
Sufficient Conditions for Computational Intractability

Regarding Generic Algorithms

Andy Rupp1, Gregor Leander1, Endre Bangerter2, Ahmad-Reza Sadeghi1, Alexander W. Dent3

1 Horst-Görtz Institute for IT-Security (Germany)
{arupp, sadeghi}@crypto.rub.de, gregor.leander@rub.de

2 Bern University of Applied Sciences (Switzerland)
endre.bangerter@bfh.ch

3 Royal Holloway, University of London (United Kingdom)
a.dent@rhul.ac.uk

Abstract. The generic group model is a valuable methodology for analyzing the computational hard-
ness of the number-theoretic problems used in cryptography. Although generic hardness proofs exhibit
many similarities, still the computational intractability of every newly introduced problem needs to be
proven from scratch, a task that can easily become complicated and cumbersome when done rigorously.
In this paper we make the first steps towards overcoming this problem by identifying verifiable criteria
which if met by a cryptographic problem guarantee its hardness with respect to generic algorithms. As
useful means for formalization of definitions and proofs we relate the concepts of generic algorithms
and straight-line programs that have only been used independently in cryptography so far.
The class of problems we cover includes a significant number of the cryptographic problems currently
known, and is general enough to also include many future problems. Moreover, we strengthen the
conventional generic model by incorporating a broader class of possible oracles (operations) since the
underlying algebraic groups may possibly be related through mappings such as isomorphisms, ho-
momorphisms or multilinear maps. Our approach could serve as an appropriate basis for tool-aided
hardness verification in the generic model.
Keywords. Generic Group Model, Straight-Line Programs, Hardness Conditions

1 Introduction

The generic group model was introduced by Nechaev [Nec94] and Shoup [Sho97]. In this model one
considers algorithms (so-called generic algorithms) that given a group G as black box, may only
perform a set of basic operations on the elements of G such as applying the group law, inversion
of group elements and equality testing. Since in this model the group is treated as black box, the
algorithms cannot exploit any special properties of a concrete group representation. Natural exam-
ples of this class of algorithms are the Pohlig-Hellman [PH78] and Pollard-Rho [Pol78] algorithm
for computing discrete logarithms.

A variety of fundamental cryptographic problems were proven to be computationally intractable
in the generic model, most notably the discrete logarithm problem (DLP), the computational and
decisional Diffie-Hellman problem (DHP and DDHP) [Sho97] and the root extraction problem
(in groups of hidden order) [DK02]. These intractability results are considered to be evidence
supporting cryptographic assumptions of number-theoretic nature which underly the security of a
vast number of systems of applied cryptography.

To be precise, a generic group algorithm can only perform a subset of the operations that can
be performed by an algorithm that may exploit specific properties of the representation of group
elements. This implies that proving a problem to be intractable in the generic group model is a
necessary, but not sufficient condition for the problem to be intractable in any concrete group. A
generically intractable problem that is easy in any concrete group has been considered in [Den02].

As further application, the generic model has been used to analyze relations between several
cryptographic assumptions [MW98,SS01,LR06] as well as for proving security properties of crypto-
graphic schemes [SJ00,AdM04,Bro05]. However, when used beyond the analysis of assumptions, as

1

it is done in the latter case, the generic model is known to have some pitfalls [Fis00,SPMLS02,Den02]
similar to the random oracle model.

Nonetheless, when making new intractability assumptions it is, loosely speaking, considered to
be good practice to prove the underlying problem to be hard in the generic model. Many novel
assumptions rely on more complex algebraic settings than standard assumptions like the DL, DH
or root assumption. They involve multiple groups and operations on group elements additional
to the basic operations. Examples are the numerous assumptions based on bilinear pairings (e.g.,
see [BF01,BB04,Yac02]). For an adequate analysis of computational and decisional problems over
such algebraic settings and their proper reflection, the basic generic group model needs to be
extended. For instance, in the case of the bilinear Diffie-Hellman problem [BF01], the model is
extended to two (or three) groups and the set of operations a generic algorithm may perform in
addition to the basic ones contains an operation for applying the bilinear map between these groups.

As a result, one ends up with various flavors of the generic group model and for each novel
problem an entire hardness proof needs to be redone from scratch. This can easily become a com-
plicated and cumbersome task since a rigorous and complete proof in the generic model is quite
technical. In fact, the proofs are often only sketched or even entirely omitted in the literature.
However, whether a problem is intractable for generic algorithms is not obvious and the properties
that ensure generic hardness have not been well-studied yet.
Our contributions. In a nutshell, we identify the core aspects making cryptographic problems
hard in the generic model. We provide a set of conditions, which given the description of a crypto-
graphic problem allow to check whether the problem at hand is intractable with respect to generic
algorithms performing certain operations. In this way we aim at (i) providing means to structure
and analyze the rapidly growing set of cryptographic assumptions as motivated in [Bon07] and (ii)
making the first steps towards automatically checkable hardness conditions in the generic model.

More concretely, we introduce quite comprehensive classes of computational problems over
known order groups, we call DL-type and DH-type problems. We consider a comprehensive list of
well-known cryptographic problems falling into these classes in Section 3. Given the broadness of
these classes, we expect that similar future computational problems will also comply with them.

We show the existence of a set of conditions which, in the generic group model, are sufficient
for the hardness of DL-type and DH-type problems. An important issue to point out is that we
do not just consider the basic generic group model, i.e., where an oracle provides operations to
apply the group law and compute inverses. Rather, we consider a broader and more flexible variant
where one can additionally make available a rich class of operations. Examples of such operations
are multilinear mappings, arbitrary homomorphisms between groups and also oracles solving other
computational or decisional problems. Correspondingly, our conditions not only consider the com-
putational problem at hand but also the operations one decides to make available. We note that
currently no concrete security bounds are provided. Deriving such bounds is difficult due to the
generality of our approach, however we think it is nevertheless possible and leave it as future work.

In this context, we explore the relationship of generic algorithms and so-called straight-line
programs (SLPs) which are non-probabilistic algorithms performing a static sequence of operations
on their inputs without branching or looping. This relation provides useful means for formalizing
the definitions and proofs. The concept of SLPs is widely-used in computational algebra and also
proved its usefulness in the area of cryptography (see, e.g., [BV98,Bro06]). Its relation to generic
algorithms has not been analyzed before.

As a further interesting result, one of our theorems (cf. Section 6) imply that most decision
oracles do not significantly help generic algorithms in solving any hard DL- or DH-type problem.
Related Work. In [Kil01] the author analyzes a generalization of the Diffie-Hellman problem, the
P -Diffie-Hellman problem: given group elements (g, gx1 , gx2) the challenge is to compute gP (x1,x2),

2

where P is a (non-linear) polynomial and g is a generator of some group G. Besides other results
concerning the P -DH problem it is shown there that the computational and decisional variant of
this problem class is hard in the generic model. Recently, another general problem class has been
introduced in [BBG05b] to cover DH related problems over bilinear groups. The authors show
that decisional problems belonging to this class which satisfy a certain condition are hard in the
generic model. An interesting work by Maurer [Mau05] presents an abstract model of computation,
which generalizes the generic model. This model captures so-called extraction, computation and
distinction problems. Maurer also considers the case of bounded storage and the presence of side
information in terms of decision oracles. In contrast to our framework this model does not cover the
case of multiple groups. [Mau05] proves lower bounds on the computation complexity for several
specific examples within his setting, however the paper does not give sufficient nor necessary con-
ditions for the hardness of problem classes in the framework. Though, we believe that our results
carry over to this framework. Recent work by Bresson et al. [BLMW07] independently analyzes gen-
eralized decisional problems over a single prime order group in the plain model. They showed that
under several restrictions a so-called (P,Q)-DDH problem is efficiently reducible to the standard
DDH problem. This result has also some consequences for the hardness of (P,Q)-CDH problems
in the generic group model: since standard DDH is known to be hard in the generic model also a
(P,Q)-DDH problem (over a single prime order group) satisfying the restrictions is hard and thus
the respective computational version of this problem. However, one important requirement for ap-
plying their results is that the P and Q polynomials describing the problem need to be power-free,
i.e., variables are only allowed to occur with exponents being equal to zero or one. This is not a
necessary condition for a computational problem to be hard in the generic model (e.g., consider
the square exponent problem) and excludes a large class of problems.

To summarize, the works cited above consider either quite restricted classes of cryptographic
problems and/or a fixed algebraic settings. Our framework is much more flexible: we provide suf-
ficient hardness conditions for large classes of DL- and DH-type problems defined over multiple
groups that are not necessarily of prime order. Moreover, in contrast to existing solutions our
conditions take variable sets of operations into account.

2 Some Preliminaries

Let poly(x) denote the class of univariate polynomials in x with non-negative integer coefficients.
We call a function f : N → R

+ polynomial bounded if there exists poly ∈ poly(x) s.t. for all sec:
f(sec) ≤ poly(sec). For convenience, we sometimes treat such an f as polynomial function. We call
a function f negligible if the inverse of any poly ∈ poly(x) is asymptotically an upper bound of f ,
i.e., ∀poly ∈ poly(x)∃sec0 ∀sec ≥ sec0 : f(sec) ≤ 1

poly(sec) .

Throughout the paper we are concerned with regular multivariate polynomials and multi-
variate Laurent polynomials over the ring Z and Zn, respectively. For a regular polynomial
F =

∑

aα1,...,αuY
α1
1 · · ·Y

αu
u 6= 0 ∈ Z[Y1, . . . , Yu] the total degree is defined as deg(F) =

max{
∑

i αi | aα1,...,αu 6= 0} (and deg(0) = −∞) and the degree in a variable Yj as degYj
(F) =

max{αj | aα1,...,αu 6= 0}. Roughly speaking, Laurent polynomials are polynomials whose variables
may also have negative exponents. More precisely, a Laurent polynomial P over Zn in indetermi-
nates X1, . . . ,Xl is a finite sum P =

∑

aα1,...,αl
Xα1

1 · · ·X
αl

l where aα1,...,αl
∈ Zn and αi ∈ Z. The set

of Laurent polynomials over Zn forms a ring with the usual addition and multiplication (where the
identity X−ℓj Xℓ

j = 1 holds). By deg(P) = max{
∑

i |αi| | aα1,...,αl
6= 0 mod n} (and deg(0) = −∞)

we denote the (absolute) total degree and by degXj
(P) = max{|αj | | aα1,...,αl

6= 0 mod n} the de-

gree in a variable Xj of a Laurent polynomial P 6= 0. Furthermore, we denote by L
(l,c)
n (where

0 ≤ c ≤ l) the subring of Laurent polynomials over Zn where only the variables Xc+1, . . . ,Xl can

3

appear with negative exponents. Note that for any P ∈ L
(l,c)
n and priv = (x1, . . . , xl) ∈ Z

c
n×(Z∗n)

l−c

the evaluation P (priv), where we set X1 = x1, . . . ,Xl = xl in P , is well-defined.

