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Abstract. In the private matching problem, a client and a server each hold

a set of n input elements. The client wants to privately compute the in-

tersection of these two sets: he learns which elements he has in common

with the server (and nothing more), while the server gains no information

at all. In certain applications it would be useful to have a private matching

protocol that reports a match even if two elements are only similar instead

of equal. Such a private matching protocol is called fuzzy, and is useful,

for instance, when elements may be inaccurate or corrupted by errors.

We consider the fuzzy private matching problem, in a semi-honest envi-

ronment. Elements are similar if they match on t out of T attributes. First

we show that the original solution proposed by Freedman et al. [8] is not

private: the client can “steal” elements even if the sets have no similar el-

ements in common. Subsequently we present two fuzzy private matching

protocols. The first, simple, protocol has message complexity O(n
(
T
t

)
).

The second, improved, protocol has message complexityO(nT), but here

the client incurs a O(n2
(
T
t

)
) time complexity penalty. Additionally, we

present a protocol based on the computation of the Hamming distance

and on oblivious transfer.

1 Introduction

In the private matching problem [8], a client and a server each hold a set of

elements as their input. The size of the set is n and the type of elements is

publicly known. The client wants to privately compute the intersection of these

two sets: the client learns the elements it has in common with the server (and

nothing more), while the server obtains no information at all.

In certain applications, the elements (think of them as words consisting of let-

ters, or tuples of attributes) may not always be accurate or completely known. For

example, due to errors, omissions, or inconsistent spelling, entries in a database

may not be identical. In these cases, it would be useful to have a private match-

ing algorithm that reports a match even if two entries are similar, but not nec-

essarily equal. Such a private matching is called fuzzy, and was introduced by
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Freedman et al. [8]. Elements are called similar (or matching) in this context if

they match on t out of T letters at the right locations.

Fuzzy private matching (FPM) protocols could also be used to implement a

more secure and private algorithm of biometric pattern matching. Instead of

sending the complete template corresponding to say a scanned fingerprint, a

fuzzy private matching protocol could be used to determine the similarity of the

scanned fingerprint with the templates stored in the database, without revealing

any information about this template in the case that no match is found.

Freedman et al. [8] introduce the fuzzy private matching problem and present

a protocol for 2-out-of-3 fuzzy private matching. We show that, unfortunately,

this protocol is incorrect (see Section 3): the client can "steal" elements even if the

sets have no similar elements in common. Building and improving on their ideas,

we present two protocols for t-out-of-T fuzzy private matching (henceforth sim-

ply called fuzzy private matching). The first, simple, protocol has message com-

plexity O(n
(
T
t

)
). The second, improved, protocol is based on linear secret shar-

ing and has message complexity O(nT). Here the client incurs a O(n2
(
T
t

)
) time

complexity penalty, however. In these solutions data of the participants are en-

coded as secret shares. Linear secret sharing in this case can be considered as

error-correcting code with erasure decoding. In e.g., [4, 13] a relation is defined

between error-correcting codes and many versions of secret sharing. In this pa-

per we start to explore the use of coding theory to construct efficient solutions

for the fuzzy matching problem.

Indyk and Woodruff [12] present another approach for solving fuzzy pri-

vate matching, using the computation of the Hamming distance together with

generic techniques like secure 2-party computations and oblivious transfer. To

compare their results to ours, we use their notation to express the bit com-

plexity of the protocols: for functions f and g, they define f = Õ(g) if

f(n, k) = O
(
g(n,k) logO(1)(n) · poly(k)

)
, where k is the security parameter.

Based on the protocol from [12] we design protocols based on the computa-

tion of the Hamming distance that do not use secure 2-party computation: one

protocol is efficient for small domains of letters and the second protocol uses

oblivious transfer. The major drawback of the first protocol is a strong depen-

dence on the size of the domain of letters. The main weakness of the second

protocol is its high complexity – in the protocol there are n2 ·T oblivious trans-

fer calls, where one oblivious transfer costs Õ(1) bit communication. However,

the protocols are interesting because they use new techniques, especially in the

subroutine obtain-letters (that shows a scheme for obtaining an encryption

of a single bit using only one oblivious transfer).

Solutions based on a secure function evaluation (using generic secure 2-party

computation) work with bit complexity Õ(n2T), while the solution of Indyk and

Woodruff [12] works in Õ(nT2 + n2). The Freedman et al. [8] protocol (though

incorrect), as well as our first corrected version work in bit complexity Õ(n
(
T
t

)
).

In comparison, our most efficient protocol works in bit complexity Õ(nT) (how-

ever, with the aforementioned increased time complexity of the client). Moreover,

our protocols (including the one based on protocols from [8]) do not use generic
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secure 2-party computation constructions or oblivious transfer protocols. As a

consequence, they are more efficient than would appear from the Õ notation

(see above).

Related work can be traced back to private equality testing [2, 6, 8, 15] in

the 2-party case, where each party has a single element and wants to know if

they are equal (without publishing these elements). Private set intersection [8,

15, 14] (possibly among more than two parties) is also related. In this problem

the output of all the participants should be the intersection of all the input sets,

but nothing more: a participant should gain no knowledge about elements from

other participant’s sets that are not in the intersection.

Similarly related are the so called secret handshaking protocols [11, 1, 3].

