruction can be done in two different ways. In the first one the players
bring their shares to a trusted center that reconstructs the secret. The trusted center can be some machine
with a freshly installed operating system, which was never connected to the Internet. This method has a high
communication complexity (since the entire shares need to be sent).

The other method is to let the players reconstruct the secret interactively, say at a given time they all switch
their machines on, connect them to the Internet, and run the reconstruction procedure. The players have to
exchange a` messages, but the communication complexity is low.

3 Related Work

Secret-sharing schemes were introduced in [22, 3]. We have already discussed other work done in the Bounded
Retrieval Model in Sect. 1. In this section we discuss the relation to communication complexity and proactive
security.

Proactive security An alternative way to protect against the attacks of viruses is to construct protocols that
are proactively secure (for an overview of this area see [4]). These methods require that the secrets stored by the
machines of the users are periodically refreshed and the adversary must not corrupt too many machines between
two such refresh phases. We do not require such interactive refreshments, but instead a bound on the amount of
data retrieved by the adversary.

4

Rounds in communication complexity The (two-party) communication complexity of a function f(., .) is
the number of bits that two players must exchange in order to compute f(X, Y), where X and Y are held by the
players respectively [25]. Papadimitriou and Sipser [21] asked how the communication complexity is affected if the
players are restricted to exchange at most k messages. They conjectured that there is an exponential gap between
the k and k − 1 round communication complexity for a problem called pointer-jumping. This conjecture has been
proven by Duris, Galil and Schnitger [12], with a subsequent tight bound by Nisan and Wigderson [20].

Our Intrusion-Resilient Secret-Sharing scheme directly implies an exponential gap for k and k − 1 round com-
munication complexity, and this separation is stronger than the separations achieved for pointer-jumping or any
other problem we are aware of, as (1) we get an exponential gap for k and k−1 round protocol even if we allow the
communication complexity in the k − 1 round case to be a constant fraction of the size of the inputs (in previous
separations the communication always was o(n), where n is the input size); and (2) not only can the value f(X, Y)
not be computed by the k−1 round protocol with some constant probability, but in fact f(X, Y) will be statistically
close to uniform given the view after k − 1 rounds (assuming that the inputs X and Y are chosen uniformly at
random).

4 Further Work and Open Problems

Simultaneous Corruptions In this paper we focus on adversaries which can corrupt only one player at the
time: in round i, the adversary chooses a function hi and a player Pci

∈ P to retrieve Hi = hi(Tci
). A natural and

much stronger adversarial model is to allow the adversary to corrupt subsets of players: the adversary chooses hi

and Pi ⊂ P, and retrieves Hi = hi(TPi), where TPi denotes all the shares hold by players in Pi.
We can generalize the definition of `-admissible adversaries (as sketched in Section 2.2) to this stronger model:

let us call an adversary (as just described) `-set admissible, if he never chooses a corruption sequence P1, . . . ,Pw,
such that (P0, . . . , Pa−1)`‖P0 is a subsequence of P∗1 || . . . ||P∗w. We leave it as an open problem to prove our (or
another) protocol secure against such adversaries.

When making an additional assumption on either the corruption sequence or on the communication complexity
of the hi’s, we can prove our protocol secure against `-set-admissible adversaries as we will sketch now:

• The version of our protocol which is secure against complete leaks, is also secure against `-set-admissible
adversaries if for any corrupted sets of players Pi,Pj we either have Pi = Pj or Pi ∩ Pj = ∅. The reason
is that for any set Pi of corrupted players, we can give to the adversary the shares of all but one (say the
lexicographically first) player for free. The condition on the Pi’s just described then guarantees that the
corruption sequence on the remaining players does not make ` loops.

• A (normal) `-admissible adversary A′ can simulate a `-set-admissible adversary A: if A requests hi(Pci), A′
corrupts the players in Pci

one at a time (possibly several times) until it learns hi(Pci
). A′ can do so by

retrieving a total of s′i := si + cc(hi) bits, where si is the output length of hi and cc(hi) is the communication
complexity of hi, i.e. an upper bound on the total length of the messages the players in Pi must exchange
in order to jointly compute hi(TPi) (recall that TPi denotes the shares hold by the players in Pi). Thus
an IRSS which is secure against s-bounded `-admissible adversaries, is also secure against `-set-admissible
adversaries, as long as the total communication complexity plus the output length of the hi’s chosen by the
adversary is at most s.

Very Short Messages The length of the messages exchanged during reconstruction is linear in the length of
the shared secret. It would be nice to have a protocol where the length of (most of) the messages is independent
of the length of the shared secret (i.e. only depends on some security parameter). In the full version of the paper
we propose a scheme where the length of all but the last a messages (a being the number of players) is very small.
Unfortunately, we do not yet have a security proof for that scheme.

General Access Structures In this paper we only consider a-out-of-a secret sharing schemes, i.e. all a players
must cooperate in order to reconstruct the secret. It is straightforward to generalize the scheme to work for any
access structure Π = {S1,S2, . . .}, each Si ⊆ P (the meaning being that any set of players S ∈ Π can reconstruct
the secret), at the cost of increasing one of the shares by the size of |Π| · n, where n is the size of the message

5

shared. Of course the scheme is then only secure against adversaries which are `-admissible for every S ∈ Π. It is
an open question if we can do better than that for simple access structures like threshold secret sharing (where for
some threshold b, each player sets S, |S| ≥ b is able to reconstruct).

