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Abstract. sflash had recently been broken by Dubois, Stern, Shamir,
etc., using a differential attack on the public key. The C∗− signature
schemes are hence no longer practical. In this paper, we will study the
new attack from the point view of symmetry, then (1) present a sim-
ple concept (projection) to modify several multivariate schemes to resist
the new attacks; (2) demonstrate with practical examples that this sim-
ple method could work well; and (3) show that the same discussion of
attack-and-defence applies to other big-field multivariates. The speed
of encryption schemes is not affected, and we can still have a big-field
multivariate signatures resisting the new differential attacks with speeds
comparable to sflash.
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1 Introduction

Late last year the École Normale Supérieure group led by Jacques Stern, along
with Adi Shamir, found a way to break all Matsumoto-Imai-minus (or C∗−, [15])
cryptosystems [8, 9]. The attack relies on a hidden symmetry of the correspond-
ing public key, which is fundamentally due to the M-I family of cryptosystems
being built on the structure of a large field. The associated public keys even of
modified systems still contain substantial information that exposes the structure
of this large field. This residual field structure is exploited to break the systems.
In principle, this means that to secure these systems, one must break the hidden
field structure of the field. This is our main idea, expanded below.

1.1 Questions

The sflash signature scheme ([3]), one of the best-known multivariate cryp-
tosystems, had stood for a decade and was even recommended by the New Eu-
ropean Schemes for Signatures, Integrity, and Encryption (NESSIE, [13]) as a



signature scheme for constrained environments. However, this scheme and all
related C∗− schemes had recently been broken by Dubois, Stern, Shamir, etc.

Due to this new and ingenious application of the differential attack, it seems
that the family of C∗− and related signature schemes, are no longer of any prac-
tical value. It seems then reasonable to wonder whether similar big-field multi-
variate schemes have the same or a related weakness, and are such multivariate
cryptosystem is worth exploring further.

Also another obvious question is: will countermeasures to protect against the
new differential attacks make the schemes too slow, in which case (given that
one of the rationales for using multivariates is efficiency) the cure may well be
worse than the disease.

1.2 Conclusions

We show that the simple multiplicative symmetry that is used by the new attack
is vital, and therefore we can protect against these new attacks and make the
new attack invalid by breaking the symmetry. The simple trick that we use is
called in mathematics a projection map. In practical terms, we take a set of
public keys and fix one of the component variables to be zero. This does not
affect the speed of encryption schemes but slows down signature schemes by a
fairly significant amount. We will argue why the symmetry is broken and we
will show with computer experiments that this is indeed so. Furthermore, since
variants of C∗, such as `IC [7], can be very fast, it is possible to do a moderate
amount of guessing. Given that, we show that although a similar weakness is
found in all similar big-field schemes, we can have a fix with essentially the same
speeds for encryption and acceptable speeds in a big-field multivariate signature
scheme (of the embedded minus type).

1.3 A Note on Previous and Future Work

Part of the catch-22 facing multivariate systems is that not enough effort has
been spent to make them better. Therefore, despite their uncertain futures, it
still seems like a good idea to work on optimizing multivariate cryptosystems
more as in [2], and especially for embedded systems.

The idea of using projection as a modifier was mentioned first by Courtois [5,
16] and termed “fixing” but was not seriously considered as a defensive measure.

The concept of compounding several modifiers is not new and can be seen
for example in QUARTZ [4] (HFE, with vinegar variables and minus).

It seems that the new differential attacks increased greatly our understanding
of multivariate PKCs, and one should be more confident about MPKCs and not
be too quickly dismissive of further adventures in this area.

2 Matsumoto-Imai-Minus and sflash

We describe briefly the Matsumoto-Imai multivariate public-key cryptosystem
and its major variant, the Matsumoto-Imai-Minus signature scheme (C∗−).



Multivariate PKCs provides an alternative for which CPUs that don’t have
fast operations with large integers can do equally well. In the last ten years,
there has been significant effort put into realizing practical implementations.
One instance, sflash version 2, was even recommended by NESSIE [1, 13].

