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Abstract. Thanks to a method proposed by Carlet, several classes of balanced Boolean func-
tions with optimum algebraic immunity are obtained. By choosing suitable parameters, for even
n ≥ 8, the balanced n-variable functions can have nonlinearity 2n−1− `n−1

n
2−1

´
+ 2
`

n−2
n
2−2

´
/(n− 2),

and for odd n, the functions can have nonlinearity 2n−1 − `n−1
n−1

2

´
+ ∆(n), where the function

∆(n) is describled in Theorem 4.4. The algebraic degree of some constructed functions is also
discussed.

1. Introduction

Boolean functions have important applications in the combiner model and the filter model
of stream ciphers. A function used in such an application should mainly possess balancedness,
a high algebraic degree, a high nonlinearity and, in the case of the combiner model, a high
correlation immunity. Recently, by finding a way of solving some of the overdefined systems
of multivariate equations whose unknowns are the secret key bits, the algebraic attacks have
allowed cryptanalysing several stream ciphers; they may also represent a thread for block ciphers
[1, 7, 9, 10, 8, 15, 18]. A high algebraic immunity was proposed as a necessary (not sufficient)
property for Boolean functions used in stream ciphers: for a given Boolean function f on n
variables, any Boolean function g such that f ∗ g = 0 or (1 + f) ∗ g = 0 should have high
algebraic degree [9, 18], where ∗ is the multiplication of functions inherited from multiplication
in F2, the finite field with two elements.

The research of Boolean functions that can resist algebraic attacks has not given fully satisfac-
tory results. Since a difference of only 1 between the algebraic immunities of two functions can
make a crucial difference with respect to algebraic attacks, it is an important topic to construct
Boolean functions with optimum algebraic immunity. But these functions must also satisfy the
other criteria recalled above for being likely to be used in stream ciphers.

There are two main ways to construct Boolean functions achieving optimum algebraic im-
munity. The first one consists in an iterative construction of a 2k-variable Boolean function
with algebraic immunity k [12]. The constructed functions were further studied in [6], where
it is shown that their algebraic degrees are close to 2k but their nonlinearity is 2n−1 − (

n−1
n
2

)
,

which is insufficient. Moreover, they are not balanced. The second way is based on modifying
symmetric functions [13, 2]. Speaking concretely, up to affine equivalence, the obtained func-
tions of n-variable are symmetric on the set consisting of all elements with weight not equal to
bn+1

2 c in Fn
2 [13, 2]. These functions are almost symmetric. Furthermore, their nonlinearities
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are not exceeding 2n−1 − (
n−1
bn

2
c
)
. The Boolean functions with optimum algebraic immunity, in

odd number of variables, are also considered in [16], and some necessary conditions that these
functions have a possibility to achieve high nonlinearities are presented.

Recently, Carlet [4] introduced a general method for proving that a given function, in any
number of variables, has a prescribed algebraic immunity. Two algorithms were also presented
to search balanced Boolean functions with optimum algebraic immunity. A new infinite class
of such functions was given and their Walsh transforms were studied. But the problem of
determining, for every n, the nonlinearities of the constructed functions (or of a part of them)
was left open.

In the present paper, several infinite classes of balanced Boolean functions are constructed,
based on Carlet’s method. Thus, all these functions have optimum algebraic immunity. Further-
more, by choosing suitable parameters, we show that some infinite classes of balanced functions
can have nonlinearity significantly larger than 2n−1 − (

n−1
bn

2
c
)
. The nonlinearity is measured by

applying properties of Krawtchouk polynomials to analyze the Walsh transform. The algebraic
degree of some functions in even numbers of variables is also analyzed.

The remainder of this paper is organized as follows. Section 2 gives some definitions and
preliminaries. Sections 3 presents a construction of Boolean functions with optimum algebraic
immunity, in even number of variables. The nonlinearity of the constructed functions is calcu-
lated. Furthermore, the algebraic degree for some functions is considered. Section 4 determines
the nonlinearity for a class of Boolean functions with optimum algebraic immunity, in odd
number of variables. Section 5 concludes the study.

2. Preliminaries

Let Fn
2 be the n-dimensional vector space over F2, and Bn the set of n-variable Boolean

functions from Fn
2 to F2. The basic representation of a Boolean function f(x1, · · · , xn) is by the

output column of its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), f(1, 1, · · · , 0), · · · , f(1, 1, · · · , 1)].

The Hamming weight wt(f) of a Boolean function f ∈ Bn is the weight of this string, that is,
the size of the support supp(f) = {x ∈ Fn

2 | f(x) = 1} of the function. The Hamming distance
d(f, g) between two Boolean functions f and g is the Hamming weight of their difference f + g
(by abuse of notation, we use + to denote the addition on F2, i.e., the XOR). We say that a
Boolean function f is balanced if its truth table contains an equal number of 1’s and 0’s, that is,
if its Hamming weight equals 2n−1.

Any Boolean function has a unique representation as a multivariate polynomial over F2, called
the algebraic normal form (ANF),

f(x1, · · · , xn) =
∑

I⊆{1,2,··· ,n}
aI

∏

i∈I

xi,

where the aI ’s are in F2. The algebraic degree, deg(f), is the number of variables in the highest
order term with non zero coefficient. A Boolean function is affine if it has degree at most 1. The
set of all affine functions is denoted by An.

Boolean functions used in cryptographic systems must have high nonlinearity to withstand
linear and correlation attacks [14, 11]. The nonlinearity of an n-variable function f is its distance
from the set of all n-variable affine functions, i.e.,

nl(f) = min
g∈An

(d(f, g)).

This parameter can be expressed by means of the Walsh transform. Let x = (x1, · · · , xn)
and λ = (λ1, · · · , λn) both belong to Fn

2 and λ · x = λ1x1 + · · ·+ λnxn. Let f(x) be a Boolean
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function in n variables. The Walsh transform of f(x) is an integer valued function over Fn
2 which

is defined as
Wf (λ) =

∑

x∈Fn
2

(−1)f(x)+λ·x.

A Boolean function f is balanced if and only if Wf (0) = 0. The nonlinearity of f can also be
given by

nl(f) = 2n−1 − 1
2

max
λ∈Fn

2

|Wf (λ)|.
Any Boolean function should have also high algebraic degree to be cryptographically secure

[14, 19]. In fact, it must keep high degree even if a few output bits are modified. In other words,
it must have high nonlinearity profile [5].

For an n-variable Boolean function f , different scenarios related to low degree multiples of f
have been studied in [9, 18]. This led to the following definition.

Definition 2.1. For f ∈ Bn, define AN(f) = {g ∈ Bn | f ∗ g = 0}. Any function g ∈ AN(f)
is called an annihilator of f . The algebraic immunity of f is the minimum degree of all the
nonzero annihilators of f and of all those of f + 1. We denote it by AI(f).

Notation:
• W d: the set of all elements with Hamming weight d in Fn

2 ;
• W<d = W 0 ∪ · · · ∪W d−1, W>d = W d+1 ∪ · · · ∪Wn, W≤d = W<d ∪W d, W≥d = W>d ∪W d;
• supp(α) = {1 ≤ i ≤ n |αi = 1} for α = (α1, . . . , αn) ∈ Fn

2 ;
• α ¹ β: supp(α) ⊆ supp(β);
• Cα = {x ∈ Fn

2 |x ¹ α} for α = (α1, . . . , αn) ∈ Fn
2 ;

• x⊕ y = (x1 + y1, x2 + y2, · · · , xn + yn) where x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Fn
2 ;

• E = {x |x ∈ E} for any subset E of Fn
2 , where x = (x1 +1, x2 +1, · · · , xn +1) is the bitwise

complement of x = (x1, x2, · · · , xn).

For a fixed λ ∈ Fn
2 with wt(λ) = k, we have

∑
wt(x)=i

(−1)λ·x =
i∑

j=0
(−1)j

(
k
j

)(
n−k
i−j

)
= Ki(k, n), (1)

where Ki(x, n) is the Krawtchouk polynomial [17].

Proposition 2.2. The Krawtchouk polynomials have the following properties.
1. K0(k, n) = 1, K1(k, n) = n− 2k;
2. (n− k)Ki(k + 1, n) = (n− 2i)Ki(k, n)− kKi(k − 1, n);
3. Ki(k, n) = (−1)iKi(n− k, n);
4.

(
n
k

)
Ki(k, n) =

(
n
i

)
Kk(i, n).

The following lemmas will be used to prove the results in the paper. Lemma 1 is presented
as a problem in page 153 of [17]. A proof is provided for completeness.

Lemma 2.3. The equality
r∑

i=0

Ki(k, n) = Kr(k − 1, n− 1) (2)

holds for 0 ≤ r ≤ n and n, k ≥ 1.

Proof: This lemma will be proved by induction on the integer r ≥ 0.
For r = 0, K0(k, n) = K0(k − 1, n− 1) = 1.
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Suppose that
t∑

i=0
Ki(k, n) = Kt(k − 1, n− 1) holds for 0 ≤ t ≤ r − 1.

Then, we have:
r∑

i=0
Ki(k, n)

=
r−1∑
i=0

Ki(k, n) + Kr(k, n)

= Kr−1(k − 1, n− 1) + Kr(k, n)

=
r−1∑
j=0

(−1)j
(
k−1

j

)(
n−k

r−1−j

)
+

r∑
j=0

(−1)j
(
k
j

)(
n−k
r−j

)

=
r−1∑
j=0

(−1)j
(
k−1

j

)(
n−k

r−1−j

)
+

(
k
0

)(
n−k

r

)
+

r∑
j=1

(−1)j [
(
k−1
j−1

)
+

(
k−1

j

)
]
(
n−k
r−j

)

=
r−1∑
j=0

(−1)j
(
k−1

j

)(
n−k

r−1−j

)
+

r∑
j=1

(−1)j
(
k−1
j−1

)(
n−k
r−j

)
+

r∑
j=0

(−1)j
(
k−1

j

)(
n−k
r−j

)

=
r−1∑
j=0

(−1)j
(
k−1

j

)(
n−k

r−1−j

)
+

r−1∑
j=0

(−1)j+1
(
k−1

j

)(
n−k

r−1−j

)
+

r∑
j=0

(−1)j
(
k−1

j

)(
n−k
r−j

)

=
r∑

j=0
(−1)j

(
k−1

j

)(
n−k
r−j

)

= Kr(k − 1, n− 1).

Thus, Equality (2) holds for all 0 ≤ r ≤ n. ¤
Lemma 2.4. Let n and k be even and such that 2 ≤ k ≤ n− 2. Then:

Kn
2
−1(k, n− 1)

= −Kn
2
−1(k − 1, n− 1)

= (−1)
k
2

(
n−1
n
2
−1

)
(k − 1)(k − 3) · · · 3 · 1/[(n− 1)(n− 3) · · · (n− k + 1)].

(3)

Furthermore, |Kn
2
−1(i, n− 1)| ≤ |Kn

2
−1(2, n− 1)| = (

n−1
n
2
−1

)
/(n− 1) for all i with 1 ≤ i ≤ n− 2.

Proof: We will prove the result by induction on k.
By Proposition 2.2, Equality 4., one has

Kn
2
−1(0, n− 1) =

(
n−1
n
2
−1

)
K0(n

2 − 1, n− 1) =
(

n−1
n
2
−1

)
.

Similarly, by Proposition 2.2, Equalities 4. and 1., it can be proven that

Kn
2
−1(1, n− 1) =

(
n−1
n
2
−1

)
K1(n

2 − 1, n− 1)/
(
n−1

1

)
=

(
n−1
n
2
−1

)
/(n− 1).

Then, by Proposition 2.2, Equality 2., one has

Kn
2
−1(2, n− 1) = [Kn

2
−1(1, n− 1)−Kn

2
−1(0, n− 1)]/(n− 2)

= [
(

n−1
n
2
−1

)
/(n− 1)− (

n−1
n
2
−1

)
]/(n− 2)

= −(
n−1
n
2
−1

)
/(n− 1).

Thus, the result holds for k = 2. When n = 4, Equality (3) has been proven to be true. When
n ≥ 6, suppose that Equality (3) holds for all even j with 2 ≤ j ≤ k, where the integer k satisfies
2 ≤ k ≤ n− 4. Then, by Proposition 2.2, Equality 2., one has

Kn
2
−1(k + 1, n− 1)

= [Kn
2
−1(k, n− 1)− kKn

2
−1(k − 1, n− 1)]/(n− 1− k)

= (−1)
k
2

(
n−1
n
2
−1

)
(k + 1)(k − 1) · · · 3 · 1/[(n− 1)(n− 3) · · · (n− k − 1)].
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The following formula is similarly obtained.

Kn
2
−1(k + 2, n− 1)

= (−1)
k
2
+1

(
n−1
n
2
−1

)
(k + 1)(k − 1) · · · 3 · 1/[(n− 1)(n− 3) · · · (n− k − 1)].

By Equality (3), for even 2 ≤ k ≤ n− 4, one has

|Kn
2
−1(k, n− 1)|/|Kn

2
−1(k + 2, n− 1)| = (n− k − 1)/(k + 1).

