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Abstract

In 1989, Tsujii, Fujioka, and Hirayama proposed a family of multivariate public key cryptosys-
tems, where the public key is given as a set of multivariate rational functions of degree 4[5]. These
cryptosystems are constructed via composition of two quadratic rational maps. In this paper, we
present the cryptanalysis of this family of cryptosystems. The key point of our attack is to trans-
form a problem of decomposition of two rational maps into a problem of decomposition of two
polynomial maps. We develop a new improved 2R decomposition method and other new tech-
niques, which allows us to find an equivalent decomposition of the rational maps to break the
system completely. For the example suggested for practical applications, it is extremely fast to
perform the computation to derive an equivalent private key, and it requires only a few seconds on
a standard PC.
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1 Introduction

Multivariate public key cryptosystems have undergone very fast development in the last 20 years.
They are considered one of the promising families of alternatives for post-quantum cryptography,
which are cryptosytems that could resist attacks by the quantum computers of the future [1].
Though most people think that Diffie and Fell wrote the first paper on the multivariate public key
cryptosystems[3], Tsujii, Kurosawa and etc actually did similar work at the same time[7]. Though
this family of cryptosystems is almost 20 years old, it is not so well known. It actually included
several methods rediscovered later, which is partially due to the fact that they were written in
Japanese and were published inside Japan. Recently it is pointed out by Tsujii[6] that there is not
yet any successful attack on the degree 4 rational multivariate public key cryptosystem designed
at that time (1989)[5].

This family of multivariate public key cryptosystem is very different from most of the known
cryptosystems, namely the public key functions are rational functions instead of polynomial func-
tions and the total degree of the polynomials components are of degree 4 instead of degree 2. The
public key can be presented as:

P (x1, .., xn) = (P1(x1, .., xn)/Pn+1(x1, .., xn), · · · , Pn(x1, .., xn)/Pn+1(x1, .., xn)),

where Pi(x1, .., xn) are degree 4 polynomials over a finite field k. We call this family of cryptosystems
rational multivariate public key cryptosystems (RMPKCs).

The construction of this family of cryptosystems relies on three basic methods. The first one is
called the core transformation, which is essentially an invertible rational map with two variables.
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The second one is called the sequential solution method, which is essentially invertible rational
triangular maps. This ideas was used later in the name of tractable rational maps in [8], but the
authors [8] were not aware of the work of Tsujii’s group. The last one is the method of composition
of nonlinear maps, which was also used later by Goubin and Patarin [4] again without knowing the
works of Tsujii’s group. The public key therefore has following expression:

P = L3 ◦G ◦ L2 ◦ F ◦ L1,

where ◦ stands for map composition and Li are invertible affine maps. G and F are degree two
rational maps:

F = (F1/Fn+1, · · · , Fn/Fn+1; ) G = (G1/Gn+1, · · · , Gn/Gn+1),

where Fi and Gi are quadratic polynomials and F and G utilize both the core transformation and
the triangular method.

The designers of this family of cryptosystem also employed two very interesting ideas to reduce
the public key size, which is a key constraint with the potential to render a multivariate public
key cryptosystem application less efficient. The first idea is to use functions of a small number of
variables over a relatively large field. Since the the public key size is O(n4), using fewer variables
greatly reduces the public key size.

The second idea is to build a public key using a field k, then use an extension field of k, say
K, as the field from which the plaintext is defined. If |k|e = |K|, then the public key size required
is only 1

e as large as if K were used to define the public key. Mathematically, the public key lies
in the function ring over kn, a subring of the function ring over Kn. Encryption and decryption
occur using the larger function ring. This idea was used later in Sflash Version-1[10].

In 1989, the designers proposed a practical application using k of size 28, K of size 232 and
n = 5. This application encrypts blocks of 20 bytes using a 756 byte public key. This family of
cryptosystems seems to be very interesting and worthy of further exploration.

As we mentioned before, there is a related cryptosystem called 2R by Patarin, which is very
similar except that F and G are replaced by 2 quadratic polynomial maps, but this cryptosystem
is broken by a decomposition method using partial derivatives[9]. It is clear this method cannot
be directly used on RMPKCs because of more complicated expressions for derivatives of rational
functions.

Our new method begins by viewing separately the denominator and the numerators of the public
key as polynomial functions. We would like to decompose these quartic polynomials into quadratic
components. We will use these quadratics to reconstruct the given public key polynomials, but we
first have to transform them so that the reconstruction is done is a way that we have a complete
alternate private key for the cryptosystem. This alternate private key gives us the ability to invert
ciphertext just as easily as the owner of the original private key.

To see how we accomplish this, let’s refer to the polynomial expressions in the denominator and
the numerators of the public key as pi = gi ◦ (f1, . . . , fn+1). We first find S = Span { fj : 1 ≤ j ≤
n + 1 } . From S, we carefully choose a basis that will enable us to invert the resulting rational
maps when we reconstruct the public key. After choosing this basis, it is easy to find each gi. We
will have to transform in a similar way the components of Span { gj : 1 ≤ j ≤ n+ 1 }.