3 Problem Classes: Discrete Log and Diffie-Hellman Type of Problems

In this section we introduce the classes of computational problems for which we prove the existence
of hardness conditions in the generic model. A large class of computational problems defined over
a single known order group G can generally be described as follows: Let g be a generator of G and
l, z ∈ N. Given a tuple (g, a1, . . . , az) of (public) elements from G which are related to some secret
random choices priv = (x1, . . . , xl) from Z|G| or Z

∗
|G| the challenge is to compute some element a ∈ G

(DH-type problem) or some discrete logarithm x ∈ Z|G| (DL-type problem) which is also related to
priv . For instance, consider the description of the CDH problem: Given (g, a1 = gx1 , a2 = gx2) ∈ G3,
where priv = (x1, x2) ∈U Z

2
|G| the challenge is to compute the element a = gx1x2 .

Generally, the relation between the secret choices priv and the public elements of a problem
can be represented by a set of functions I1, . . . , Iz : Z

c
|G| × (Z∗|G|)

l−c → Z|G| (where c = l in above

example), i.e., aj = gIj(priv). In this paper we restrict our focus to Laurent polynomials Ij ∈ L
(l,c)
n .

We call them input polynomials. Similarly, we represent the relation between the solution a ∈ G resp.

x ∈ Z|G| and priv by a Laurent polynomial Q ∈ L
(l,c)
n , i.e., a = gQ(priv) resp. x ≡ Q(priv) mod Z|G|.

We call Q the challenge polynomial. We summarize the considered problem classes in Definition 1.

Definition 1 (DL-type and DH-type problem). A DL-type and DH-type problem, respec-
tively, is a problem of the following form:
Given:
– Constants: k, l ∈ N, c ∈ N0 where c ≤ l.
– Cyclic groups and generators: G1, . . . , Gk of known order n with corresponding generators
g1, . . . , gk that are output by some probabilistic algorithm GGen(sec) where sec ∈ N is a security
parameter.

– Laurent polynomials: I11, . . . , I1z , I21, . . . , I2z, . . . , Ik1, . . . , Ikz ∈ L
(l,c)
n and Q ∈ L

(l,c)
n that are

output by some deterministic algorithm PGen(sec, n), where z = z(sec) is polynomial bounded
in sec. We call the Iij the input polynomials and Q the challenge polynomial.

– Group elements: (g
I11(priv)
1 , . . . , g

I1z(priv)
1), (g

I21(priv)
2 , . . . , g

I2z(priv)
2), . . . , (g

Ik1(priv)
k , . . . , g

Ikz(priv)
k),

where priv = (x1, . . . , xl) ∈U Z
c
n × (Z∗n)

l−c are secret choices and not given.
Find:
– For a DL-type problem: an integer x such that x ≡ Q(priv) mod n.

– For a DH-type problem: an element a ∈ G1 such that a = g
Q(priv)
1 .

A large number of cryptographically relevant problems fall into the classes of DL-type and
DH-type problems. Examples are problems such as the DLP, DHP, a variant of the repre-
sentation problem [SS01], generalized DHP [SS01], GAP-DHP [OP01], square and inverse ex-
ponent problem [SS01], divisible DHP [BDZ03], l-weak and l-strong DHP [Che06], bilinear
DHP [BF01], q-bilinear DH inversion problem [BB04], q-bilinear DH exponent problem [BBG05a],
co-DHP [BGLS03], co-bilinear DHP [BF01], bilinear pairing inversion problem [Yac02] and many
more. As an illustration of the definition, we consider two examples of DL-/DH-type problems in
more detail. The values of the parameters k, l, c, PGen(. , .), and GGen(.) found in Definition 1 are
implied by the following examples and therefore not explicitly indicated.

Example 1 (Discrete Logarithm Problem).
Given: A cyclic group G1 of order n, a generator g1, an input polynomial I11 = X1, the challenge

polynomial Q = X1, and a group element gx1
1 = g

I11(priv)
1 , where priv = x1 ∈U Zn.

Find: An integer x such that x ≡ x1 ≡ Q(priv) mod n.

4

Another more comprehensive example of a DH-type problem (which will be used in the following
to illustrate our conditions), is the q-BDHI problem originally defined in [BB04]. We note that in
contrast to the standard DL or CDH problem, the number of input polynomials and their degrees
are not constant values for the q-BDHIP but a polynomial bounded function in sec.

Example 2 (q-Bilinear Diffie-Hellman Inversion Problem).
Given: Cyclic groups G1, G2, G3 of prime order n where there exists a non-degenerate effi-
ciently computable bilinear mapping e : G2 ×G3 → G1 and isomorphism ψ : G2 → G3, genera-
tors g1, g2, g3 (such that e(g2, g3) = g1 and ψ(g2) = g3), input polynomials I11 = . . . = I1q = 1,
I21 = X1, I22 = X2

1 , . . . , I2q = X
q
1 , I31 = . . . = I3q = 1 for some polynomial bounded q = q(sec),

the challenge polynomial Q = X−1
1 , and group elements g1 = g

I11(priv)
1 = . . . = g

I1q(priv)
1 ,

g
I21(priv)
2 = gx1

2 , . . . , g
I2q(priv)
2 = g

x
q
1

2 , and g3 = g
I31(priv)
3 = . . . = g

I3q(priv)
3 , where priv = x1 ∈U Z

∗
n.

Find: An element a ∈ G1 such that a = g
x−1
1

1 = g
Q(priv)
1 .

4 Generic Algorithms

In the generic model an algorithm A is given access to a generic group oracle O which provides
generic group operations to A. Our model is an extension of Maurer’s variant of the generic
model [Mau00] informally described in the following:1 Elements of a group which are inputs to
A as part of a problem instance are stored in a list not directly accessible by A. A is simply given
indices into the list as handles to these group elements. It can perform operations on desired el-
ements by issuing queries to O containing the respective indices. O then performs the requested
operation, appends the resulting element to the list and returns a handle to it. However, in this
way a group element is not uniquely represented by its handle, i.e., an algorithm given two indices
cannot decide by itself whether the referenced group elements are equal or not. To this end, each
time an element is appended to the list, not only the index to this element is given to A but a set,
called equality set, containing the indices to all elements in the list which equal the new element.

Note that we need a slightly more flexible definition of the generic group model than usual since
we consider large classes of problems with varying algebraic setting which refers to the underlying
algebraic groups and operations available on these groups. Thus, also the generic group setting
needs to take the varying number of groups and their structures into account. To make the results
in the generic model as strong as possible the operations made available through the generic oracle
should closely correspond to those of the algebraic setting in the plain model. That means O should
offer all operations to A that are known to be efficiently computable in this algebraic setting and
do not make intrinsic use of the encoding of group elements. In Section 4.1 we define the class of
generic operations supported by our model.

4.1 Generic Operation Sets

Given a problem and its underlying algebraic setting, we call the operations being made available
in the generic model the (generic) operation set of the problem. In the following we formally define
the notion of an operation set and describe what operations can be part of it.

For our framework we restrict to consider operations of the form

f : Gs1 × . . .×Gsu → Gd
(a1, . . . , au) 7→ f(a1, . . . , au)

1 Though the variant of the generic model due to Shoup [Sho97] is more popular, we decided to use Maurer’s variant
because it induces less technical overhead concerning our formalizations. However, we note that our results hold
unchanged in Shoup’s model (see also Appendix A).

5

where u ≥ 1, s1, . . . , su, d ∈ {1, . . . , k} are some fixed constants (that does not depend on sec).
Furthermore, we demand that the action of f on the group elements can be represented by a fixed
regular polynomial. That means, there exists a fixed F ∈ Z[Y1, . . . , Yu] (also not depending on sec)
such that for any generators g1, . . . , gu, gd given as part of a problem instance hold

f(a1, . . . , au) = g
F (y1,...,yu)
d

where a1 = g
y1
1 , . . . , au = g

yu
u . For instance, the bilinear mapping e : G2 × G3 → G1 which is part

of the algebraic setting of the q-BDHIP is such an operation: for any g2, g3 and g1 = e(g2, g3) it

holds that e(a1, a2) = e(gy12 , g
y2
3) = g

F (y1,y2)
1 where F = Y1Y2. In fact, to the best of our knowledge,

virtually any deterministic operation considered in the context of the generic group model in the
literature so far belongs to this class of operations.

We represent an operation of the above form by a tuple (f, s1, . . . , su, d, F), where the first
component serves as identifier for the operation. The set of allowed operations can thus be specified
by a set of such tuples as done in Definition 2. In the following we assume that an operation set
always contains at least operations for performing the group law and inversion of group elements
(for each group).

Definition 2 (Operation Set). An operation set, denoted by OPSet, is a finite set of tuples of
the form (f, s1, . . . , su, d, F), where the components of these tuples are defined as above.

Example 3 (Operation Set for q-BDHIP). The operation set OPSet = {(◦1, 1, 1, 1, Y1 +
Y2), (◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 + Y2), (inv1, 1, 1,−Y1), (inv2, 2, 2,−Y1), (inv3, 3, 3,−Y1),
(ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 · Y2)} specifies operations for performing the group law (◦i) and in-
version (inv i) over each group as well as the isomorphism ψ : G2 → G3 and the bilinear map
e : G2 ×G3 → G1.