Thus, for even 2 ≤ i ≤ j ≤ n− 2, it can be proven that

|Kn
2
−1(2, n− 1)| ≥ |Kn

2
−1(i, n− 1)| ≥ |Kn

2
−1(j, n− 1)|

when j ≤ n/2− 1, and

|Kn
2
−1(i, n− 1)| ≤ |Kn

2
−1(j, n− 1)| ≤ |Kn

2
−1(n− 2, n− 1)|

when i ≥ n/2− 1. Since |Kn
2
−1(2, n− 1)| = |Kn

2
−1(n− 2, n− 1)|, one has

|Kn
2
−1(i, n− 1)| ≤ |Kn

2
−1(2, n− 1)|

for even 2 ≤ i ≤ n− 2. Furthermore, for odd 1 ≤ i ≤ n− 3, by Equality (3), one has

|Kn
2
−1(i, n− 1)| = |Kn

2
−1(i + 1, n− 1)| ≤ |Kn

2
−1(2, n− 1)|.

Thus, for 1 ≤ i ≤ n− 2, |Kn
2
−1(i, n− 1)| ≤ |Kn

2
−1(2, n− 1)|.

The proof is completed. ¤

Lemma 2.5. For 1 ≤ i ≤ bn−1
2 c and 1 ≤ r ≤ n− 1, |Ki(r, n)| ≤ Ki(1, n).

Proof: From Corollary 1 in [13], we only need to show the inequality |Ki(r, n)| ≤ Ki(1, n)
holds for r = n/2 when n is even. By Proposition 5 in [13],

Ki(n/2, n) =

{
0, for odd i,

(−1)i/2
(n/2

i/2

)
, for even i.

By Proposition 2.2, one has Ki(1, n) = (n− 2i)
(
n
i

)
/n and for even i ≤ n/2− 1,

Ki(1, n) = (n− 2i)
(
n
i

)
/n = (n− 2i)

(
n−1
i−1

)
/i

≥ 2
(
n−1
i−1

)
/i > 22

(
n−2
i−2

)
/i > · · · > 2i/2

(n−i/2
i/2

)
/i

> 2i/2
(n/2

i/2

)
/i ≥ (n/2

i/2

)
.

This finishes the proof. ¤

Lemma 2.6. Let n be odd, for odd 3 ≤ t ≤ n− 2,

|Kn−1
2

(t− 1, n− 1)| ≤ |Kn−1
2

(2, n− 1)| = (n−1
n−1

2

)
/(n− 2).

Proof. By Proposition 2.2, Equality 4., and Proposition 5 in [13], for odd t, one has

|Kn−1
2

(t− 1, n− 1)| = (n−1
n−1

2

)|Kt−1(n−1
2 , n− 1)|/(

n−1
t−1

)
=

(n−1
n−1

2

)(n−1
2

t−1
2

)
/
(
n−1
t−1

)
.

Then,
|Kn−1

2
(t + 1, n− 1)|/|Kn−1

2
(t− 1, n− 1)|

=
(n−1

2
t+1
2

)(
n−1
t−1

)
/[

(n−1
2

t−1
2

)(
n−1
t+1

)
]

= t/(n− 1− t).
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This implies

|Kn−1
2

(t + 1, n− 1)| − |Kn−1
2

(t− 1, n− 1)| ≤ 0 for t ≤ (n− 1)/2
|Kn−1

2
(t + 1, n− 1)| − |Kn−1

2
(t− 1, n− 1)| ≥ 0 for t ≥ (n− 1)/2.

Thus, for odd 3 ≤ t ≤ n− 2, |Kn−1
2

(t− 1, n− 1)| ≤ |Kn−1
2

(2, n− 1)|. ¤

Lemma 2.7. Let E ⊆ Fn
2 and the Boolean function ϕ0(x) be balanced on E. Then for any

Boolean function ϕ(x), one has

| ∑
x∈E

(−1)ϕ0(x)+ϕ(x)| ≤ |E| − | ∑
x∈E

(−1)ϕ(x)|.

Proof: Let E1 = E ∩ supp(ϕ) and E0 = E \ E1. Since ϕ0 is balanced on E, one has
∑

x∈E

(−1)ϕ0(x)+ϕ(x) =
∑

x∈E0

(−1)ϕ0(x) − ∑
x∈E1

(−1)ϕ0(x)

= 2
∑

x∈E0

(−1)ϕ0(x) − ∑
x∈E

(−1)ϕ0(x)

= 2
∑

x∈E0

(−1)ϕ0(x)

= −2
∑

x∈E1

(−1)ϕ0(x).

This implies
| ∑
x∈E

(−1)ϕ0(x)+ϕ(x)| ≤ min{2|E0|, 2|E1|}.

On the other hand, one has

|E| − |
∑

x∈E

(−1)ϕ(x)| = min{2|E0|, 2|E1|}

since
∑

x∈E

(−1)ϕ(x) = |E0| − |E1|. ¤

3. A construction of Boolean functions with optimum algebraic immunity, in
even number of variables

Throughout this section, n is always assumed to be even. Let T , S, U and V denote four
subsets of Fn

2 , more concretely, T = {α1, . . . , αl} ⊆ W< n
2 , S = {β1, . . . , βs} ⊆ W> n

2 , U =
{u1, . . . , ul} ⊆ W

n
2 , and V = {v1, . . . , vs} ⊆ W

n
2 . These sets will be used to construct Boolean

functions with desired properties.
Construction 1: Define f ∈ Bn as follows

f(x) =





0, x ∈ W< n
2 ∪ S ∪ U \ T,

ax, x ∈ W
n
2 \ U ∪ V,

1, x ∈ W> n
2 ∪ T ∪ V \ S,

(4)

where ax ∈ {0, 1}.
When the sets T , S, U and V satisfy the following conditions

U ∩ V = ∅,
∀1 ≤ i ≤ l, αi ¹ ui, and ∀1 ≤ j < i ≤ l, αi � uj ,
∀1 ≤ i ≤ s, vi ¹ βi, and ∀1 ≤ j < i ≤ s, vi � βj ,

(5)

the function f defined by (4) is a special case of Carlet’s method [4].
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Proposition 3.1. ([4]) Let n be even and let a1, · · · , a( n
n/2) be an ordering of the set of all

vectors of weight n/2 in Fn
2 . For every i ∈ {1, 2, · · · ,

(
n

n/2

)}, let us denote by Ai the flat {x ∈
Fn

2 | supp(ai) ⊆ supp(x)} and by A′i the vector space {x ∈ Fn
2 | supp(x) ⊆ supp(ai)}. Let I, J

and K be three disjoint subsets of {1, 2, · · · ,
(

n
n/2

)}. Assume that, for every i ∈ I, there exists a
vector bi 6= ai such that bi ∈ Ai \∪i′∈I:i′<iAi′. Assume that, for every i ∈ J , there exists a vector
ci 6= ai such that ci ∈ A′i \ ∪i′∈J :i′<iA

′
i. Then the function whose support equals:

{x ∈ Fn
2 |wt(x) > n/2} ∪ {ci, i ∈ J} ∪ {ai, i ∈ I ∪K} \ {bi, i ∈ I}

has algebraic immunity n/2.

Let {ai, i ∈ I} = V = {v1, . . . , vs} and {bi, i ∈ I} = S = {β1, . . . , βs}. Then, for every
i ∈ I, bi 6= ai and bi ∈ Ai \ ∪i′∈I:i′<iAi′ . Similarly, let {ai, i ∈ J} = U = {u1, . . . , ul} and
{ci, i ∈ J} = T = {α1, . . . , αl}. Then, ci 6= ai and ci ∈ A′i \ ∪i′∈J :i′<iA

′
i. Let {ak, k ∈ K} =

{x ∈ W
n
2 | ax = 1, x /∈ U ∪ V }. Then, the function defined in Proposition 3.1 has the same

support as the function f defined as in Construction 1. This shows f is included in the class of
functions described as Proposition 3.1 if T , S, U and V satisfy the conditions in (5).

By Proposition 3.1 and the above analysis, the following result is obtained. A simpler proof
is also presented here.

Corollary 3.2. Let f ∈ Bn be defined by (4). If the sets T , S, U and V satisfy the conditions
in (5), then AI(f) = n/2.

Proof: We first prove that any nonzero annihilator of f + 1 has algebraic degree ≥ n/2.
Suppose g ∈ Bn is a nonzero annihilator of f + 1. Then, for any element µ of U ∪W< n

2 \T ,
one has g(µ) = 0. Let g(x) =

∑
ν∈Fn

2
g̃νx

ν be the algebraic normal form (ANF) of g. Thus,
g̃ν =

⊕
µ¹ν g(µ).

If there exists some element α ∈ T such that g(α) = 1, denote i0 = min{i | g(αi) = 1}, then
g̃ui0

= g(αi0) = 1, i.e., deg(g) ≥ n/2. Otherwise, one has g(α1) = g(α2) = · · · = g(αl) = 0, then
g̃ν = 0 for all ν ∈ W< n

2 . This implies deg(g) ≥ n/2.
Now we show that f has no annihilator of degree < n/2.
Suppose h is a nonzero annihilator of f , then, for any element µ of V ∪ W> n

2 \S, one has
h(µ) = 0. Set h′(x) = h(x⊕ 1), then h′(x) = 0 for x ∈ V ∪W< n

2 \S. Similarly, it can be proven
that deg(h′) ≥ n/2. Since h and h′ have the same algebraic degree, one has deg(h) ≥ n/2.

Therefore, AI(f) = n/2 follows above facts. ¤
When the sets T , S, U and V are pairwise disjoint, by (4), the Walsh spectrum of f can be

calculated as follows.

Wf (λ) =
∑

x∈W < n
2 \T

(−1)λ·x +
∑

x∈S∪U

(−1)λ·x +
∑

x∈W
n
2 \U∪V

(−1)ax+λ·x

+
∑

x∈W > n
2 \S

(−1)λ·x+1 +
∑

x∈T∪V

(−1)λ·x+1

=
∑

x∈W < n
2

(−1)λ·x + 2
∑
x∈T

(−1)λ·x+1 +
∑

x∈U

(−1)λ·x +
∑

x∈V

(−1)λ·x+1

+
∑

x∈W
n
2 \U∪V

(−1)ax+λ·x +
∑

x∈W > n
2

(−1)λ·x+1 + 2
∑
x∈S

(−1)λ·x.

(6)

The main purpose of this section is to study the cryptographical properties such as nonlin-
earity and balancedness for some Boolean functions in Construction 1, by imposing additional
restrictions on the sets T , S, U , V and Boolean values of ax for x ∈ W

n
2 \ U ∪ V .



8 CLAUDE CARLET, XIANGYONG ZENG, CHUNLEI LI AND LEI HU

3.1. Nonlinearity and balancedness of the constructed functions. By choosing suitable
sets T , S, U and V , and restricting ax = ax on W

n
2 \ U ∪ V , this subsection studies the

nonlinearity and balancedness for several infinite classes of functions based on Construction 1.
Case 1. S = T and V = U .
In this case, by (4), the function f can be written as

f(x) =





0, x ∈ W< n
2 ∪ T ∪ U \ T,

ax, x ∈ W
n
2 \ U ∪ U,

1, x ∈ W> n
2 ∪ T ∪ U \ T ,

(7)

where ax = ax ∈ {0, 1}.
Let 1 denote the full one vector in Fn

2 . By Equality (6), one has

Wf (λ) =
∑

x∈W < n
2

[(−1)λ·x + (−1)λ·(x⊕1)+1] + 2
∑
x∈T

[(−1)λ·x+1 + (−1)λ·(x⊕1)]

+
∑

x∈U

[(−1)λ·x + (−1)λ·(x⊕1)+1] +
∑

x∈A\U
[(−1)ax+λ·x + (−1)ax+λ·(x⊕1)]

=





2
∑

x∈W < n
2

(−1)λ·x − 4
∑
x∈T

(−1)λ·x + 2
∑

x∈U

(−1)λ·x, for odd wt(λ),

2
∑

x∈A\U
(−1)ax+λ·x, otherwise,

(8)

where the second equal sign holds since ax = ax, and A is a subset of W
n
2 satisfying

A ⊃ U, A ∪A = W
n
2 , and A ∩A = ∅. (9)

For any fixed nonzero element u in W< n
2 , take

T = {x |wt(x) = n/2− wt(u), supp(x) ∩ supp(u) = ∅}, U = {x |wt(x) = n/2, u ¹ x}. (10)

In fact, U can also be written as U = {x ⊕ u |x ∈ T}. This shows U is completely determined
by T and u. Thus, V = U = {x⊕ u |x ∈ T} and then U ∩ V = ∅ since T ∩ T = ∅. Furthermore,
T , S, U and V satisfy the conditions in (5). Therefore, by Corollary 3.2, AI(f) = n/2.

When U is defined as in Equality (10) and V = U , the function f defined in (7) is exactly
the function fu,L in Corollary 3 [4] with additional condition ax = ax. Its nonlinearity can be
determined by the following theorem.