We would like to emphasize that our attack is not just application of known methods. In
particular, the design of these RMPKCs create two especially interesting challenges for us. The
first challenge is to find Span { fj : 1 ≤ j ≤ n + 1 }, and it turns out that the 2R decomposition
method alone can not fiund this space by just applying the partial derivative attack directly to the
quartic polynomials pi. Mathematically, our new idea is to use subplanes of our function space,
and the computational means that to do this is very simple: we merely set some of the variables
equal to zero. By combining results from three or more of such subplanes, we successfully identify
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Span { fj : 1 ≤ j ≤ n + 1 }. This new extension of 2R decompostion is very different from that
in[2].

The second challenge comes from the use of a common denominator in both F and G. We must
identify each of these two denominators exactly (up to a scaling factor). This step is necessary to
complete the reconstruction of the public key. To find the exact denominator of F , we capitalize
on a weakness in the design of the core transformation of G. This weakness results in a portion
(subspace) of Span { pj : 1 ≤ j ≤ n+ 1 } in which the polynomial elements have the denominator
of F as a factor. We find it using linear algebra techniques. Finding the exact denominator of G
comes to us automatically as we solve for the gi’s in the equations pi = gi ◦ (f1, . . . , fn+1).

The paper is arranged as follows. In Section 2, we will present the specifics of the cryptosystems
we will attack. In Section 3, we will present the details of the cryptanalysis of this family of
cryptosystems; we will include our experimental results and relevant information on computational
complexity. In the last section, we will summarize our learnings.

2 The RMPKC Cryptosystem

In this section, we will present the design of the rational multivariate public key cryptosystem[5].
Let k be a finite field and kn the n-dimensional vector space over k.

1. The public key

The public key is given as a set of rational degree 4 functions:

P (x1, ...xn) = (P1(x1, . . . , xn)/Pn+1(x1, . . . , xn), · · · , Pn(x1, . . . , xn)/Pn+1(x1, . . . , xn)),

where each Pi is a degree 4 polynomial over k. P is constructed as the composition of the
five maps:

P = L3 ◦G ◦ L2 ◦ F ◦ L1 = (P1/Pn+1, · · · , Pn/Pn+1).

Here L1, L2, L3 are invertible, linear transformations over kn. Both F and G are quadratic
rational maps, i.e. each consists of n quadratic rational functions, kn → k.

F = (F1/Fn+1, · · · , Fn/Fn+1) and G = (G1/Gn+1, · · · , Gn/Gn+1),, where for 1 ≤ i ≤ n + 1,
Fi and Gi are quadratic polynomials in (x1, . . . , xn). The details of the construction of F
and G are provided below in the section explaining the private key. F and G are constructed
identically, with different choices of random parameters.

Note the denominators used in both rational maps are the same in the two nonlinear map
respectively. Gn+1 is the common denominator for G; it enables the public key to consist of
exactly n+1 polynomials. Fn+1 is the common denominator for F ; it enables the composition
of degree 2 rational functions to result in a degree 4 rational function, rather than that of
higher degree.

To see how this works, we’ll introduce a division function, φ : kn+1 −→ kn with φ(x1, . . . , xn+1) =
( x1
xn+1

, · · · , xn
xn+1

). Also let F̄ , Ḡ : kn −→ kn+1 each be quadratic polynomials that satisfy

φ ◦ Ḡ = L3 ◦G and φ ◦ F̄ = L2 ◦ F ◦ L1

resulting in
P = φ ◦ Ḡ ◦ φ ◦ F̄ = φ ◦ (Ḡ ◦ φ) ◦ F̄ .

Now let G̃ be the homogenization of Ḡ, i.e. G̃ : kn+1 → kn+1 where

∀ 1 ≤ i ≤ n+ 1, G̃i(v1, . . . , vn+1) = v2
n+1Ḡi(

v1
vn+1

, · · · , vn
vn+1

) = v2
n+1Ḡi ◦ φ(v1, . . . , vn+1).
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Note that G̃ 6= Ḡ ◦ φ, but φ ◦ G̃ = φ ◦ Ḡ ◦ φ. So P = φ ◦ G̃ ◦ F̄ where G̃ and F̄ are quadratic
polynomials. The public key, then, contains the ordered list of n+1 quartic polynomials
(P1, . . . , Pn+1) where ∀ 1 ≤ i ≤ n+ 1, Pi(x1, . . . , xn) = G̃i ◦ F̄ (x1, . . . , xn).

2. Encryption

Given a plaintext X = (X ′1, · · · , X ′n) ∈ kn one computes the ciphertext Y ′ = (Y ′1 , · · · , Y ′n) ∈ kn
as

(Y ′1 , · · · , Y ′n) = (P1(X ′1, . . . , X
′
n)/Pn+1(X ′1, . . . , X

′
n), · · · , Pn(X ′1, . . . , X

′
n)/Pn+1(X ′1, . . . , X

′
n)).

3. The private key

The private key is the set of the five maps F,G,L1, L2, L3 and the key to invert the non-linear
maps F and G. The map P can illustrated as:

kn
L1
−→ k

n F
−→ k

n L2
−→ k

n G
−→ k

n L3
−→ k

n.