4.2 Generic Group Oracle

We define a generic oracle for DL-/DH-type problems based on Maurer’s approach [Mau00]:

Definition 3 (Generic Group Oracle for DL- and DH-type Problems). Let be given a DL-
or DH-type problem P. Let G1, . . . , Gk be groups of order n which are output of GGen(.) on input
sec and let OPSet denote a generic operation set for P on G1, . . . , Gk. Then a generic group oracle
for P, denoted by OP,OPSet , has an input and output port and performs computations as follows.
Internal state. As internal state OP,OPSet maintains lists L1, . . . , Lk, where a list Li is used for
storing computed elements from Zn

∼= Gi. By Lij we denote the j-th element of Li.
Input. As input OP,OPSet is given sec, n and secret choices priv belonging to an instance of P.
Computation of equality sets. Each time an element a is appended to a list Li the following
computation is triggered: OP,OPSet computes the equality set

EQS(i, a) = {j ∈ {1, . . . , |Li|} | a− Lij ≡ 0 mod n} ,

and writes it to its output port.
The computation of OP,OPSet consists of an initialization phase, which is run once, followed by the
execution of the query-handling phase:
Initialization. Each list Li is initialized with the elements 1, Ii1(priv), . . . , Iiz(priv) (representing
the given group elements) where (I11, . . . , Ikz)← PGen(sec, n).
Query-handling. Upon receiving a query (f, j1, . . . , ju) on its input port, where (f, s1, . . . , su, d, F)
∈ OPSet, OP,OPSet computes the element F (Ls1j1, . . . , Lsuju) and appends it to the list Ld.

6

Now, a generic algorithm is an interactive probabilistic Turing machine A that is given access
to OP,OPSet , i.e., which is connected to the input and output port of OP,OPSet . We say that A has
solved a problem instance of a DL-type problem P if for its final output, denoted by out , holds
that Q(priv)− out ≡ 0 mod n. In the case that P is a DH-type problem, out is interpreted as an
index into the list L1 and A is said to solve a problem instance iff Q(priv)− L1out ≡ 0 mod n.

5 Hardness Conditions

In this section we present conditions on DL-/DH-type problems and their corresponding operation
sets that if met guarantees a problem’s intractability regarding generic algorithms. For formalizing
these conditions we we make use of the concept of straight-line programs defined in Section 5.1. The
first collection of conditions presented in Section 5.2 expresses what is actually needed in a hardness
proof. However, since these conditions are of rather abstract nature more restrictive conditions are
developed in Section 5.3 which can be verified more easily for a given problem.

It is easy to see that in order to assess the intractability of DL-/DH-type problems we can restrict
to consider groups of prime power order (see Appendix B). So let us assume in the following that
GGen(sec) generates groups of order n = pe such that p is a prime that is exponential in the given
security parameter sec (e.g., 2sec−1 < p < 2sec) and e is constant over all sec. Let the finite set of
all possible group orders for a fixed value of sec be denoted by N (sec).

5.1 Generic Algorithms and Straight-Line Programs

Roughly speaking, a DL-/DH-type problem is intractable for generic algorithms if two conditions
are satisfied: First, in the course of a computation virtually no information about the secret choices
priv must be gainable by means of equality testing, i.e., equality sets must hardly ever contain useful
information for solving a problem instance. Second, in this case the hardness of the problem w.r.t.
general generic algorithms can be reduced to the hardness of the problem for generic algorithms that
take their actions independently of (in)equalities of computed group elements and thus independent
of the specific problem instance.

More precisely, we can restrict our considerations to the subclass of non-probabilistic generic
algorithms that for fixed n always apply the same fixed sequence of operations from the given
OPSet and output the same fixed value outn in order to solve an arbitrary problem instance. Thus,
for fixed n such an algorithm is fully specified by the constant outn and the sequence of applied
group operations. The sequence of operation applications can be viewed as a so-called straight-line
program (SLP) and represented as a k-tuple SLPn = (L1, . . . , Lk) of finite lists of certain Laurent

polynomials from L
(l,c)
n . These polynomials result from applying the respective fixed sequence of

F -functions corresponding to the operations (cf. Definition 2) to the given input polynomials. If we
evaluate a straight-line program SLPn, i.e., all polynomials in L1, . . . , Lk, with the private choices
priv corresponding to a problem instance, we obtain exactly the group elements that would occur
during an interaction of the respective generic algorithm and the oracle (as internal state).

Hence, regarding the applied group operations a generic algorithm from the considered subclass
can be seen as an SLP-generator of the form depicted in Algorithm 1. The function m(.) is the run-
time function of the SLP-generator. Using the deterministic function select(.) the SLP-generator
(somehow) selects in each iteration which operation should be applied to which polynomials.

For formalizing our conditions we need the following set. Given some m(.) the set

SLPGen(m) :=
{

SLP-generatorS | ∀sec : m′(sec) ≤ m(sec), wherem′(.) is the run-time of S
}

consists of all SLP-generators that run in time at most m(sec) for all values of sec. It is important
to observe that all possible sequences of group operations that could ever be applied in run-time
at most m(.) are also covered by the SLP-generators in this set.

7

Algorithm 1 SLP-Generator S(sec, n)

Input: security parameter sec, group order n
Output: a straight-line program SLPn = (L1, . . . , Lk)

(I11, . . . , Ikz , Q)← PGen(sec, n);
L1 ← [1, I11, . . . , I1z]; . . . ;Lk ← [1, Ik1, . . . , Ikz];
for i← 1 to m(sec) do

(f, j1, . . . , ju)← select(i, sec, n, L1, . . . Lk, Q);
if f 6=⊥ and (f, s1, . . . , su, d, F) ∈ OPSet then append(Ld, F (Ls1j1 , . . . , Lsuju

));
end for

return SLPn = (L1, . . . , Lk);

5.2 Abstract Conditions

In this section we formalize our first set of hardness conditions. For short, we demand that not
too much information about the secret choices is leaked by computable group elements (leak-
resistance) and that the considered problem is not solvable in a trivial way (SLP-intractability).
We can formulate both conditions using SLP-generators.

In the generic model described before, the only way to possibly obtain information about the
secrets is due to equalities or inequalities between computed elements, since these relations are the
only output of the oracle. But when do group elements actually leak information? Let a generic
algorithm A for some DL-/DH-type problem be given whose run-time is upper bounded by the
function m(.). Consider a run of A for fixed sec, n ∈ N (sec) and secret choices priv . Then observe
that all group elements computed in this run can also be generated by evaluating the straight-
line program SLPn ← S(sec, n) with priv which is the output of some S ∈ SLPGen(m). So we
can analyze the leakage of a run by considering the polynomials of an SLP. Two computed group
elements P (priv) and P ′(priv) (P,P ′ ∈ Li) are equal if P (priv)− P ′(priv) ≡ 0 mod n. However, it
is clear that such a relation yields no information about the particular choices priv if it holds for all
elements of Z

c
n × (Z∗n)

l−c. Otherwise, we obtain the non-trivial information that priv is a modular
root of the difference polynomial P − P ′. The smaller the set of roots the more information one
gains about priv . Similarly, an inequality yields the more information about priv the greater the
number of roots is.

Condition 1 ensures that all polynomial-time computations are leak-resistant. Essentially, this
is done by requiring that there is only a negligible chance to randomly pick a root of any non-zero
difference polynomial. So we only have a negligible chance of obtaining any significant information
about a random priv due to equalities between group elements. Inequalities virtually yield no
information (since we have a negligible number of roots). Since the set of all polynomials computable
by polynomial-time SLP-generators is closed under subtraction, we do not need to explicitly consider
the difference of any two polynomials computed by a certain S ∈ SLPGen(m) in Condition 1. Note
that this condition (and also Condition 3 later on) demands a form of uniform negligibility, i.e.,
there should be a negligible function that serves as upper bound for all SLP-generators with the
same run-time bound m(.).

Condition 1 (Leak-resistance). Let the ideal consisting of all Laurent polynomials which are
zero for all possible choices of priv be denoted by

In = {P ∈ L(l,c)
n | ∀(x1, . . . , xl) ∈ Z

c
n × (Z∗n)

l−c : P (x1, . . . , xl) ≡ 0 mod n} .

Then for each m ∈ poly(x) there exists a negligible function f such that for all sec, n ∈ N (sec),
S ∈ SLPGen(m) and P ∈

⋃

i Li \ In where (L1, . . . , Lk)← S(sec, n) hold

Pr[P (priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c] ≤ f(sec).

Now that we have ensured that virtually no information about priv can be gained (for sufficiently
large sec) we can restrict to consider algorithms applying trivial solution strategies to find Q(priv).

8

For DL-type problems we stipulate Condition 2 which prevents an algorithm that for fixed n always
outputs a constant value (independent of the particular problem instance) from being successful.
Such an algorithm can be seen as an extended form of an SLP-generator.

Condition 2 (SLP-intractability of DL-Type Problems). There exists a negligible function
f such that for all sec, n ∈ N (sec) and α ∈ Zn it holds that

Pr[Q(priv) ≡ α mod n :: priv ∈U Z
c
n×(Z∗n)

l−c] ≤ f(sec) ,

where Q← PGen(sec, n) is the challenge polynomial.

For DH-type problems we demand that the SLPs of any efficient SLP-generator solve problem
instances with negligible probability, i.e., the probability to obtain Q(priv) when evaluating such
an SLP with priv must be negligible.

Condition 3 (SLP-intractability of DH-type Problems). For each m ∈ poly(x) there exists
a negligible function f such that for all sec, n ∈ N (sec), S ∈ SLPGen(m) and P ∈ L1 holds that

Pr[(Q− P)(priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c] ≤ f(sec) ,

where (L1, . . . , Lk)← S(sec, n) and Q← PGen(sec, n) is the challenge polynomial.

If the above conditions are satisfied then the success probability of any efficient generic algorithm
in solving a DL-type resp. DH-type problem by only using the allowed set of generic operations is
negligible. For the proof of Theorem 1 please refer to Appendix C.

Theorem 1 (Intractability of DL/DH-type Problems). Let P be DL-type (resp. DH-type
problem) and OPSet be an operation set for P such that Condition 1 and Condition 2 (resp. 3)
are satisfied. Then for each generic algorithm A whose number of oracle queries to OP,OPSet is
polynomial bounded, there exists a negligible function f such that for all sec and n ∈ N (sec) the
probability (taken over the coin tosses of A and the secret choices) that A outputs a solution to a
problem instance of P is upper bounded by f(sec).