Theorem 3.3. Let wt(u) = k ≤ n/2− 1 and the sets T , U be defined by Equality (10). Then,
the nonlinearity of the function f(x) defined in (7) is

nl(f) =





2n−1 − 2
(

n−1
n
2
−1

)
, k = 1,

2n−1 − (3n− 4)
(

n−1
n
2
−1

)
/(2n− 2), k = 2,

2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k), k ≥ 3.

Proof: The Walsh spectrum of f is considered as follows.
For odd wt(λ) = t, without loss of generality, we can assume u = (1, · · · , 1, 0, · · · , 0) ∈

Fk
2 × Fn−k

2 . Then, the sets T and U can be expressed as
{

T = {(0, 0, · · · , 0, x′′) ∈ Fn
2 |wt(x′′) = n

2 − k},
U = {(1, 1, · · · , 1, x′′) ∈ Fn

2 |wt(x′′) = n
2 − k}
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where x′′ ∈ Fn−k
2 . For λ = (λ′, λ′′) ∈ Fk

2 × Fn−k
2 with wt(λ′′) = s, one has t − s ≤ k and

s ≤ min{t, n− k}, i.e., max{0, t− k} ≤ s ≤ min{t, n− k}. Then,
∑

x∈T

(−1)λ·x =
∑

wt(x′′)=n
2
−k

(−1)λ′′·x′′ = Kn
2
−k(s, n− k),

and ∑

x∈U

(−1)λ·x = (−1)wt(λ′)
∑

wt(x′′)=n
2
−k

(−1)λ′′·x′′ = (−1)t−sKn
2
−k(s, n− k).

By Lemma 2.3 and Equality (8), one has

Wf (λ) =
{

2Kn
2
−1(t− 1, n− 1)− 2Kn

2
−k(s, n− k), for odd s,

2Kn
2
−1(t− 1, n− 1)− 6Kn

2
−k(s, n− k), for even s

(11)

where max{0, t− k} ≤ s ≤ min{t, n− k}.
For convenience, we denote in the sequel:

W (t, s, k) =
{

2Kn
2
−1(t− 1, n− 1)− 2Kn

2
−k(s, n− k), for odd s,

2Kn
2
−1(t− 1, n− 1)− 6Kn

2
−k(s, n− k), for even s.

(12)

When t = 1, the value of |Wf (λ)| is |W (1, 1, k)| or |W (1, 0, k)|. By Equality (12) and Propo-
sition 2.2, Equalities 1. and 4.,{ |W (1, 1, 1)| = (2n− 4)

(
n−1
n
2
−1

)
/(n− 1),

|W (1, 0, 1)| = 4
(

n−1
n
2
−1

)

for k = 1, { |W (1, 1, 2)| = (2n− 4)
(

n−1
n
2
−1

)
/(n− 1),

|W (1, 0, 2)| = (n− 4)
(

n−1
n
2
−1

)
/(n− 1)

for k = 2, and { |W (1, 1, k)| = 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k),

|W (1, 0, k)| = 2
(

n−1
n
2
−1

)− 6
(

n−k
n
2
−k

)

for k ≥ 3. Thus, one has

max
t=1

|Wf (λ)| =
{ |W (1, 0, 1)|, k = 1,
|W (1, 1, k)|, k ≥ 2.

(13)

since 2k
(

n−k
n
2
−k

)
/(n− k) < 6

(
n−k
n
2
−k

)
holds for 3 ≤ k < n/2.

When 3 ≤ t ≤ n− 1, the maximal value of |Wf (λ)| can be studied by the following analysis.
If k = 1, then 2 ≤ s ≤ t. By Lemma 2.4 and Equality (11), for odd 3 ≤ s ≤ t,

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 2|Kn

2
−1(s, n− 1)|

< 2
(

n−1
n
2
−1

)
/(n− 1) + 2

(
n−1
n
2
−1

)

= 2n
(

n−1
n
2
−1

)
/(n− 1),

and for even 2 ≤ s ≤ t− 1,

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 6|Kn

2
−1(s, n− 1)|

≤ 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−1
n
2
−1

)
/(n− 1)

= 8
(

n−1
n
2
−1

)
/(n− 1).

Thus, for k = 1,
max
t≥3

|Wf (λ)| < 4
(

n−1
n
2
−1

)
= |W (1, 0, 1)|. (14)
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For k ≥ 2, by Lemma 2.4 and Equality (11), one has

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 6|Kn

2
−k(s, n− k)|

≤ 2|Kn
2
−1(2, n− 1)|+ 6Kn

2
−k(0, n− k)

= 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
.

More concretely, by Proposition 2.2 and Lemma 2.4, for k = 2, 1 ≤ s ≤ min{t, n− k}, one has

|W (n− 1, n− k, k)|
= |2Kn

2
−1(n− 2, n− 1)− 6Kn

2
−k(n− k, n− k)|

= |2(−1)
n
2
−1Kn

2
−1(1, n− 1)− 6(−1)

n
2
−kKn

2
−k(0, n− k)|

= 2Kn
2
−1(1, n− 1) + 6Kn

2
−k(0, n− k)

= 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
,

and for k ≥ 3, max{0, t− k} ≤ s ≤ min{t, n− k}, one has

|W (3, 0, k)| = |2Kn
2
−1(2, n− 1)− 6Kn

2
−k(0, n− k)| = 2

(
n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
.

The three above equations imply

max
3≤t≤n−1

|Wf (λ)| = 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
(15)

for k ≥ 2.
Therefore, when k = 1, by Equality (13) and by (14), one has

max
odd wt(λ)

|Wf (λ)| = |W (1, 0, 1)| = 4
(

n−1
n
2
−1

)
. (16)

When k = 2, by Equality (13) and Equality (15), one has




max
t=1

|Wf (λ)| = (2n− 4)
(

n−1
n
2
−1

)
/(n− 1),

max
t≥3

|Wf (λ)| = (3n− 4)
(

n−1
n
2
−1

)
/(n− 1),

and then,
max

odd wt(λ)
|Wf (λ)| = (3n− 4)

(
n−1
n
2
−1

)
/(n− 1). (17)

When k ≥ 3, since

|W (1, 1, k)| − [2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
]

= (2n− 4)
(

n−1
n
2
−1

)
/(n− 1)− (6n− 4k)

(
n−k
n
2
−k

)
/(n− k)

= 2
(

n−1
n
2
−1

)
[(n− 2)/(n− 1)− (3n− 2k)(n/2− 1) · · · (n/2− k + 1)/((n− k)(n− 1)

· · · (n− k + 1))]
≥ 2

(
n−1
n
2
−1

)
[(n− 2)/(n− 1)− 4(n/2− 1)(n/2− 2)/((n− 1)(n− 2))]

= 4
(

n−1
n
2
−1

)
/(n− 1) > 0,

by Equality (13) and Equality (15), one has

max
odd wt(λ)

|Wf (λ)| = |W (1, 1, k)| = 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k). (18)

On the other hand, for even wt(λ), by Equality (8), one has

max
λ
|Wf (λ)| = 2 max

λ
| ∑
x∈A\U

(−1)ax+λ·x| ≤ 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
] < |W (1, 1, k)|.
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Thus, according to the maximal value of |Wf (λ)| for odd wt(λ), one has

max
λ∈Fn

2

|Wf (λ)| = max
odd wt(λ)

|Wf (λ)|. (19)

From the analysis above, for k = 1, by Equality (16) and Equality (19), one has

nl(f) = 2n−1 − |W (1, 0, 1)|/2 = 2n−1 − 2
(

n−1
n
2
−1

)
.

For k = 2, by Equality (17) and Equality (19), one has

nl(f) = 2n−1 − (3n− 4)
(

n−1
n
2
−1

)
/(2n− 2).

For k ≥ 3, by Equality (18) and Equality (19), one has

nl(f) = 2n−1 − |W (1, 1, k)|/2 = 2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k).

The proof is finished by the analysis above. ¤
Remark 1: By Theorem 3.3, the nonlinearity of f is related to the Hamming weight of the

vector u. More precisely, nl(f) < 2n−1 − (
n−1
n
2
−1

)
for wt(u) = 1, or 2, and nl(f) > 2n−1 − (

n−1
n
2
−1

)

for wt(u) ≥ 3. Let Γk = k
(

n−k
n
2
−k

)
/(n− k). Then, Γk/Γk+1 = k(n− k − 1)/[(n/2− k)(k + 1)] > 1

for all k, 3 ≤ k ≤ n/2− 2. Thus, taking wt(u) = 3, by Theorem 3.3, f can obtain a nonlinearity
nl(f) = 2n−1 − (

n−1
n
2
−1

)
+ 3

(
n−3
n
2
−3

)
/(n− 3).

According to the Boolean values of ax, two sets L0 and L1 are defined as

L0 = {x ∈ W
n
2 | ax = 0} \ U ∪ U, L1 = {x ∈ W

n
2 | ax = 1} \ U ∪ U.

Let
Θk = |W n

2 \U ∪ U |/2 =
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
. (20)

To ensure that f defined by (7) is balanced, the Boolean values ax are required to be balanced
on the set W

n
2 \U ∪ U , i.e., |L0| = |L1| = Θk. In this case, the integer Θk must be even since

ax = ax̄. However, when Θk is odd, an nonlinear function f0 obtained by slightly modifying f
can be balanced.

The function f0 ∈ Bn is defined as

f0(x) =





0, x ∈ W< n
2 ∪ T 0 ∪ U0 \ T0,

ax, x ∈ W
n
2 \ U0 ∪ U0,

1, x ∈ W> n
2 ∪ T0 ∪ U0 \ T 0,

(21)

where ax = ax ∈ {0, 1}, and the sets T0 and U0 are defined by

T0 =
{

T, for even Θk,
T\{x0}, otherwise and U0 =

{
U, for even Θk,
U \ {u⊕ x0}, otherwise (22)

where x0 is any one element of T . Similarly to the analysis after Equality (10), the pairwise
disjoint sets T0 and U0 satisfy the conditions in (5), and AI(f0) = n/2 by Corollary 3.2. With
T0 and U0 in (22), one has |W n

2 | − 2|U0| ≡ 0 (mod 4). Then, f0 is balanced if and only if ax is
balanced on the set W

n
2 \U0 ∪ U0, which is easily satisfied when T0 and U0 are defined by (22).

In this case, let W1 ∪W 1 = W
n
2 \ U0 ∪ U0 and W1 ∩W 1 = ∅. Then the set W1 is divided into

two disjoint subsets W2 and W3 such that |W2| = |W3|. On the set W
n
2 \U0 ∪ U0, define the

Boolean values ax as

ax =
{

b, x ∈ W2 ∪W 2,
b + 1, x ∈ W3 ∪W 3

where b ∈ {0, 1}.



12 CLAUDE CARLET, XIANGYONG ZENG, CHUNLEI LI AND LEI HU

Theorem 3.4. Let u be any element of W< n
2 such that 3 ≤ wt(u) = k ≤ n/2 − 1. If ax is

balanced on the set W
n
2 \U0 ∪ U0, then the function f0(x) defined in Equality (21) is balanced

and its nonlinearity satisfies

nl(f0) =

{
2n−1 − (

n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k), for even Θk,

2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k)− 1, otherwise.

Proof: By the analysis after (22), f0 is balanced.
For even Θk, the proof follows from Theorem 3.3. Let us consider the case Θk odd.
When wt(λ) = t is odd, one has




∑
x∈T0

(−1)λ·x =
∑
x∈T

(−1)λ·x − (−1)λ·x0 = Kn
2
−k(s, n− k)− (−1)λ·x0 ,

∑
x∈U0

(−1)λ·x =
∑

x∈T0

(−1)λ·(x⊕u) = (−1)t−s[Kn
2
−k(s, n− k)− (−1)λ·x0 ]

where max{0, t − k} ≤ s ≤ min{t, n − k}. By Equality (8), the Walsh transform of f0(x) is
calculated as

Wf0(λ) =

{
2Kn

2
−1(t− 1, n− 1)− 2Kn

2
−k(s, n− k) + 2(−1)λ·x0 , for odd s,

2Kn
2
−1(t− 1, n− 1)− 6Kn

2
−k(s, n− k) + 6(−1)λ·x0 , otherwise.

(23)

Thus, for k ≥ 3, by Equality (13), one has max
λ
|Wf0(λ)| = |W (1, 1, k)|+ 2 for wt(λ) = 1 and by

Equality (12) and Equality (15), max
λ
|Wf0(λ)| ≤ |W (3, 0, k)|+ 6 for odd 3 ≤ wt(λ) ≤ n− 1.

For even wt(λ), one has

max
λ
|Wf0(λ)| = max

λ
|2 ∑

x∈A\U (−1)ax+λ·x| ≤ 2(
(
n−1

n
2

)− (
n−k
n
2
−k

)
+ 1) ≤ |W (1, 1, k)|.