The design principles of the quadratic rational components, F and G, are identical, except
that they use different choices for the random parameters involved. A two-part construction
is used. The first part is what the designers call a core transformation. The second part is
called the sequential part, since inversion is accomplished sequentially. Its structure can be
seen as triangular.

The core tranformation is applied only to the last two components, namely C = (Fn−1

Fn+1
, Fn
Fn+1

),

which can be viewed as a map k2 −→ k2. To construct Fn−1, Fn, Fn+1, we first randomly
choose 12 elements in k: α1, . . . , α6 and β1, . . . , β6. C has an inverse which is given by:

C−1(yn−1, yn) = (
α1yn−1 + α2yn + α3

α4yn−1 + α5yn + α6
,
β1yn−1 + β2yn + β3

β4yn−1 + β5yn + β6
).

Then Fn−1, Fn and Fn+1 are defined as follows:

∀ n− 1 ≤ i ≤ n+ 1, Fi(xn−1, xn) = τi,1xn−1xn + τi,2xn−1 + τi,3xn + τi,4

where the τi,j is defined as follows:

τn−1,1 = α6β5 − α5β6 τn,1 = α6β4 − α4β6 τn+1,1 = α5β4 − α4β5

τn−1,2 = α3β5 − α5β3 τn,2 = α3β4 − α4β3 τn+1,2 = α1β4 − α4β1

τn−1,3 = α6β2 − α2β6 τn,3 = α6β1 − α1β6 τn+1,3 = α5β2 − α2β5

τn−1,4 = α3β2 − α2β3 τn,4 = α3β1 − α1β3 τn+1,4 = α1β2 − α2β1

The rest of the components are given in a triangular form:

∀1 ≤ i ≤ n− 2, Fi(x1, . . . , xn) = ai(xi+1, . . . , xn)xi + bi((xi+1, . . . , xn),

where the ai’s are randomly chosen linear polynomials and the bi’s are randomly chosen
quadratic polynomials.
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4. Decryption

To decrypt, we need to invert the map P , which is done as follows:

P−1(Y ′1 , . . . , Y
′
n) = L−1

1 ◦ F
−1 ◦ L−1

2 ◦G
−1 ◦ L−1

3 (Y ′1 , . . . , Y
′
n) = (X ′1, . . . , X

′
n).

The holder of the private key has the means to find the inverse of each of L3, G, L2, F, L1. Per-
forming the calculations in order yields (X ′1, . . . , X

′
n). Inversion of the linear transformations

is obvious.

To invert the map F is to find the solution of equation: F (x1, ..., xn) = (y′1, ..., y
′
n) for a given

vector (y′1, ..., y
′
n). We first use the inverse of C to calculate (x′n−1, x

′
n) = C−1(y′n−1, y

′
n). Then

we plug the resulting values into the third last component function of F . This gives us the
following linear equation in xn−2:

y′n−2 =
Fn−2(xn−2,x′n−1,x

′
n)

Fn+1(x′n−1,x
′
n) =

an−2(x′n−1,x
′
n)∗xn−2+bn−2(x′n−1,x

′
n)

τn−2,1x′n−1x
′
n+τn−2,2x′n−1+τn−2,3x′n+τn−2,4

yielding

x′n−2 =
y′n−2∗(τn−2,1x′n−1x

′
n+τn−2,2x′n−1+τn−2,3x′n+τn−2,4)−bn−2(x′n−1,x

′
n)

an−2(x′n−1,x
′
n) .

After obtaining x′n−2, we can plug known values into the fourth last component function of F
and derive x′n−3. This sequential solution method is continued to find the rest of (x′1, . . . , x

′
n)

which gives us a solution for F (x1, ..., xn) = (y′1, ..., y
′
n).

Inversion of G is performed in the exact same manner as F .

Note that in the inversion process, division is required in the calculation of each of the com-
ponents of (x′1, . . . , x

′
n). In each case, the expression for the divisor is linear in terms of known

values of input variables (x′i+1, . . . , x
′
n) and the given values of output variables (y′i, . . . , y

′
n).

In both cases, the probability of valid division is approximately q−1
q . The probability of

successfully inverting both F and G, and thus P , therefore, is approximately ( q−1
q )2n.

3 Cryptanalysis of RMPKC

Our attack can be viewed as the decomposition of maps. The cryptanalysis of RMPKC is performed
as follows: given P , the composition of L3◦G◦L2◦F ◦L1, generate a new set of maps L′3, G

′, L′2, F
′,

and L′1 such that

L3 ◦G ◦ L2 ◦ F ◦ L1 = L′3 ◦G′ ◦ L′2 ◦ F ′ ◦ L′1,

and G′ and F ′ can be inverted in the same way as G and F , with the keys to inversion obtained
during the process. This new set of maps can be viewed as a private key equivalent to the original
one, thus can be used to defeat the RMPKC cryptosystem.