5.3 Practical Conditions

Essentially, the presented abstract conditions demand that for certain multivariate Laurent poly-
nomials there is a negligible probability to find a root by randomly picking elements. This property

is satisfied for non-zero polynomials in L
(l,c)
n that have total absolute degrees which are polynomial

bounded. Showing this claim is based on Lemma 1 in [Sho97] but requires several extensions. The
above observation is the main line along which we developed another set of sufficient hardness con-
ditions that can be be verified more easily. Following the ideas set up for the abstract conditions,
we again ensure leak-resistance on the one hand and non-triviality on the other hand. Finally,
Theorem 2 shows precisely how the practical conditions are related to the abstract conditions.

Leak-resistance. We specify two conditions ensuring that polynomials computable by a
polynomial-time SLP-generator (using the given OPSet) are of low degree: first we simply de-
mand low degrees for the input polynomials (see Condition 4) and then we restrict to operation
sets that do not allow to increase the degree too much (see Condition 5).

Condition 4. There exists r ∈ poly(x) such that for all sec, n ∈ N (sec): maxi,j(deg(Iij)) ≤ r(sec)
where (I11, . . . , Ikz)← PGen(sec, n).

Example 4 (Cond. 4 satisfied for q-BDHIP). For q-BDHIP we have maxi,j(deg(Iij)) ≤ q where
q = q(sec) is polynomial bounded by definition.

9

∑

∑

∑∏

1

2

3

Fig. 1. GOPSet for OPSet = {(◦1, 1, 1, 1, Y1 + Y2), (◦2, 2, 2, 2, Y1 + Y2), (◦3, 3, 3, 3, Y1 + Y2), (inv1, 1, 1,−Y1), (inv2, 2, 2,−Y1),
(inv3, 3, 3,−Y1), (ψ, 2, 3, Y1), (e, 2, 3, 1, Y1 · Y2)} of q-BDHIP. Strongly connected components are marked by dashed borders.

Now, we are formalizing operation sets that only allow for a small raise of degrees. It turned out
that this can be done easily if operation sets are modeled as a graph according to the Definitions 4
and 5. In regard to the groups G1, . . . , Gk (which are represented by group vertices) such a graph
reflects how these are related by the given operations. That means, it shows if and how the given
group elements can be mapped from one group to another either directly or by means of a com-
position of operations. Concerning SLP-generators, the graph shows if and how input polynomials
from certain lists can be combined to form a new polynomial for a list Li. Furthermore, it reflects
whether the degrees can be increased in this way.

Definition 4 (Operation Set Graph). Let OPSet be an operation set for a DL-/DH-type prob-
lem P. The operation set graph GOPSet = (V,E) is a directed multi-edge multi-vertex graph. There
are four types of vertices, namely group, sum, product and power vertices. Initially, V contains k
group vertices labeled with the numbers 1 to k representing the k different groups underlying P. For
each operation (f, s1, . . . , su, d, F) ∈ OPSet, where F =

∑

i Si is represented as the sum of non-zero
monomials, the following additional vertices and edges are added to the graph:

1. A sum vertex with label
∑

and an edge from this sum vertex to the group vertex with label d.
2. For each monomial Si:

(a) A product vertex with label
∏

and an edge from this vertex to the sum vertex (added before).
(b) For each variable Yj (1 ≤ j ≤ u) occurring with non-zero exponent ℓ in Si: A power vertex

with label (.)ℓ, an edge from this power vertex to the product vertex (added before) and an
edge from the group vertex with label sj ∈ {1, . . . , k} to this power vertex.

Definition 5 (Reduced Operation Set Graph). A reduced operation set graph is an operation
set graph where each power vertex with label (.)1 and each product or sum vertex with indegree 1
has been removed and the two edges entering and leaving this vertex have been replaced by one edge
directly connecting the predecessor vertex to the successor vertex.

As an illustrating example, consider the reduced operation set graph depicted in Figure 1, which
belongs to the operation set for the q-BDHI problem (cf. Example 3).

Considering the graph belonging to an operation set, it becomes clear how operations can
be used by an SLP-generator to increase the maximal absolute total degree of the polynomials
computed so far: a product vertex corresponds to an operation that might lead to a polynomial
whose degree is the sum of the degrees of (a constant number of) polynomials already computed.
A power vertex respectively corresponds to an operation that might lead to a polynomial whose
degree is a (constant) multiple of the degree of polynomials already computed. However, we do not
need to completely disallow the existence of such operations in an operation set, at least as long as

10

they cannot be used to repeatedly double the maximal degree. Thus, the following condition only
rules out operation sets where any kind of repeated squaring - and therefore a way to exponentially
increase the degree of polynomials - is possible.

Condition 5. Let GOPSet be a reduced operation set graph. Then for every strongly connected
component2 C of GOPSet it holds that:

1. if C contains a power vertex then it contains no other vertices.
2. every product vertex contained in C has at most one incoming edge from a group vertex that is

also contained in C.

Example 5 (Cond. 5 satisfied for OPSet of q-BDHIP). Condition 5 is satisfied since GOPSet (cf.
Figure 1) contains no power vertex and the strongly connected component containing the product
vertex contains no other vertices.

Non-Triviality. To ensure SLP-intractability (cf. Conditions 2 and 3), we first restrict the
challenge polynomial to have low degrees, similarly to the input polynomials.

Condition 6. There exists r ∈ poly(x) such that for all sec, n ∈ N (sec): deg(Q) ≤ r(sec) where
Q← PGen(sec, n).

Example 6 (Cond. 6 satisfied for q-BDHIP). Here we always have deg(Q) = 1.

Now assuming that the practical conditions stated so far are satisfied, we just have to demand
that the considered problem is not totally flawed (w.r.t. the given operations), i.e., solvable with
probability 1 in a way not depending on the secret choices. The non-triviality condition for DL-type
problems is simply the very natural condition that the solutions depend on the secret choices.

Condition 7 (Non-Triviality of DL-type Problems). There exists sec0 s.t. for all sec ≥ sec0

and n ∈ N (sec) the challenge polynomial Q← PGen(sec, n) is not a constant in L
(l,c)
n .

Note that Definition 1 allows a problem to have a “completely different” challenge polynomial Q for
each group order n = pe. However, in most practical cases, the form of the challenge polynomial does
not depend on the parameter n. More precisely, there exists a Laurent polynomial QZ over Z such
that for any n the corresponding challenge polynomial is simply Q ≡ QZ mod n (e.g., QZ = X1 for
the DLP). In this case observing that QZ is not a constant (over the integers) immediately implies

that for almost all primes p and all integers e the polynomial QZ mod pe is not constant in L
(l,c)
n .

In the case of DH-type problems the non-triviality condition states that an efficient SLP-
generator can hardly ever compute a polynomial P ∈ L1 that, when evaluated with the secret
choices is always a solution of the problem.

Condition 8 (Non-Triviality of DH-type Problems). For each m ∈ poly(x) there exists sec0

s.t. for all sec ≥ sec0, n ∈ N
(sec), S ∈ SLPGen(m) and P ∈ L1 holds P 6= Q in L

(l,c)
n where

(L1, . . . , Lk)← S(sec, n) and Q← PGen(sec, n).

We note that Condition 8 appears to be more complex compared to the practical conditions seen
so far and it is not clear to us how to verify it in its generality. However, it is possible to derive
easier versions of this condition for several more restricted classes of problems and operation sets.
Anyway, above condition is easy to check for every particular problem of practical relevance we are
aware of. As an example consider the case of the q-BDHI problem:

2 A strongly connected component of a directed graph GOPSet = (V, E) is a maximal set of vertices U ⊂ V s.t. every
two vertices in U are reachable from each other. The strongly connected components of a graph can be computed
in time O(V + E) (e.g., see [CLR90]).

11

Example 7 (Non-Triviality of q-BDHIP). Here the challenge polynomial is fixed to Q = X−1
1 for

all n. Moreover, observe that all variables occurring in the input polynomials only have positive
exponents and thus no operation set can ever lead to polynomials P with negative exponents in
any variable. Hence, Condition 8 is trivially satisfied (independently of the given OPSet).3

Theorem 2 connects the abstract and practical conditions. A proof is sketched in Appendix D.

Theorem 2 (Relation between Abstract and Practical Conditions).

(a) If Cond. 4 and 5 hold for a given DL-/DH-type problem and operation set then also Cond. 1.
(b) If Cond. 6 and 7 hold for a given DL-type problem then also Cond. 2.
(c) If Cond. 4, 5, 6, and 8 hold for a given DH-type problem and operation set then also Cond. 3.

Corollary 1. q-BDHIP is intractable for generic algorithms allowed to apply the group law and
inversion operations, the isomorphism ψ : G2 → G3 and the bilinear map e : G2 ×G3 → G1.

6 Showing the Non-Existence of Generic Reductions

The basic role of operation sets is to reflect the natural abilities (e.g., computing the group law)
of a generic algorithm with respect to the algebraic setting but they can also be used to model
oracles, additionally given to an algorithm, solving certain computational or decisional problems.
In this way the conditions can also serve as a means to analyze the relationship of cryptographic
problems. More precisely, the conditions can help us to prove that there exists no generic reduction
between certain problems. Note that a problem P is not generically reducible to a problem P ′ if P
is intractable for generic algorithms even if these algorithms can query an oracle that solves P ′.

