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Abstract. A group oriented encryption scheme is presented in this paper. In this scheme, a sender 
is allowed to encrypt a message using the group public key and send the ciphertext to the group. 
Any user in the group can independently decrypt the ciphertext via his private key. The scheme is 
secure against adaptively chosen ciphertext attack and collude attack. 
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1   Introduction 
Group oriented encryption scheme [1] is such a scheme that a sender is allowed to send a 
ciphertext to a designated group and nobody besides the users of the group can decrypt the 
ciphertext using his private key. In this model of one-to-group, all the users share a common 
public key, i.e. the group public key and each user has his private key. 
  As a useful method of multi-parity communication, the group communication is playing an 
important role in some network-based applications. Since many users are involved and lots of 
resource is occupied, it is feasible for an attacker to take active or passive attacks through open 
networks. The research on group oriented encryption scheme is necessary and it is crucial to the 
security of network communications. 
  The notion of broadcast encryption is similarly to that of group oriented encryption. It was 
originally introduced by Fiat and Naor [2]. In such a scheme, the sender encrypts a message for 
some subset of receivers and sends the ciphertext by the broadcast over Internet. Any receiver in 
the designated subset can use his private key to decrypt the ciphertext. The different between these 
two schemes is that the public key of each user is common in group oriented encryption scheme, 
i.e. the group public key. There are some researches on broadcast encryption schemes [4 ][9 ]. 
  Group oriented encryption scheme can be used in many aspects, such as TV subscription 
services, communications in LAN or VPN and so on. As a secure encryption scheme, it is 
necessary to withstand adaptively chosen ciphertext attack. Moreover, the security of key 
generation is worth paying attention to. In the scheme mentioned in [1], the key generation 
algorithm is vulnerable to collude attack. For example, two valid users can share their private keys 
and compute a new private key for any other user.  
  In this paper, we introduce the identity of the user to improve the scheme mentioned in [1]. The 
new scheme is secure against chosen ciphertext attack and the key generation withstands collude 
attack from the users of the group. 
  The rest of paper consists of following sections. In section 2, we introduce some related works 
on broadcast encryptions and group oriented encryption scheme. In section 3, we give the security 
model and some complexity assumptions. The proposed group oriented encryption scheme is 
presented in section 4. In section 5, we discuss the security of the proposed scheme in random 
oracle model. Finally, we draw the conclusions in section 6. 
 
2   Related works 
Fiat and Naor [2] first presented the concept of broadcast encryption and proposed a solution that 
is secure against a collusion of m  users and the length of the ciphertext is )loglog( 2 nmmO , 
where n  is the number of users and m  is the number of colluders who are revoked by the 
system. Further research, such as [3], supposed a method which ciphertext and keys don’t rely on 
the m . The scheme has private key size of )(log2 nO . Halevy and Shamir [4] improved on the 
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broadcast encryption and presented their own solution. Other study about this scheme can be 
found in [5]. There are some other studies about broadcast encryption, such as [6][7][8].  

Boneh et al. [9] presented two broadcast encryption systems for dynamic receivers. In their first 
scheme, both ciphertexts and private keys are of constant size, but the public key size in the 
system is linear in the total number of receivers. The second scheme is a generalization of the first. 
In addition, it is a collusion resistant broadcast scheme with )( nO  ciphertext and public key 
size, i.e. as the increasing of users, both ciphertext and public key size will increase also. 

Ma et al. [1] designed a group-oriented encryption scheme. In such a scheme, anyone can 
encrypt a message using the group public key and distribute the ciphertext to the designated group. 
Any member in the group can independently decrypt the ciphertext via his private key. However, 
two valid users in this scheme can cooperate with each other to obtain a new and valid private key 
that can be used by any user. In other words, the scheme is vulnerable to collude attack. 
 