To decompose RMPKC, we will use the partial derivative method, which takes the composition
of two homogeneous quadratic polynomial maps forming a homogeneous quartic map, and decom-
poses it into quadratic maps which, when composed together, form the original quartic map[9]. Con-
sider g◦f where g = ( (g1(x1, . . . , xm), · · · , gm(x1, . . . , xm) ), f = ( (f1(x1, . . . , xm), · · · , fm(x1, . . . , xm) )
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and each of the gi’s and the fi’s are homogeneous quadratic polynomials. The first step is to find
F = Span { fi : 1 ≤ i ≤ m }, a vector space over k.

Once found, one can select linearly independent quadratics from it, say (f ′1, . . . , f
′
m). Then by

solving a set of linear equations, one can find (g′1, . . . , g
′
m) such that ∀ 1 ≤ i ≤ m, g′i ◦ f ′ = gi ◦ f

where f ′ = (f ′1, . . . , f
′
m).

The critical step of this process is finding F . The following definitions are needed:

D = Span { ∂

∂xj
gi ◦ f(x1, . . . , xm) : 1 ≤ i, j ≤ m }

Λ = { xjf : 1 ≤ j ≤ m, f ∈ F }.

R = { θ : ∀ 1 ≤ i ≤ m, xiθ ∈ D }.

When each of the fi’s and gi’s are homogeneous quadratic polynomials, D ⊆ Λ. This is true
basically because

∂
∂xj

(gi ◦ f) = m∑
r=1

∂
∂wr

gi(f)× ∂
∂xj

fr(x1, . . . , xm)

where ∂
∂wr

gi(f) is linear in the f ’s and ∂
∂xj

f(x1, . . . , xm) is linear in the (x1, . . . , xm).
We calculate D and R from g ◦ f . If D = Λ, then R = F and this step is complete. When

D ⊂ Λ, R ⊂ F . Why R ⊆ F and D = Λ⇐⇒ R = F should be fairly easy to see.
Application of the partial derivative attack to RMPKC requires some additional work. As

we saw in the explanation of the public key, we have access to n + 1 polynomials of the form
Pi = G̃i ◦ F̄ (x1, . . . , xn) where G̃i is a homogeneous quadratic polynomial and F̄ consists of non-
homogeneous quadratic polynomials. Our first step is to homogenize each of the Pi’s, which effec-
tively homogenizes each of the F̄i’s, yielding the following:

P̃i(x1, . . . , xn+1) = G̃i ◦ F̃ (x1, . . . , xn+1)

where each of the P̃i’s are homogeneous quartic polynomials and each of the G̃i’s and F̃i’s are
homogeneous quadratic polynomials.

Then we begin the partial derivative attack, by calculating D from G̃i ◦ F̃ (x1, . . . , xn+1). We
never get D = Λ, due to the triangular structure of G and the use of k which has characteristic
2. We are able to recover F by applying the attack with a new method of projection of our
functions to subplanes; the details will be provided in the section that follows. After finding F , we
de-homogenize the space by setting xn+1 = 1.

The second challenge that the specifics of RMPKC present to the partial derivative attack is
the challenge to select the polynomials F ′1, . . . , F

′
n+1 from F|xn+1=1 in such a way that they may

be easily inverted. The procedure we use to find such F ′1, . . . , F
′
n+1 is described below. The process

results in a linear transformation L′1 and a quadratic rational map F ′, which inverts in the same
manner as F for the holder of the private key.

Then to continue the partial derivative attack we can find the gi’s that satisfy Pi = gi ◦ F ′;
but these gi’s would not invert easily. So we define G′ = Span { gi : 1 ≤ i ≤ n + 1 } and select
polynomials from G′ which we can invert. This process generates linear transformations L′2 and L′3,
and quadratic rational map G′, which inverts in the same manner as G in the private key. Then
we have P = L′3 ◦G′ ◦ L′2 ◦ F ′ ◦ L′1, an alternative private key, thus breaking the RMPKC.

We organize our attack into four phases. The sections that follow will present an explanation
in further detail of each phase.

1. Find F = Span { F̃i : 1 ≤ i ≤ n+ 1 }.
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2. Determine F ′ and L′1.

3. Find G′ = Span { g′i | g′i ◦ F ′ ◦ L′1 = Pi : 1 ≤ i ≤ n+ 1 }.

4. Determine G′, L′2, and L′3.

3.1 Phase I: Find F = Span { F̃i : 1 ≤ i ≤ n + 1 }

We start with the public key, P = G̃ ◦ F̄ = (P1, . . . , Pn+1) and homogenize by creating P̃ =
(P̃1, . . . , P̃n+1) using ∀ 1 ≤ i ≤ n+1, P̃i(x1, . . . , xn+1) = x4

n+1Pi(
x1
xn+1

, · · · , xn
xn+1

). This gives us P̃ =

G̃ ◦ F̃ where F̃ = (F̃1, . . . , F̃n+1) and ∀ 1 ≤ i ≤ n+ 1, F̃i(x1, . . . , xn+1) = x2
n+1F̄i(

x1
xn+1

, · · · , xn
xn+1

).
To proceed we need to define Hi ∀ i ∈ { 1, 2, 3 } as the set of all homogeneous polynomials in

k[x1, . . . , xn+1] of degree i. Each Hi is a vector space over k as well as a subset of k[x1, . . . , xn+1].
For notational simplification, we will use context to distinguish between these uses of Hi.