Besides distinguishing between computational and decisional oracles we also distinguish between
oracles that solve a problem only with respect to fixed generators (fixed-base oracle) and regular
oracles that receive the generators for which the problem should be solved as an extra input. More
precisely, let us assume that a problem instance of a problem P should be solved with the help of
a fixed-base oracle for a problem P ′. Then this oracle only works with respect to the generators
given as part of the problem instance of P. Clearly, fixed-base oracles are restricted versions of the
respective regular oracles. Thus, such an oracle may only be used to prove or disprove the existence
of a reduction from P to a restricted (fixed-base) version of the problem P ′.4

We can realize most fixed-base computational oracles as an operation of the form given in
Section 4.1, i.e., using a fixed polynomial F over Z. However, we cannot represent regular oracles
solving computational problems. For instance, consider the algebraic setting of the q-BDHI problem.
Let g2, g3, g1 = e(g2, g3) be fixed generators of G2, G3, G1 given as part of a problem instance of
q-BDHIP. It is important to observe that all group elements are represented by the generic oracle
with respect to these generators. A fixed-base oracle for the bilinear Diffie-Hellman problem over
the three groups is given three elements gy12 , g

y2
2 , g

y3
2 ∈ G2 and returns e(g2, g3)

y1y2y3 ∈ G1. The
operation (FB-BDH, 2, 2, 2, 1, Y1Y2Y3) realizes such an oracle. It is easy to see that q-BDHIP remains
hard if we add this operation to the operation set considered in Example 3. A regular oracle for
the BDH problem is given generators gy42 , g

y5
3 of G2, G3 as an additional input and returns

e(gy42 , g
y5
3)y

′

1y
′

2y
′

3 = e(g2, g3)
y1y2y3y

−2
4 y5 ,

where y′1, y
′
2, y
′
3 are the discrete logarithms of gy12 , g

y2
2 , g

y3
2 to the base gy42 . Note that we cannot

realize this oracle as an operation compliant to our definition since it would require a Laurent

3 Note that X−1
1 6= X

φ(n)−1
1 in L(1,0)

n but these polynomials evaluate to the same value for all x1 ∈ Z
∗

n. However,
Cond. 4 and 5 ensure that for any efficient SLP-generator there exists sec0 s.t. for all sec ≥ sec0 and n ∈ N (sec)

the polynomial X
φ(n)−1
1 cannot be computed.

4 However, it is easy to see that in the case of the Diffie-Hellman problem both types of oracles are equivalent.

12

polynomial F = Y1Y2Y3Y
−2
4 Y5. However, only regular polynomials are permitted for representing

operations. This restriction was not an arbitrary decision. Without it it is not clear how to ensure
the leak-resistance property.

Besides computational oracles, it is also of interest to realize decisional oracles that can be
queried in order to solve a DL-/DH-type problem. For instance, this is needed for the analysis of
so-called gap problems (e.g., see [OP01]). To include such oracles in our setting, we need to add a
new type of operation similar to the one already known: we allow decisional oracles that that can be
represented as operations of the form (f, s1, . . . , su, {0, 1}, F) where u ≥ 1, s1, . . . , su ∈ {1, . . . , k}
are some fixed constants and F ∈ Z[Y1, . . . , Yu] is some fixed polynomial. Such a tuple is interpreted
by the generic oracle as a mapping

f : Gs1 × . . .×Gsu → {0, 1}
f(gy1s1 , . . . , g

yu
su) = 1 iff F (y1, . . . , yu) ≡ 0 mod n,

where g1, . . . , gu are generators given as part of a problem instance of the respective DL-
/DH-type problem. Using this new type of operation, most fixed-base and regular deci-
sional oracles can be implemented in our framework. As an example, consider the operation
(DBDH, 2, 3, 2, 2, 2, 1, {0, 1}, Y1Y2Y3Y5 − Y 2

4 Y6). It realizes a regular decisional BDH oracle. This
oracle takes an additional input e(g2, g3)

y6 ∈ G1 compared to the regular computational oracle

described above. It outputs 1 iff e(g2, g3)
y1y2y3y

−2
4 y5 = e(g2, g3)

y6 which is equivalent to

y1y2y3y5 − y
2
4y6 ≡ 0 mod n.

Clearly, a decisional oracle is another source of information for a generic algorithm. However, it
is not hard to see that no extra condition (in addition to Conditions 4 and 5) is needed to ensure
that computations remain leak-resistant. Just to clarify, the new operation type does not need to
be represented in the operation set graph. Thus, any DL-/DH-type problem that is intractable (by
satisfying our practical conditions) remains intractable even if we additionally admit any decisional
oracle representable by an operation of above type.5 This is captured by Theorem 3. Proving this
theorem only requires simple extensions to the proof in Appendix C and D and is therefore omitted.
As a simple consequence, the theorem implies that q-BDHIP is intractable for generic algorithms
even if these can query a regular DBDH oracle.

Theorem 3. Let a DL-type (resp. DH-type) problem P and operation set OPSet (compliant to
Definition 2) be given satisfying Conditions 4, 5, 6 and Condition 7 (resp. 8). Then P remains
intractable for generic algorithms even if OPSet is extended by one or more arbitrary decisional
operations of the form described above.

References

[AdM04] G. Ateniese and B. de Medeiros. A provably secure nyberg-rueppel signature variant with applications.
Cryptology ePrint Archive, Report 2004/93, 2004. http://eprint.iacr.org/.

[BB04] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random oracles. In
Advances in Cryptology: Proceedings of EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer

Science, pages 223–238. Springer-Verlag, 2004.
[BBG05a] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant size ciphertext. In

Advances in Cryptology: Proceedings of EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer

Science, pages 440–456. Springer-Verlag, 2005.
[BBG05b] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant size ciphertext

(full paper). Cryptology ePrint Archive, Report 2005/015, 2005. http://eprint.iacr.org/.

5 This proposition can be extended to decisional oracles representable by an operation where the number of inputs
u and the polynomial F depends on the security parameter as long as deg(F) is polynomial bounded in sec.

13

[BDZ03] F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In ICICS’03, volume 2971 of
Lecture Notes in Computer Science, pages 301–312. Springer-Verlag, 2003.

[BF01] D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Advances in Cryptol-

ogy: Proceedings of CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229.
Springer-Verlag, 2001.

[BGLS03] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signatures from
bilinear maps. In Advances in Cryptology: Proceedings of EUROCRYPT 2003, volume 2656 of Lecture

Notes in Computer Science, pages 416–432. Springer-Verlag, 2003.
[BLMW07] E. Bresson, Y. Lakhnech, L. Mazaré, and B. Warinschi. A generalization of DDH with applications to pro-

tocol analysis and computational soundness. In A. J. Menezes, editor, Advances in Cryptology: Proceedings

of CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages 482–499. Springer-Verlag,
August 2007.

[Bon07] D. Boneh. Number-theoretic assumptions. Invited Talk at TCC’s Special Session on Assumptions for
Cryptography, 2007.

[BR04] M. Bellare and P. Rogaway. The game-playing technique, 2004. citeseer.ist.psu.edu/

bellare04gameplaying.html.
[Bro05] D. L. Brown. Generic groups, collision resistance, and ecdsa. Des. Codes Cryptography, 35(1):119–152,

2005.
[Bro06] D. L. Brown. Breaking RSA may be as difficult as factoring. Cryptology ePrint Archive, Report 2005/380,

2006. http://eprint.iacr.org/.
[BV98] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring. In Advances in Cryp-

tology: Proceedings of EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages
59–71. Springer-Verlag, 1998.

[Che06] J. H. Cheon. Security analysis of the strong Diffie-Hellman problem. In Advances in Cryptology: Proceed-

ings of EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 1–11. Springer-
Verlag, 2006.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press/McGraw-Hill,
1990.

[Den02] A. W. Dent. Adapting the weaknesses of the random oracle model to the generic group model. In
Advances in Cryptology: Proceedings of ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer

Science, pages 100–109. Springer-Verlag, 2002.
[DK02] I. Damg̊ard and M. Koprowski. Generic lower bounds for root extraction and signature schemes in general

groups. In Advances in Cryptology: Proceedings of EUROCRYPT 2002, volume 2332 of Lecture Notes in

Computer Science, pages 256–271. Springer-Verlag, 2002.
[Fis00] M. Fischlin. A note on security proofs in the generic model. In Advances in Cryptology: Proceedings of

ASIACRYPT 2002, volume 1976 of Lecture Notes in Computer Science, pages 458–469. Springer-Verlag,
2000.

[Kil01] E. Kiltz. A tool box of cryptographic functions related to the Diffie-Hellman function. In INDOCRYPT

’01: Proceedings of the Second International Conference on Cryptology in India, volume 2247 of Lecture

Notes in Computer Science, pages 339–350. Springer-Verlag, 2001.
[LR06] G. Leander and A. Rupp. On the equivalence of RSA and factoring regarding generic ring algorithms. In

Advances in Cryptology: Proceedings of ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer

Science, pages 241–251. Springer-Verlag, 2006.
[Mau00] U. Maurer. Index search, discrete logarithms, and Diffie-Hellman. Talk at MRSI Number-theoretic

cryptography workshop, Mathematical Sciences Research Institut (MRSI), Berkeley, October 2000.
[Mau05] U. Maurer. Abstract models of computation in cryptography. In Nigel Smart, editor, Cryptography and

Coding 2005, volume 3796 of Lecture Notes in Computer Science, pages 1–12. Springer-Verlag, 2005.
[MW98] U. Maurer and S. Wolf. Lower bounds on generic algorithms in groups. In Advances in Cryptology:

Proceedings of EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer Science, pages 72–84.
Springer-Verlag, 1998.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes,
55(2):165–172, 1994.

[OP01] T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for the security of crypto-
graphic schemes. In PKC ’01: Proceedings of the 4th International Workshop on Practice and Theory in

Public Key Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 104–118. Springer-
Verlag, 2001.

[PH78] S. Pohlig and M. Hellman. An improved algorithm for computing discrete logarithms over GF(p) and its
cryptographic significance. IEEE Transactions on Information Theory, 24:106–110, 1978.

[Pol78] J. M. Pollard. Monte Carlo methods for index computation mod p. Mathematics of Computation, 32:918–
924, 1978.

14

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the

Association for Computing Machinery, 27(4):701–717, 1980.
[Sho97] V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in Cryptology:

Proceedings of EUROCRYPT 1997, volume 1233 of Lecture Notes in Computer Science, pages 256–266.
Springer-Verlag, 1997.

[SJ00] C. Schnorr and M. Jakobsson. Security of signed elgamal encryption. In Advances in Cryptology: Proceed-

ings of ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 73–89. Springer-
Verlag, 2000.

[SPMLS02] J. Stern, D. Pointcheval, J. Malone-Lee, and N. P. Smart. Flaws in applying proof methodologies to
signature schemes. In Advances in Cryptology: Proceedings of CRYPTO 2002, volume 2442 of Lecture

Notes in Computer Science, pages 93–110. Springer-Verlag, August 2002.
[SS01] A. Sadeghi and M. Steiner. Assumptions related to discrete logarithms: Why subtleties make a real

difference. In Advances in Cryptology: Proceedings of EUROCRYPT 2001, volume 2045 of Lecture Notes

in Computer Science, pages 243–260. Springer-Verlag, 2001.
[Yac02] Y. Yacobi. A note on the bilinear Diffie-Hellman assumption. Cryptology ePrint Archive, Report

2002/113, 2002. http://eprint.iacr.org/.