5 Tools and Notation

We will use the concept of Markov chains and Shannon entropy whose description can be found e.g. in [6].
Moreover, additionally to the notation introduced at the beginning of Sect. 2 we need the following. Let ran-
dom variables X0, X1 be distributed over some set X , and let Y be a random variable distributed over Y.
Define the statistical distance between X0 and X1 as ∆(X0 ; X1) = 1

2

∑
x∈X | PX0(x) −PX1(x)|. Moreover

let ∆(X0 ; X1 | Y) := ∆(X0, Y ; X1, Y) be the statistical distance between X0 and X1 conditioned on Y .
If X1 has uniform distribution over X and is independent from Y then define d(X0) := ∆(X0 ; X1) and
d(X0 | Y) := ∆(X0 ; X1 | Y) as the (conditional) distance of X0 from uniform.2 It is a straightforward cal-
culation that ∆(X0 ; X1 | Y) is equal to the following expected value

∑
y∈Y P(y = Y) · ∆(PX0|y=Y ; PX1|y=Y),

and similarly d(X0 | Y) =
∑

y∈Y P(y = Y) · d(PX0|y=Y). It is also straightforward to verify that the following
triangle inequality holds for ∆: for any X0,X1, and X2 we have ∆(X0 ; X1) ≤ ∆(X0 ; X1)+∆(X1 ; X2), and the
same holds when the conditional statistical distance is used. The proofs of the following lemmas about statistical
distance appear in the full version of this paper.

Lemma 1 Let K, K̃,R, T be random variables such that K is uniformly random, and let φ be any function. Then
d(φ(K̃,R) | K̃, T) ≤ d(φ(K, R) | K, T) + d(K̃ | T).

Lemma 2 Let T,E, F be random variables where T → E → F is a Markov chain (i.e. PF |ET = PF |E), then
d(F | E, T) = d(F | E).

Lemma 3 Let A,B be random variables where A ∈ A. Then P(B = A) ≤ d(A | B) + 1/ |A| .

Lemma 4 Let A,B be independent random variables and consider a sequence V1, . . . , Vi of random variables,
where for some function φ, Vi = φ(V1, . . . , Vi−1, Ci), where each Ci is either A or B, then B → (V1, . . . , Vi) → A
is a Markov chain.

Bounded-Storage Model One of our tools is a method for secure key-expansion in the Bounded-Storage Model
(BSM), a model introduced by Maurer [18]. Because of the lack of space we do not discuss this model in detail
here (the reader may consult e.g. [1, 15, 23]). We say that a function f : {0, 1}m × {0, 1}t → {0, 1}n is (ε, s)-BSM
secure if for every h : {0, 1}t → {0, 1}s we have d(f(K, R) | h(R),K) ≤ ε, where K and R are independent and
distributed uniformly over {0, 1}m and {0, 1}t respectively (R will often be called a randomizer) . In this paper we
do not use the Bounded-Storage Model itself, but we just apply some of the theorems proved in this area, which
state that for large t and small m and n there exist (ε, s)-BSM secure functions where ε is negligible, s is a constant
fraction of t and which (on any input) access only a small part of R (see Sect. 10 for details)

6 Definition of IRSS

The definitions in this section were already discussed informally in Sect. 2.2. Let P = {P0, . . . , Pa−1} be a set of
players. We start with the functional definition (the security definition is given in Sect. 6.1) of Intrusion-Resilient
Secret-Sharing (the meaning of the frames in the definition below will be explained later).

Definition 1 (IRSS, functional definition) An Intrusion-Resilient Secret Sharing (IRSS) scheme Ξa,` is a
protocol between a dealer and a players P = {P0, . . . , Pa−1}. It consists of the following two algorithms, indexed
by the number of players a ∈ N and a parameter ` ∈ N.

2We will overload the symbols ∆ and d and sometimes apply them to the probability distributions instead of the random variables.

6

• sharea,` is a randomized algorithm that takes as input a message M ∈ {0, 1}n. It returns a sequence T0, . . . , Ta−1

of bit-strings, where each Ti is of length t.3 The algorithm is executed by the dealer that later sends each Ti

to a player Pi.

• reconstructa,` is a deterministic algorithm that takes as input a sequence (T0, . . . , Ta−1) (as produced by the
share algorithm) We require that always reconstructa,`(sharea,`(M)) = M . The output of reconstructa,`(T0, . . . , Ta−1)
can be computed by a protocol between players P0, . . . , Pa−1 (player Pi holding Ti) in a` rounds, where in
round j (0 ≤ j ≤ a` − 1) a short message Kj is sent from from player Pj mod a to Pj+1 mod a. Finally P0

outputs the shared value.