We now define D,R, and Λ for G̃ ◦ F̃ . Recall that we calculate D and R from P̃ .

D = Span { ∂
∂xj

G̃i ◦ F̃ (x1, . . . , xn+1) : 1 ≤ i, j ≤ n+ 1 } ⊂ H3

Λ = { xjf : 1 ≤ j ≤ n+ 1, f ∈ F } ⊂ H3

R = { f ∈ H2 : ∀1 ≤ i ≤ n+ 1, xif ∈ D }.

Since the polynomials of G̃ and F̃ are homogeneous quadratics, we are guaranteed D ⊆ Λ and
R ⊆ F . We also have D = Λ ⇐⇒ R = F . Because of the structure of the original polynomials
in G and the use of a field of characteristic 2, we will always find D ⊂ Λ and therefore R ⊂ F .
So we use the following definitions of Γ and γ to help explain how to see what is happening with
individual f ’s in F , why they do not find themselves in R, and how we are going to eventually find
them with our alternative approach.

Γ(f) = { θ ∈ H1 : θf ∈ D } and γ(f) = dim( Γ(f) ).

Clearly, f ∈ R ⇐⇒ γ(f) = n + 1. We always get γ(f) ≤ n + 1, and Min { γ(f) : f ∈ F }
describes how far away from obtaining R = F for any given application of RMPKC. For n = 5
and n = 6, we find Min { γ(f) : f ∈ F } = n almost every time. For n = 7 we usually get
Min { γ(f) : f ∈ F } = n− 1. And for n ≥ 8 we most likely get Min { γ(f) : f ∈ F } = n− 2.
Our alternative approach works most simply for Min { γ(f) : f ∈ F } = n. We will describe this
now in detail; then briefly show how we accomplish this for Min { γ(f) : f ∈ F } < n. We again
start with the key definitions, valid ∀ 1 ≤ s ≤ n+ 1; and we have access to each Ds and Rs.

Fs = Span { f(x1, . . . , xs−1, 0, xs+1, . . . , xn+1) : ∀ f ∈ F } .

Ds = Span { ∂

∂xj
G̃i ◦ F̃ (x1, . . . , xs−1, 0, xs+1, . . . , xn+1) : 1 ≤ i, j ≤ n+ 1 } .

Λs = { xif : 1 ≤ i ≤ n+ 1(i 6= s), f ∈ Fs } .

Rs = { f ∈ H2 : ∀ 1 ≤ i ≤ n+ 1(i 6= s), xif ∈ Ds } .

Γs(f) = { θ ∈ H1 : θf ∈ Ds } , γs(f) = dim( Γs(f) ).
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Now we always get Ds ⊆ Λs, Rs ⊆ Fs, and Ds = Λs ⇐⇒ Rs = Fs ⇐⇒ Min { γs(f) : f ∈
Fs } = n. Fortunately for this attack, with high probability, γs(f) = Min { γ(f), n } . This is
a crucial point. At this time, we do not have a mathematical explanation for why it is so; our
experiments confirm it with consistent results. Once we get ∀ 1 ≤ s ≤ n+ 1, Rs = Fs, finding F is
easy.

Let R+
s = Rs + Span { xsxi : 1 ≤ i ≤ n + 1 } . When Rs = Fs, F ⊂ R+

s . Furthermore, if

∀ 1 ≤ s ≤ n+ 1, Rs = Fs, then F =
n+1⋂
s=1

R+
s , completing the task of finding F .

For the cases of Min { γ(f) : f ∈ F } < n, we expand our alternative approach one or more
levels further. Notice above the spaces R+

s , which are created by setting xs = 0, finding Ds and Rs,
then adding Span { xsxi : 1 ≤ i ≤ n+1 } . For n = 7, when we have Min { γ(f) : f ∈ F } = n−1,
we use xs1 = 0 = xs2 where s1 6= s2. Following the same manner we form Ds1,s2 and Rs1,s2 . Then
we let R+

s1,s2 = Rs1,s2 + Span { xs1xi : 1 ≤ i ≤ n + 1 } + Span { xs2xi : 1 ≤ i ≤ n + 1 } . With

consistency, we do get F =
⋂

1≤s1,s2≤n+1
s1 6=s2

R+
s1,s2 .

For n ≥ 8, when we have Min { γ(f) : f ∈ F } = n − 2, we use xs1 = 0 = xs2 = 0 = xs3
where s1 6= s2 6= s3 6= s1. Following the same manner we form Ds1,s2,s3 and Rs1,s2,s3 . Then we let
R+
s1,s2,s3 = Rs1,s2,s3 +Span { xs1xi : 1 ≤ i ≤ n+1 } +Span { xs2xi : 1 ≤ i ≤ n+1 } +Span { xs3xi :

1 ≤ i ≤ n+ 1 } . Again we consistently get F =
⋂

1≤s1,s2,s3≤n+1
s1 6=s2 6=s3 6=s1

R+
s1,s2,s3 .