They consider membership of a secret group, and allow members of such groups

to reliably identify fellow group members without giving away their group mem-

bership to non-members and eavesdroppers. We note that the (subtle) difference

between secret handshaking and set-intersection protocols lies in the fact that a

set-intersection protocol needs to be secure for arbitrary element domains (small

ones in particular), whereas group membership for handshaking protocols can

be encoded using specially constructed secret values taken from a large domain.

Privacy issues have also been considered for the approximation of a function

f among vectors owned by several parties. The function f may be Euclidean

distance ([5], [7], [12]), set difference ([8]), Hamming distance ([5], [12]), or scalar

product (reviewed in [9]).

Our paper is structured as follows. We formally define the fuzzy private

matching problem in Section 2, and introduce our system model, some addi-

tional notation, and primitives there as well. Then in Section 3 we present the

solution from [8] for 2-out-of-3 fuzzy private matching and show where it breaks

down. Section 4 contains our first protocol for t-out-of-T fuzzy private match-

ing that uses techniques similar to the ones used in [8]. Then we present our

second protocol based on linear secret sharing in Section 5. Finally, Section 6

presents two protocols based on the computation of a Hamming distance. All

our protocols assume a semi-honest environment (see Section 2.4).

2 Preliminaries

In this section, we introduce the fuzzy matching problem as well as the mathe-

matical and cryptographic tools that we use to construct our protocols.

2.1 Fuzzy Private Matching Problem Definition

Let a client and a server each own a set of words. A fuzzy private matching

scheme is a 2-party protocol between a client and a server, that allows the client

to compute the fuzzy set intersection of these sets (without leaking any infor-

mation to the server).

To be precise, let all the words X = x1 . . . xT in these sets consist of T letters

xi from a domain D. We define an auxiliary relation X ≈t Y among these words
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as follows: we say that two words X = x1 . . . xT and Y = y1 . . . yT match on

t letters if and only if t ≤ |{k : xk = yk ∩ (1 ≤ k ≤ T)}|. The input and the

output of the protocol are defined as follows. The client input is the set X =

{X1, . . . XnC} of nC words of length T , while the server’s input is defined in a

similar way: Y = {Y1, . . . YnS} of nS words of length T . Both the client and the

server have also in their inputs nC , nS , T and t. The output of the client is a set

{Yi ∈ Y |∃Xi ∈ X : Xi ≈t Yj}. This set consist of all the elements from Y that

match with any element from the set X. The server’s output is empty (the server

does not learn anything). Usually we assume that nC = nS = n. In any case, the

sizes of the sets are fixed and a priori known to the other party (so the protocol

does not have to prevent the other party to learn the size of the set).

2.2 Additively Homomorphic Cryptosystem

In all our protocols we use a semantically secure, additively homomorphic public-

key cryptosystem, e.g., Paillier’s cryptosystem [16]. Let {·}K denote the encryp-

tion function with the public key K. The homomorphic cryptosystem supports

the following two operations, which can be performed without the knowledge of

the private key.

1. Given the encryptions {a}K and {b}K , of a and b, one can efficiently compute

the encryption of a+ b, denoted {a+ b}K := {a}K +h {b}K
2. Given a constant c and the encryption {a}K , of a, one can efficiently compute

the encryption of c · a, denoted {a · c}K := {a}K ·h c

These properties hold for suitable operations +h and ·h defined over the range

of the encryption function. In Paillier’s system, operation +h is a multiplication

and ·h is an exponentiation.

Remark The domain R of the plaintext of the homomorphic cryptosystem in all

of our protocols (unless specified differently) is defined as follows: R should be

larger than DT and a uniformly random element from R should be in DT with

negligible probability. This property can be satisfied by representing an element

a ∈ DT by ra = 0k||a in R. The domain R should be a ring (e.g., ZM ).

Operations on encrypted polynomials We represent any polynomial p of de-

gree n (on some ring) as the ordered list of its coefficients: [α0, α1, . . . αn]. We

denote the encryption of a polynomial p by {p}K and define it to be the list of

encryptions of its coefficients: [{α0}K , {α1}K , . . . {αn}K].

Many operations can be performed on such encrypted polynomials (assuming

that the encryption has an additively homomorphic property), like: addition of

two encrypted polynomials or multiplication of an encrypted and a plain polyno-

mial. s We use the following property: given an encryption of a polynomial {p}K
and some x one can efficiently compute a value {p(x)}K . This follows from the
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properties of the homomorphic encryption scheme:

{p(x)}K =




n∑

i=0

αi ·x
i




K

=

n∑
h

i=0

{αi · x
i}K =

n∑
h

i=0

{αi}K ·h x
i

2.3 Linear Secret Sharing

Secret sharing refers to any method for distributing a secret among a group of

n participants, each of which possesses a share of the secret. The secret can

only be reconstructed when at least t shares are combined together. Combining

less than t individual shares should give no information whatsoever about the

secret. We denote a secret share by si (for i ∈ {1, . . . n}) and the corresponding

secret as s.
A Linear Secret Sharing (LSS) scheme is a secret sharing scheme with addi-

tional properties. In this paper we use the following property: given t shares si
(of secret s), and t shares r i (of secret r ) on the same indices, using si + r i one

can reconstruct the sum of the secrets s + r . One such LSS scheme is Shamir’s

original secret sharing scheme [17]. There is strong correspondence between

error-correcting codes and secret sharing (e.g., [13]). In our protocols we encode

words using linear secret sharing, which in this context can be seen as an error-

correcting code with erasure decoding.