A Two Variants of the Generic Model - Maurer vs. Shoup

Let us consider Maurer’s and Shoup’s generic group model in the case of a single cyclic group G

of order n. In both models group elements that are input to the generic algorithm or result from
applying an operation on the group are stored in a list L which is part of the secret state of the
generic oracle O. Algorithms can perform operations on desired group elements of G by issuing
queries to the oracle containing the respective indices into L.

The models differ regarding the output of the generic oracle: every time an element a ∈ G is
appended to L, Maurer’s oracle returns an equality set

EQS(a) = {j ∈ {1, . . . , |L|} | a = Lj} ,

i.e., the set of indices to all elements in L that are equal to a. In Shoup’s model group elements
are represented by unique random bit strings (called encodings) from Sn ⊂ {0, 1}

⌈log2(n)⌉, where
|Sn| = n. Shoup’s oracle maintains an encoding list E, accessible for generic algorithms, containing
the encodings of the group elements in L, i.e., for all indices j, Ej is the encoding of the element
Lj. Thus, if an element a should appended to L, Shoup’s oracle determines whether there exists j
such that Lj = a. If this is not the case, it appends a random bit string from Sn \ E to E which is
different from all encodings so far contained in E. Otherwise, the bit string Ej is again appended
to E.

The second and last difference between the models concerns the final output of a generic algo-
rithm in the case of DH-type problems: In Maurer’s model a generic algorithm can only output an
element that has already occurred in the course of the computation, i.e., it outputs an index j into
the list L. In Shoup’s model a generic algorithm is also allowed to output a new group element that
has not occurred before, i.e., it can output an arbitrary encoding from Sn.

For presenting our results, we decided to use Maurer’s variant of the generic model because
it induces less technical overhead especially regarding the proof of Theorem C. In particular, no
random encodings need to be introduced and handled (for every group) which artificially enlarge
the probability space compared to the plain model. However, we note that our conditions and
theorems hold unchanged in Shoup’s model. The proof of Theorem D does not need to be adapted
at all. The following arguments show how the proof of Theorem C carries over to Shoup’s model.

First, we can assume that also in Shoup’s model generic algorithms only output already com-
puted group elements: if an algorithm outputs a new encoding, this encoding is associated with a
random element from G\L. So even assuming that the solution to a problem instance is an element
from this set, the algorithm’s success probability is 1

|G\L| which is negligible if the number of ora-

cle queries is polynomial bounded. Thus, we can restrict to consider the case where an algorithm

15

outputs an encoding from E corresponding to an already computed element Lj. So alternatively it
could also have output j. This case is covered by the proof.

Second, observe that determining an encoding for an element a actually means to compute the
equality set for this element. More precisely, let us assume that the element a is appended to L

at index i. Then alternatively, Shoup’s oracle could compute EQS(a) and return a new random
encoding from Sn \E if EQS(a) only contains i and otherwise it could return an old encoding Ej
where i 6= j ∈ EQS(a). So encodings can simply be derived from equality sets (and exhibit no
extra information). In the course of the proof, we only consider and modify the computation of
equality sets. Hence, for the proof we can actually treat a Shoup oracle like a Maurer oracle where
the determination of encodings from equality sets is an add-on that has no importance for the
arguments in the proof.

B Reduction to Prime Power Groups

Let a DL-/DH-type problem over cyclic groups G1, . . . , Gk of order n be given. We can write the
group order as n = pe · s with gcd(p, s) = 1 where p be the largest prime factor of n. Then it holds
that

Gi ∼= G
(pe)
i ×G

(s)
i

where G
(pe)
i and G

(s)
i are cyclic groups of order pe and s, respectively.

It is clear that the considered DL/DH-type problem is also defined over these product groups
and any generic algorithm using only operations of the form as defined in Section 4.1 and Section 6
works as good in this case as for any other groups. Considering these product groups, it is easy to
see that solving a DL-/DH-type over groups Gi means for a generic algorithm to solve it separately

over the subgroups G
(pe)
i and the subgroups G

(s)
i . In particular, the inputs, the operations, and a

solution over G
(s)
i are of no help to find a solution over G

(pe)
i . More precisely, we have the following

lemma:

Lemma 1. Let a DL-/DH-type problem P over groups of order n = pe · s (gcd(p, s) = 1, s > 1)
and an operation set OPSet be given. Then for every efficient generic algorithm A only applying
operations from OPSet that solves P with probability α there is an efficient generic algorithm A′

that solves this problem over groups of order pe with probability at least α.

Proof. Given a problem instance over k groups G
(pe)
i of order pe, the generic algorithm A′ generates

an arbitrary instance of the same problem over the k groups G
(s)
i := Zs of order s. Then it uses the

algorithm A to solve the respective problem instance over the groups Gi := G
(pe)
i × Zs which are

of order n.

Thus, computing a solution to a DL-type or DH-type problem over Gi is a least as hard for generic

algorithms as computing a solution over G
(pe)
i given only inputs over these subgroups. Hence, to

assess the intractability of DL-/DH-type problems we can restrict to consider these problems over
groups of prime power order.

C Proof of Theorem 1

In this section we give a proof of Theorem 1. We restrict to the case of DH-type problems. The
respective proof for DL-type problems works analogously and only differs in small details.

In the following we assume a DH-type problem P according to Definition 1 and an operation set
OPSet according to Definition 2 satisfying Conditions 1 and 3. Unless stated otherwise we consider

16

arbitrary but fixed values sec and n ∈ N (sec). Let (I11, . . . , Ikz, Q) ← PGen(sec, n) be the input
polynomials and the challenge polynomial of P for the fixed values sec and n. Finally, let A be a
generic algorithm whose number of oracle queries is upper bounded by m(sec) for all sec, where
m ∈ poly(x).

C.1 Outline

We are going to replace the original generic group oracle, in the following denote by O1, with an
oracle O3 that simulates O1 without using the knowledge of the secret choices priv . Then we show
that the behavior of O3 is perfectly indistinguishable from O1 unless a certain simulation failure
F occurs. From this, it immediately follows that the success probability of A when interacting
with O1 is upper bounded by the sum of failure probability and the success probability of A when
interacting with O3. This part of the proof given in Section C.3 is organized as a short sequence
of attack games. Finally, we upper bound these probabilities in Section C.4 using the Conditions 1
and 3.

C.2 Attack Games

We define an attack game in the generic group model similar to [BR04] as a tuple D = (O, E)
consisting of an oracle O and a machine E we call the success evaluator. An algorithm A playing
the game D, which is denoted by (D,A), queries the oracle O at most m(sec) times before it gives
its final output.6 The success evaluator E gets the final output out of an algorithm and determines
whether the algorithm wins the game. To do this we assume that E has read access to the internal
state and input of O. E outputs 1 if A wins the game D and 0 if not. Consequently, we call
Pr[1 ← (D,A)] the success probability of A playing the game D where this probability is taken
over the random choices priv and the coin tosses of A.

C.3 Introducing a Simulation Game

Starting from the real game D1 we first introduce an intermediate game D2 which is equivalent to
D1 before we specify the simulation game D3.

Game D1 (Real Game). The real attack game denote by D1 = (O1, E1) consists of the generic
group oracle O1 = OP,OPSet specified in Definition 3 and the success evaluator E1 that sim-
ply outputs 1 if A’s final output out is a solution to the instance of the DH-type problem, i.e.,
Q(priv)− L1out ≡ 0 mod n.

Game D2. Let us define a new game D2 = (O2, E2) by doing a slight change to the original
oracle: instead of using the isomorphic groups Zn

∼= G1
∼= . . . ∼= Gk for the internal representation

of group elements, the new oracle O2 represents these elements by Laurent polynomials from L
(l,c)
n

which are evaluated with priv each time an equality set is computed. Definition 6 precisely describes
the behavior of O2. It is easy to see that O1 and O2 are equivalent, i.e., given the same inputs O2

behaves exactly like O1.

Definition 6 (An Equivalent Generic Group Oracle). The oracle O2 has an input and output
port and performs computations as follows.
Internal state. As internal state O2 maintains lists L1, . . . , Lk, where a list Li is used for storing

computed polynomials from L
(l,c)
n .

Input. As input O2 is given sec, n and secret choices priv belonging to an instance of P.

6 We assume that an algorithm always terminates in any game.

17

Computation of equality sets. Each time a polynomial P is appended to a list Li the following
computation is triggered: O2 computes the equality set

EQS(i, P) = {j ∈ {1, . . . , |Li|} | (P − Lij)(priv) ≡ 0 mod n} ,

and writes it to its output port.
The computation of O2 consists of an initialization phase, which is run once, followed by the exe-
cution of the query-handling phase:
Initialization. Each list Li is initialized with the polynomials 1, Ii1, . . . , Iiz where (I11, . . . , Ikz)←
PGen(sec, n).
Query-handling. Upon receiving a query (f, j1, . . . , ju) on its input port, where (f, s1, . . . , su, d, F)
∈ OPSet, O2 computes the polynomial F (Ls1j1, . . . , Lsuju) and appends it to the list Ld.

The definition of success of an algorithm is adapted accordingly: E2 outputs 1 iff
(Q− L1out)(priv) ≡ 0 mod n.

It is easy to see that the games D1 and D2 are equivalent and it holds

Pr[1← (D1,A)] = Pr[1← (D2,A)].

Game D3 (Simulation Game). Now, we modify the game D2 to obtain the final simulation game
D3 = (O3, E3). Let the oracle O3 be defined exactly like O2 with the exception that equality sets
are computed differently: instead of checking whether a new polynomial P that is appended to
some list Li becomes equal to a polynomial Lij under evaluation with the given choices priv , O3

just verifies if the two polynomial are equal for all elements of Z
c
n × (Z∗n)

l−c. More precisely, O2

computes equality sets according to the following definition:

EQS(i, P) = {j ∈ {1, . . . , |Li|} | P − Lij ≡ 0 mod In} .