It will be convenient to define a (weak) variant of IRSS, which we call Intrusion-Resilient Random-Secret Sharing
(IRRSS). Here the share algorithm does not take any input, but the shared message (i.e. the message output by
reconstruct) will be random. Def. 1 is also a definition for IRRSS when ignoring the text in frames.

6.1 Adversarial Model

Let Ξa,` = (sharea,`, reconstructa,`) be an IRSS scheme as in Def. 1. Consider an adversary A that plays the
following game against an oracle Ω. At the beginning, the adversary sends to the oracle a pair (M0,M1). The
oracle chooses a random bit b and runs sharea,`(Mb) to obtain the values T0, . . . , Ta−1. Now, the adversary can
issue an (adaptively chosen) sequence corrupt1, . . . , corrupte of corruption requests. Each request corrupt i is a pair
(Pci

, hi), where Pci
∈ P, and hi : {0, 1}t → {0, 1}si is an arbitrary function. On input corrupt i the oracle replies

with Hi := h(Tci
). We will say that the adversary chooses a corruption sequence C = (Pc1 , . . . , Pce

). Finally A
outputs a bit guessA ∈ {0, 1}, we say that A breaks the scheme with an advantage ε if ε = 2 ·

∣∣P(guessA = b)− 1
2

∣∣ .

Definition 2 (Corruption Path Length/Loops) Let C = (Pc1 , . . . , Pcw
) ∈ P∗ be a corruption sequence. The

corruption path length of C, denoted cpl(C) is defined as the length of the maximal prefix of (P0, . . . , Pa−1)∗, that
is a subsequence of C. We say that C makes ` loops, if cpl(C)/a > `. An example of a corruption sequence that
makes 2 loops is given in (1), the underlined Pi’s denoting the subsequence (of length 7) which is the longest prefix
of (P0, P1, P2)∗.

Definition 3 (`-admissible adversary) An adversary A is `-admissible, if any corruption sequence C chosen
by A makes less than ` loops, i.e. cpl(C) ≤ a · `.

Definition 4 (s-bounded adversary) An adversary A is s-bounded, if the corruption sequence C = (Pc1 , . . . , Pcw)
chosen by A satisfies the following: for every Pj ∈ P we have

∑
si ≤ s, where the summation is over all i such

that Pci
= Pj, and si := |Hi| is the length of the output of hi.

To simplify the statements and the proofs of our results we assume that for any prefix Ci = (Pc1 , . . . , Pci
) of the

corruption sequence chosen by A the message Kcpl(Ci)−1 (see Def. 1) is contained in (H1, . . . ,Hi). In other words,
the adversary always computes all Ki’s that he can trivially calculate by simulating the reconstructa,` procedure.4

Definition 5 (Security of IRSS) An IRSS scheme Ξa,` is (ε, s)-secure if every `-admissible s-bounded adversary
A breaks Ξa,` with an advantage at most ε.

To define security for Intrusion-Resilient Random Secret Sharing (IRRSS), we consider the same adversary model
as for IRSS, except that now the adversary does not initially send to the oracle a pair (M0,M1) of messages.
Moreover the final output is not just a bit, but can be an arbitrary string out

eA. Let M̃ denote the random string
shared by the sharing algorithm, then we say that Ã breaks the IRRSS scheme with an advantage ε if given the
output of Ã, the distribution of M̃ is ε far from uniform, i.e. ε = d(M̃ | out

eA).

3In fact, in our schemes the Ti’s may slightly differ in length: the share T0 will be a little bit longer than the other shares. For
simplicity we assume that all the lengths are equal, since the shorter shares can always be artificially “padded” to have length equal
to t.

4The Ki’s will be short compared with s, hence the adversary needs very little memory to retrieve them, and therefore we essentially
do not loose generality by making this assumption.

7

Definition 6 (Security of IRRSS) an IRRSS scheme Ξ̃a,` is (ε, s)-secure if every `-admissible s-bounded ad-
versary Ã breaks Ξ̃a,` with an advantage at most ε.

IRRSS is a much weaker primitive than IRSS, and seems much easier to construct. By the following Lemma we
can turn an IRRSS into an IRSS by using the shared random secret M̃ as a one time pad to encrypt M . The
security loss in this reduction is exponential in the length of the shared message.

Lemma 5 Let Ξ̃a,` = (share ′a,`, reconstruct ′a,`) be an (ε, s)-secure IRRSS. Consider an IRSS Ξa,` = (sharea,`,

reconstructa,`) constructed from Ξ̃a,` as follows: algorithm sharea,`(M) simply executes share ′a,` (let T denote the
resulting shares); P0 additionally gets C = M⊕M̃ where M̃ ← reconstructa,`(T). The procedure reconstructa,`(T , C)
runs M̃ ← reconstruct ′a,`(T) and output M = C ⊕ M̃ . Then Ξa,` is an (ε · 2n, s) secure IRSS.