Similarly to the analysis in the proof of Theorem 3.3, one has

max
λ∈Fn

2

|Wf0(λ)| = max{|W (1, 1, k)|+ 2, |W (3, 0, k)|+ 6}
= |W (1, 1, k)|+ 2
= 2

(
n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k) + 2,

which implies

nl(f0) = 2n−1 −max
λ∈Fn

2

|Wf0(λ)|/2 = 2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k)− 1.

The above analysis finishes the proof. ¤
Remark 2: To obtain balanced Boolean functions with high nonlinearities and optimum al-

gebraic immunity, we only use the vector u with Hamming weight 3 ≤ wt(u) ≤ n/2− 1. In this
case, the resulting function f0 has almost the same nonlinearity as f .

Notice that all elements in the set T defined by Equality (10) have the same Hamming weight
n/2 − k. Does there exist a set T , consisting of elements with different weights, such that the
function f or f0 has high nonlinearity? The following results provide an answer to this question.

For a fixed nonzero element v1 ∈ W< n
2 with supp(v1) = {i1, i2, · · · , ik}, take v2 ∈ W≤n

2 with
supp(v2) = {i1, i2, · · · , ik, ik+1}. Denote

T i = {x |wt(x) = n/2− wt(vi), supp(x) ∩ supp(v2) = ∅}, U i = {x⊕ vi |x ∈ T i} (24)

for i = 1, 2. Two sets T and U are defined as

T = T 1 ∪ T 2, U = U1 ∪ U2.
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Let the elements x1, x2, · · · , x|T | of T be sorted by increasing Hamming weight. Correspond-
ingly, the elements y1, y2, · · · , y|U | of U are listed as: for 1 ≤ j ≤ |T |, yj = xj ⊕ vi if xj ∈ T i

(i = 1, 2). From the definition above, it can be verified T and U satisfy the conditions in Equal-
ity (5). Furthermore, S = T and V = U also satisfy the conditions in Equality (5). Thus, by
Corollary 2, one has AI(f) = n/2.

Denote

P = {x |wt(x) = n/2− wt(v1), supp(x) ∩ supp(v1) = ∅}, P 2 = {x ∈ P |xik+1
= 1}, (25)

then T 1 = P \ P 2. Moreover, the sets T and U can be expressed as

T = P ∪ T 2 \ P 2 and U = {x⊕ v1 |x ∈ P}. (26)

Note that the sets P , U are exactly the sets T and U given in Equality (10) when v1 = u.
The nonlinearity of f is determined in the following theorem.

Theorem 3.5. For 2 ≤ k ≤ n/2 − 2, let f ∈ Bn be defined in Equality (7) with T = T 1 ∪ T 2

and U = U1 ∪ U2, where T i and U i (i = 1, 2) are given in Equality (24). Then its nonlinearity
is

nl(f) = 2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k).

Proof: The Walsh spectrum of f is considered as follows.
Without loss of generality, we can assume that supp(v1) = {1, 2, · · · , k} and supp(v2) =

{1, 2, · · · , k, k + 1}, by Equality (26), it is true that
∑
x∈T

(−1)λ·x =
∑

x∈P

(−1)λ·x +
∑

x∈T 2

(−1)λ·x − ∑
x∈P 2

(−1)λ·x

=
∑

x∈P

(−1)λ·x +
∑

x∈T 2

(−1)λ·x − (−1)λk+1
∑

x∈T 2

(−1)λ·x.

Moreover, for λ = (λ′, λ′′) ∈ Fk
2×Fn−k

2 with wt(λ′′) = s,
∑

x∈T 2

(−1)λ·x = Kn
2
−k−1(s−1, n−k−1)

when λk+1 = 1.
When wt(λ) = t is odd, since the set P , U can be regarded as T and U defined in Equality

(10) where u = v1, by Equalities (8), (11) and (12), one has

Wf (λ) = 2
∑

x∈W < n
2

(−1)λ·x − 4
∑
x∈T

(−1)λ·x + 2
∑

x∈U

(−1)λ·x

= 2
∑

x∈W < n
2

(−1)λ·x − 4
∑

x∈P

(−1)λ·x + 2
∑

x∈U

(−1)λ·x

−4[
∑

x∈T 2

(−1)λ·x − (−1)λk+1
∑

x∈T 2

(−1)λ·x]

=
{

W (t, s, k), λk+1 = 0
W (t, s, k)− 8Kn

2
−k−1(s− 1, n− k − 1), λk+1 = 1

(27)

where max{0, t− k} ≤ s ≤ {t, n− k}.
For t = 1, the integer s may take 0 or 1. Then, Wf (λ) = W (1, 0, k) when s = 0, and Wf (λ)

is equal to W (1, 1, k) or W (1, 1, k) − 8
(

n−k−1
n
2
−k−1

)
when s = 1. Thus, by Equality (13), it can be

verified that

max
wt(λ)=1

|Wf (λ)| = |W (1, 1, k)| = 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k). (28)
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For 3 ≤ t ≤ n − 1, when k = 2, one has n ≥ 8. If λk+1 = 0, then t − 2 ≤ s ≤ min{t, n − 3}.
By Equalities (27) and (12), and by Lemmas 2.4 and 2.5, one has

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 6|Kn

2
−2(s, n− 2)|

≤ 2|Kn
2
−1(2, n− 1)|+ 6|Kn

2
−2(1, n− 2)|

= 8
(

n−1
n
2
−1

)
/(n− 1) < (2n− 4)

(
n−1
n
2
−1

)
/(n− 1)

= |W (1, 1, 2)|.

If λk+1 = 1, then t− 2 ≤ s ≤ min{t, n− 2}. By Equalities (27) and (12), for odd s, one has

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 2|Kn

2
−2(s, n− 2)|+ 8|Kn

2
−3(s− 1, n− 3)|

≤ 2|Kn
2
−1(2, n− 1)|+ 2|Kn

2
−2(1, n− 2)|+ 8|Kn

2
−3(0, n− 3)|

= 4
(

n−1
n
2
−1

)
/(n− 1) + 8

(
n−3
n
2
−3

)
= (2n− 4)

(
n−1
n
2
−1

)
/(n− 1)

= |W (1, 1, 2)|,

and for even s = t− 1, the fact

|Wf (λ)| = |2Kn
2
−1(t− 1, n− 1)− 6Kn

2
−2(t− 1, n− 2)− 8Kn

2
−3(t− 2, n− 3)| ≤ |W (1, 1, 2)|

will be proved by the three cases (i), (ii) and (iii) as follows.
(i) For t = 3, since Kn

2
−1(2, n− 1) < 0, Kn

2
−2(2, n− 2) < 0 and Kn

2
−3(1, n− 3) > 0, one has

|Wf (λ)| = |2Kn
2
−1(2, n− 1)− 6Kn

2
−2(2, n− 2)− 8Kn

2
−3(1, n− 3)|

≤ 2|Kn
2
−1(2, n− 1)|+ 8|Kn

2
−3(1, n− 3)|

< 2|Kn
2
−1(2, n− 1)|+ 8|Kn

2
−3(0, n− 3)|

= (2n− 6)
(

n−1
n
2
−1

)
/(n− 1) < |W (1, 1, 2)|.

(ii) For 5 ≤ t ≤ n− 3, by Lemmas 2.4 and 2.5, one has

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 6|Kn

2
−2(t− 1, n− 2)|+ 8|Kn

2
−3(t− 2, n− 3)|

< 2|Kn
2
−1(4, n− 1)|+ 6|Kn

2
−2(1, n− 2)|+ 8|Kn

2
−3(1, n− 3)|

= 12
(

n−1
n
2
−1

)
/(n− 1) ≤ (2n− 4)

(
n−1
n
2
−1

)
/(n− 1) = |W (1, 1, 2)|.

(iii) For t = n− 1, one has

|Wf (λ)| = |2Kn
2
−1(n− 2, n− 1)− 6Kn

2
−2(n− 2, n− 2)− 8Kn

2
−3(n− 3, n− 3)|

= |2(−1)
n
2
−1

(
n−1
n
2
−1

)
/(n− 1)− 6(−1)

n
2
−2

(
n−2
n
2
−2

)− 8(−1)
n
2
−3

(
n−3
n
2
−3

)|
= (n + 4)

(
n−1
n
2
−1

)
/(n− 1) ≤ (2n− 4)

(
n−1
n
2
−1

)
/(n− 1) = |W (1, 1, 2)|.

Therefore, when k = 2, it can be concluded

max
3≤t≤n−1

|Wf (λ)| = |W (1, 1, k)|. (29)

When k ≥ 3, the value of max
3≤t≤n−1

|Wf (λ)| is similarly considered in the following.

If λk+1 = 0, Equalities (27) and (15) imply

max
3≤t≤n−1

|Wf (λ)| = max
3≤t≤n−1

|W (t, s, k)| = 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
,
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and if λk+1 = 1, one has 1 ≤ s ≤ min{t, n− k}. By Equalities (27) and (12), for odd s,

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 2|Kn

2
−k(s, n− k)|+ 8|Kn

2
−k−1(s− 1, n− k − 1)|

≤ 2|Kn
2
−1(2, n− 1)|+ 2|Kn

2
−k(0, n− k)|+ 8|Kn

2
−k−1(0, n− k − 1)|

= 2
(

n−1
n
2
−1

)
/(n− 1) + 2

(
n−k
n
2
−k

)
+ 8

(
n−k−1
n
2
−k−1

)

= 2
(

n−1
n
2
−1

)
/(n− 1) + 2

(
n−k
n
2
−k

)
+ 4(n− 2k)

(
n−k
n
2
−k

)
/(n− k)

< 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
.

For even s, when 2 ≤ s < n− k,

|Wf (λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 6|Kn

2
−k(s, n− k)|+ 8|Kn

2
−k−1(s− 1, n− k − 1)|

≤ 2|Kn
2
−1(2, n− 1)|+ 6|Kn

2
−k(1, n− k)|+ 8|Kn

2
−k−1(0, n− k − 1)|

= 2
(

n−1
n
2
−1

)
/(n− 1) + 6k

(
n−k
n
2
−k

)
/(n− k) + 4(n− 2k)

(
n−k
n
2
−k

)
/(n− k)

= 2
(

n−1
n
2
−1

)
/(n− 1) + (4n− 2k)

(
n−k
n
2
−k

)
/(n− k)

< 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
,

and when s = n− k for even k,

|Wf (λ)| = |2Kn
2
−1(t− 1, n− 1)− 6Kn

2
−k(n− k, n− k)− 8Kn

2
−k−1(n− k − 1, n− k − 1)|

≤ 2|Kn
2
−1(t− 1, n− 1)|+ |6Kn

2
−k(n− k, n− k) + 8Kn

2
−k−1(n− k − 1, n− k − 1)|

≤ 2|Kn
2
−1(2, n− 1)|+ |6(

n−k
n
2
−k

)− (4n− 2k)
(

n−k
n
2
−k

)
/(n− k)|

< 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
.

From the above discussion, one has

max
3≤t≤n−1

|Wf (λ)| = 2
(

n−1
n
2
−1

)
/(n− 1) + 6

(
n−k
n
2
−k

)
< |W (1, 1, k)| (30)

when k ≥ 3.
Therefore, for k ≥ 2, by Equalities (28) and (29), by (30), one has

max
oddwt(λ)

|Wf (λ)| = |W (1, 1, k)| = 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k).

On the other hand, Equality (8) implies

max
evenwt(λ)

|Wf (λ)| ≤ 2|A\U | = 2
(

n−1
n
2
−1

)− 2
(

n−k
n
2
−k

)
< |W (1, 1, k)|.

Thus, one has

nl(f) = 2n−1 − |W (1, 1, k)|/2 = 2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k),

which finishes the proof. ¤
By slightly modifying f , a highly nonlinear balanced function f1 can be obtained.
Define f1 ∈ Bn as

f1(x) =





0, x ∈ W< n
2 ∪ T 1 ∪ U1 \ T1,

ax, x ∈ W
n
2 \ U1 ∪ U1,

1, x ∈ W> n
2 ∪ T1 ∪ U1 \ T 1,

(31)

where ax = ax ∈ {0, 1}, and the sets T1 and U1 are defined by

T1 =
{

T, for even Θk,
T\{x1}, otherwise and U1 =

{
U, for even Θk,
U \ {x1 ⊕ v1}, otherwise

where x1 is any one element of T 1. Similar to the analysis after Equality (24), the pairwise
disjoint sets T1 and U1 satisfy the conditions in Equality (5), hence AI(f1) = n/2.
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With the same method used in the proof for Theorem 3.4, the nonlinearity of f1 can be
measured in the following.

Theorem 3.6. For 2 ≤ k ≤ n/2−2, if ax is balanced on the set W
n
2 \U1∪U1, then the function

f1(x) defined in Equality (31) is balanced and its nonlinearity satisfies

nl(f1) =

{
2n−1 − (

n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k), for even Θk,

2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k)− 1, otherwise.

Remark 3: Above results show T1 can consist of elements with different weights, and as
described in Remark 1, by taking k = 2, the balanced function f1 can obtain nonlinearity
2n−1 − (

n−1
n
2
−1

)
+ 2

(
n−2
n
2
−2

)
/(n− 2) since Θ2 =

(
n−1
n
2
−1

)− (
n−2
n
2
−2

)
=

(
n−2
n
2
−1

)
is always even.