2.4 Adversary Models

In this section we describe the adversary model that we use. We prove correct-

ness of our protocols only against a semi-honest adversary. Here we provide the

intuition and the informal notion of this model, the reader is referred to [10]

for full definitions. To simplify matters we only consider the case of only two

participants, the client and the server.

In the model with a semi-honest adversary, both parties are assumed to act

accordingly to the protocol (but they are allowed to use all information that they

collect in an unexpected way to obtain extra information). The security definition

is straightforward in our particular case, as only one party (the client) learns the

output. Following [8] we divide the requirements into:

– The client’s security – indistinguishably: Given that the server gets no output

from the protocol, the definition of the client’s privacy requires simply that

the server cannot distinguish between cases in which the client has different

inputs.

– The server’s security – comparison to the ideal model: The definition en-

sures that the client does not get more or different information than the

output of the function. This is formalized by considering an ideal imple-

mentation where a trusted third party TTP gets the inputs of the two parties

and outputs the defined function. We require that in the real implementa-

tion of the protocol (one without TTP) the client does not learn different

information than in the ideal implementation.
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1. The client chooses a private key sk, a public key K and parameters for the

additively homomorphic encryption scheme and sends K and the parameters

to the server.

2. The client:

(a) chooses, for every i (such that 1 ≤ i ≤ nC ), a random value ri ∈ R.

(b) creates 3 polynomials: P1, P2, P3 over R (where polynomial Pj is used to

encode all letters on the jth position) defined by the set of equations

ri = P1(x
1
i ) = P2(x

2
i ) = P3(x

3
i ), for 1 ≤ i ≤ nC .

(c) uses interpolation to calculate coefficients of the polynomials (P1, P2, P3)

and sends their encryptions to the server. Remark: These polynomials have

degree nC − 1 (in [8] it is written that they have degree nC ).

3. For each Yj (such that 1 ≤ i ≤ nS ), the server responds to the client:

{r · (P1(y
1
i )− P2(y

2
i ))+ Yi}K , {r ′ · (P2(y

2
i )− P3(y

3
i ))+ Yi}K ,

{r ′′ · (P1(y
1
i ) − P3(y

3
i )) + Yi}K , where r , r ′, r ′′ are fresh random values in R.

This uses the properties of the homomorphic encryption scheme including the

encrypted polynomials explained in Section 2.2.

4. If the client receives an encryption of an encoding of Yi, which is similar to any

word from his set X, then he adds it to the output set.

Fig. 1. original FPM protocol

Due to space constraints our proofs are informal, presenting only the main ar-

guments for correctness and security.

3 The Original FPM Protocol

In this section we present the original fuzzy private matching protocol from

Freedman et al. [8] (pages: 16–17). We show (following the original paper) the

version for T = 3 and t = 2. Then we present example input data where this

protocol fails. The protocol is presented in Figure 1.

The idea behind, and the problem of the protocol from Figure 1 Intuitively

the protocol works because if Xi ≈2 Yj then, say, x2
i = y

2
j and x3

i = y
3
j . Hence

P2(x
2
i ) = P2(y

2
j ) = ri and P3(x

3
i ) = P3(y

3
j ) = ri so P2(y

2
i ) − P3(y

3
j ) = 0. Then

the result {r ′ · (P2(y
2
j ) − P3(y

3
j )) + Yj}K sent back by the server simplifies to

{Yj}K (the random value r ′ is canceled by the encryption of 0) which the client

can decrypt. If Xi and Yj do not match, the random values r , r ′ and r ′′ do not

get canceled and effectively blind the value of Yj in the encryption, hiding it to

the client.

There is however a problem with this approach. Consider the following proper

input data. The input of the client is {[1,2,3] , [1,4,5]}, while the input of the

server is {[5,4,3]}. Then in step 2c of the protocol, the polynomials are defined

(by the client) in the following way:

P1: P2: P3:

P1(1) = r1 ∩ P1(1) = r2 P2(2) = r1 ∩ P2(4) = r2 P3(3) = r1 ∩ P3(5) = r2
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But now we see that, unless r1 = r2 (which is unlikely when they are both chosen

at random), P1 remains undefined! Freedman et al. do not consider this possibil-

ity. However, if we try to remedy this problem by setting r1 = r2 we run into an-

other one. Among other things, the server computes {r ′·(P2(y
2
i )−P3(y

3
i ))+Yi}K ,

which, in this particular case equals {r ′ ·(P2(4)−P3(3))+[5,4,3]}K . This equals

{r ′ · (r2− r1)+ [5,4,3]}K , which by equality of r1 and r2 reduces to {[5,4,3]}K .

In other words, the client learns [5,4,3] even if this value does not match any

of the elements held by the client. This violates the requirements of the fuzzy

private matching problem: if a semi-honest client happens to own a set of tuples

with this property it learns a tuple of the server.

4 Polynomial Based Protocol for the FPM problem

In this section we present our protocol solving the private fuzzy matching prob-

lem inspired by the protocol from [8] (presented in Section 3). Our protocol

works for any T and t. The protocol is presented in Figure 2. In the protocol

we use the following definition of σ . Let σ be a combination of t different in-

dices σ1, σ2, . . . , σt from the range {1, . . . , T} (there are
(
T
t

)
of those). For a word

X ∈ DT , define σ(X) = xσ1|| · · · ||xσt (i.e., the concatenation of the letters in X

found at the indices in the combination).