Proof Consider an s-bounded `-admissible adversary A that breaks Ξa,` with an advantage ζ. We construct an
s-bounded `-admissible adversary Ã that attacks Ξ̃a,`, by simulating A in a black-box manner. Initially Ã stores
the messages M0 and M1 output by A. Then Ã simply lets A attack Ξ̃a,` by forwarding his corruption requests to
the oracle. The only nontrivial problem is how to handle the corruptions of P0. This is because unlike in Ξa,`, in
Ξ̃a,` the player P0 does not hold a value C = Mb⊕M̃ . We let Ã simply set C to be some random value Z ∈ {0, 1}n

(meaning that Ã replaces hi he gets from A with an h′i which does exactly the same thing as hi, but uses Z instead
of C). Finally, A outputs his guess guessA, and we let Ã output out

eA := Z ⊕MguessA . By Lemma 3 we get that
P(out

eA = M̃) is at most
2−n + d(M̃ | out

eA) ≤ 2−n + ε, (2)

where (2) comes from (ε, s)-security of Ξ̃. Now, suppose that for some d ∈ {0, 1} the following event Ed occurred:
Z = Md⊕M̃ . In this case Ã simply simulated the execution of A against an oracle Ω with b = d. Since Z is chosen
uniformly thus P(E0) = P(E1) = 2−n. Therefore conditioned on the event E0 ∪ E1 the probability that guessA = d

is at least 1
2 + 1

2 · ζ. Thus we have that P(out
eA = M̃) is at least equal to P(out

eA = M̃ | E0 ∪ E1) ·P(E0 ∪ E1), which
is at least

(
1
2 + 1

2 · ζ
)
· 2−n+1 = (1 + ζ) · 2−n. Combining it with (2) we get 2−n + ε ≥ (1 + ζ) · 2−n, which implies

that ζ ≤ ε · 2n as claimed. 2

The following simple observation (whose proof appears in the full version of this paper will also be useful.

Observation 1 In the definition of IRRSS we can restrict ourselves to adversaries that are (1) deterministic, and
(2) output out

eA = (H1, . . . ,Hw).

7 The Basic IRRSS/IRSS Schemes Ξ̃f
a,`/Ξ

f
a,`

In this section we construct a (2n · a`ε, s)-secure Intrusion-Resilient Secret Sharing scheme from any (ε, s)-BSM
secure function f : {0, 1}m × {0, 1}t → {0, 1}m for a set P = {P0, . . . , Pa−1} of players. We follow the approach
outlined in Lemma 5, i.e. we first construct an IRRSS, from which we then get an IRSS by using the shared random
secret as a one-time pad to encrypt the message to be shared. The schemes are extremely simple, in round i of
the reconstruction procedure, player Pi mod a gets a (short) message Ki and uses it as a key to extract the next
message Ki+1 from his (large) randomizer Ri mod a with the BSM-secure function f . The shared random message
in the IRRSS is simply Ka`, the figure below illustrates the reconstruction procedure for a = 3 and ` = 2.

K0 // K1=f(K0,R1) //
BCEDGF K2=f(K1,R2)

@A
//

P0 P1 P2

K3=f(K2,R0) // K4=f(K3,R1) //
BC

EDGF K5=f(K4,R2)

@A
// K6=f(K5,R0) // output

8

The pair (sharea,`, reconstructa,`) below is an IRRSS scheme when ignoring the text in frames , we will refer to
this IRRSS scheme as Ξ̃f

a,`. By adding the text in frames we get an IRSS (as outlined in Lemma 5), we will refer
to this IRSS scheme as Ξf

a,`.

sharea,` (M) : Choose K0 ∈ {0, 1}m and R0, . . . , Ra−1 ∈ {0, 1}t uniformly at random. The share of each player

Pi ∈ P is Ri. Player P0 additionally gets K0 and C which is computed as:

1. For i = 1, . . . , a` let Ki := f(Ki−1, Ri mod a)

2. Set C := M ⊕Ka`[1, . . . , n]

reconstructa,`(K0, R0, . . . , Ra−1 , C) : The players execute the following procedure

1. Player P0 sends K0 to P1.

2. For i = 1, . . . , a`− 1 player Pi mod a sends Ki = f(Ki−1, Ri mod a) to player Pi+1 mod a.

3. P0 computes Ka` = f(Ka`−1, R0) and outputs Ka`[1, . . . , n] ⊕C .

7.1 Security

Theorem 1 The IRSS scheme Ξf
a,` for messages of length n, based on a (ε, s)-BSM secure function f : {0, 1}m ×

{0, 1}t → {0, 1}m, is (2n · a`ε, s)-secure.

Proof The security follows from the (a`ε, s)-security of the IRRSS Ξ̃a` (as proven in Lemma 7 below) by applying
the IRRSS-to-IRSS reduction from Lemma 5. 2

Before stating and proving Lemma 7 we present the following intuitive lemma (whose proof will appear in the full
version of this paper), which essentially states that an s-bounded adversary learns no more than s bits of each
share as required by the definition of a BSM secure function.

Lemma 6 Consider any player Px holding the share Rx and let (H1, . . . ,Hi) be the information retrieved by an s-
bounded adversary in the first i rounds. If f is an (ε, s)-secure BSM function then d(f(K, Rx) | H1, . . . ,Hi,K) ≤ ε,
where K is uniformly random (and independent of the other variables).

Lemma 7 The IRRSS scheme Ξ̃f
a,` is (a`ε, s)-secure.