Case 2: S = V = ∅ or T = U = ∅.
We only consider the case of S = V = ∅. The similar conclusions can also be obtained for the

case of T = U = ∅.
In this case, with restriction ax = 0 for x ∈ U , the function defined by (4) can be rewritten as

f(x) =





0, x ∈ W< n
2 ∪ U ∪ U \ T,

ax, x ∈ W
n
2 \ U ∪ U,

1, x ∈ W> n
2 ∪ T,

(32)

where ax = ax. Then, by Equality (6), one has

Wf (λ) =
∑

x∈W < n
2

(−1)λ·x + 2
∑
x∈T

(−1)λ·x+1 +
∑

x∈U

(−1)λ·x +
∑

x∈U

(−1)λ·x

+
∑

x∈W
n
2 \U∪U

(−1)ax+λ·x +
∑

x∈W > n
2

(−1)λ·x+1

=
∑

x∈W < n
2

[(−1)λ·x + (−1)λ·(x⊕1)+1] +
∑

x∈U

[(−1)λ·x + (−1)λ·(x⊕1)]

+2
∑
x∈T

(−1)λ·x+1 +
∑

x∈A\U
[(−1)ax+λ·x + (−1)ax+λ·(x⊕1)]

(33)

where A is a subset of W
n
2 defined by (9).

For u ∈ W< n
2 with 3 ≤ wt(u) = k ≤ bn

4 c, let T and U be defined as in Equality (10).
Let x2 be any element of T . Take

T2 =
{

T, for even Θk,
T\{x2}, otherwise and U2 =

{
U, for even Θk,
U\{x2 ⊕ u}, otherwise (34)

where Θk is given in Equality (20). Define a function f2 ∈ Bn by

f2(x) =





0, x ∈ W< n
2 ∪ U2 ∪ U2 \ T2,

ax, x ∈ W
n
2 \ U2 ∪ U2,

1, x ∈ W> n
2 ∪ T2,

(35)

where ax = ax ∈ {0, 1}. By Proposition 3.1, one has AI(f2) = n/2. The nonlinearity and
balancedness of f2(x) are analyzed in the following theorem.

Theorem 3.7. Let n ≥ 12 and u ∈ W< n
2 with 3 ≤ wt(u) = k ≤ bn

4 c. If ax is balanced on the
set W

n
2 \U2 ∪ U2 and f2(x2 ⊕ u) = 0, then f2(x) is balanced and its nonlinearity satisfies

nl(f2) =

{
2n−1 − (

n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k), for even Θk,

2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k)− 1, otherwise
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when k is even or k = 3.

Proof: By Equality (35), the Hamming weight of f2(x) is equal to

|W> n
2 |+ |T2|+ 1

2
|W n

2 \U2 ∪ U2| = 2n−1,

which shows the function f2(x) is balanced.
Equality (33) implies

Wf2(λ) =





2
∑

x∈W < n
2

(−1)λ·x − 2
∑

x∈T2

(−1)λ·x, for odd wt(λ),

2
∑

x∈A\U2

(−1)ax+λ·x − 2
∑

x∈T2

(−1)λ·x + 2
∑

x∈U2

(−1)λ·x, otherwise.
(36)

When Θk is even, similarly to the proof of Theorem 3.3, one has

Wf2(λ) =





2Kn
2
−1(t− 1, n− 1)− 2Kn

2
−k(s, n− k), for odd t and 0 ≤ s ≤ t,

2
∑

x∈A\U2
(−1)ax+λ·x − 4Kn

2
−k(s, n− k), for even t and odd s ≤ t− 1,

2
∑

x∈A\U2
(−1)ax+λ·x, for even t and even s ≤ t,

(37)

where wt(λ) = t and t− k ≤ s ≤ min{t, n− k}.
For odd t with 3 ≤ t ≤ n− 1, by Lemma 2.4, one has

max |Wf2(λ)| ≤ 2|Kn
2
−1(t− 1, n− 1)|+ 2|Kn

2
−k(s, n− k)|

≤ 2|Kn
2
−1(2, n− 1)|+ 2Kn

2
−k(0, n− k)

= 2
(

n−1
n
2
−1

)
/(n− 1) + 2

(
n−k
n
2
−k

)
.

When t = 1, the maximal value of |Wf2(λ)| is equal to 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k).

Thus, one has
max

odd wt(λ)
|Wf2(λ)| = 2

(
n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k). (38)

For even wt(λ) = t, the maximal value of |Wf2(λ)| is determined below.

Similarly to the analysis after (22), ax is balanced on A\U2 since ax is balanced on W
n
2 \U2∪U2

with ax = ax. Then, by Lemma 2.7, one has

2|∑x∈A\U2
(−1)ax+λ·x|

≤ 2|A\U2| − 2|∑x∈A\U2
(−1)λ·x|

= 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
]− 2|∑x∈A(−1)λ·x −∑

x∈U2
(−1)λ·x|

= 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
]− |∑

x∈W
n
2
(−1)λ·x − 2

∑
x∈U2

(−1)λ·x|
= 2[

(
n−1
n
2
−1

)− (
n−k
n
2
−k

)
]− |Kn

2
(t, n)− 2(−1)t−sKn

2
−k(s, n− k)|.

For odd s ≤ min{t− 1, n− k}, by Equality (37), one has

|Wf2(λ)| = |2 ∑
x∈A\U2

(−1)ax+λ·x − 4Kn
2
−k(s, n− k)|

≤ 2|∑x∈A\U2
(−1)ax+λ·x|+ 4|Kn

2
−k(s, n− k)|

≤ 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
]− |Kn

2
(t, n) + 2Kn

2
−k(s, n− k)|+ 4|Kn

2
−k(s, n− k)|.

(39)

When k is even, by Lemma 2.5, one has

max
1≤s≤n−k−1

|Kn
2
−k(s, n− k)| = Kn

2
−k(1, n− k) = k

(
n−k
n
2
−k

)
/(n− k). (40)
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Then, by (39) and Equality (40), one has

|Wf2(λ)| ≤ 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
] + 4 max

1≤s≤n−k−1
|Kn

2
−k(s, n− k)|

= 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
] + 4k

(
n−k
n
2
−k

)
/(n− k)

= 2
(

n−1
n
2
−1

)− (2n− 6k)
(

n−k
n
2
−k

)
/(n− k)

≤ 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k)

(41)

for even k ≤ bn
4 c.

When k = 3, by Lemma 2.5, one has

max
1≤s≤n−5

|Kn
2
−3(s, n− 3)| = Kn

2
−3(1, n− 3) = 3

(
n−3
n
2
−3

)
/(n− 3),

then
4|Kn

2
−3(s, n− 3)| − |Kn

2
(t, n) + 2Kn

2
−3(s, n− 3)|

≤ 4|Kn
2
−3(s, n− 3)| ≤ 12

(
n−3
n
2
−3

)
/(n− 3) ≤ (2n− 12)

(
n−3
n
2
−3

)
/(n− 3) (42)

for 1 ≤ s ≤ n − 5. In the case of s = n − 3, one has t = n − 2 or n. Moreover, by Proposition
2.2 and Proposition 5 in [13], one has

4|Kn
2
−3(n− 3, n− 3)| − |Kn

2
(n− 2, n) + 2Kn

2
−3(n− 3, n− 3)|

= 4
(

n−3
n
2
−3

)− |(−1)n/2−1
(

n
n
2

)
/(n− 1) + 2(−1)n/2−3

(
n−3
n
2
−3

)|
= 2

(
n−3
n
2
−3

)− (
n
n
2

)
/(n− 1)

= 2
(

n−3
n
2
−3

)− 8
(

n−3
n
2
−3

)
/(n− 4)

= (2n− 16)
(

n−3
n
2
−3

)
/(n− 4)

< (2n− 12)
(

n−3
n
2
−3

)
/(n− 3)

and
4|Kn

2
−3(n− 3, n− 3)| − |Kn

2
(n, n) + 2Kn

2
−3(n− 3, n− 3)|

= 4
(

n−3
n
2
−3

)− |(−1)n/2
(

n
n
2

)
+ 2(−1)n/2−3

(
n−3
n
2
−3

)|
= 4

(
n−3
n
2
−3

)− [
(

n
n
2

)− 2
(

n−3
n
2
−3

)
]

= 6
(

n−3
n
2
−3

)− 8(n− 1)
(

n−3
n
2
−3

)
/(n− 4)

< (2n− 12)
(

n−3
n
2
−3

)
/(n− 3).

Thus,

4|Kn
2
−3(s, n− 3)| − |Kn

2
(t, n) + 2Kn

2
−3(s, n− 3)| ≤ (2n− 12)

(
n−3
n
2
−3

)
/(n− 3) (43)

for s = n− 3. By (42) and (43), one has

4|Kn
2
−3(s, n− 3)| − |Kn

2
(t, n) + 2Kn

2
−3(s, n− 3)| ≤ (2n− 12)

(
n−3
n
2
−3

)
/(n− 3).

Furthermore, by (39), it can be proven that

|Wf2(λ)| ≤ 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
]− |Kn

2
(t, n) + 2Kn

2
−k(s, n− k)|+ 4|Kn

2
−k(s, n− k)|

≤ 2[
(

n−1
n
2
−1

)− (
n−k
n
2
−k

)
] + (2n− 4k)

(
n−k
n
2
−k

)
/(n− k)

= 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k)

(44)

for k = 3.

For even 0 ≤ s ≤ t, by Equality (37), one has

|Wf2(λ)| ≤ 2
(

n−1
n
2
−1

)− 2
(

n−k
n
2
−k

)
< 2

(
n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k). (45)
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Thus, by (41), (44) and (45), one has

max
even wt(λ)

|Wf2(λ)| ≤ 2
(

n−1
n
2
−1

)− 2k
(

n−k
n
2
−k

)
/(n− k) (46)

when k is even or k = 3.
By Equality (38) and by (46), one has

nl(f2) = 2n−1 − (
n−1
n
2
−1

)
+ k

(
n−k
n
2
−k

)
/(n− k).

When Θk is odd, the conclusion can be proven similarly to the method used in Theorem
3.4. ¤

To end this subsection, the nonlinearities of the constructed functions are compared with
those of some known functions with optimal algebraic immunity.

Let n = 2m. Both symmetric functions F (x) from Construction 3 in [13] and (unbalanced)
φ2m(x) from Construction 2 in [6] have optimal algebraic immunity. Moreover, they have the
same nonlinearity 2n−1 − (

n−1
n
2
−1

)
. By changing the initializations, the function φ2m can be bal-

anced [6]. However, the nonlinearity will be reduced. In this paper, the functions f0, f1 and
f2 are balanced, and their nonlinearities are higher than nl(F ) and nl(φ2m). Take wt(u) = 3
in Theorems 3.4 and 3.7, and take wt(v1) = 2 in Theorem 3.6. For even n, 8 ≤ n ≤ 20, the
nonlinearities of these functions are compared as in Table 1.

Table 1 Comparison of nonlinearities
n 8 10 12 14 16 18 20

nl(f0), nl(f2) 96 394 1614 6566 26630 107762 435342

nl(f1) 98 400 1628 6608 26762 108192 436772

nl(F ), nl(φ2m) 93 386 1586 6476 26333 106762 431910

The nonlinearity of f2 is determined for wt(u) ≤ bn
4 c in Theorem 3.6. Then, when wt(u) = 3,

one has n ≥ 12. However, by randomly choosing ax such that it is balanced on W
n
2 \U2 ∪ U2,

balanced functions f2 with nonlinearity 96, 394 respectively for n = 8, 10 can be obtained.

3.2. Algebraic degree of the constructed functions. In this subsection, the algebraic de-
gree of balanced functions f0, f1 and f2 is studied.

Theorem 3.8. Let the function f0, f1 be given in Section 3.1.
(1) When Θk is odd, deg(f0) = deg(f1) = n− 1;

(2) When Θk is even, if either (
(
n−1

n
2

)
+

(
n−k

n
2

)
)/2 or

(
n−k−1

n
2
−k

)
is odd, deg(f0) = deg(f1) = n−1.

Proof: With the same method, the results about the algebraic degree of f0 and f1 can be
obtained. We only give the proof for deg(f0) in the following.

Since f0 is balanced, one has deg(f0) ≤ n−1. By Equality (21), the support set supp(f0) can
be expressed as

supp(f0) = ({x ∈ W
n
2 | ax = 1} \ U0 ∪ U0) ∪W> n

2 ∪ T0 ∪ U0 \ T 0.