1. The client chooses a private key sk, a public key K and parameters for the

additively homomorphic encryption scheme and sends K and the parameters

to the server.

2. For every combination σ of t out of T indices the client:

(a) constructs a polynomial:

Pσ (x) = (x − σ(X1)) · (x − σ(X2)) · · · (x − σ(XnC )) of degree nC
(b) sends {Pσ}K (the encrypted polynomial, see Section 2.2) to the server.

3. For every Yi ∈ Y , 1 ≤ i ≤ nS , and every received polynomial {Pσ }K (corre-

sponding to the combination σ ) the server performs:

(a) evaluate polynomial {Pσ}K at the point σ(Yi) to compute {wσ
i }K = {r ∗

Pσ (σ(Yi))+ Yi}K , where r ∈ R is always a fresh random value.

(b) send {wσ
i }K to the client.

4. The client decrypts all received messages and if a received message wσ
i ∈ D

T

matches with any word from X then he adds wσ
i to the output set.

Fig. 2. Corrected Protocol solving FPM problem.

Correctness and security of the protocol from Figure 2 In the protocol, the

client produces
(
T
t

)
polynomials Pσ of degree nC . Every polynomial represents

one of the combinations σ of t letters from T letters. It is easy to see that if

X ≈t Y then σ(X) = σ(Y) for some combination σ . The roots of each polyno-

mial are concatenated letters (of every word in the client set) corresponding to

each combination. Hence, if there is an element Yj ∈ Y that matches with any

Xi ∈ X, then in step 3a of the protocol the value of the evaluated polynomial at a
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“matching point” σ is 0 and then the encryption of Yj is sent to the client. After-

wards the client can recognize this value. Otherwise (if Yj does not match with

any element from X) all the values sent to the client contain a random blinding

element r (and therefore their decryptions are in X with negligible probability).

The client’s input data is secure because all the data received by the server

are encrypted (using a semantically secure cryptosystem). Hence the server can-

not distinguish between different client’s inputs. The privacy of the server is

protected because the client learns about those elements from Y that are also in

X. If an element yi ∈ Y does not belong to X then a random value is sent by the

server (see the correctness proof above).

Complexity The messages being sent in this protocol are encryptions of plain-

text from a domain DT enlarged by k bits (where k is the security parameter). In

step 2 the client sends
(
T
t

)
polynomials of degree nC . Then in step 3 the server

responds with nS values for every polynomial. Hence in total O((nS +nC) ·
(
T
t

)
)

messages are sent.

Optimization for a large domain of messages For large D and T the domain

of plaintext can be really large and therefore the messages being sent in the

protocol can significantly slow down the performance. However there is a way

to make this domain smaller by slightly modifying the protocol. For every Yi the

server should prepare a unique secret key ski and public key Ki. Then for every

Yi the server sends EKi(0
k||Yi) to the client. After that, the protocol remains

unchanged, except that in step 3a the server calculates and sends {wσ
i }K = {r ∗

Pσ (σ(Yi))+ (0k||ski)}K . Later in step 3a the client can distinguish a valid secret

key from the random value (by the prefix 0k) and check to which encryption

EKi(0
k||Yi) it fits. After the client finds such an encryption he can add it to his

output set. In this modified protocolO((nS+nC)·
(
T
t

)
)messages from a domain

of size O(k) and O(ns) messages from a domain of size O(log(|D|T ) + k) are

sent.

Remarks All the optimizations described in [8] used for the private matching

problem can be easily used in this protocol. It is also easy to modify our pro-

tocol to be resistant to a malicious adversary (using the protocol resistant to a

malicious adversary from [8]). Every polynomial should be protected separately

from a malicious adversary (this is a similar situation to
(
T
t

)
instances of private

matching problem against a malicious adversary).

5 Secret Sharing Based Protocol for the FPM problem

In this section we present two of our protocols solving the FPM problem. Both

of them use the linear secret sharing technique (described in Section 2.3) and

work in the model with a semi-honest adversary. First we describe the simple
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(but slow) protocol and later the faster, improved one. We present the simple

version mainly to facilitate the understanding of the improved protocol.

5.1 A Simple Version of the Protocol

The simple protocol is presented in Figure 3. In this protocol the client first

sends encryptions of all his words (every letter is encrypted separately) to the

server. Then the participants, for every pair of words from X and Y , run the

subroutine find-matching(i,j). The aim of a single call of this procedure is to

provide Yj to the client if and only if Xi ≈t Yj . This is achieved by using a t–out–

of–T secret sharing scheme. The client receives a correct share from the server if

the corresponding letters xwi and ywj are equal (otherwise he receives a random

value). Hence he can recover Yi if he receives at least t correct shares (and this

happens if and only if at least t letters from Xi are equal to Yj).

Due to space constraints we skip the proofs of correctness and security of

the protocol from Figure 3 (they can be found in the appendix).

1. The client generates sk, K and parameters for the additively homomorphic

cryptosystem and sends K and the parameters to the server.

2. For each Xi ∈ X

(a) The client encrypts each letter xwi of Xi and sends {xwi }K to the server.