2.1 The original Matsumoto-Imai

Let E be a finite field of size q and characteristic 2, and fix an irreducible
polynomial of g(t) ∈ k[t] of degree n. Then F = E[t]/(g(t)) is an extension
of degree n over E, and we have an isomorphism φ : F −→ En defined by
φ(a0+a1t · · ·+an−1t

n−1) = (a0, . . . , an−1). Fix α so that gcd (1 + qα, qn − 1) = 1
and define F : F −→ F by

F (X) = X1+qα

.

Then F is invertible and F−1(X) = Xt, where t(1 + qα) ≡ 1 mod (qn − 1).
Define the map F̃ : En −→ En by F̃ (x1, . . . , xn) = φ ◦ F ◦ φ−1(x1, . . . , xn) =
(F̃1, . . . , F̃n). In this case, the F̃i(x1, . . . , xn) are quadratic polynomials in the
variables x = (x1, . . . , xn). Finally, let L1 and L3 be two randomly chosen in-
vertible affine linear maps over En and define F̄ : En −→ En by

P (x1, . . . , xn) = L3 ◦ F̃ ◦ L1 (x1, . . . , xn) = (P1, . . . , Pn).

The public keys of a Matsumoto-Imai cryptosystem (referred to as C∗ or MI)
consists of the polynomials Pi(x1, . . . , xn). See [12] for more details.

2.2 Matsumoto-Imai-Minus

It is well-known since [14] that C∗ is susceptible to the linearization equations
attack. To counter this, one can make a new signature scheme using the minus
method. Fix a integer r. In this case, the public key P− is given as:

P− = (P1, . . . , Pn−r).

Namely drop a few components. sflash is one C∗− cryptosystem, where
q = 27 and n = 37, θ = 11, r = 11 (ver. 2) or n = 67, θ = 33, r = 11 (ver. 3).

3 The Symmetry in M-I and sflash

It is often said that the security of an MPKC (multivariate public-key cryptosys-
tem) depends on the difficulty of solving multivariate quadratic systems (MQ
problem). But since all MPKC public keys have the form φ3 ◦ φ2 ◦ φ1, where φ1

and φ3 are linear or affine, we can try to distill these linear mappings (extended
isomorphism of polynomials or EIP problem) instead of trying to solve the sys-
tems. These kind of attacks are referred to as structural. Of course, the lines are
a little blurry at times: The bilinear (Patarin) relations attack looks structural,
but it can be considered a special situation for the F4 algorithm.

Structural attack on MPKC are of two related types:



Invariants: invariants (mostly, subspaces) that can be guessed.
Symmetries: transformations that leave certain quantities unchanged and hence

can be computed by a system of equations.

Of course, these two are related, given that invariants are defined according to
symmetry. Previous designers sometimes neglected the importance of symmetry.
In this section we present the symmetry or invariants used in the new differential
attacks on the M-I family of cryptosystems.

3.1 The Skew Symmetric Transformation

The symmetry found by Stern etc. can be explained by considering the case of
C∗ cryptosystem. We will first look at the the differential of the central map F .
We define the differential of any map G, denoted DG(a, x), formally as follows:

DG(a, x) := G(x + a)−G(x)−G(a) + G(0).

Clearly regardless of G, DG(a, x) is bilinear and symmetric in a and x.
The first new attack [9] is to use the so-called skew-symmetric maps with

respect to this bilinear function, namely, the linear maps M such that

DP−(a, M(x)) + DP−(M(a), x) = 0

The reason that this works is that the central map F̃ and the public key,
which encapsulates the vital information in the central map, unfortunately has
very strong symmetry in the sense that all the differentials from these maps
share some common nontrivial skew-symmetric map M . Since

F (x) = x1+qα

,

its differential is
DF (a, x) = aqα

x + axqα

.

It was pointed out in [9] that the skew-symmetric maps M with respect to
this DF (a, x) are precisely the linear maps induced from the multiplication by
some element ζ satisfying the condition

ζqα

+ ζ = 0.

It can be seen that this skew-symmetry will continue to hold even when we
discard some components of F . In terms of the public key, this means that if we
write

DP (a, x) := (aT M1x, aT M2x, . . . , aT Mnx)

and try to solve MT Mi + MiM = 0 for all i = 1 · · ·n simultaneously, we should
find just k-multiples of the identity if n and α are coprime, and a d-dimensional
subspace in the space of linear maps if d = gcd(n, α) > 1.