Let f0(x) =
∑

ν∈Fn
2

f̃νx
ν be the algebraic normal form (ANF) of f0. Since f̃ν =

∑
x¹ν f0(x) for

each ν ∈ Fn
2 , f̃ν = 1 if and only if

|Cν ∩ supp(f0)| = |Cν ∩ ({x ∈ W
n
2 | ax = 1} \ U0 ∪ U0)|+

|Cν ∩W> n
2 |+ |Cν ∩ T0|+ |Cν ∩ U0| − |Cν ∩ T 0| (47)

is odd.
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For any α ∈ Wn−1, either x ¹ α or x ¹ α holds for each x ∈ Fn
2 . Then one has

|Cα ∩ ({x ∈ W
n
2 | ax = 1} \ U0 ∪ U0)| = (|W n

2 | − |U0| − |U0|)/4 = (
(
n−1

n
2

)− |T0|)/2

since ax = ax is balanced on W
n
2 \ U0 ∪ U0 and

|Cα ∩W> n
2 | = (

n−1
n
2
+1

)
+ · · ·+ (

n−1
n−1

)
= 2n−2 − (

n−1
n
2

)
.

Thus,

|Cα ∩ ({x ∈ W
n
2 | ax = 1} \ U0 ∪ U0)|+ |Cα ∩W> n

2 | = 2n−2 − (
(
n−1

n
2

)
+ |T0|)/2. (48)

When Θk is odd, T0 = T\{x0}, T 0 = T\{x0} and U0 = U\{x0 ⊕ u}. Then, there exist two
elements α1, α2 ∈ Wn−1 such that

u ¹ α1, x0 ¹ α1, u ¹ α2, and x0 � α2,

by which one has
{
|Cα1 ∩ T0| =

(
n−k−1

n
2
−k

)− 1,

|Cα1 ∩ U0| = |Cα1 ∩ T 0|,

{
|Cα2 ∩ T0| =

(
n−k−1

n
2
−k

)
,

|Cα2 ∩ U0| = |Cα2 ∩ T 0|.

Therefore, by Equality (47) and Equality (48), either |Cα1 ∩ supp(f0)| or |Cα2 ∩ supp(f0)| is odd,
i.e., either f̃α1 = 1 or f̃α2 = 1. This implies deg(f0) = n− 1.

When Θk is even, T0 = T . Take α1 in Wn−1 with u ¹ α1, then

|Cα1 ∩ T0| =
(
n−k−1

n
2
−k

)
, |Cα1 ∩ U0| = |Cα1 ∩ T 0|.

By Equality (47) and Equality (48), one has

|Cα1 ∩ supp(f0)| = 2n−2 − (
(
n−1

n
2

)
+

(
n−k

n
2

)
)/2 +

(
n−k−1

n
2
−k

)
. (49)

Take α2 in Wn−1 with u � α2, then

|Cα2 ∩ T0| =
(

n−k
n
2
−k

)
, |Cα2 ∩ U0| =

(
n−k

n
2

)
, |Cα2 ∩ T 0| = 0.

By Equality (47) and by (48), one has

|Cα2 ∩ supp(f0)| = 2n−2 − (
(
n−1

n
2

)
+

(
n−k

n
2

)
)/2 + 2

(
n−k

n
2

)
. (50)

Thus, by Equality (49) and Equality (50), if (
(
n−1

n
2

)
+

(
n−k

n
2

)
)/2 is odd, then f̃α2 = 1. Otherwise,

if
(
n−k−1

n
2
−k

)
is odd, then f̃α1 = 1. Thus, deg(f0) = n− 1. ¤

The following results can be obtained by the same method as for Theorem 3.8.

Theorem 3.9. Let the balanced function f2 be given in Theorem 3.7.
(1) When Θk is odd, deg(f2) = n− 1;

(2) When Θk is even, if either
(
n−k−1

n
2
−k

)−(
(
n−1

n
2

)
+

(
n−k

n
2

)
)/2 or

(
n−k−1

n
2

)
is odd, deg(f2) = n−1.
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4. The nonlinearity of a class of Boolean functions with optimum algebraic
immunity, in odd number of variables

This section determines the nonlinearity of a class of Boolean functions, included in Carlet’s
construction [4], in odd number of variables.

Construction 2: [4] Let n be odd, and let a1, a2, · · · , a( n
n+1

2
) be the list of W

n+1
2 , define g ∈ Bn

as

g(x) =

{
0, x ∈ W≤n+1

2 \ T,

1, x ∈ W≥n+3
2 ∪ T

(51)

where T = {b1, b2, · · · , b( n
n+1

2
)} is a subset of W≤n+1

2 such that

∀ 1 ≤ j ≤ (
n

n+1
2

)
, supp(bj) ⊆ supp(aj); and ∀ 1 ≤ l < j ≤ (

n
n+1

2

)
, supp(bj) 6⊆ supp(al). (52)

Since the function g in Equality (51) is balanced, it has optimal algebraic immunity (n+1)/2
if and only if AN(f) does not contain any nonzero function of degree strictly less than (n+1)/2
[3]. Note that g can be regarded as a Boolean function provided by the algorithm after Corollary
1 in [4], thus, g has algebraic immunity (n + 1)/2. By choosing suitable set T , the nonlinearity
of g can be measured.

Let g0 be the majority function with support W≥n+1
2 . Denote U3 = W

n+1
2 \ T and T3 =

T \W
n+1

2 , then g can be rewritten as

g(x) =
{

g0 + 1, x ∈ U3 ∪ T3,
g0, otherwise.

Thus, the Walsh spectrum of g can be calculated as follows.

Wg(λ) =
∑

x/∈U3∪T3

(−1)g0(x)+λ·x +
∑

x∈U3∪T3

(−1)g0(x)+1+λ·x

=
∑

x∈Fn
2

(−1)g0(x)+λ·x − 2
∑

x∈U3∪T3

(−1)g0(x)+λ·x

= Wg0(λ)− 2[
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x].

By Lemma 2.6 (1), (2) in [13] and Lemma 2.3, the Walsh transform of g0 can be characterized
as

Wg0(λ) =
{

2Kn−1
2

(wt(λ)− 1, n− 1), for odd wt(λ),
0, otherwise.

Therefore, for wt(λ) = t, one has

Wg(λ) =





2Kn−1
2

(t− 1, n− 1)− 2[
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x], for odd t,

−2[
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x], for even t.
(53)

Equality (53) shows that the nonlinearity of g is determined by the sets T3 and U3, which can
be defined based on a series of vectors provided by the following algorithm.
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Algorithm 1:
Input: three positive integers r, u and N with r + u− 1 ≤ N .

Output: m =
r−1∑
s=0

(
N

u+s

)
vectors x1, x2, · · · , xm in Fr

2 such that

min
1≤j≤r

|{xi = (xi1, · · · , xir) |xij = 1, i = 1, 2, · · · ,m}| = b
r−1∑
s=0

(
N

u+s

)
r−s
r c.

1. Denote M =
r−1∑
s=0

(
N

u+s

)
(r − s) and take a sequence l = (l1, l2, · · · , lM ) where

li =
{

r if r | i
i (mod r) otherwise for i = 1, 2, · · · ,M .

2. Initialization: s ← 0, k ← 0, t ← 1.
3. While s ≤ r − 1 do the following:

3.1 for j from 1 to
(

N
u+s

)
do:

3.1.1 take xt with supp(xt) = {lk+1, lk+2, · · · , lk+r−s}.
3.1.2 t ← t + 1, k = k + r − s.

3.2 s ← s + 1.
4. Return the vectors x1, x2, · · · , xm.

The validity of Algorithm 1 is explained as follows.
From the algorithm, on one hand, for any 1 ≤ j ≤ r, the number of j’s in the sequence

(l1, l2, · · · , lM ) is no less than bM
r c; on the other hand, according to supp(xt) (t = 1, 2, · · · ,m)

described in step 3.1.1, it can be concluded that the value of |{xi |xij = 1, i = 1, 2, · · · ,m}| is
exactly the number of j’s in the sequence (l1, l2, · · · , lM ) for 1 ≤ j ≤ r. Thus,

min
1≤j≤r

|{xi |xij = 1, i = 1, 2, · · · ,m}| = bM
r c = b

r−1∑
s=0

(
N

u+s

)
r−s
r c.

Define a multiset Q (in the sense that the vector xi can be the same as xj for 1 ≤ i 6= j ≤ m
in Q) as

Q = {x1, x2, · · · , xm} (54)

where the vectors x1, x2, · · · , xm are obtained from Algorithm 1. According to Algorithm above,
the number of vectors in Q with weight s is

(
N

u+r−s

)
for 1 ≤ s ≤ r.

Running Algorithm 1, some examples can be given as follows.
Example 1: (1) For r = 4, u = 1 and N = 4, the vectors x1, · · · , x15 are listed as follows.

x1 = (1, 1, 1, 1), x2 = (1, 1, 1, 1), x3 = (1, 1, 1, 1), x4 = (1, 1, 1, 1), x5 = (1, 1, 1, 0),
x6 = (1, 1, 0, 1), x7 = (1, 0, 1, 1), x8 = (0, 1, 1, 1), x9 = (1, 1, 1, 0), x10 = (1, 1, 0, 1),

x11 = (0, 0, 1, 1), x12 = (1, 1, 0, 0), x13 = (0, 0, 1, 1), x14 = (1, 1, 0, 0), x15 = (0, 0, 1, 0).

The value min
1≤j≤4

|{xi |xij = 1, 1 ≤ i ≤ 15}| = |{xi |xi4 = 1, 1 ≤ i ≤ 15}| = 10.

(2) For r = 3, u = 3 and N = 5, the vectors x1, · · · , x16 are listed as follows.

x1 = (1, 1, 1), x2 = (1, 1, 1), x3 = (1, 1, 1), x4 = (1, 1, 1),
x5 = (1, 1, 1), x6 = (1, 1, 1), x7 = (1, 1, 1), x8 = (1, 1, 1),
x9 = (1, 1, 1), x10 = (1, 1, 1), x11 = (1, 1, 0), x12 = (1, 0, 1),

x13 = (0, 1, 1), x14 = (1, 1, 0), x15 = (1, 0, 1), x16 = (0, 1, 0).

The value min
1≤j≤3

|{xi |xij = 1, 1 ≤ i ≤ 16}| = |{xi |xi3 = 1, 1 ≤ i ≤ 16}| = 13.
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An integer n larger than 4 can be written as a sum of four positive integers ri (1 ≤ i ≤ 4),
i.e., n = r1 + r2 + r3 + r4. For convenience, denote

m1 =
r1−1∑
i=0

( n−r1−2
n+1

2
−(r1−i)

)
r1−i
r1

, m2 =
r2−1∑
i=0

( n−r2−2
n−1

2
−(r2−i)

)
r2−i
r2

,

m3 =
r3−1∑
i=0

( n−r3−3
n−3

2
−(r3−i)

)
r3−i
r3

, m4 =
r4−1∑
i=0

( n−r4−3
n−5

2
−(r4−i)

)
r4−i
r4

.

(55)

and divide the set {1, 2, · · · , n} into four subsets as follows:

Λ1 = {1, 2, · · · , r1}, Λ2 = {r1 + 1, r1 + 2, · · · , r1 + r2},
Λ3 = {r1 + r2 + 1, · · · , r1 + r2 + r3}, Λ4 = {r1 + r2 + r3 + 1, · · · , n}. (56)

In the following, a method of choosing the sets T3 and U3 is presented. This method will
generate an infinite class of Boolean functions with optimal algebraic immunity and high non-
linearity.

For 1 ≤ i ≤ 4, denote εi =
{

2 for i = 1, 2
3 for i = 3, 4 and take

Pi = {y ∈ Fn−ri−εi
2 | (n + 3)/2− i− ri ≤ wt(y) ≤ (n + 1)/2− i}.

Let Qi be the multiset defined by Equality (54) where r = ri, u = (n + 3)/2 − i − ri and
N = n − ri − εi. Since the number of vectors y in Pi with weight (n + 3)/2 − i − s and
that of vectors in Qi with weight s are both equal to

( n−ri−εi
n+3

2
−i−s

)
for 1 ≤ s ≤ ri, an one-to-one

correspondence ϕi from Pi to Qi can be induced such that wt(y) + wt(ϕi(y)) = (n + 3)/2 − i
holds for any y ∈ Pi.

With the sets Pi and the correspondence ϕi (i = 1, 2, 3, 4), eight sets T i
3 and U i

3 can be defined
as Table 2.