(b) For each Yj ∈ Y , run the protocol find-matching(i,j).

find-matching(i,j):
1. The server prepares t–out–of–T secret shares [s1, s2, . . . sT ] with secret 0k||Yj ,

where k is the security parameter.

2. For every letter ywj in Yj , the server computes:

vw = (({x
w
i }K −h {y

w
j }K) ·h r)+{sw}K which equals {((xwi −y

w
j ) · r + sw)}K ,

where r is always a fresh, random value from the domain of plaintext.

3. The server sends [v1, v2, . . . vT ] to the client.

4. The client decrypts the values and checks whether it is possible to reconstruct

the secret 0k||z from them. In order to do that, he needs to try all possible

combinations of t among the T decrypted (potential) shares. If it is possible

and z matches Xi then he adds z to his output set.

Fig. 3. Simple protocol solving FPM problem

Complexity The messages being sent in this protocol are encryptions of plain-

text from the domainDT enlarged by k bits (where k is a security parameter). The

optimization from Section 4 can be applied to this protocol in a straightforward

way.

The main impact on the bit complexity of the protocol is the fact that the

subroutine find-matching is called nC ·nS times. In this subroutine, the server

sends in step 3 O(T) ciphertexts. Hence, in total O(nC · nS · T) messages are

sent in this protocol.

The main part of the server time complexity is preparing nS · nC times the

T secret shares. Producing T secret shares can be done efficiently and therefore
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the time complexity of the server is reasonably low. The crucial part for the time

complexity of the client is step 4 (it is performed once in every subroutine call).

In this step the client verifies if he can reconstruct the secret Yj . This verification

costs
(
T
t

)
reconstructions (and one reconstruction can be done efficiently). The

number of reconstructions is in the order of O(nS ·nC ·
(
T
t

)
), which is the major

drawback of this protocol.

5.2 An Improved Protocol

The improved protocol is presented in Figure 4. It solves the fuzzy matching

problem with a few generalizations. Firstly, X and Y could be multisets (instead

of sets) and secondly, some additional information that does not change the

matching’s properties could be attached to any word Yi from Y , i.e., if the word

Yi matches with some word fromX then the additional information is also added

to the client’s output set (we denote this additional information as Ŷi).

This protocol consists of a polynomial and a ticket phase. In the polynomial

phase the server prepares n groups of secret shares. From each group of shares

it is possible to reconstruct the corresponding secret 0k||Yi||Ŷi. The t–out–of–T

secret sharing scheme might be used in this situation. However, shares are also

used for creating encrypted polynomials: for w ∈ {1, . . . T}, if ywi = ywm then

si,w = sm,w . In this case it may be impossible to create groups of shares that

have different secrets, e.g., two matching, but different words from Y , would

have the same secret, because more than t secrets would be the same. We solve

that problem by adding some additional shares that are sent in plaintext. They

are chosen only to enable setting different secrets.

After the polynomial phase the client has n lists of groups of encryptions

of potential secret shares and n list of groups of unencrypted shares. From all

these shares, if they are unencrypted, the client is able to recover his output set.

However, if he receives all of the shares in plaintext he can abuse the protocol by

gaining illicit information (he would be able to do so by connecting shares from

different groups of potential shares). To prevent this there is a ticket phase,

which aims at protecting the server’s privacy. At the beginning of this phase

the client has n encrypted groups of potential secret shares that he wants to

be decrypted by the server. For each group he sends his encrypted potential

shares blinded by random values. To make a client’s group independent (from

other client’s groups) the server generates a new group of secret shares (called a

ticket) for a secret 0. Subsequently, he decrypts the blinded shares and adds the

corresponding ticket’s shares. Later he sends the results to the client together

with those ticket’s shares that correspond to shares sent in plaintext in the poly-

nomial phase. Notice that this modification of the client’s potential secret shares

does not affect the potential secret (because the ticket’s shares’ secret is 0 and

because of the linear property of the secret sharing scheme). The client can un-

blind the received values and try to recover the secret from the polynomial phase.

This phase makes lists of groups of independent secret shares and therefore the

client cannot mix shares from different groups to abuse the protocol.
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Polynomial Phase:
1. The server prepares sk, K and parameters for the additively homomorphic

cryptosystem and sends K and the parameters to the client.

2. For all Yi ∈ Y , the server prepares [T + 1]–out–of–[2 · T − t + 1] secret shares

[si,1, si,2, . . . si,2·T−t+1] with the secret 0k||Yi||Ŷi , where k is the security param-

eter. If ywi = y
w
m then si,w = sm,w .

The server sends [si,T+1, . . . si,2·T−t+1] to the client.

3. The server prepares T polynomials (for w = 1 to T ) of degree n :

(a) ((Pw(y
w
1 ) = s1,w)∩ (Pw(y

w
2 ) = s2,w)∩ . . . (Pw(ywn ) = sn,w))

(b) The server encrypts each polynomial {Pw}K and sends it to the client.

4. The client evaluates T polynomials (forw = 1 to T ) on each letter of each word

(for i = 1 to n): {vwi }K = {Pw(x
w
i )}K . If xwi = y

w
m then vwi = sm,w .

5. The client blinds the results vwi with a random values rwi and sends them to

the server: {vwi + r
w
i }K .