For a randomly chosen map F , it is clear that only trivial solutions M = u1n,
where u ∈ E are expected to satisfy this condition. This means that there is a
very strong condition on C∗− cryptosystems. This symmetry can be utilized to
break C∗− systems for which d = gcd(n, α) > 1.



3.2 The Multiplicative Symmetry

We call the second symmetry the multiplicative symmetry, which again comes
from the differential DF (a, x). Let ζ be an element in the big field F. Then we
have

DF (ζ · a, x) + DF (a, ζ · x) = (ζqα

+ ζ)DF (a, x).

This is also a very strong symmetry, namely it implies that if

Mζ = L−1
1 ◦ φ ◦ (X 7→ ζX) ◦ φ−1 ◦ L1

is the linear map in En corresponding to multiplication by ζ, then

span{MT
ζ Mi + MiMζ : i = 1 · · ·n} = span{Mi : i = 1 · · ·n}.

I.e., the space spanned by the quadratic polynomials from the central map is
invariant under the skew-symmetric action as defined above.

Clearly the public key of C∗− inherits some of that symmetry. Now not every
skew-symmetric action by a matrix Mζ that corresponds to an F-multiplication
that result in MT

ζ Mi + MiMζ being in the span of the public-key differential
matrices, because S := span{Mi : i = 1 · · ·n − r} as compared to span{Mi :
i = 1 · · ·n} is missing r of the basis matrices. However, as the authors of [8]
argued heuristically and backed up with empirical evidence, if we just pick the
first three MT

ζ Mi +MiMζ matrices, or any three random linear combinations of
the form

∑n−r
i=1 bi(MT

ζ Mi + MiMζ) and demand that they fall in S, then

1. there is a good chance to find a nontrivial Mζ satisfying that requirement;
2. this matrix really correspond to a multiplication by ζ in F;
3. applying the skew-symmetric action of this Mζ to the public-key matrices

leads to other matrices in span{Mi : i = 1 · · ·n} that is not in S.

Why three? There are n(n− 1)/2 degrees of freedom in the Mi, so to form a
span of n−r matrices takes n(n−3)/2+r linear relations among its components
(n− r and not n because if we are attacking C∗−, we are missing r components
of the public key). There are n2 degrees of freedom in an n× n matrix U . So, if
we take a random public key, it is always possible to find a U such that

UT M1 + M1U, UT M2 + M2U ∈ S = span{Mi : i = 1 · · ·n− r},

provided that 3n > 2r. However, if we ask that

UT M1 + M1U, UT M2 + M2U, UT M3 + M3U ∈ S,

there are many more conditions than degrees of freedom, hence it is unlikely to
find a nontrivial solution for truly random Mi. Conversely, for a set of public
keys from C∗, the result of tests in [8] shows that it is almost sure for this attack
eventually to recover the missing r equations and break the scheme.



4 Fixing the Schemes by Breaking the Symmetry

It looks obvious, after looking at Sections 3 and 4.4 that the the attack of Dubois
et al is tied to the symmetries in Section 3.1 and 3.2, and in trying to defend
against the attacks, one must modify the central map in such a way that the
symmetries in Section 3.1 and 3.2 are no longer present.

4.1 Projection: Eliminating One Variable

The idea we propose has been mentioned before under the name “fixing” [5, 16],
but in reality it means a projection onto an affine or linear subspace (usually a
hyperplane) that eliminates one independent variable from the public key.

Intuitively, we can say that the differential attacks actually utilize the field
structure of the big field to break sflash and related cryptosystems, and the rea-
son why projection could work against these attacks is that the subspace where
we project into can not possibly inherit any field structure from the big space
as we all know. This conceptually explains why the idea of projection should
work against the differential attack, which relies solely on the field structure.
Projection destroys the original field structure.

In terms of an original cryptosystem which starts with the public map of P :=
(P1(x1, x2, . . . , xn), P2(x1, x2, . . . , xn), . . . , Pm(x1, . . . , xn))), the public map of
the singly projected (or fixed) system is

P ′ := (P1(x1, . . . , xn−1, 0), P2(x1, . . . , xn−1, 0), . . . , Pm(x1, . . . , xn−1, 0)))

How does projection or fixing affect the operation of the scheme?