Proof Consider any adversary Ã which attacks Ξ̃f
a,`. Let Pc1 , Pc2 , . . . denote the corruption sequence, and let

cpli = cpl(Pc1 , . . . , Pci
). Note that cpli = cpli−1+1 iff cpli−1 mod a = ci, which implies that always cpli mod a 6= ci.

Recall that Hi = hi(Rci
) is the information that Ã learns in round i. To save on notation let Hi = H1, . . . ,Hi, and

let H0 denote the empty sequence. Recall that in Def. 4 we assumed that Kcpli−1 is known after the ith round,
thus (using the convention that K−1 is empty)5

H(Kcpli−1 | Hi) = 0. (3)

We will prove by induction over i that Kcpli is close to uniform after the first i corruptions:

d(Kcpli | Hi) = d(Kcpli | Hi,Kcpli−1) ≤ cpli · ε. (4)

After showing this we will be done since clearly d(Kcpli [1, . . . , n] | Hi) ≤ d(Kcpli | H
i). For the induction basis,

note that (4) is true for i = 0: we have d(K0 | H0) = d(K0) = 0. We now prove that (4) holds for any i > 0

5Recall that the symbol H denotes Shannon entropy.

9

assuming it holds for i− 1. We make a case distinction, and first prove it for the rounds i where the cpl increases,
i.e. for i’s where cpli−1 + 1 = cpli. The steps used in the following calculation are explained in detail below (the
variable K in (8) is uniformly random).

d(Kcpli | Hi)

= d(

F︷ ︸︸ ︷
Kcpli |

E︷ ︸︸ ︷
Hi−1,Kcpli−1,

T︷︸︸︷
Hi) (5)

= d(Kcpli | Hi−1,Kcpli−1) (6)
= d(f(Kcpli−1, Rcpli) | Hi−1,Kcpli−1) (7)
≤ d(f(K, Rcpli)|Hi−1,K) + d(Kcpli−1|Hi−1) (8)
≤ ε + d(Kcpli−1 | Hi−1) (9)
= ε + d(Kcpli−1 | Hi−1) (10)
≤ ε + cpli−1 · ε ≤ cpli · ε (11)

Step (5) just uses the definition of our scheme and (3). The next step (6) uses Lemma 2. To apply this Lemma
one must show that T → E → F is a Markov chain. Basically, this follows from Lemma 4 by identifying A from
the lemma with Rci

, further B with all the other Rj ’s, and Vi = φ(V1, . . . , Vi−1, A) with Hi = hi(Rci
), noting that

the (adaptive) adversary computes hi as a function of H1, . . . ,Hi−1 (for space reasons, a detailed proof will only
be given in the full version). Step (7) follows by definition and step (8) follows from Lemma 1. Step (9) follows
from Lemma 6. Step (10) follows by the assumption that cpli−1 + 1 = cpli. The last step (11) follow from the
induction hypothesis (4) for i− 1. It remains to prove (4) for i’s such that cpl i−1 = cpl i:

d(Kcpli |Hi) = d(

F︷ ︸︸ ︷
Kcpli |

E︷ ︸︸ ︷
Hi−1,Kcpli−1,

T︷︸︸︷
Hi) (12)

= d(Kcpli | Hi−1,Kcpli−1) (13)
= d(Kcpli−1 | Hi−1,Kcpli−1−1) (14)

= d(Kcpli−1 | Hi−1) (15)
= cpli−1 · ε = cpli · ε (16)

Step (13) uses Lemma 2 (again, to apply this lemma one must show that T → E → F is a Markov chain, which
follows from Lemma 4 as will be explained in detail in the full version of this paper). In step (14) and the very
last step we use the assumption that cpl i−1 = cpl i. Step (15) uses (3). Step (16) uses the induction hypothesis (4)
for i− 1. 2

8 Local Share Expansion

In this section we show a modified IRSS scheme where the shares each player receives from the dealer are very
small, and where each player, after receiving the share from the dealer, blows up it up locally (this was informally
discussed in Sect. 2). After the players have deleted their short shares that they have received from the dealer,
we are basically in the same situation as in our original scheme Ξf

a,` (except that now the players additionally
have some Yi values which they have to store), and we have exactly the same security guarantee (cf. Thm. 1) as
our original scheme. The scheme is defined below and its security will be proven in the full version of this paper.
Besides the usual share and reconstruct procedure, now for i = 0, . . . , a−1 there also is a procedure expand i which
is run locally by player Pi after receiving the share.

sharea,`(M) : Choose K0, . . . ,Ka·` ∈ {0, 1}m uniformly at random (below we use the convention that Ki is empty
for i 6∈ {0, . . . , a`}). Set C := M ⊕K`·a[1, . . . , n]. For i = −1, . . . , a · `, send (Ki,Ki+1) to player Pi+1 mod a.
Send C to player P0.

expand i
a,`({(Ki+ad−1,Ki+ad)}`d=0) Choose a randomizer Ri ∈ {0, 1}t uniformly at random, and save it. For each

(Kj−1,Kj) in the input (where both Kj−1 and Kj are nonempty, i.e. j ∈ {1, . . . , a`}) compute and save
Yj = f(Kj−1, Ri)⊕Kj . If i = 0, save K0. Delete all other Ki’s.