3   Background 
3.1. Bilinear Maps 
Let 1G  be a cyclic multiplicative group generated by g , whose order is a prime q  and 2G  be a 
cyclic multiplicative group of the same order q . Assume that the discrete logarithm in both 1G  
and 2G  is intractable. A bilinear pairing is a map e : 1 1 2G G G× →  and satisfies the following 
properties:  

1. Bilinear: ( , ) ( , )a b abe g p e g p= . For all g , 1p G∈  and , qa b Z∈ , the equation holds. 
2. Non-degenerate: There exists 1p G∈ , if ( , ) 1e g p = , then g = Ο . 
3. Computable: For g , 1p G∈ , there is an efficient algorithm to compute ( , )e g p . 
4. commutativity: ( , ) ( , )a b b ae g p e g p= . For all g , 1p G∈  and , qa b Z∈ , the equation holds. 
Typically, the map e  will be derived from either the Weil or Tate pairing on an elliptic 

curve over a finite field. Pairings and other parameters should be selected for efficiency and 
security.  

 
3.2. General Scheme 
A group oriented encryption is made up of five algorithms. 

1. Initialize. Given the security parameterλ , the algorithm outputs the system parameters. 
2. KeyGen (A, ip ). Inputs the designated group A and user ip A∈ . It outputs the group 

A’s public key APK  and user ip ’s private key 1 2 3( , , )i i id d d .  
3. KeyVer( 1 2 3( , , )i i id d d , ip ). Inputs a private key 1 2 3( , , )i i id d d  and a user ip . If the key 

belongs to the user, the algorithm outputs TRUE, otherwise gives ERROR message. 
4. Encrypt (M, PK). Let M be a message to be encrypted to the group A. Inputs a message 

M and a public key APK , the algorithm outputs ( 1 2 3 4 5, , , ,c c c c c ). We refer to 

1 2 3 4 5( , , , , )C c c c c c=  as the ciphertext of message M.  
5. Decrypt (C, 1 2 3( , , )i i id d d ). Inputs the cighertext C and the private key 1 2 3( , , )i i id d d  of 

user ip . If ip A∈ , then the algorithm can decrypt the ciphertext via the private key 

1 2 3( , , )i i id d d  and output the plaintext M.  
3.3. Security Notions 

 The indistinguishable chosen ciphertext attack (IND-CCA) [12] presented by Goldwasser and 
Micali has been widely used to analyze the security of an encryption scheme. In this model, 
several queries are available to the attacker to model his capability. Subsequently, Rackhoff and 
Simon [13] enhanced it and proposed adaptively chosen ciphertext attack (IND-CCA2). In this 
section, we define adaptively chosen ciphertext security of the group oriented encryption scheme. 
Security is defined using the following game between an Attacker and Challenger. 

1. Setup. The Challenger initializes the system. The Challenger gives the Attacker the 
resulting system parameters and the public key PK . It keeps the SK to itself. 

2. Query phase 1. The Attacker adaptively issues decryption queries 1 2. , , mq q q . The 
Challenger responds with Decrypt (C, SK). 
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3. Challenge. Once the Attacker decides that Query phase 1 is over it outputs two 
equal length messages 0 1( , )M M  to the Challenger. The Challenger picks a random bit 

{0,1}e∈ , and encrypts the message eM . It gives ciphertext *C  as the challenge to the 
Attacker. 

4. Query phase 2. The Attacker continues to adaptively issue decryption queries 
1, ,m nq q+ . The Challenger responds as in the phase 1. These queries may be asked 

adaptively as in Query phase 1. The decryption query *
jq C=  is not permitted, 

where 0 j n≤ ≤ . 
5. Guess. Finally, the Attacker outputs a guess ' {0,1}e ∈  for e  and wins the game if 

'e e= .  
The encryption scheme is secure against chosen ciphertext attack, if the Attacker has a 

negligible advantage ' 1Pr( )
2

e eε = = −  to win the game. 