Ticket Phase:
6. For i = 1 to n, the server prepares [T + 1]–out–of–[2 · T − t + 1] secret shares

[τi,1, τi,2, . . . τi,2·T−t+1] with secret 0. Later he sends [τi,T+1, . . . τi,2·T−t+1] to

the client.

7. For i = 1 to n and for w = 1 to T , the server decrypts the received messages

Dsk({v
w
i + r

w
i }K) and sends (vwi + r

w
i + τ

w
i ) to the client.

8. The client unblinds them (by subtracting rwi ) obtaining qwi .

If xwi = y
w
m then qwi = sm,w + τi,w .

9. For i = 1 ton and j = 1 ton, the client checks if it is possible to reconstruct the

secret 0k||z||ẑ from: [q1
i , q

2
i , . . . q

T
i , sj,T+1+τi,T+1, sj,T+2+τ i,T+2, . . . sj,2·T−t+1+τ i,2·T−t+1].

In order to do that, the client needs to try all possible combinations of t shares

among the T decrypted q shares (the rest of the shares is the same during

reconstructions). If it is possible and z is similar to any Xi ∈ X then he adds

z||ẑ to his output set.

Fig. 4. Improved protocol solving FPM problem

Correctness and security of the protocol from Figure 4 The first important

issue appears in step 2 of the polynomial phase. Here the server prepares n

groups of [T + 1]–out–of–[2 · T − t + 1] shares [si,1, si,2, . . . si,2·T−t+1]. From the

ith group he can recover Yi. During the creation of these shares the server uses

the rule:

for w ∈ {1, . . . T}: if ywi = ywm then si,w = sm,w . (1)

This rule is necessary because the first T shares from each group are later en-

coded as polynomials.

This secret sharing is used here in the same role as the t–out–of–T one. How-

ever if the t–out–of–T scheme is used, then it is impossible to choose the proper

value of secrets (e.g., two matching, but different, words from Y , would have the

same secret because of Rule 1). Secret shares [si,T+1, . . . si,[2·T−t+1]] are chosen

arbitrarily only to enable proper values of the secrets. To choose arbitrary se-

crets even for equal words (Y could be a multiset) (T − t + 1) new shares (the

ones that are sent in plaintext) is exactly enough. The role of shares [si,1, . . . si,T ]

is like in classical secret sharing. Because the last T − t + 1 shares are known,

the first T shares work like a t–out–of–T secret sharing scheme.
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Subsequently, in step 3, the server creates T polynomials of degree n in such

a way that evaluating a polynomial on a corresponding letter from some word

from Y results in a corresponding secret share. Later he sends the encrypted

polynomials to the client. The client evaluates the polynomials on his words and

achieves {vwi }K (where the following property holds: if xwi = ywm then vwi =

sm,w ). After the ticket phase, the client receives T values qwi = v
w
i +τi,w , where

[τi,1, τi,2, . . . τi,T ] are tickets – secret shares with the secret 0. Hence the client

receives the group: [v1
i + τi,1, v

2
i + τi,2, . . . v

T
i + τi,T ], where if xwi = ywm (for

some Ym ∈ Y ) then vwi = sm,w . Therefore, by the linear property of LSS, if vwi
is a correct secret share, then qwi = v

w
i + τi,w is also a correct secret share. The

client is trying to recover a secret for every received group of potential shares.

However, for a proper reconstruction, he also needs shares that have been sent

to him in plaintext by the server. These shares are always correct, but he needs

to combine shares from the polynomial and ticket phases. Moreover, he does

not know which shares from the polynomial phase correspond to the shares

from the ticket phase. As a result, the client has to check all of the combinations

(n2). If the client combines non-fitting shares then he cannot recover the proper

secret.

Hence, for i, j ∈ {1, . . . n}, the client checks if he can reconstruct the secret

from the following shares:

[q1
i , q

2
i , . . . q

T
i , sj,T+1 + τi,T+1, sj,T+2 + τi,T+2, . . . sj,2·T−t+1 + τi,2·T−t+1]

If enough corresponding secret shares are in the group qi, then the secret that

could be recovered from them is 0k||Ym||Ŷm (because the secret of τ shares is 0).

Hence, in step 9 the client recovers all of the secrets that he has corresponding

shares of.

The privacy of the client’s input data is secure because all of the data received

by the server (in step 5 of the polynomial phase) is of the form: vwi + r
w
i , where

rwi is a random value from the domain of the plaintext. Hence the server cannot

distinguish between different client inputs.

The privacy of the server is protected because the client receives correct

secret shares of some Yj ∈ Y if and only if there is an element Xi ∈ X such that

Xi ≈t Yj . In the polynomial phase, the client receives encrypted polynomials

and n groups with T − t + 1 shares ([si,T+1, . . . si,[2·T−t+1]] ) of [T + 1]–out–of–

[2 · T − t + 1] secret sharing scheme. Hence there is no leakage of information

in the polynomial phase. The client receives information in plaintext in steps 6

and 7 of the ticket phase. In this situation, the client has at least T + 1 correct

secret shares during step 7 and he can reconstruct the secret 0k||Ym||Ŷm.