Note that in this way, the returned equality sets and thus the behavior of O3 is independent of the
particular secret choices priv given as input to it.

Now, consider an algorithm A with an arbitrary but fixed input on its random tape playing
the games D2 and D3, where we assume that both oracles receive the same input. Then it is clear
that if A receives the same sequence of equality sets from O2 and O3 it issues the same sequence of
queries in both games and also outputs the same value out . Hence, the games D2 and D3 proceed
identically and the states (especially the lists of Laurent polynomials) maintained by O2 and O3

are equal unless the difference between O2 and O3 yields to different equality sets when a newly
computed polynomial P is appended to some list Li. This is the case if there exists some polynomial
Lij such that P −Lij 6≡ 0 mod In but P −Lij(priv) ≡ 0 mod n for the particular choices priv given
as part of the input.

So we define the following events that can occur in the game D3 as well as D2:

– Failure event over Li, denoted by Fi: There exists j > j′ ∈ {1, . . . , |Li|} such that

Lij − Lij′ 6≡ 0 mod In ∧(Lij − Lij′)(priv) ≡ 0 mod n.

– Failure event, denoted by F : F := F1 ∨ . . . ∨ Fk.

Since the games D2 and D3 proceed identically unless the event F occurs, we have the following
relation between the success events in these games and the failure event:

(1← (D2,A)) ∧ ¬F ⇔ (1← (D3,A)) ∧ ¬F .

Using this relation we immediately obtain the desired upper bound on the success probability
Pr[1 ← (D1,A)] in the original game in terms of the success probability Pr[1 ← (D3,A)] and the
failure probability Pr[F] in the simulation game:

Pr[1← (D1,A)] = Pr[1← (D2,A)]
= Pr[1← (D2,A) ∧ ¬F] + Pr[1← (D2,A) ∧ F]
= Pr[1← (D3,A) ∧ ¬F] + Pr[1← (D2,A) ∧ F]
≤ Pr[1← (D3,A)] + Pr[F]

18

C.4 Bounding Probabilities in the Simulation Game

In this section we show that Pr[1 ← (D3,A)] and Pr[F] are negligible functions in the security
parameter.

We consider an adversary A that issues at most m(sec) queries for any sec and n ∈ N (sec) where
m ∈ poly(x). Let sec and n be arbitrary but fixed values in the following when examining game
D3. Furthermore, let Ā be the algorithm A on inputs sec and n with arbitrary but fixed content
of the random tape.

Now, it is important to observe that for arbitrary choices priv ∈U Z
c
n × (Z∗n)

l−c the game D3

played by Ā proceeds identically. This is because the behavior of the simulation oracle O3 does not
depend on priv . Thus, the lists of polynomials L1, . . . , Lk maintained by O3 stay the same for any
priv . In particular, we have a fixed output polynomial L1out .

Hence, we obtain

Pr[1← (D3, Ā)] = Pr[(Q− L1out)(priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c],

where Q ← PGen(sec, n) is the challenge polynomial. To bound this probability, we just have to
notice that there is some SLP-generator in SLPGen(m) that on inputs sec and n outputs exactly
the lists L1, . . . , Lk (in particular containing L1out) maintained by O3 after an interaction with Ā.
Hence, Condition 3 yields that there exists some negligible function f such that above probability
is upper bounded by f(sec). Furthermore, the upper bound f(sec) is independent of content of the
random tape of A that we have fixed, i.e., we have the same upper bound for any Ā. Hence it holds

Pr[1← (D3,A)] ≤ f(sec),

where this probability is taken over the choices of priv and the coin tosses of A. Finally, observe
that also by Condition 3 we have the same negligible function f in above probability for all values
of sec and n. Thus, the success probability of A in the simulation game is negligible.

Let us now consider the probability Pr[F] of a failure in game D3 played by Ā. Clearly, we have
Pr[F] ≤

∑k
i=1 Pr[Fi]. So let us determine a bound on Pr[Fi]. We can write this probability as

Pr[Fi] ≤
∑

1≤j′<j≤|Li|:Lij−Lij′ 6≡0 mod In

Pr[(Lij − Lij′)(priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c].

Now, observe all the difference polynomials Lij−Lij′ are also part of the output of some polynomial-
time SLP-generator: we know that there exists an SLP-generator that computes exactly the lists
L1, . . . , Lk of polynomials using at most m(sec) steps. Thus, there also exists an SLP-generator
that computes these polynomials and in addition all differences of these polynomials in not more
than m(sec) + (kz(sec) +m(sec)) + (kz(sec) +m(sec))2 steps (remember, to compute P − P ′ we
first need to compute −P ′ and then add this to P), where k is a constant and z(.) is polynomial
bounded. Hence, from Condition 1 follows that there exists a negligible function f ′ such that

Pr[Fi] ≤ |Li|
2f ′(sec) ≤ (z(sec) +m(sec))2f ′(sec).

Moreover, since we have the same bound on Pr[Fi] for all i, we obtain the following upper bound
on the total failure probability for game D3 played by Ā:

Pr[F] ≤ k(z(sec) +m(sec))2f ′(sec).

Note that above bound in turn holds for arbitrary coin tosses of A and we have the same negligible
function f ′ for all values of sec and n. Thus, the failure probability of A (taken over the random
choices of priv and coin tosses of A) playing the simulation game is negligible.

19

D Sketch of the Proof of Theorem 2

In this section we give a sketch of the proof of Theorem 2 connecting the practical conditions with
the abstract conditions. Before we come to the proofs of the three different parts of this theorem, we
first need to introduce several lemmas. These lemmas provide the desired link between the degrees
of a multivariate polynomial Laurent polynomial and the probability of randomly picking one of
its roots.

Lemma 2 is an extended version of Lemma 1 in [Sho97] that upper bounds the probability of
randomly picking a root over Z

c
pe × (Z∗pe)l−c of a regular non-zero multivariate polynomial.

Lemma 2. Let p ∈ P be a prime and e ∈ N. Let P ∈ Zpe [X1, . . . ,Xl] be a non-zero polynomial
of total degree d. Then for random independent choices x1, . . . , xc ∈U Zpe and xc+1, . . . , xl ∈U Z

∗
pe,

where 0 ≤ c ≤ l the following holds

Pr[P (x1, . . . , xl) ≡ 0 mod pe] ≤
d

p− 1
.

Proof. We can write the polynomial P as P = ps · P ′ for some integer s ≥ 0 and polynomial
P ′ ∈ Zpe[X1, . . . ,Xl] s.t. P ′ 6≡ 0 (mod p) and deg(P ′) = d. Since we assume that P 6≡ 0 (mod pe)
it follows that ps < pe. Let (x1, . . . , xl) ∈ Z

l
pe be a root of the polynomial P . Then we have

pe|P (x1, . . . , xl) ⇔ pe|psP ′(x1, . . . , xl). Since ps < pe it follows that pe−s|P ′(x1, . . . , xl) and thus
P ′(x1, . . . , xl) ≡ 0 (mod p). That means every root (x1, . . . , xl) ∈ Z

l
pe of P over Zpe is also a root

of P ′ over the prime field Zp. Thus, if (x1, . . . , xl) ∈ Z
c
pe × (Z∗pe)l−c is a root of P modulo pe

then (x′1, . . . , x
′
l) = (x1 mod p, . . . , xl mod p) ∈ Z

c
p × (Z∗p)

l−c is a root of P ′ modulo p. A simple
consequence of a lemma by Schwartz (Lemma 1 in [Sch80]) tells us that P ′ has at most

∣

∣

∣
Z
c
p × (Z∗p)

l−c
∣

∣

∣

d

|Z∗p|
= dpc(p − 1)l−c−1

roots in Z
c
p × (Z∗p)

l−c modulo p. Thus, P has at most

dpc(p− 1)l−c−1p(e−1)l (1)

roots in Z
c
pe × (Z∗pe)l−c modulo pe. So if (x1, . . . , xl) is chosen uniformly from Z

c
pe × (Z∗pe)l−c we get

Pr[P (x1, . . . , xl) ≡ 0 mod pe] ≤ dpc(p−1)l−c−1p(e−1)l

pec(pe−1(p−1))l−c

= dpcp(e−1)l

pel−ec−l+c+ec(p−1)

= dp(e−1)l+c

p(e−1)l+c(p−1)

= d
p−1

⊓⊔

Lemma 3 states that the probability is negligible to randomly pick a root of a non-zero Laurent
polynomials with polynomial-bounded degrees. We make use of Lemma 2 to prove this result.
Remember, for the remainder of this section, that we assume that n ∈ N (sec) is always of the form
n = pe for all sec, where p is a prime that is exponential in sec and e ≥ 1 is constant over all sec.

Lemma 3. Let (Mn)sec∈N,n∈N (sec) be a sequence of sets of Laurent polynomials, whereMn ⊂ L
(l,c)
n .

Let r ∈ poly(x) a polynomial such that for all sec and n = pe ∈ N (sec):

deg(P) ≤ r(sec) for all P ∈Mn.

Then for each non-zero polynomial P ∈Mn holds

Pr[P (priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c] ≤
(l − c+ 1)r(sec)

p− 1
,

where f(sec) := (l−c+1)r(sec)
p−1 is a negligible function.

20

Proof. Let a polynomial non-zero polynomial P ∈ Mn be given. We like to upper bound the
probability of randomly picking a root of this polynomial by applying Lemma 2. However, P is a
Laurent polynomial and may have a negative exponents in some variables which prevents us from
using this lemma directly. Therefore, let us consider the polynomial

R · P, where R =
∏

c<j≤l

X
r(sec)
j .

Since we have R(priv) ∈ Z
∗
n for all priv ∈ Z

c
n × (Z∗n)

l−c, we know that R · P has exactly the same
roots as P (and is in particular a non-zero polynomial). Thus, we can determine the probability
for randomly picking a root of R · P instead.

Now observe that R · P is a regular polynomial: by multiplying with R, a term of the form

X±d
′

j occurring in P is reduced to the term X
r(sec)±d′

j , where d′ ≤ r(sec). The total degree d of this
polynomial is upper bounded by

r(sec) + (l − c)r(sec) ≤ (l − c+ 1)r(sec).