Digital Signature Scheme: for multivariate signature schemes, typically one
start with the m-block (each block in E = GF(q)) long hash and add n−m
blocks of random numbers in the staged process of inverting the public map.
With projected (fixated) public keys, whenever the final result doesn’t have
a 0 in the appropriate position, we have to discard the result and redo the
signing. So one projected coordinate makes it q times slower.

Encryption Scheme: Here we start with n − 1 blocks of plaintext instead of
n, but neither the encryption nor the decryption is affected.

Before we rush to implement idea, we need to verify that this is in fact a
good thing that defends against the differential attack, as below.

Note also that for simplicity we are fixing to zero. Suppose we fix xn to the
value b. If L1 is affine and has non-linear parts, then we can just shift L1 by the
constant b instead. If L1 (as is likely L3 also) is linear, we can infer that this is
only for homogeneous central maps [11], in which case we can homogenize and
read off the original public key.



4.2 Projection Breaks the Skew-Symmetry in C∗

Let us assume that f1(x1, . . . , xn), . . . , fn(x1, . . . , xn) are the quadratic polyno-
mial derived in the central map of the C∗. Here we do not have any linear map
composed on either the left or the right side.

Let g1(x1, . . . , xn−1), . . . , gn(x1, . . . , xn−1) be quadratic polynomial obtained
on substituting xn :=

∑n−1
1 aixi, a random linear functions of xi, i = 1, ..., n−1:

gi(x1, ..., xn−1) = fi(x1, ..., xn−1,

n−1∑
1

aixi).

Let the space spanned by the gi be G. We need to pick random elements
Gi =

∑
aijgi from G. For each Gi, we can associate an unique symmetric (n−

1)× (n− 1) matrix Mi whose diagonal entries are zero.
The skew symmetry of Gi are given by the invertible matrix M such that

MMi = MiM
T .

For any fixed Mi, this is a linear system of equations in the coefficients of M .
We need to show that for randomly chosen M1 and M2, the intersection of

the solutions MM1 = M1M
t,MM2 = M2M, behaves just as if M1 and M2 are

randomly chosen symmetric matrix with zero diagonal entries. What we can do
is to find the dimension of the space of the solutions for the set of equations
above, when Mi are from Gi, and when Mi are randomly chosen.

Furthermore, we need to show that if we choose three polynomials from G,
say G1, G2 and G3, the common skew symmetry or say the set of the equations:

MM1 = M1M
t,MM2 = M2M,MM3 = M3M,

have only the trivial solution M = a1, where 1 = 1n is the identity matrix.

n α s # W H AR RR

37 11 0 2 1369 1332 1332 1332

3 1998 1368 1368

4 2664 1368 1368

1 2 1296 1260 1242 1242

3 1890 1295 1295

4 2520 1295 1295

2 2 1225 1190 1190 1190

3 1785 1224 1224

4 2380 1224 1224

n α s # W H AR RR

38 10 0 2 1444 1406 1386 1387

3 2109 1442 1443

4 2812 1442 1443

1 2 1369 1332 1332 1332

3 1998 1368 1368

4 2664 1368 1368

2 2 1296 1260 1242 1242

3 1890 1295 1295

4 2520 1295 1295

n α s # W H AR RR

39 11 0 2 1521 1482 1482 1482

3 2223 1520 1520

4 2964 1520 1520

1 2 1444 1406 1387 1387

3 2109 1443 1443

4 2812 1443 1443

2 2 1369 1332 1332 1332

3 1998 1368 1368

4 2664 1368 1368

Table 1. Example Tests in GF(256)37

Let h1(x1, . . . , xn−2), . . . , hn(x1, . . . , xn−2) be the quadratic polynomial de-
rived from substituting xn−1 =

∑n−2
1 bixi, another random linear function:

gi(x1, . . . , xn−1) = fi(x1, . . . , xn−1,

n−1∑
1

bixi).