If there is no such element in X to which Yj is similar, then the client receives

no more than t shares in every group qi of potential shares: qwi = τi,w + sj,w
(where i is an index of the received group of potential shares). The client cannot

reconstruct Yj for any group separately (by the secret sharing assumption), be-

cause he has less than T + 1 correct secret shares. Of all the shares, (T − t + 1)

come from values that are sent in plaintext. For every group of shares, τ values

are different and therefore make every received group of shares independent.
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The probability that a random value from R is a correct share is negligible (with

respect to the security parameter k). Therefore, the probability that the client

can recover illicit information is negligible.

Complexity Ciphertexts being sent in this protocol are encryptions of plaintext

from the domain that contains DT enlarged by k bits (where k is a security

parameter). There are also messages being sent that are unencrypted, but less

than ciphertexts. The optimization from Section 4 can be applied to this protocol

in a straightforward way.

In step 3 the server sends encryptions of T polynomials of degree n and n

lists of T − t+1 unencrypted shares. This totals to O(n ·T)messages. For every

received polynomial, the client computes n values and sends them encrypted to

the server (again O(n ·T) messages). In the ticket phase, the server responds to

every received message by sending one unencrypted value. Moreover he again

sends n lists of T −t+1 tickets. Hence in the entire protocol, O(n ·T)messages

are sent.

The main part of the server time complexity is preparing 2 ·n times [T +1]–
out–of–[2 ·T − t +1] secret shares. Since producing (2 ·T − t+1) secret shares

can be done efficiently, the time complexity of the server is reasonable. The

crucial part for the time complexity of the client is step 9 (which is performed

n2 times). In this step the client checks whether he can reconstruct the secret Yj .

This verification costs
(
T
t

)
reconstructions (and one reconstruction can be done

efficiently). The total number of reconstructions is in the order of O(n2 ·
(
T
t

)
),

which is the major drawback of this protocol.

6 Hamming Distance Based Protocol for the FPM Problem

In this section we present two protocols solving the FPM problem based on com-

puting the encrypted Hamming distance: one that is simple and efficient for small

domains and another that uses oblivious transfer. The difference between them

is only the implementation of the subroutine equality-matrix (the frame of

the protocol is the same for both of them). Firstly we describe the simple protocol

and later the one using oblivious transfer.

A technique to compute the encrypted Hamming distance to solve the FPM

problem has been introduced in [12]. However, the protocol in that paper uses

generic 2-party computations together with oblivious transfer, making their ap-

proach less practical.

Our protocol (see Figure 5) works as follows. The server first obtains, using

the subroutine equality-matrix, a 3-dimensional matrix f(w, i, j) containing

the encrypted equality test for the w-th letter in words Xi and Yj (where {0}K
denotes equality and {1}K denotes inequality). The server sums the entries in this

matrix to compute the encrypted Hamming distance d
j
i = ∆(Xi, Yj) between the

words Xi and Yj . Subsequently, the server sends Yj blinded by a random value

r multiplied by d− ℓ, for all 0 ≤ ℓ ≤ T − t. If 0 ≤ d ≤ T − t, then for some ℓ the
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1. The client prepares sk, K and the parameters for the additively homomorphic

cryptosystem and sends K and the parameters to the server.

2. Run subroutine equality-matrix. After this subroutine the server has ob-

tained the following matrix: f(w, i, j) =

{
{0}K , for xwi = y

w
j

{1}K , for xwi ≠ y
w
j

,

where w ∈ {1, . . . T} and i, j ∈ {1, . . . n}

3. For each Xi ∈ X and Yj ∈ Y :

(a) the server computes {∆(Xi, Yj)}K = {
∑T
w=1 f(i, j,w)}K and, for ℓ = 0 to

T − t, sends {(∆(Xi, Yj)−ℓ) ·r + (0k||Yj))}K to the client. Here r is always

a fresh, random value.

(b) The client decrypts all T − t messages and if any plaintext is in DT and

matches any word from X, then the client adds this plaintext to the output

set.

Fig. 5. Hamming distance based protocol for FPM problem

value Yj is not blinded at all. This allows the client to recover Yj . Otherwise Yj
is blinded by some random value for every ℓ, and the client learns nothing.

Correctness and Security of the protocol from Figure 5 Assuming that in the

subroutine equality-matrix the matrix f has been securely obtained, protocol

5 calculates a correct output. This can be concluded from the following facts: if

Xi ≈t Yj then (in step 3a) ∆(Xi, Yj) ∈ { 0 . . . T − t }, and therefore {0k||Yj}K is

sent to the client. Privacy of the server is protected because in step 3a if Xi 6≈t Yj
then ∆(Xi, Yj) 6∈ {0, . . . T − t} and therefore all values received by the client look

random to him. Correctness and security proofs of this protocol resemble the

proofs of the protocol presented in Figure 3 and are omitted here.

6.1 Implementing Subroutine equality-matrix

The first method to implement the subroutine equality-matrix is as follows.

The client sends the letters of all his words to the server as encrypted vectors dwi :

{0, . . . |D| − 1} (where i ∈ {1, . . . nC} and w ∈ {1, . . . T}) such that dwi (v) = {1}K
if v = xwi , and dwi (v) = {0}K otherwise. Subsequently the server defines the

matrix as f(w, i, j) = dwi (y
w
j ). The main drawback of this method is that its bit

complexity includes a factor O(|D| ·n · T +n2 · (T − t)). However, the protocol

is simple, and for small domains D it is efficient. For constant size D and T ≈ t

the bit complexity of the protocol reduces to Õ(n2+n·T) (which is significantly

better than the bit complexity of the protocol from [12] in this situation).