10

reconstructa,`(K0, R0, . . . , Ra−1, C) : The players execute the following procedure

1. Player P0 sends K0 to P1

2. For i = 1, . . . , a`− 1 player Pi mod a sends Ki = Yi ⊕ f(Ki−1, Ri mod a) to player Pi+1 mod a.

3. P0 computes Ka` = Ya` ⊕ f(Ka`−1, R0) and outputs M = C ⊕ (Ka·`[1, . . . , n]).

9 Complete Leaks

Although security against adversaries as considered in Def. 5 is already quite strong, we did not consider so
far the case when the adversary is able to learn one or more shares completely. In this section we show that for
some particular class of BSM-secure functions (that we construct) the IRSS scheme from Sect. 7 is secure against
such complete leaks. We don’t actually know if already our basic IRSS scheme Ξf

a,` is secure against full leaks if
any BSM-secure function f is used. Our security proof of the IRSS Ξf

a,`, relying on the security of the IRRSS
Ξ̃f

a,`, breaks down completely in this case as Ξ̃f
a,` is not a secure IRRSS when the adversary is allowed to learn

the complete share R0 of player P0. This is because d(Ka·` | R0) can be large (so the shared secret Ka` is far
from uniform given R0). To see this recall that Ka` = f(Ka`−1, R0), and let us assume for the moment that
f(·, R0) : {0, 1}m → {0, 1}m behaves like a uniformly random function. It is a simple calculation that in this
case the size of the range of f(·, R0) is roughly 2m(1 − 1/e), where e = 2.71 . . . is Euler’s number. But then, for
any distribution of Ka`−1, the value of f(Ka`−1, R0) is far from uniformly random as it will avoid a 1/e fraction
of all possible outputs (and an adversary who knows R0 completely, will know what this 1/e fraction is). Our
idea therefore is to limit ourselves to a special class of the BSM-secure functions that makes the above problem
disappear, namely to functions f(·, R) : {0, 1}m → {0, 1}m whose range is equal to {0, 1}m, or, equivalently,
functions f(·, R) which are permutation (we will simply call such f BSM permutations). To formalize what it
means to “leak a share completely”, we define the following adversaries.

Definition 7 ((adaptive) strong `-admissible adversary) A strong `-admissible adversary can initially choose
a subset of completely corrupted players P ′ ⊂ P, and then gets the shares of all those players. Then he can attack
according to any corruption sequence which does not make ` loops on the remaining players P\P ′ = {Pr1 , . . . , Prx

},
i.e. if Pc1 , . . . , Pcw

is the corruption sequence then (r1, . . . , rx)` must not be a subsequence of c1, . . . , cw. An adap-
tive strong `-admissible adversary is defined similarly, but he can choose the shares he wants to learn completely
adaptively during the attack.

We will say that an IRSS (IRRSS, resp.) scheme is (ε, s)∗-secure, if it is (ε, s)-secure as in Def. 5 (Def. 6, resp.), with
the only difference that in the definition “`-admissible adversary” is replaced with “strong `-admissible adversary”.
Analogously, we say that an IRSS scheme is (ε, s)∗∗-secure if we instead consider “adaptive strong `-admissible
adversaries”.

Observation 2 Every IRSS or IRRSS scheme that is (ε, s)∗-secure is also (ε2a, s)∗∗-secure. This is because a
non-adaptive adversary can always simulate the adaptive one, by guessing the set P ′ of players whose shares the
adaptive adversary will choose to learn. This guess will be correct with probability 2−a, hence the 2a loss in security.

Lemma 5 extends easily to the “∗” and “∗∗” security notions. Therefore it is enough to show how to construct an
(ε, s)∗-secure IRRSS. Such a scheme can be constructed by replacing an arbitrary BSM secure function f with a
BSM permutation. Observe that if we base our IRRSS scheme Ξπ

a,` on a BSM secure permutation π, then we can
write Ki = Πi mod a(Ki−1) where Πi is the permutation π(., Ri). The effect of leaking a complete share Ri is thus
the same as giving Πi to the adversary. Consider an adversary which attacks Ξπ

a,`, and let P ′ be the set of the
completely corrupted players. From the viewpoint of the adversary the scheme now looks almost like the original
one with the players being P \P ′, where occasionally the intermediate keys Ki get permuted. Say if the adversary
knows Πi, then Kj−1 (where i = j mod a) is mapped to Kj = Πi(Kj−1), but as the Πi’s are bijections, there is no
entropy loss due to this mappings. Using this fact we can adapt (the proof of) Lemma 7 to the “∗” notion, i.e.

Lemma 8 The IRRSS Ξ̃π
a,` scheme from Sect. 7, if based on a (ε, s)-BSM secure permutation, is (a`ε, s)∗-secure

and thus also (2aa`ε, s)∗∗-secure.