Let the space spanned by hi be called H. Repeat the tests for H.
We ran tests for many n, s (the number of fixed variables), and α, and

q = 24, 27, 28. Tab. 1 above are three cases that involves 37 variables in GF(256).
Here W and H are the height and width of the matrices that we are checking.
AR is the rank we find from the matrices associated with a C∗− system, and
RR is the rank we find after we repeat the same test with random matrices.
When s = 0 and d = gcd(n, α) > 1 do we observe a difference in the dimension
of the intersection of 3 or more matrices between associated matrices of C∗ and
random. Otherwise we don’t. The reader can verify this with MAGMA or Maple.

n α s # W H AR RR

44 12 0 2 1936 1892 1820 1870

3 2838 1932 1935

4 3784 1932 1935

1 2 1849 1806 1760 1806

3 2709 1848 1848

4 3612 1848 1848

2 2 1764 1722 1701 1701

3 2583 1763 1763

4 3444 1763 1763

Table 2. Other Example Tests over GF(256)

Here is another examples (in Table 2) for a different combination of param-
eters, checking the same thing.

4.3 Other Experiments

With the same basic notations as above, let Dfi(A, X), Dgi(A1, X1), Dhi(A2, X2)
be the differentials of fi, gi and hi, where A = (a1, . . . , an), X = (x1, . . . , xn),
A1 = (a1, . . . , an−1), X1 = (x1, . . . , xn−1), A2 = (a1, . . . , an−2), X2 = (x1, . . . , xn−2).

Let the space spanned by the Dgi be DG, and U be a random indeterminate
linear transformation on En−1. Let the space spanned by the Ugi be UG,

Ugi(A1, X1) = Dgi(U(A1), X1) + Dgi(A1, U(X1)).

We need to show that the intersection of UG and DG is very small except
when U is a multiple of the identity map, but this is too hard. Instead, we ran-
domly choose coefficients and take three linear combinations of the Ugi. Demand
that they are in the span of DG and solve for the components of U .

Let the space spanned by Dhi called DH, V be a linear transformation on
the space of n− 2 dimension. Let

V hi(A2, X2) = Dhi(V (A2), X2) + Dhi(A2, V (X2)).

Let the space spanned by the V hi be V H. Repeat test for V H and DH.
We tested many cases and the behavior is consistent. Except when

s = 0, for any three matrices Ugi, the solution space that they are



simultaneously in span UG is of dimension 1, and we know that is the
trivial solution — the multiples of the identity map.

The same tests as in Sec. 4.2 are also run for 3IC, except that we ensured
the linear map chosen not to intersect with the k-dimensional subspaces corre-
sponding to the bigger field variables X1, X2, X3. Same results.

Though we can not yet prove in theory that projections completely destroy
the symmetries utilized in the differential attack, the experiments above clearly
show that it is indeed so.

4.4 Similar Effects on Some Other Big-Field MPKCs

The basic trapdoor `IC (`-invertible cycles, [7]) can be considered an extension
of C∗. In the same manner as above, an `IC- signature scheme can be attacked.
We will describe the example of 3IC, the signature scheme 3IC− and the attack
briefly as follows: follows: Take the field E = GF(q), F ∼= Ek. The central map
is F : F3 → F3, F (X1, X2, X3) = (X1X2, X2X3, X2X3) expressed as a map
F̃ : E3k → E3k. The inversion from (Y1, Y2, Y3) is X1 =

√
Y1Y2/Y3, X2 =

Y1/X1, X3 = Y2/X1. There are singularities at any of the Yi = 0.
We put an invertible linear map L1 and L3 on either side to make the public

key P . Since 3IC clearly is susceptible to the same kind of linearization attacks,
we do 3IC−. I.e., we remove k of the n = 3k public polynomials.

A similar symmetry exists in this trapdoor just as in C∗. If Mζ corresponds to
the linear map (X1, X2, X3) 7→ (ζ1X1, ζ2X2, ζ3X3), then we have DP (Mζx, a)+
DP (x,Mζa) = 0. So we should be able break 3IC− in the same way as in [9].