The second implementation of the subroutine is shown in Figure 6. This im-

plementation uses 1–out–of–q oblivious transfer. An oblivious transfer is a

2-party protocol, where a client has a vector of q elements, and the server chooses

any one of them in such a way that the server does not learn more than one, and

the client remains oblivious to the value the server chooses. Such an oblivious

transfer protocol is described in [15]. The fastest implementation of oblivious

transfer works in time Õ(1).

The second version of the subroutine equality-matrix uses such an oblivi-

ous transfer in the following way. Let dwi be the unary encoding of xwi as defined
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1. The client generates vectors dwi : [0, . . . |D| − 1] (where i ∈ {1, . . . nC} and w ∈

{1, . . . T}) such that: dwi (v) = 1 if v = xwi , and dwi (v) = 0 otherwise.

2. The matrix f is defined in the following way (for all i, j ∈ {1, . . . n} and w ∈

{1, . . . T}):

(a) The client picks a random bit bwi,j .

(b) The server and the client perform 1–out–of–|D| oblivious transfer as fol-

lows. The client constructs hwi,j , which is a vector [0, . . . |D|−1] as follows:

hwi,j = [d
w
i (0)⊕ b

w
i,j , d

w
i (1)⊕ b

w
i,j , . . . d

w
i (|D| − 1)⊕ bwi,j].

The server wants to obtain a value from the vector hwi,j with an index ywj .

For that they perform the oblivious transfer protocol (where the server has

an index and the client an array). Subsequently, the server obtains the value

h = hwi,j(y
w
j ).

(c) The client sends {bwi,j}K to the server.

(d) f(w, i, j) =

{
{bwi,j}K , for h = 0

{1− bwi,j}K , for h = 1

Fig. 6. Subroutine equality-matrix based on oblivious transfer

above (in the description of first method of implementation). The client chooses

a random bit bwi,j . Next he constructs a vector hwi,j which contains all bits of dwi ,

each blinded by the random bit bwi,j . In other words hwi,j[x] = d
w
i (x) ⊕ b

w
i,j . Us-

ing an oblivious transfer protocol, the server requests the ywj -th entry in this

vector, and obtains dwi (y
w
j ) ⊕ b

w
i,j . By the obliviousness, the client does not

learn ywj , and the server does not learn any other entry. Subsequently, the client

sends the encryption {bwi,j}K to the server. Based on this the server constructs

f(w, i, j) = {dwi (y
w
j )}K as explained in the protocol.

Corollary These protocols are less efficient in bit complexity than the improved

protocol (see Section 5.2, Figure 4). The first protocol is efficient for small do-

mains, but significantly inefficient for large ones. In the second protocol there

are n2 · T oblivious transfer calls. Moreover, at this stage, we do not foresee a

way to improve these protocols. However, the protocols are interesting because

they do not use generic 2-party computations. Furthermore, the techniques be-

ing used contain novel elements especially in the subroutine equality-matrix,

that presents a technique for obtaining the encryption of a single bit using only

one oblivious transfer.

7 Summary and Future Work

In this paper we have shown a few protocols solving the FPM problem. The most

efficient one works in a linear bit complexity with respect to the size of the input

data. However we cannot call this protocol really efficient because of the slow

time complexity of the client.

Currently, we are investigating how to speed up the time complexity of the

client by using error correcting coding techniques. Instead of representing el-

ements Yi of the server’s set by linear secret shares we are trying to represent



16 Łukasz Chmielewski, Jaap-Henk Hoepman

them as codewords of linear error-correcting codes (to achieve faster reconstruc-

tion of secrets). However, we then encounter problems violating the privacy of

the server.
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A Correctness and security of the protocol from Figure 3

In this protocol the client encrypts all of his words and sends the results to

the server. Then for every couple of words (Xi, Yj), the participants run the

subroutine find-matching. In the subroutine the server divides his words into

T shares (with threshold t) and for every letter in Yj calculates vw = {((xwi −

ywj )·r +sw)}K . If xwi = y
w
j then the client receives the correct share, otherwise

a random value. However, at this step the client cannot distinguish in which

situation he is (he cannot distinguish a random value from the correct share).

Then the client checks if he can reconstruct the secret using any combination

of t out of the T elements {Dsk(vw)|1 ≤ w ≤ T}. He recognizes the secret by

the 0k prefix, and similarity with one of the words from his set. If he has less

than t correct secret shares then he cannot recover the secret, and the retrieved

data looks random to him (this follows from the security of the secret sharing

scheme). Hence all required elements from Y appear in the client’s output. The

probability that some incorrect element is in the output set is negligible.

The client input data is secure because all of the data received by the server is

encrypted (using the semantically secure cryptosystem). Hence the server cannot

distinguish between different client inputs.

Privacy of the server is protected because the client receives correct secret

shares of some Yj ∈ Y if and only if there is an element Xi ∈ X such that

Xi ≈t Yj . In this situation the client has at least t correct secret shares and

he can reconstruct the secret 0k||Yj . If there is no element in X to which Yj is

similar then the client receives nS independent groups of shares, which has no

group with at least t correct shares. Hence from any of these groups he cannot

retrieve any secret. The probability that a random value from R is a correct share

is negligible (with respect to security parameter k). Therefore the probability that

the client can recover an illicit secret is negligible.
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