11

And further by the reduction from Lemma 5 we get:

Theorem 2 The IRSS scheme Ξπ
a,` for messages of length n, based on a (ε, s)-BSM secure permutation π :

{0, 1}m × {0, 1}t → {0, 1}m, is (2n · a`ε, s)∗-secure (and thus also (2a+n · a`ε, s)∗∗-secure)

Of course the above theorem is only interesting if we can come up with a BSM secure permutation. Below we
show how to get such an object from any “normal” BSM secure function (the proof appears in the full version of
this paper.

Theorem 3 Let f : {0, 1}m × {0, 1}t → {0, 1}m be an (ε, s)-BSM secure function, then F : {0, 1}2m × {0, 1}t →
{0, 1}2m defined as a two-round Feistel-network with f as round functions, i.e. F (K`‖Kr, R) := Kr⊕f(K`, R)‖K`⊕
f(Kr ⊕ f(K`, R), R) is (2ε, s −m)-BSM secure . Moreover, as the Feistel-network is a permutation, F (·, R) is a
permutation on {0, 1}2m for any R ∈ {0, 1}t.

10 Concrete schemes

All the schemes that we constructed in this paper used as building block a BSM-secure function f . In this
section we give examples of two concrete IRSS schemes based on the BSM functions of [23, 15]. The proofs of the
corollaries below appear in the full version of this paper.

Corrollary 1 (Scheme based on the function of [23]) For every β ∈ [0, 1), every n and t and every ε >

2n−t/2O(log∗ t)
there exists an (a`ε, βt)-secure IRSS scheme Ξf

a,` for sharing messages of length n ≤ t(1 − β)/2 −
O(log(1/ε)), such that (1) the size of each share is t (except the share of P0 that has a size t+O(log t+log(1/ε)+n));
(2) in the ith round the player Pi mod a needs to access at most O(log t + log(1/ε) + n) bits of his share (except
of P0 that in the final round needs to access additionally n bits of his share); (3) the length of each message Ki

communicated in the ith round of the reconstruction procedure is O(log t+log(1/ε)+n); (4) each Ki is computable
in time polynomial in log t + log(1/ε) + n.

Corrollary 2 (Scheme based on the function of [15]) For every n, v and L > 100 there exists an (a`ε, s)-
secure IRSS scheme Ξf

a,` for sharing messages of length n, such that (1) the size of each share is t = v(L + n− 1)
(except the share of P0 that has a size t + dv log2 Le + n); (2) in the ith round the player Pi mod a needs to
access v dv log2 Le bits of his share (except of P0 that in the final round needs additionally to access n bits of
his share); (3) the length of each message Ki (communicated in the ith round of the reconstruction procedure) is
v dv log2 Le; (4) each Ki is computable in time linear in the number of accessed bits; (5) ε = dv log2 Le · 2−v/2+n;
(6) s := 0.08t− 1.5v(dv log2 Le+ 1).

11 Computationally-secure IRSS

The scheme constructed in Sect. 7 has an obvious drawback that the messages Ki communicated in the re-
construction phase are longer than the shared secret M . We leave it as an open problem to show information-
theoretically secure IRSS schemes with a smaller communication complexity.6 One can make the messages very
short (and independent of the length of M) at the cost of trading information-theoretic for computational security
in a straightforward way: instead of sharing the message M directly, one shares a key k for a symmetric encryption
(Enc,Dec) and gives player P0 additionally the ciphertext C = Enc(k, M) of M . Reconstruction is straightforward,
P0 now outputs M = Dec(k, C) instead of the shared k. Denote this new computationally-secure scheme as Ξc1

a`.
This method is very similar to the one used to construct a computationally-secure Forward-Secure Storage

scheme in [14]. We omit the formal proof that this construction is computationally secure (as long as the scheme
(Enc,Dec) is semantically secure). This proof is similar to the proof of Lemma 3 in [14]. The security definition in
this case is identical to the one in Sect. 6, except that now we must additionally require that A is a probabilistic
polynomial-time machine and we must assume that the functions hi (that are parts of the corrupt i requests,
cf. Sec. 6.1) are efficiently computable (e.g. representable by polynomial size circuits).

6Observe that using the techniques from Sect. 7 it is impossible to make the Ki’s shorter than M , since we have to pay the price
of the 2|M| factor in the advantage of the adversary, and hence to have |Ki| < |M | we would need to construct an (ε, s)-BSM secure
scheme with ε < 2|K|, which is impossible as the adversary can always guess K with probability 2|K|.

We also note that in every IRRSS scheme at least the last message Ka`−1 cannot be shorter than M , since the security of IRSS
implies that the function defined as E(Ka`−1, M) := (f(Ka`−1, R)⊕M, R), (where R is random) is an information-theoretically secure
(randomized) encryption scheme, and thus by Shannon’s theorem |M | ≥ |Ka`−1|.

12

Reducing the communication complexity even further – a connection with the theory of [16] We note
that in general one has to be careful when switching to computational security in IRSS. The motivating question
is as follows: can we reduce the length of the Ki’s even further, assuming that the adversary is computationally
bounded? First, let us look at the exact length of the Ki’s. Clearly, the length depends on the scheme we use.
Since in the scheme from Cor. 1 the exact values are hidden behind the O-notation let us concentrate on the scheme
from Cor. 2. Here we have |Ki| = v log2 L, where v is such that ε = v log2 L · 2−v/2+n is negligible (and hence v
has to be larger than 2n), and L is a parameter that in a practical scheme would be relatively large: L ≈ 220,
say. Thus, |Ki| is at least 2 log2 L ≈ 40 times larger than n. Therefore if we use the computationally secure IRSS
presented above, then each Ki is at least 40 times longer than the key for symmetric encryption (Enc,Dec).