3.2 Phase II: Choose F′ and L′1

In this phase we will determine the quadratic polynomials of F ′ = (F ′1/F
′
n+1, · · · , F ′n/F ′n+1,; and

the linear transformation, L′1 such that

Span { F ′i ◦ L′1 : 1 ≤ i ≤ n+ 1 } = Span { Fi ◦ L1 : 1 ≤ i ≤ n+ 1 } ,

and F ′ can be easily inverted just like F .
However, we do need one additional condition on our new map, namely we must have

F ′n+1 ◦ L′1 = λFn+1 ◦ L1

for some λ ∈ k. This is necessary in order to find the proper G′, which will be determined later, to
be chosen so that it too can be inverted in the same manner as G.

Our first step is to determine a core transformation in F ′. From the definition in Section 2, we
can see that there is a subspace spanned by two linearly independent linear functions in F , which
actually lies in the space spanned by Fn−1, Fn, Fn+1. Therefore F ′ also contains a subspace that is
contained in Span { θ′n−1, θ

′
n, 1 } for some θ′n−1, θ

′
n ∈ H1. This space can be found easily, and it is

clear that we have Span { θ′n−1, θ
′
n } = Span { L1,n−1, L1,n } ,where L1,n−1 and L1,n are the last

two components of the linear transformation L1. Next we find the three-dimensional subspace of
F which forms the core transformation, i.e. let R = F ∩ Span { θ′n−1

2, θ′n
2, θ′n−1θ

′
n, θ
′
n−1, θ

′
n, 1 }.

By construction, we know not only that ∃ R1, R2, R3 ∈ R such that R = Span { R1, R2, R3 }
and R1, R2 ∈ Span { θ′n−1, θ

′
n, 1 } and R3 ∈ Span { θn−1

2, θn
2, θn−1θn, 1 }, but also that ∃ θn−1, θn ∈

Span { θ′n−1, θ
′
n } where R1, R2 ∈ Span { θn−1, θn, 1 } and R3 ∈ Span { θn−1θn, 1 } . Furthermore,

R3 can be chosen so that R3 = θ′n−1
2 + aθ′n−1θ

′
n + bθ′n

2 + c. We can find appropriately θn−1 =
θ′n−1 + sθ′n and θn = θ′n−1 + tθ′n by finding the right values for s and t.
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We solve for s and t by equating the quadratic terms of our chosen R3, i.e. θ′n−1
2 + aθ′n−1θ

′
n +

bθ′n
2 = (θ′n−1 + sθ′n)(θ′n−1 + tθ′n). So s+ t = a and st = b. Thus s(a− s) = b, i.e. s2 − as+ b = 0.

In characteristic 2, this last equation is actually linear and can be solved for s.
This choice of θi allows us to calculate an inversion function for the core transformation (de-

scribed below), just like the inversion function of F . Coincidently, either θn−1 = λ1L1,n−1 and
θn = λ2L1,n for some λ1, λ2 ∈ k or θn−1 = λ1L1,n and θn = λ2L1,n−1 for some λ1, λ2 ∈ k; but we
don’t care which nor do we use this result directly.

To get F ′n+1 ◦ L′1 = λFn+1 ◦ L1 for some λ ∈ k, we choose fn+1 ∈ R such that fn+1|ρ for some
nonzero ρ ∈ P = Span { Pi : 1 ≤ i ≤ n + 1 }. This works to identify fn+1 = λFn+1 ◦ L1 for
some λ ∈ k because the quadratic polynomials of G become homogeneous when composed with
the rational functions in F , making the linear subspace of the polynomials of G become a subspace
divisible by Fn+1 ◦ L1 (the denominator) when composed with L2 ◦ F ◦ L1.

We randomly choose fn−1, fn ∈ R such that R = Span { fi : n− 1 ≤ i ≤ n+ 1 }.
We then determine f1, . . . , fn−2 and θ1, . . . , θn−2 sequentially, by first choosing fn−2 and θn−2,

then working our way to f1 and θ1. Our procedure is as follows:
∀ i = (n−2, n−3, · · · , 2) find θi /∈ Span { θi+1, . . . , θn } and fi ∈ F such that fi ∈ Span { θjθk :

i≤j≤k≤n+1
k 6=i } + Span { θj : i ≤ j ≤ n+ 1 } + 1.
The last components, f1 and θ1, can be chosen randomly as long as Span { fi : 1 ≤ i ≤ n+1 } =

F and Span { θi : 1 ≤ i ≤ n+ 1 } = Span { xi : 1 ≤ i ≤ n }.
θ1, . . . , θn are the components of L′1. It is easy to calculate F1, . . . , Fn+1 such that ∀ 1 ≤ i ≤

n+ 1, fi = Fi ◦ L′1.
Now that we have determined L1 and F ′, we can find the inversion function parameters (

α′1, . . . , α
′
6, β
′
1, . . . , β

′
6 ) for the core transformation of F ′ by considering

xn−1 =
α′1

F ′n−1(xn−1,xn)

F ′
n+1

(xn−1,xn)
+α′2

F ′n(xn−1,xn)

F ′
n+1

(xn−1,xn)
+α′3

α′4
F ′

n−1
(xn−1,xn)

F ′
n+1

(xn−1,xn)
+α′5

F ′n(xn−1,xn)