 
3.4. Complexity assumptions 
⎯ Computational Diffie-Hellman Assumption 
Given ag  and bg  for some *, qa b Z∈ , compute 1

abg G∈ . A ( , )τ ε -CDH attacker in 1G  is a 
probabilistic machine Ω  running in time τ  such that  

1
( ) Pr[ ( , , ) ]cdh a b ab

GSucc g g g g εΩ = Ω = ≥  
where the probability is taken over the random values a  and b . The CDH problem is 
( , )τ ε -intractable if there is no ( , )τ ε -attacker in 1G . The CDH assumption states that it is the case 
for all polynomial τ  and any non-negligibleε . 
 
⎯ Decisional Diffie-Hellman Assumption[11] 
We say that an algorithm π  that outputs {0,1}b∈  has advantage ε  in solving the 

Decisional Diffie-Hellman (DDH) problem in 1G  if  
| Pr[ ( , , , , ( , ) ) 0] Pr[ ( , , , , ) 0] |a b c abc a b cg g g g e g g g g g g Tπ π ε= − = ≥  

where the probability is over the random bit of π , the random choice of *, , qa b c Z∈ , and the 
random choice of 2T G∈ . The DDH problem is intractable if there is no attacker in 1G  can solve 
the DDH with non-negligible ε . 
 
⎯ k-Strong Diffie-Hellman (k-SDH) Assumption[10] 

  Given 
2

{ , , , , }
kx x xg g g g for a random number *

qx Z∈ , the attacker adaptively chooses random 
*
qc Z∈  and computes

1( )c xg
−+ . A ( , )τ ε -k-SDH attacker in 1G  is a probabilistic machine Ω  

running in time τ  such that 
2 1

1

( )( ) Pr[ ( , , , , , ) ]
kk sdh x x x c x

GSucc g g g g c g ε
−− +Ω = Ω = ≥  

We say the k-SDH problem is ( , )τ ε -intractable if there is no ( , )τ ε -attacker in 1G .  

⎯ k-Exponent (k-E) assumption [10]. 
  Given 

2

{ , , , , }
kx x xg g g g  for a random number *

qZx∈ , compute 
1kxg
+

. A ( , )τ ε -k-SDH 
attacker in 1G  is a probabilistic machine Ω  running in time τ  such that  

2 1

1
( ) Pr[ ( , , , , ) ]

k kk E x x x x
GSucc g g g g g ε

+− Ω = Ω = ≥  
We say the k-E problem is ( , )τ ε -intractable if there is no ( , )τ ε -attacker in 1G . 
 
4   Group oriented encryption scheme 
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4.1 Initialize 
Let 1G  be a cyclic multiplicative group generated by g , whose order is a prime q  and 2G  

be a cyclic multiplicative group of the same order q . A bilinear pairing is a map: 

2 1 2:e G G G× →  that can be efficiently computed. Define three cryptographic hash functions: 
*:{0,1} qH Z→     2: {0,1}lG G →    *

1 1: qH G Z→  
PKG chooses *

qa Z∈  and 2 1g G∈  uniformly at random, and computes 1
ag g= . The master 

private key is a , and the master public keys are 1 2( , )g g . 
4.2. KeyGen 

PKG chooses *
qZk ∈  uniformly at random for the group A, and then publishes 

k
APK g= and

2a k
AVK g=  as group A’s public key. The member ip ’s private key can be generated 

as follows: 
1. PKG chooses *

i qr Z∈  uniformly at random. 

2. compute and output ( )
1 2

i i iH ID r ar
id g g= , 2

iar
id g= , and ( )

3
i iH ID rak

id g g= . 
The member ip ’s private key is 1 2 3{ , , }i i i id d d d= , where iID  denotes the identity of ip . 

4.3. KeyVer 
  After receiving the private key distributed from PKG, the member ip  verifies the validity of the 
key by the following equation. 