A natural way to reduce the communication complexity of Ξc1
a,` even further, is to construct a new scheme Ξc2

a,`

as follows. Let G : {0, 1}n → {0, 1}m (for n < m) be a cryptographic pseudorandom generator. The scheme
Ξc2

a,` is defined as Ξc1
a,` with the following difference. First, instead of taking f : {0, 1}m × {0, 1}t → {0, 1}m,

take some BSM-secure function f ′ : {0, 1}m × {0, 1}t → {0, 1}n. In the share procedure (see Sect. 7) replace
“Ki := f(Ki−1, Ri mod a)” with “Ki := G(K ′

i), where K ′
i = f ′(Ki−1, Ri mod a)”. In the reconstruct procedure it is

enough that (in Step 2) each Pi mod a sends to Pi+1 mod a the value K ′
i, and then Pi+1 mod a computes Ki = G(K ′

i)
himself. In other words, instead of sending Ki we send its “compressed” version: K ′

i. Observe that now the message
communicated in each round is just a seed of G, and hence we can assume that it is equal to the length n of the key
in the encryption scheme (Enc,Dec). Thus, it is significantly shorter than the size of the message communicated
in each round in scheme Ξc1. At first sight it may seem that this construction is secure (and it is of course secure
if we model G as a random oracle [2]), however, a naive proof the security fails for the following reason: one needs
to show that a (computationally bounded) adversary that sees R cannot compress it to shorter value U = h(R),
such that when he later learns K ′, he can distinguish f(G(K ′), R) from random. It is not clear how to show just
from the assumption that G is a PRG. This problem is very similar to the problem of showing that the Φc2 scheme
of [14] (Sect. 6.3) is computationally secure, and is closely related to the theory of compressibility of NP-instances
[16] (see also [11]).

References

[1] Y. Aumann, Y. Z. Ding, and M. O. Rabin. Everlasting security in the bounded storage model. IEEE
Transactions on Information Theory, 48(6):1668–1680, 2002.

[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[3] G. R. Blakley. Safeguarding cryptographic keys. In Proc. AFIPS 1979 National Computer Conference, pages
313–317, 1979.

[4] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive security: Long-term protection against break-ins.
RSA CryptoBytes, 3(1):1–8, 1997.

[5] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. J. Lipton, and S. Walfish. Intrusion-resilient key exchange in the
bounded retrieval model. In TCC’07, volume 4392 of LNCS, pages 479–498, 2007.

[6] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons, Inc., 1991.

[7] G. Di Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols in the bounded retrieval
model. In TCC’06, volume 3876 of LNCS, pages 225–244, 2006.

[8] D. Dagon, W. Lee, and R. J. Lipton. Protecting secret data from insider attacks. In Financial Cryptography
and Data Security, pages 16–30, 2005.

[9] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[10] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated key exchanges. Designs,
Codes and Cryptography, 2(2):107–125, 1992.

13

[11] B. Dubrov and Y. Ishai. On the randomness complexity of efficient sampling. In ACM Symposium on Theory
of Computing, pages 711–720, 2006.

[12] P. Duris, Z. Galil, and G. Schnitger. Lower bounds on communication complexity. Inf. Comput., 73(1):1–22,
1987.

[13] S. Dziembowski. Intrusion-Resilience Via the Bounded-Storage Model. In TCC’06, volume 3876 of LNCS,
pages 207–224. Springer, 2006.

[14] S. Dziembowski. On Forward-Secure Storage. In CRYPTO’06, volume 4117 of LNCS, pages 251–270, 2006.

[15] S. Dziembowski and U. Maurer. Optimal randomizer efficiency in the bounded-storage model. Journal of
Cryptology, 17(1):5–26, January 2004.

[16] D. Harnik and M. Naor. On the compressibility of np instances and cryptographic applications. In FOCS ’06,
pages 719–728. IEEE, 2006.

[17] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function.
SIAM J. Comput., 28(4):1364–1396, 1999.

[18] U. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptology,
5(1):53–66, 1992.

[19] U. Maurer. Secret key agreement by public discussion. IEEE Transactions on Information Theory, 39(3):733–
742, 1993.

[20] N. Nisan and A. Widgerson. Rounds in communication complexity revisited. In STOC ’91, pages 419–429.
ACM, 1991.

[21] C. H. Papadimitriou and M. Sipser. Communication complexity. In STOC, pages 196–200. ACM, 1982.

[22] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613, November 1979.

[23] S. P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-storage model.
Journal of Cryptology, 17(1):43–77, January 2004.

[24] S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

[25] A. Chi-Chih Yao. Some complexity questions related to distributive computing (preliminary report). In STOC
’79, pages 209–213. ACM, 1979.

14