F ′
n+1

(xn−1,xn)
+α′6

=
α′1F

′
n−1(xn−1,xn) +α′2F

′
n(xn−1,xn) +α′3F

′
n+1(xn−1,xn)

α′4F
′
n−1(xn−1,xn) +α′5F

′
n(xn−1,xn) +α′6F

′
n+1(xn−1,xn)

or equivalently

xn−1(α′4F
′
n−1(xn−1, xn) + α′5F

′
n(xn−1, xn) + α′6F

′
n+1(xn−1, xn)) =

α′1F
′
n−1(xn−1, xn) + α′2F

′
n(xn−1, xn) + α′3F

′
n+1(xn−1, xn)

We equate the coefficients of the terms (1, xn−1, xn, (xn−1)2, xn−1xn, and (xn−1)2xn) and simul-
taneously solve for the α′1, . . . , α

′
6. In the same manner we find β′1, . . . , β

′
6 by starting with

xn =
β′1

F ′n−1(xn−1,xn)

F ′
n+1

(xn−1,xn)
+β′2

F ′n(xn−1,xn)

F ′
n+1

(xn−1,xn)
+β′3

β′4
F ′

n−1
(xn−1,xn)

F ′
n+1

(xn−1,xn)
+β′5

F ′n(xn−1,xn)

F ′
n+1

(xn−1,xn)
+β′6

=
β′1F

′
n−1(xn−1,xn) +β′2F

′
n(xn−1,xn) +β′3F

′
n+1(xn−1,xn)

β′4F
′
n−1(xn−1,xn) +β′5F

′
n(xn−1,xn) +β′6F

′
n+1(xn−1,xn)

3.2.1 Phase III: Find G′

∀ 1 ≤ i ≤ n + 1, find linear combinations of { (F ′j ◦ L′1)(F ′r ◦ L′1) : 1 ≤ j ≤ r ≤ n + 1 } which
are equal to Pi. The coefficients of these combinations are the coefficients of the homogeneous
polynomials Ḡ′i.

Let G′ = Span { Ḡ′i : 1 ≤ i ≤ n+ 1 }.
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3.3 Phase IV: Choose G′,L′2 and L′3

In this phase we will determine the quadratic polynomials of G′ =

G′1/G
′
n+1

...
G′n/G

′
n+1

; and the linear

transformations, L′2 and L′3 such that ∀ 1 ≤ i ≤ n+ 1, Pi = (L′3)i ◦G′ ◦L′2 ◦ F ′ ◦L′1, and G′ can be
easily inverted just like G.

Our first step is to determine a core transformation in G′. We easily find two linearly in-
dependent linear vectors in G′, φ′n−1 and φ′n. Let U = Span { φ′n−1, φ

′
n }. That makes U =

Span { L2,n−1, L2,n }. Next we find the three-dimensional subspace of G′ which forms the core
transformation, i.e. let V = G′ ∩ Span { φ′n−1

2, φ′n
2, φ′n−1φ

′
n, φ

′
n−1, φ

′
n, 1 }.

Now we find φn−1 and φn in U such that ∀ g ∈ V, g ∈ Span { φn−1φn, φn−1, φn, 1 }. This
choice of φ’s allows us to calculate an inversion function for the core transformation, just like the
inversion function of G. Coincidently, either φn−1 = λ1L2,n−1 and φn = λ2L2,n for some λ1, λ2 ∈ k
or φn−1 = λ1L2,n and φn = λ2L2,n−1 for some λ1, λ2 ∈ k; but we don’t care which nor do we use
this result directly.

Up to this point, our work with G′ has been identical to the work with F ′. The method to
determine G′n+1 is the first place where we differ. G′n+1 will be the quadratic polynomial in two
variables such that G′n+1(φn−1, φn) = Ḡ′n+1(x1, . . . , xn, 1).

Now we randomly choose gn−1, gn ∈ V such that V = Span { gi : n− 1 ≤ i ≤ n+ 1 }.
We then determine g1, . . . , gn−2 and φ1, . . . , φn−2 sequentially, by first choosing gn−2 and φn−2,

then working our way to g1 and φ1. Our procedure is as follows:
∀ i = (n−2, n−3, · · · , 2) find φi /∈ Span { φi+1, . . . , φn } and gi ∈ G′ such that gi ∈ Span { φjφk :

i≤j≤k≤n+1
k 6=i } + Span { φj : i ≤ j ≤ n+ 1 } + 1.
The last components, g1 and φ1, can be chosen randomly as long as Span { gi : 1 ≤ i ≤

n+ 1 } = G′ and Span { φi : 1 ≤ i ≤ n+ 1 } = Span { xi : 1 ≤ i ≤ n }.
φ1, . . . , φn are the components of L′2. And again we must differ in our approach to G′ from the

approach to F ′. At this point, we have for 1 ≤ i ≤ n, Ḡi is a linear combination of { gj : 1 ≤
j ≤ n + 1 }. We need to have ∀1 ≤ i ≤ n, Ḡi is a linear combination of only { gj : 1 ≤ j ≤ n },
(excluding gn+1).