?
( )

3 2( , ) ( , ) ( , )iH IDa
i A ie d g e VK g e g d=                       (1) 

If above equation holds, ip  accepts the private key, otherwise outputs ERROR message. We say 
the member ip  can verify the key since 

( )
3( , ) ( , )i iH ID ra ak a

ie d g e g g g=  
2 ( )( , ) ( , )i iH ID ara ke g g e g g=  

( )
2( , ) ( , )iH ID

A ie VK g e g d=  
4.4. Encrypt 

In order to encrypt a message {0,1}lM ∈  for the group A, the sender first chooses *
qs Z∈  

uniformly at random, and computes the ciphertext 

1 1( ( , ) )s
Ac G e g PK M= ⊕    2

sc g=   3 2
sc g=   4 1( )ksc H g=  

1( )
5

s hc g
−+= . 

The ciphertext for message M is 1 2 3 4 5( , , , , )c c c c c c= , where 1 2 3 4( || || || )h H c c c c= . The sender 
sends the ciphertext to all the members in the group A by broadcast over Internet, where a || b  
denotes concatenation of a and b . 
4.5. Decrypt 

After receiving the encrypted message 1 2 3 4 5( , , , , )c c c c c c= , the user ip A∈  decrypts the 
ciphertext as follows: 

1. compute 2 3 3 2 2 1( , ) ( , ) / ( , )i i iT e c d e c d e c d= . 
2. compute 1 ( )M c G T= ⊕ . 

We say the Decrypt is correct, since 
2 3 3 2 2 1( , ) ( , ) / ( , )i i iT e c d e c d e c d=  

( ) ( )
2 2( , ) ( , ) / ( , )i i i i i iH ID r ar H ID r ars ak s se g g g e g g e g g g=  

( ) ( )
2 2( , ) ( , ) ( , ) / ( , ) ( , )i i i i i iH ID r ar H ID r ars ak s s s se g g e g g e g g e g g e g g=  

( , )akse g g=  
Then ip  gets the message M= 1 ( )c G T⊕ . 
 
5   Security 

A group oriented encryption scheme is presented in [1]. This scheme is secure against 
adaptively chosen ciphertext attack. However, when two or more users work together, they can 
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forge a valid private key that can be used by any one. We assume that two users ,i jp p A∈ will 
cooperate with each other to forge a private key. User ip ’s private key is 
{ 1 2

i ir ar
id g g= , 2

iar
id g= , 3

irak
id g g= }, and jp ’s private key is 

{ 1 2
j jr ar

jd g g= , 2
jar

jd g= , 3
jrak

jd g g= }. They compute as follows. 
( ) / 2 ( ) / 21/ 2

1 1 1 2( ) i j i jr r a r r
k i jd d d g g+ += ⋅ =  

                          ( ) / 21/ 2
2 2 2( ) i ja r r

k i jd d d g += ⋅ =   
( ) / 21/ 2

3 3 3( ) i jr rak
k i jd d d g g += ⋅ = . 

It means that they have forged a valid private key 1 2 3{ , , }k k kd d d and this key can be used to decrypt 
any ciphertext encrypted for the group.  

In order to overcome this shortcoming, we present an improved scheme that is secure against 
collude attack in section 4. We say there exists collude attack if two or more users cooperate with 
each other to compute a new valid private key for designated user. In the improved scheme, we 
assume that ip ’s private key is { ( )

1 2
i i iH ID r ar

id g g= , 2
iar

id g= , ( )
3

i iH ID rak
id g g= }and jp ’s private key is 

{ ( )
1 2

j j jH ID r ar
jd g g= , 2

jar
jd g= , ( )

3
j jH ID rak

jd g g= }. These two users still perform above computing 
( ( ) ( ) ) / 2 ( ) / 21/ 2

1 1 1 2( ) i i j j i jH ID r H ID r a r r
k i jd d d g g+ += ⋅ =  

( ) / 21/ 2
2 2 2( ) i ja r r

k i jd d d g += ⋅ =  
( ( ) ( ) ) / 21/ 2

3 3 3( ) i i j jH ID r H ID rak
k i jd d d g g += ⋅ = , 

and send the result 1 2 3{ , , }k k kd d d to the user kp A∈  as private key. After receiving the private key, 
the user kp  can decrypt a ciphertext via this key. Since the private key is related to the identity of 
the receiver, we say that the private key that sent to kp  is not valid if it is not generated by 
using kp ’s identity kID . The user kp  can verify the key as we have mentioned in section 4.3. To 
the private key 1 2 3{ , , }k k kd d d , the user has ability to detect the collude attack since 

( )
3 2( , ) ( , ) ( , )kH IDa

k A ke d g e VK g e g d≠ . 
Then we have the following theorem. 
 