We have only considered signature schemes so far. We can consider encryp-
tion schemes, represented by Perturbed Matsumoto-Imai Plus. In this system, we
have q = 2, and a central map of G = (F̃ +Q◦R,R′) : F = GF(2)n → GF(2)n+c,
where R is a random linear map of F→ (GF(2))r and Q is a random quadratic.
Then we affix a random quadratics R′ : F → (GF(2))c. In the original differ-
ential attacks of [10], a distinguisher is constructed that identifies a differential
DF (x, a) as corresponding to L1(a) ∈ kerR. The extra random quadratics de-
fend against this. Since q = 2, embedding or projection in one variable only
loses a bit from the input, loses no speed, and prevents any use of the sym-
metries as described in Sec. 3.2 and Section 3.1, we would suggest to do it on
general principles regardless.

5 Some Tests of the New Schemes

Having affirmed that the projection (fixing) defends against the symmetry at-
tacks, we will present new schemes by applying the projection method to the
related known schemes sflash, 3IC− and PMI+.

When we apply the projection method to a signature scheme, we need to do
a search of the size of the lost dimension in the signing process, which will slow
down the signing speed. Therefore, we prefer, in this case, to do a projection
that we will lower the dimension by 1. In the case of encryption schemes, we do



not have such a problem at all, so we in general propose to do a projection that
we will lower the dimension by 2 or more.

5.1 Projected FLASH, GF(16)

sflash is about 30 or so times faster in signing than RSA-1024 on 32-bit x86.
After we apply the projection, we have to guess 128 times, which will make the
signing speed 128 times of the original signing speed, which is too slow.

We switch to GF(16) with the FLASH scheme. A rush implementation with
r = 22, n = 74, and s = 1 is still faster than RSA-1024. For example, with
n = 73, m = 52, q = 16, we can do one 292-bit signature of a 208-bit digest in
around 70ms on our ancient 500MHz Pentium III, while RSA takes 84ms. The
drawbacks? Key size is doubled, with a 30kB public key and 4.8kB private key.

5.2 Projected 3IC−, GF(256)

The first attempt is to take 3IC− with k = r = 12, q = 256, s = 1 for 3IC−.
We have n = 35, m = 24, public key 14kB, private key 2.6kB, signature length
280 bits, hash size 224 bits.

We can choose to implement the multiplication as log-exp tables or a big
multiplication table of 64kB. We choose the latter as being more all-around
suitable. Signing speed is about 25ms on the Pentium III 500MHz, a few times
faster than RSA-1024 (log-exp tables time at around 20ms). On an Opteron
2.2GHz, signing takes about 2.8ms, again significantly faster than RSA-1024.

5.3 Projected 3IC−, GF(16)

We come up with the idea that we will use a base field of GF(16). L1 and
L3 will be implemented in GF(16), but the central map is unchanged. Instead
of logarithms and exponentials, we will always implement the scheme using a
64kB multiplication table (which for modern day processors with large cache is
tolerable) of GF(256), because the initial 4kB of this table can double as a 2-way
SIMD multiplication table for GF(16) if we choose an encoding of GF(256) in
a byte as (low nybble) + (high nybble) t, where t is the extension element in
GF(256) ∼= GF(16)[t]/(irreducible polynomial).

With this setup, we have n = 71, m = 48, public key 28kB, private key
5.2kB, signature length 284 bites, hash size 224 bits. Each signing action takes
about 2.6ms on a P3/500, and 0.36ms on an Opteron 2.2GHz.

We may choose to project away another variable (to be really safe), in which
case it takes about 40ms and 5.9ms respectively on the P3 and the Opteron, a
speed comparable to the original sflash scheme.

5.4 P 3MI – Projected Perturbed Plus Matsumoto-Imai

PMI+ [6] is a family of multivariate encryption cryptosystems, which come from
applying the plus modification and internal perturbation to the MI cryptosys-
tems. As a variant of the MI cryptosystem, which can also been seen as a MI



plus and minus system, it is evident that the new differential attack can also
be applied to attack it, though the complexity will be much higher due to the
need to do a search. We propose to apply the projection method to the PMI+
cryptosystem, which we will call the Projected Perturbed Plus Matsumoto-Imai
or P 3MI.

In this case, we specify that we will project the cryptosystem to a subspace
of two dimension lower, or more precisely we will specify two bits of the input to
be 0. The speed of the new cryptosystems will be identical to the original PMI+.
In this case, as we argue above, there cannot be a differential attack based on
symmetry.
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