Table 2 The definition of T i
3 and U i

3 for i = 1, 2, 3, 4
T 1

3 = {( 0, 0, y1, 0) ∈ Fr1
2 × F2 × Fn−r1−2

2 × F2 | y1 ∈ P1}
U1

3 = {(ϕ1(y1), 0, y1, 0) ∈ Fr1
2 × F2 × Fn−r1−2

2 × F2 | y1 ∈ P1}
T 2

3 = {(0, y1, 0, y2, 1) ∈ F2 × Fr1−1
2 × Fr2

2 × Fn−r1−r2−1
2 × F2 | (y1, y2) ∈ P2}

U2
3 = {(0, y1, ϕ2(y), y2, 1) ∈ F2 × Fr1−1

2 × Fr2
2 × Fn−r1−r2−1

2 × F2 | y = (y1, y2) ∈ P2}
T 3

3 = {(1, 0, y1, 0, y2, 1) ∈ F2 × F2 × Fr1+r2−2
2 × Fr3

2 × Fr4−1
2 × F2 | (y1, y2) ∈ P3}

U3
3 = {(1, 0, y1, ϕ3(y), y2, 1) ∈ F2 × F2 × Fr1+r2−2

2 × Fr3
2 × Fr4−1

2 × F2 | y = (y1, y2) ∈ P3}
T 4

3 = {(1, 1, y1, 1, y2, 0) ∈ F2 × F2 × Fr1−2
2 × F2 × Fr2+r3−1

2 × Fr4
2 | (y1, y2) ∈ P4}

U4
3 = {(1, 1, y1, 1, y2, ϕ4(y)) ∈ F2 × F2 × Fr1−2

2 × F2 × Fr2+r3−1
2 × Fr4

2 | y = (y1, y2) ∈ P4}
Then, by Algorithm 1, one has

min
j∈Λi

|{x ∈ U i
3 |xj = 1}| = bmic.

for i = 1, 2, 3, 4.
Define two sets

T3 =
4⋃

i=1

T i
3, U3 =

4⋃

i=1

U i
3. (57)

Then,

|U3| = |T3| =
r1−1∑
i=0

( n−r1−2
n+1

2
−(r1−i)

)
+

r2−1∑
i=0

( n−r2−2
n−1

2
−(r2−i)

)
+

r3−1∑
i=0

( n−r3−3
n−3

2
−(r3−i)

)
+

r4−1∑
i=0

( n−r4−3
n−5

2
−(r4−i)

)
.
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Let T3 and U3 be defined in Equality (57), define

g1(x) =
{

g0 + 1, x ∈ U3 ∪ T3,
g0, otherwise, (58)

where g0 is the majority function, whose support is W≥n+1
2 .

In what follows, the algebraic immunity and nonlinearity of g1 is considered.

Proposition 4.1. The Boolean function g1 defined in Equality (58) has algebraic immunity
(n + 1)/2.

Proof: Take U ′ = W
n+1

2 \U3 and T = T3 ∪ U ′, then g1 is exactly the function g defined in
Equality (51). Thus, it is sufficient to prove the set T satisfies the condition in (52).

List the elements of W
n+1

2 and T as

W
n+1

2 : a1, · · · , a|U3|, c1, · · · , c|U ′|, T : b1, · · · , b|T3|, c1, · · · , c|U ′|,

where aj ∈ U3, bj ∈ T3 (1 ≤ j ≤ |T3|) and ck ∈ U ′ (1 ≤ k ≤ |U ′|), then the sets W
n+1

2 and T
satisfy the condition in (52) if and only if U3 and T3 satisfy it.

The elements b1, b2, · · · , b|T3| listed from left to right above obey the following rules:
1. For any bj1 ∈ T i1

3 , bj2 ∈ T i2
3 , if i1 < i2, then j1 < j2;

2. For any bj1 , bj2 ∈ T i
3, j1 ≤ j2 if and only if wt(bj1) ≤ wt(bj2).

From Table 2, every element in U i
3 is uniquely determined by an element bj in T i

3 and some
correspondence ϕi. Thus, we denote this element by aj .

According to the order of elements above, b1, b2, · · · , b|T3| and a1, a2, · · · , a|U3| will be proven
to satisfy the condition

∀ 1 ≤ j ≤ |T3|, supp(bj) ⊆ supp(aj); and ∀ 1 ≤ l < j ≤ |T3|, supp(bj) 6⊆ supp(al).

By Table 2 and the choice of aj , one has supp(bj) ⊆ supp(aj) for every 1 ≤ j ≤ |T3|.
For any 1 ≤ l < j ≤ |T3|, suppose that bj belongs to some T i

3. When al ∈ U i
3, respectively,

bl ∈ T i
3, since the elements of T i

3 are sorted by increasing weight, one has wt(bj) ≥ wt(bl), then
supp(bj) * supp(bl). According to Table 2, one has supp(bj) * supp(al).

When al /∈ U i
3, one has al ∈ U i1

3 where i1 < i. By Table 2, when bj ∈ T 4
3 , one has 1, 2, r1 +

1 ∈ supp(bj); in addition, if al ∈ U3
3 , 2 /∈ supp(al), if al ∈ U2

3 , 1 /∈ supp(al) and if al ∈
U1

3 , r1 + 1 /∈ supp(al), then supp(bj) * supp(al); when bj ∈ T 3
3 , one has 1, n ∈ supp(bj),

moreover, if al ∈ U2
3 , 1 /∈ supp(al) and if al ∈ U1

3 , n /∈ supp(al), then supp(bj) * supp(al);
when bj ∈ T 2

3 , n ∈ supp(bj), since n /∈ supp(al) for al ∈ U1
3 , one has supp(bj) * supp(al).

Therefore, supp(bj) * supp(al) holds for al /∈ U i
3.

The above analysis implies that supp(bj) * supp(al) for any l < j, which finishes the proof. ¤
The following lemmas can be used to analyze the nonlinearity of g1.

Lemma 4.2. (1) For n = 4k + 1, let r1 = r2 = k + 1, r3 = k and r4 = k − 1, then mi’s
(i = 1, 2, 3, 4) given in (55) satisfy

min
1≤i≤4

{mi} = m3 for k ≥ 3.

(2) For n = 4k + 3, let r1 = k + 2, r2 = k + 1 and r3 = r4 = k, then mi’s (i = 1, 2, 3, 4) given
in (55) satisfy

min
1≤i≤4

{mi} =
{

m4 for k = 3, 4
m1 for k ≥ 5.
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Proof: We only give the proof for the result in (1), and the result in (2) can be similarly
proven.

(1) It can be verified that m4 −m3 =
{

0 for k = 3
83 for k = 4 and for k ≥ 5,

m4 −m3 =
k−2∑
i=0

(
3k−1
k+i−1

)
k−1−i
k−1 −

k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k

=
k−2∑
i=0

[
(

3k−2
k+i−1

)
+

(
3k−2
k+i−2

)
]k−1−i

k−1 −
k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k

=
k−2∑
i=0

(
3k−2
k+i−1

)
(k−1−i

k−1 − k−i
k )− (

3k−2
2k−2

)
1
k +

k−2∑
i=0

(
3k−2
k+i−2

)
k−1−i
k−1

=
k−2∑
i=0

(
3k−2
k+i−1

) −i
k(k−1) −

(
3k−2
2k−2

)
1
k +

k−2∑
i=0

(
3k−2
k+i−2

)
k−1−i
k−1

=
k−1∑
i=0

(
3k−2
k+i−1

) −i
k(k−1) +

k−2∑
i=0

(
3k−2
k+i−2

)
k−1−i
k−1

=
k∑

i=1

(
3k−2
k+i−2

)−(i−1)
k(k−1) +

k−2∑
i=0

(
3k−2
k+i−2

)
k−1−i
k−1

=
k−2∑
i=1

(
3k−2
k+i−2

)k2−k+1−(k+1)i
k(k−1) − (

3k−2
2k−3

)
k−2

k(k−1) −
(
3k−2
2k−2

)
1
k +

(
3k−2
k−2

)

=
k−2∑
i=1

(
3k−2
k+i−2

)k2−k+1−(k+1)i
k(k−1) − (

3k−2
k

) 3(k−1)
k(k+1) +

(
3k−2
k−2

)

>
(

3k−2
k+2−2

)k(k−1)+1−2(k+1)
k(k−1) − (

3k−2
k

) 3(k−1)
k(k+1)

=
(
3k−2

k

)
[k2−3k−1

k(k−1) − 3(k−1)
k(k+1) ]

>
(
3k−2

k

)
[k

2−4k+3
k(k−1) − 3(k−1)

k(k+1) ]
=

(
3k−2

k

)
k−5
k+1 ≥ 0.

By (55), one has

m2 −m3 =
k∑

i=0

(
3k−2
k+i−1

)
k+1−i
k+1 −

k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k

>
k−1∑
i=0

(
3k−2
k+i−1

)
(k+1−i

k+1 − k−i
k )

=
k−1∑
i=0

(
3k−2
k+i−1

)
i

k(k+1) > 0.

and

m1 −m3 =
k∑

i=0

(
3k−2
k+i

)
k+1−i
k+1 −

k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k

=
k∑

i=0

(
3k−2
k+i

)
k+1−i
k+1 −

k−2∑
i=0

(
3k−2
k+i

)
k−i−1

k − (
3k−2
k−1

)

=
k−2∑
i=0

(
3k−2
k+i

)
(k+1−i

k+1 − k−i−1
k ) +

(
3k−2
2k−1

)
2

k+1 +
(
3k−2
2k

)
1

k+1 −
(
3k−2
k−1

)

=
k−2∑
i=0

(
3k−2
k+i

)
k+i+1
k(k+1) +

(
3k−2
k−2

)
1

k+1 −
(
3k−2
k−1

)
k−1
k+1

>
k−2∑
i=0

(
3k−2
k+i

)
1

k+1 +
(
3k−2
k−2

)
1

k+1 −
(
3k−2
k−1

)
k−1
k+1

>
(
3k−2
k−1

)
k−1
k+1 +

(
3k−2
k−2

)
1

k+1 −
(
3k−2
k−1

)
k−1
k+1 > 0.
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Thus, min
1≤i≤4

{mi} = m3 for k ≥ 3. This completes the proof. ¤

Lemma 4.3. (1) Let |U3| =
k∑

i=0

(
3k−2
k+i

)
+

k∑
i=0

(
3k−2
k+i−1

)
+

k−1∑
i=0

(
3k−2
k+i−1

)
+

k−2∑
i=0

(
3k−1
k+i−1

)
and m3 =

k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k , then

(4k − 2)
(
4k
2k

)
/(4k − 1)− 2|U3| − 2m3 > 0

for k ≥ 4.

(2) Let |U3| =
k+1∑
i=0

(
3k−1
k+i

)
+

k∑
i=0

(
3k
k+i

)
+

k−1∑
i=0

(
3k
k+i

)
+

k−1∑
i=0

(
3k

k+i−1

)
and m1 =

k+1∑
i=0

(
3k−1
k+i

)
k+2−i
k+2 , then

4k
(
4k+2
2k+1

)
/(4k + 1)− 2|U3| − 2m1 > 0

for k ≥ 3.

Proof: The proofs of Lemma 4.3 (1) and (2) are similar, and we give only the proof of Lemma
4.3 (1).

(1) For k ≥ 4, one has

|U3|+ m3

< [
k∑

i=0

(
3k−2
k+i

)
+

k∑
i=0

(
3k−2
k+i−1

)
+

k−1∑
i=0

(
3k−2
k+i−1

)
+

k−2∑
i=0

(
3k−1
k+i−1

)
] +

k−1∑
i=0

(
3k−2
k+i−1

)

=
k∑

i=0

(
3k−2
k+i

)
+

k∑
i=0

(
3k−2
k+i−1

)
+ 2

k−1∑
i=0

(
3k−2
k+i−1

)
+ (

k−2∑
i=0

(
3k−2
k+i−1

)
+

k−2∑
i=0

(
3k−2
k+i−2

)
)

=
k+2∑
i=2

(
3k−2
k+i−2

)
+

k+1∑
i=1

(
3k−2
k+i−2

)
+ 2

k∑
i=1

(
3k−2
k+i−2

)
+

k−1∑
i=1

(
3k−2
k+i−2

)
+

k−2∑
i=0

(
3k−2
k+i−2

)

=
(
3k−2
k−2

)
+ 5

(
3k−2
k−1

)
+ 6

k−2∑
i=2

(
3k−2
k+i−2

)
+ 5

(
3k−2
2k−3

)
+ 4

(
3k−2
2k−2

)
+ 2

(
3k−2
2k−1

)
+

(
3k−2
2k

)

= 2
(
3k−2
k−2

)
+ 7

(
3k−2
k−1

)
+ 6

k−2∑
i=2

(
3k−2
k+i−2

)
+ 5

(
3k−2
2k−3

)
+ 4

(
3k−2
2k−2

)

and

(
4k
2k

)
= 2

(
4k−1
2k−1

)
= 2

k+1∑
i=0

(
3k−2
k+i−2

)(
k+1

k+1−i

)

= 2[
(
3k−2
k−2

)
+ (k + 1)

(
3k−2
k−1

)
+

k−2∑
i=2

(
3k−2
k+i−2

)(
k+1

k+1−i

)
+

(
k+1
2

)(
3k−2
2k−3

)
+ (k + 1)

(
3k−2
2k−2

)
+

(
3k−2
2k−1

)
]

= 2[
(
3k−2
k−2

)
+ (k + 2)

(
3k−2
k−1

)
+

k−2∑
i=2

(
3k−2
k+i−2

)(
k+1

k+1−i

)
+

(
k+1
2

)(
3k−2
2k−3

)
+ (k + 1)

(
3k−2
2k−2

)
]

≥ 2[
(
3k−2
k−2

)
+ (k + 2)

(
3k−2
k−1

)
+

(
k+1
2

) k−2∑
i=2

(
3k−2
k+i−2

)
+

(
k+1
2

)(
3k−2
2k−3

)
+ (k + 1)

(
3k−2
2k−2

)
]

≥ 2[
(
3k−2
k−2

)
+ 6

(
3k−2
k−1

)
+ 10

k−2∑
i=2

(
3k−2
k+i−2

)
+ 10

(
3k−2
2k−3

)
+ 5

(
3k−2
2k−2

)
]

≥ 2[3
(
3k−2
k−2

)
+ 8

(
3k−2
k−1

)
+ 8

k−2∑
i=2

(
3k−2
k+i−2

)
+ 8

(
3k−2
2k−3

)
+ 5

(
3k−2
2k−2

)
],
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thus,

(4k − 2)
(
4k
2k

)
/(4k − 1)− 2|U3| − 2m3

> 2(4k−2)
4k−1 [3

(
3k−2
k−2

)
+ 8

(
3k−2
k−1

)
+ 8

k−2∑
i=2

(
3k−2
k+i−2

)
+ 8

(
3k−2
2k−3

)
+ 5

(
3k−2
2k−2

)
]

−2[2
(
3k−2
k−2

)
+ 7

(
3k−2
k−1

)
+ 6

k−2∑
i=2

(
3k−2
k+i−2

)
+ 5

(
3k−2
2k−3

)
+ 4

(
3k−2
2k−2

)
]

> 0

since (4k − 2)/(4k − 1) ≥ 14/15 > 7/8 > 4/5 > 6/8 > 2/3 > 5/8 for k ≥ 4. ¤
With the above preparation, the nonlinearity of g1 can be determined.