  Theorem1. Suppose H is a strong one way function. Then any two or more users can’t forge a 
valid private key for a designated user, i.e. our scheme is secure against collude attack. 
  Proof. Assume that there are two users ip  with identity iID  and j ip ≠  with identity j iID ≠  want 
to forge the private key of the user kp  whose identity is kID . The users ip  and jp  
choose *, qm n Z∈ , respectively. And then these two users perform as follows. 

( ( ) ( ) ) /( ) ( ) /( )1/( )
1 1 1 2( ) i i j j i jmH ID r nH ID r m n a mr nr m nm n

k i jd d d g g+ + + ++= ⋅ =  
( ) /( )1/( )

2 2 2( ) i ja mr nr m nm n
k i jd d d g + ++= ⋅ =  

( ( ) ( ) ) /( )1/( )
3 3 3( ) i i j jmH ID r nH ID r m nm n ak

k i jd d d g g + ++= ⋅ =  
They send 1 2 3{ , , }k k kd d d  to the user kp . As we have mentioned above, the private key can be used 
to decrypt a ciphertext encrypted for group A. Since 1 2 3{ , , }k k kd d d  is kp ’s private key, it means that 
the equation (1) holds. Then we have 

2( ( ) ( ) ) /( ) ( ) /( )( )( , ) ( , ) ( , )i i j j i jkmH ID r nH ID r m n a mr nr m nH IDak a a ke g g g e g g e g g+ + + +=  
( ) ( ) ( )( )( , ) ( , )i i j j k i jmH ID r nH ID r H ID mr nre g g e g g+ += . 

It means that ( ) ( ) ( )i j kH ID H ID H ID= = . Since H  is assumed to be a strong one way function, we 
have i j kID ID ID= = . It is contradictory to our assumption. In other words, any two or more users 
can’t forge a valid private key for any designated user. 

■ 
  As we have mentioned, our encryption scheme is secure against adaptively chosen ciphertext 
attack, i.e. IND-CCA2. Then we give following theorem. 
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Theorem 2: Suppose the k-E and k-SDH assumption holds. Then our encryption scheme is 
secure against adaptively chosen ciphertext attack (IND-CCA2). 

Proof: Assume that if the attacker Eve can break the encryption scheme via chosen ciphertext 
attack, we can prove that there exists challenger Alice that can solve k-E or K-SDH problems. In 
other words, given , , , , ,a s sb kg g g g g

1( )( , )h sh g
−+ , Alice can compute ( , )akse g g  or 

' 1' ( )( , )h sh g
−+ . 

The challenger Alice interacts with Eve by simulating G , H  and 1H  random oracles and 
Decrypt oracle. It gives the receiver kg  and ag  as the public keys. 
a) Seek Phase 

G  queries: To every new query iq , except below special case, Alice chooses {0,1}l
iG ∈  

uniformly at random as the answer and preserves the data ( , )i iq G  in _1List . 
H  queries: To every new query ih , Alice chooses *

i qH Z∈  uniformly at random as the 
answer and preserves the data ( , )i ih H  in _ 2List . 

1H  queries: To every new query ig , except below special case, Alice chooses 1 1
iH G∈  

uniformly at random as the answer and preserves the data 1( , )i
ig H  in _ 3List . 