Since R · P is not the zero polynomial we can apply Lemma 2 which yields

Pr[P (priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c] = Pr[(R · P)(priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c]

≤ d
p−1

≤ (l−c+1)r(sec)
p−1 .

This upper bound holds for all values of sec, n ∈ N (sec) and non-zero polynomials P ∈ Mn. Since

l and c are constants and r is a polynomial the function f(sec) := (l−c+1)r(sec)
p−1 is negligible.

⊓⊔

Corollary 2. The claim of Lemma 3 especially holds for all P ∈Mn that are not in In.

Proof. A Laurent polynomial P ∈ L
(l,c)
n that is not in In, i.e., that does not represent the zero

function, is certainly not the zero polynomial.

D.1 Theorem 2(a): Cond. 4, 5 imply Cond. 1

Let us consider the outputs SLPn = (L1, . . . , Lk) of an SLP-generator S ∈ SLPGen(m) on inputs
sec and n ∈ N (sec), where m ∈ poly(x). We denote the sequence of sets of output polynomials by
(Mn)sec,n∈N (sec) , i.e.,

Mn =
⋃

1≤i≤k

Li.

Observe that any polynomial P ∈Mn is of the form

P =
∑

d=(d11,...,dkz)∈Nkz
0

adI
d11
11 · . . . · I

dkz

kz

where I11, . . . , Ikz ← PGen(sec, n) are the input polynomials. Then Condition 1 follows from the
following two claims:

– Claim 1: If OPSet satisfies Condition 5 then there exists a polynomial r′ ∈ poly(x) such that
for all sec, n ∈ N (sec) and P ∈Mn holds

max
i,j

(degIij(P)) ≤ r′(sec). (2)

– Claim 2: If Condition 4 is satisfied and Equation (2) holds then Condition 1 is satisfied.

21

Let us first show Claim 2. To this end, consider the degree deg(S) with respect to the variables
X1, . . . Xl of a monomial

S = adI
d11
11 · . . . · I

dkz

kz

of P ∈Mn. According to Condition 4 there exists a polynomial r ∈ poly(x) such that r(sec) is an

upper bound on deg(Iij). Assuming Equation (2) is satisfied it holds that deg(I
dij

ij) ≤ r′(sec)r(sec)
and thus

deg(S) ≤ kzr′(sec)r(sec)
for an arbitrary monomial of P . Hence, we have

deg(P) ≤ kzr′(sec)r(sec), (3)

where k is a constant and z = z(sec) is polynomial bounded per definition. So there exists a
polynomial that bounds the degrees of all P ∈Mn. Condition 1 immediately follows from applying
Corollary 2.

Now, we justify Claim 1. We aim to show that the maximum total degree of any polynomial P
that can be constructed by an SLP in the variables Iij is bounded by a polynomial r′(sec). To do
this we use the GOPSet graph and the graph ḠOPSet of strongly connected components of GOPSet.
Note that ḠOPSet is a finite cycle-free directed graph. We are going to label the nodes of ḠOPSet
with a bound for the maximum possible total degree for a polynomial P that might be constructed
by an attacker in that component.

Since ḠOPSet is finite and cycle-free, there exists a node with no directed edges into that com-
ponent. This corresponds to a strongly connected component in GOPSet which contains at least one
group node and for which all operations that output elements in groups contained in this com-
ponent, these operations only take inputs from groups within this component. Furthermore, by
Condition 5, we can deduce that this component contains no power nodes or product nodes. Hence,
if this component contains group Gi, the maximum total degree of any polynomial P ∈ Li is 1 (in
the variables Iij).

We label this component with the label 1 (and repeat this for all strongly connected compo-
nents of GOPSet that contain a group node and have all operations which output elements in that
component taking inputs in that component).

Next, we label the components of GOPSet that do not contain a group node and which only receive
edges from labelled components. We label each of the nodes inside the components individually:

– If the node is a (·)d power node, and the input is from a node/component with label r, then
the power node is labelled rd.

– If the node is a product node, taking u inputs from nodes/components with labels r1, . . . , ru,
then the node is labelled r1 + r2 + . . .+ ru.

– If the node if a sum node, taking inputs from nodes/components with labels ri, . . . , ru, then the
nodes is labelled max{r1, . . . , ru}.

The label of the component is maximum value of any node within the component. Note that since
OPSet is fixed and independent of both the group order n and the security parameter sec, the
labels are polynomially-bounded.

We now consider the more complex case of components that receive inputs from other compo-
nents and contain group nodes. We note that these components cannot contain power nodes (by
Condition 5) but may contain product nodes and sum nodes, as well as at least one group node.
If we remove the labelled nodes of ḠOPSet, then the graph that remains is still a finite cycle-free
directed graph; hence, it must contain a component which receives no edges. This corresponds in
GOPSet to a component that contains a group node and have all operations that output elements
in the groups in that component taking inputs from that component or from already labelled com-
ponents. We select one such component and attempt to bound the total degree of the polynomial
that can be created in that component.

22

The situation is complicated because the sum and product nodes may take inputs from both
inside the component and outside the component. We begin by considering product nodes:

– If the product node receives no edges from inside the component, then we may bound the degree
of any polynomial produced by that node. It must receive u edges from components labelled
with r1, . . . , ru. The maximum degree of any polynomial that can be created using this node is
r1 + r2 + . . . + ru.

– If the produce node receives some edges from inside the component, then by Condition 5, there
exists a single incoming edge from a group node. An example of a GOPSet for which this is
true can be seen in Fig. 2. If a polynomial of degree d can be computed in this input group in
the component, then after applying this operation, the output will be a polynomial of degree
greater than d. In fact, if the product nodes receives u edges from other components with labels
r1, . . . , ru then the total degree of the output polynomial will be bounded by d+r1+r2+. . .+ru.

We note that, since the SLP generates at mostm(sec) equations, this degree increasing operation
can be executed at most m(sec) times. Naively, we can see that if we start with a polynomial Iij
in the input group, then the highest possible total degree that could be obtained by repeatedly
applying this operation has total degree 1 +m(sec)(r1 + r2 + . . . + ru). Note that this value is
polynomially bounded, as m(sec) is polynomially bounded and each of the values r1, . . . , ru is
polynomially bounded.

This current analysis of the product nodes is some sense incomplete, because it may be possible
to use the product node to create polynomials of degree larger than 1+m(sec)(r1 + r2 + . . .+ ru) if
we start with a polynomial of total degree d > 1. We therefore have to consider the largest possible
value d that can be computed without the use of product nodes. Since sum nodes cannot increase
the total degree of a polynomial, the greatest possible total degree that can be obtained without
using a product node bounded by is max{1, r} where r is the value of the largest labelled node with
an edge that enters the component that we are currently labelling. Therefore, the total degree of
any polynomial that can be constructed in this component is bounded by max{1, r} +m(sec)ur,
where u is the largest number of inputs that any product node in the component takes. This value
is polynomially bounded as u is constant and r is polynomially bounded. We label this component
with the label max{1, r}+m(sec)ur.

We may now repeat the process of labelling components that do not contain a group node, and
the labelling components that do contain groups nodes and only take inputs from other labelled
components, until the entire graph ḠOPSet is labelled. In each case, we can show that the value of the
label represents a bound on the total degree of the polynomial that can be constructed in a group
in that component, and that the label is polynomially bounded. Since the number components is
fixed and finite, this implies that the total degree of any polynomial that can be constructed is
polynomially bounded, which proves the claim.

D.2 Theorem 2(b): Cond. 6, 7 imply Cond. 2

Let the negligible function demanded in Condition 2 be denoted by f . We consider the sequence of
setsMn = {Q−α |α ∈ Zpe} of Laurent polynomials for all sec, n ∈ N (sec), where Q← PGen(sec, n).

From Condition 7 follows that there exists sec0 such that for all sec ≥ sec0, n ∈ N
(sec) and

P ∈Mn it holds that P is not zero in L
(l,c)
n . For all sec < sec0 we set f(sec) = 1.

From Condition 6 follows that there exists a polynomial r such that for all sec, n ∈ N (sec) and
P ∈ Mn holds deg(P) ≤ r(sec). Thus, Lemma 3 can be applied. From this follows that for all
sec ≥ sec0, n ∈ N

(sec) and P ∈Mn holds that

Pr[P (priv) ≡ 0 mod n :: priv ∈U Z
c
n×(Z∗n)

l−c] ≤
(l − c+ 1)r(sec)

p− 1
.

23

.

.

.

∑ ∑
∏

12

(.)d2

(.)du

Fig. 2. Worst-case graph GOPSet and its SCCs (marked by dashed borders)

Thus, for all sec ≥ sec0 we set f(sec) = (l−c+1)r(sec)
p−1 .

D.3 Theorem 2(c): Cond. 4, 5, 6, 8 imply Cond. 3

Let the negligible function demanded in Condition 3 be denoted by f . Let S ∈ SLPGen(m) be an
arbitrary SLP-generator, where m ∈ poly(x). We consider the sequence of setsMn = {Q−P |P ∈
L1} of Laurent polynomials for all sec, n ∈ N (sec), where Q ← PGen(sec, n) and (L1, . . . , Lk) ←
S(sec, n).

From Condition 8 follows that there exists sec0 such that for all sec ≥ sec0, n ∈ N
(sec) and

R ∈Mn it holds that R is not zero in L
(l,c)
n . For all sec < sec0 we set f(sec) = 1.

From Condition 6 follows that there exists a polynomial r1 ∈ poly(x) such that for all sec and
n ∈ N (sec) holds deg(Q) ≤ r1(sec) where Q ← PGen(sec, n). Assuming Conditions 4 and 5 are
satisfied, we know from Section D.1 (Eq. (3)) that there exists a polynomial r2 ∈ poly(x) such that
for all sec, n ∈ N (sec) and P ∈ L1 holds deg(P) ≤ r2(sec) where (L1, . . . , Lk) ← S(sec, n). Thus,
for all sec, n ∈ N (sec) and P ∈Mn holds deg(P) ≤ r1(sec)+ r2(sec). Hence, similar to Section D.2

we can apply Lemma 3 and set f(sec) = (l−c+1)(r1(sec)+r2(sec))
p−1 for all sec ≥ sec0.

24