Theorem 4.4. Let g1 ∈ Bn be defined in Equality (58). Then, for n ≥ 15, its nonlinearity can
achieve 2n−1 − (n−1

n−1
2

)
+ ∆(n), where the function ∆(n) satisfies

∆(n) =





2b
k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k c n = 4k + 1, k ≥ 4

2b
k+1∑
i=0

(
3k−1
k+i

)
k+2−i
k+2 c n = 4k + 3, k ≥ 5

and ∆(15) = 268, ∆(19) = 2436.

Proof: By Equality (53), the Walsh transform of Wg1(λ) is determined by the value

Γλ =
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x for λ ∈ Fn
2 .

When wt(λ) = 1, let λ1, λ2, · · · , λn be n vectors with supp(λj) = {j} (j = 1, 2, · · · , n).
According to the definition of sets T i

3 and U i
3 (1 ≤ i ≤ 4), when j /∈ Λi,

∑

x∈T i
3

(−1)λj ·x −
∑

x∈U i
3

(−1)λj ·x = 0.

Thus, when j ∈ Λ1, xj = 0 for all x ∈ T 1
3 , it can be concluded that

Γλj
=

∑
x∈T3

(−1)λj ·x − ∑
x∈U3

(−1)λj ·x

=
4∑

i=1
[
∑

x∈T i
3

(−1)xj − ∑
x∈U i

3

(−1)xj ]

=
∑

x∈T 1
3

(−1)xj − ∑
x∈U1

3

(−1)xj

= |T 1
3 | − (|U1

3 | − 2|{x ∈ U1
3 |xj = 1}|)

= 2|{x ∈ U1
3 |xj = 1}|,

and

min{Γλj
| j ∈ Λ1} = 2bm1c.

Applying the same method, one has min{Γλj
| j ∈ Λi} = 2bmic for i = 2, 3, 4. Thus,

min
wt(λ)=1

Γλ = min{Γλj
| j = 1, 2, · · · , n} = min

1≤i≤4
{2bmic}.

In the following, the results will be proved for two cases: n = 4k + 1 and n = 4k + 3.
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(1) When n = 4k + 1, we can take r1 = r2 = k + 1, r3 = k and r4 = k − 1, then the value of
Γλ for λ ∈ Fn

2 is studied as follows. By substituting ri into (55), one has

m1 =
k∑

i=0

(
3k−2
k+i

)
k+1−i
k+1 ,m2 =

k∑
i=0

(
3k−2
k+i−1

)
k+1−i
k+1 ,

m3 =
k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k , m4 =

k−2∑
i=0

(
3k−1
k+i−1

)
k−1−i
k−1 .

By Lemma 4.2 (1), for k ≥ 4, min
wt(λ)=1

Γλ = 2bm3c. Thus, by Equality (53), one has

max
wt(λ)=1

|Wg1(λ)| = max
wt(λ)=1

|Wg0(λ)− 2[
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x]|
= 2Kn−1

2
(0, n− 1)− 2 min

wt(λ)=1
Γλ

= 2
(
4k
2k

)− 4bm3c
(59)

for k ≥ 4.
For wt(λ) = n,

Wg1(λ) = 2Kn−1
2

(n− 1, n− 1)− 2[
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x]

= (−1)
n−1

2 2
(n−1

n−1
2

)− 2
∑

x∈T3

(−1)wt(x) + (−1)
n+1

2 2|U3|
= 2[

(
4k
2k

)− ∑
x∈T3

(−1)wt(x) − |U3| ].

Since ∑
x∈T3

(−1)wt(x) + |U3|

=
4∑

i=1

∑
x∈T i

3

(−1)wt(x) + |T 1
3 |+ |T 2

3 |+ |T 3
3 |+ |T 4

3 |

≥ ∑
x∈T 2

3

(−1)wt(x) +
∑

x∈T 3
3

(−1)wt(x) + |T 2
3 |+ |T 3

3 |

=
k∑

i=0
(−1)k+i

(
3k−2
k+i−1

)
+

k−1∑
i=0

(−1)k+i+1
(

3k−2
k+i−1

)
+

k∑
i=0

(
3k−2
k+i−1

)
+

k−1∑
i=0

(
3k−2
k+i−1

)

= 2
(
3k−2
2k−1

)
+ 2

k−1∑
i=0

(
3k−2
k+i−1

)

> 2
k−1∑
i=0

(
3k−2
k+i−1

)
,

one has

|Wg1(λ)| < 2[
(
4k
2k

)− 2
k−1∑
i=0

(
3k−2
k+i−1

)
] < 2

(
4k
2k

)− 4m3 ≤ 2
(
4k
2k

)− 4bm3c (60)

for wt(λ) = n.

By Equality (53) and Lemma 2.6, for odd 3 ≤ wt(λ) = t ≤ n− 2,

|Wg1(λ)| = |2Kn−1
2

(t− 1, n− 1)− 2[
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x]|
≤ 2

(n−1
n−1

2

)
/(n− 2) + 4|U3|

= 2
(
4k
2k

)
/(4k − 1) + 4|U3|,

and for even wt(λ),

|Wg1(λ)| = 2| ∑
x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x| ≤ 4|U3|.
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Thus, for 2 ≤ wt(λ) ≤ n− 1,

|Wg1(λ)| ≤ 2
(
4k
2k

)
/(4k − 1) + 4|U3|. (61)

By Lemma 4.3 (1), for k ≥ 4,

[2
(
4k
2k

)− 4bm3c]− [2
(
4k
2k

)
/(4k − 1) + 4|U3|]

= 2[(4k − 2)
(
4k
2k

)
/(4k − 1)− 2|U3| − 2bm3c]

= 2[(4k − 2)
(
4k
2k

)
/(4k − 1)− 2|U3| − 2m3]

> 0.

Thus, by Equality (59), by (60) and (61), one has

max
λ∈Fn

2

|Wg1(λ)| = 2
(
4k
2k

)− 4bm3c = 2
(
4k
2k

)− 4b
k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k c

for k ≥ 4. This implies

nl(g1) = 24k − (
4k
2k

)
+ 2b

k−1∑
i=0

(
3k−2
k+i−1

)
k−i
k c.

(2) When n = 4k +3, take r1 = k +2, r2 = k +1 and r3 = r4 = k. The value of Γλ for λ ∈ Fn
2

is studied as follows. In this case, substitute ri into (55), then

m1 =
k+1∑
i=0

(
3k−1
k+i

)
k+2−i
k+2 , m2 =

k∑
i=0

(
3k
k+i

)
k+1−i
k+1 ,

m3 =
k−1∑
i=0

(
3k
k+i

)
k−i
k , m4 =

k−1∑
i=0

(
3k

k+i−1

)
k−i
k .

By Lemma 4.2 (2), one has

min
wt(λ)=1

Γλ = min
1≤i≤4

{2bmic} =
{

2bm4c for k = 3, 4
2bm1c for k ≥ 5.

Thus,
max

wt(λ)=1
|Wg1(λ)| = max

wt(λ)=1
|Wg0(λ)− 2[

∑
x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x]|
= 2Kn−1

2
(0, n− 1)− 2 min

wt(λ)=1
Γλ

= 2
(
4k+2
2k+1

)− 4bm4c
(62)

for k = 3, 4 and

max
wt(λ)=1

|Wg1(λ)| = max
wt(λ)=1

|Wg0(λ)− 2[
∑

x∈T3

(−1)λ·x − ∑
x∈U3

(−1)λ·x]|
= 2Kn−1

2
(0, n− 1)− 2 min

wt(λ)=1
Γλ

= 2
(
4k+2
2k+1

)− 4bm1c
(63)

for k ≥ 5.
For wt(λ) = n, similarly to the case n = 4k + 1, one has

|Wg1(λ)| = |(−1)
n−1

2 2
(n−1

n−1
2

)− 2
∑

x∈T3

(−1)wt(x) + (−1)
n+1

2 2|U3||
= 2|(4k+2

2k+1

)
+

∑
x∈T3

(−1)wt(x) − |U3||
= 2|(4k+2

2k+1

)− (|U3| −
∑

x∈T3

(−1)wt(x))|.
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Similarly to the comparison made in Theorem 4.4 (1), we have

|U3| −
∑

x∈T3

(−1)wt(x) > 2
k−1∑
i=0

(
3k
k+i

)
.

Thus, by Equality (62) and Equality (63), for wt(λ) = n, one has

|Wg1(λ)| < 2[
(
4k+2
2k+1

)− 2
k−1∑
i=0

(
3k
k+i

)
] < 2

(
4k+2
2k+1

)− 4m3 < max
wt(λ)=1

|Wg1(λ)| (64)

for k ≥ 3.

Similarly to the analysis for the case n = 4k + 1, one has

|Wg1(λ)| ≤ 2
(
4k+2
2k+1

)
/(4k + 1) + 4|U3| for 2 ≤ wt(λ) ≤ n− 1. (65)

For k = 3, 4, by Lemma 4.3 (2) and Lemma 4.2 (2), one has

[2
(
4k+2
2k+1

)− 4bm4c]− [2
(
4k+2
2k+1

)
/(4k + 1) + 4|U3|]

= 2[4k
(
4k+2
2k+1

)
/(4k + 1)− 2|U3| − 2bm4c]

≥ 2[4k
(
4k+2
2k+1

)
/(4k + 1)− 2|U3| − 2m1]

> 0.

Thus, by Equality (62), by (64) and (65), for k = 3, 4, one has

max
λ∈Fn

2

|Wg1(λ)| = 2
(
4k+2
2k+1

)− 4bm4c = 2
(
4k+2
2k+1

)− 4b
k−1∑
i=0

(
3k

k+i−1

)
k−i
k c,

which implies

nl(g1) = 24k+2 − (
4k+2
2k+1

)
+ 2b

k−1∑
i=0

(
3k

k+i−1

)
k−i
k c,

i.e., ∆(15) = 268 and ∆(19) = 2436.
For k ≥ 5, by Lemma 4.3 (2),

[2
(
4k+2
2k+1

)− 4bm1c]− [2
(
4k+2
2k+1

)
/(4k + 1) + 4|U3|]

= 2[4k
(
4k+2
2k+1

)
/(4k + 1)− 2|U3| − 2bm1c]

≥ 2[4k
(
4k+2
2k+1

)
/(4k + 1)− 2|U3| − 2m1]

> 0.

Thus, by Equality (63), by (64) and (65), one has

max
λ∈Fn

2

|Wg1(λ)| = 2
(
4k+2
2k+1

)− 4bm1c = 2
(
4k+2
2k+1

)− 4b
k+1∑
i=0

(
3k−1
k+i

)
k+2−i
k+2 c.

This shows

nl(g1) = 24k+2 − (
4k+2
2k+1

)
+ 2b

k+1∑
i=0

(
3k−1
k+i

)
k+2−i
k+2 c.

The proof is completed. ¤

Table 3 Comparison of nonlinearities for odd n variables
n 9 11 13 15 17 19

2n−1 − `n−1
n−1

2

´
186 772 3172 12952 52666 213524

nl(g1) 196 798 3284 13220 53578 215960

The nonlinearity of g1 is determined for n ≥ 15 in Theorem 4.4. For the cases n = 9, 11 and 13,
its nonlinearity is determined as in Table 3 by a direct calculation.
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5. Conclusion

This paper studied several classes of Boolean functions included in Carlet’s Construction,
and the nonlinearities of these functions were determined. Their values are not yet sufficient
for proposing these functions for pseudo-random generators in stream ciphers. But they signifi-
cantly improve upon the best previously known nonlinearities of functions with optimal algebraic
immunity.
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