To explain how we accomplish this is best done using (n + 1) x (n + 1) matrices over k.
Let χ be the matrix that represents the linear transformation ( kn+1 −→ kn+1 ) such that

 χ


 g1 ◦ L′2

...
gn+1 ◦ L′2

 =

 Ḡ′1
...

Ḡ′n+1

. χ is in the form


∗ · · · ∗ ∗
...

. . .
...

...
∗ · · · ∗ ∗
0 · · · 0 ∗

 but


∗ · · · ∗ 0
...

. . .
...

...
∗ · · · ∗ 0
0 · · · 0 ∗


is the form which we need.

So we find an invertible upper triangular matrix π and an invertible matrix ν of the desired
form such that νχ = π. The zero entries of π provide linear equations to solve for the entries of

ν with coefficients from χ, which are known. Now we have χ = ν−1π. So let G′ =

G′1/G
′
n+1

...
G′n/G

′
n+1



where

 G′1
...

G′n+1

 = π

 g1
...

gn+1

; and let L′3 = ν−1.
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We now have

 Ḡ′1
...

Ḡ′n+1

 = χ

 g1 ◦ L′2
...

gn+1 ◦ L′2

 = ν−1π

 g1 ◦ L′2
...

gn+1 ◦ L′2

 = L′3

 G′1 ◦ L′2
...

G′n+1 ◦ L′2

. Further-

more, P = L′3 ◦G′ ◦ L′2 ◦ F ′ ◦ L′1 and our decomposition is complete.
We can find the inversion function parameters ( δ′1, . . . , δ

′
6, γ
′
1, . . . , γ

′
6 ) for the core transformation

of G′ in the exact same manner that we found α′1, . . . , α
′
6 and β′1, . . . , β

′
6 for F ′.

In summary, we have created an alternate CQRM cryptosystem using L′1, F
′, L′2, G

′, and L′3
such that L′3 ◦G′ ◦ L′2 ◦ F ′ ◦ L′1 = L3 ◦G ◦ L2 ◦ F ◦ L1 and both G′ and F ′ are invertible, just like
G and F ; so cryptanalysis of CQRM is complete.

3.4 Experimental Results and Computational Complexity

The proposal for RMPKC in 1989 suggested an implementation with k of size 28 and n = 5. Our
attack programmed in Magma completes cryptanalysis consistently in less than six seconds running
on a personal computer with a Pentium 4 1.5 GHz processor and 256 MB of RAM. We ran several
experiments at higher values of n and for larger fields k.

Increasing the size of the field increases the run time of the program linearly. The larger values
of n cause a much greater run time and manifest the critical elements of both the public key size
of the cryptosystem and the computational complexity of our cryptanalysis. Since the public key
is a set of n+ 1 quartic polynomials, its size is of order O(n4).

The following table indicates the public key size, median total run time, and median percent of
total run time for each of the four steps, for various values of n as indicated. We used |k| = 216,
which seems to be reasonable. A k of size 232 would be quite reasonable as well.

Public Total Run Step 1 Step 2 Step 3 Step 4
n Key Time Find F Define L′1 and F ′ Find G′ Define L′2, G

′ and L′3
(kBytes) (sec) (%) (%) (%) (%)

5 1.5 10.8 11 78 8 3
6 2.9 40.0 9 80 8 2
10 22.0 1949 15 76 8 1
14 91.8 33654 10 80 9 1

Step 2 clearly comprises the bulk of the run time. Finding of the exact denominator of F takes
almost all of this time, requiring 1

24(16n6 + 131n5 + 440n4 + 595n3 + 419n2 + 114n) operations.
However, step 1 has computational complexity of O(n7) and step 3 has computational complexity
of O(n9) so eventually at higher values for n step 3 will comprise the bulk of the run time.

Remark. From the steps above, it is clear our attack is not a simple application of any one
existing attack method, let alone, just the Minrank attack alone. The key point is that we need first
to accomplish a polynomial map decomposition and then recover a subtle rational map decomposition
equivalent to the original one, which requires something much more than the Minrank method.

One more important point is about the direct algebraic attack, namely from the public key, we
can derive a set of polynomial equations once we are given the ciphertext, but these are degree
4 equations not degree 2 equations, whose computation complexity, as we all know, is much
higher than the case of degree 2 equations. This is further complicated by the fact that we are
working on the field of size of 232, where the field equations can not be used. This is confirmed by
our experiments, for example, Magma F4 implementation failed to solve even the cases n = 5 on
an ordinary PC, which was proposed more than 20 years ago.
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4 Conclusion

We develop a new improved 2R decomposition method to break the family of rational multivariate
public key cryptosystems proposed by Tsujii, Fujioka, and Hirayama in 1989. We also show that it
is polynomial time to break this family of cryptosystems in terms of the number of variables, the
critical parameter of the system. We demonstrate in computer experiments that our method is very
efficient and we can break the scheme originally suggested for practical applications in only a few
seconds on a standard PC. The main contribution of our work is that we develop new techniques
to improve the original 2R decomposition such that it can be used successfully to attack a special
family of rational maps. Although we defeat the cryptosystems, we still believe that this family of
cryptosystems contains some very interesting ideas that may be utilized effectively.
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