Decrypt queries: When attacker Eve makes a query on 1 2 3 4 5( , , , , )i i i i i ic c c c c c= , if it didn’t ask 
the H  before, the ciphertext will be rejected since both H  and 1 2 3 4( || || || )i i i i ih H c c c c=  are 
random. However, 2 5( , , )ih c c  should satisfy the following equation 

2 5( , ) ( , )ihe g c c e g g=                                   (2). 
Since 1 2 3 4( || || || )i i i i ih H c c c c=  is a random number, the probability of equation holding is 
negligible, that is to say if the attacker Eve hasn’t queried H  with 1 2 3 4( , , , )i i i ic c c c , the 
probability of the challenger Alice rejecting the valid ciphertext is negligible. Otherwise, Alice 
can seek ig  that satisfies the following equation in _ 3List . 

2( , ) ( , )k
ie g g e g c=                                    (3) 

According to the above equation (3), ig  should satisfy 2
k

ig c= . If ig  exists, the challenger Alice 
computes ( , )a

ie g g  and searches the matching answer iG  of the query ( , )a
i iq e g g=  in _1List  

and then outputs 1i i iM c G= ⊕  as the corresponding Decrypt answer. If ig  doesn’t exist, the 
challenger Alice chooses iG  uniformly at random and defines ( )i iG q G= . Then the challenger 
Alice computes  

1 1 ( )i i i i iM c G c G q= ⊕ = ⊕  
as the corresponding Decrypt answer.  

Hereafter, when the attacker Eve queries 1H  with 2
k

ig c= , Alice answers with matching 1
iH . 

When the attacker Eve queries G  with ( , )a
i iq e g g= , Alice answers with matching iG . 

Considering the randomness of these oracles, the attacker can’t distinguish the simulative answer 
from the actual results. With above description, we say that the challenger Alice perfectly 
simulates G , H , 1H  and Decrypt. 
b) Challenge Phase 

The attacker Eve adaptively outputs two equal length messages 0 1( , )M M . The challenger Alice 
chooses {0,1}lT ∈ , *

qU Z∈  and {0,1}j∈  uniformly at random and computes 

1 jc T M= ⊕    2
sc g=    3

sbc g=   4c U=   
1( )

5
h sc g

−+= . 
Let  
        ( ( , ))ks aT G e g g=   1( )ksU H g=   1 2 3 4( , , , )H c c c c h=     

When Eve queries H  with 1 2 3 4( , , , )c c c c , Alice uses h  as the corresponding answer. When Eve 
queries 1H  with ksg , which can be detected by equation (3), the challenger uses U  as the 
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answer. When Eve queries G  with ( , )ks a
iq e g g= , Alice uses T  as the answer. Because of 

T andU ’s randomness, the attacker Eve can’t tell the simulative answer from actual results. 
c) Guess Phase 

It is the same to simulate the oracles G , H and 1H  as above. 
Decrypt queries: Assume that the attacker Eve has the ciphertext ' ' ' ' '

1 2 3 4 5( , , , , )c c c c c . If Eve has not 
queried random oracle H  with ' ' ' '

1 2 3 4( , , , )c c c c  or the ciphertext doesn’t satisfy the equation (2), it 
will be rejected. Otherwise, if ' '

2 3 2 3( , ) ( , )c c c c≠ , the simulation approach is as the Seek Phase. 
If ' '

2 3 2 3( , ) ( , )c c c c= , the challenger Alice uses '
1 1jc M c⊕ ⊕  as the answer. The attacker Eve can’t 

tell the simulative result from the actual considering that  
'

1 1jc M c⊕ ⊕ j jT M M T M= ⊕ ⊕ ⊕ ⊕ . 
All above simulation process is perfect, so the attacker Eve can’t tell the simulative result from the 
actual. 

According to the assumption, the attacker Eve can give the right answer about j  with 
non-negligible advantageε . Then we can say that the probability of Eve using sk

ig g=  and 
( , )ks a

iq e g g=  to query 1H  and G  respectively or constructing the valid ciphertext 
' ' '
1 2 3 4 5( , , , , )c c c c c 1 2 3 4 5( , , , , )c c c c c≠  isε .  
To ciphertext ' ' ' ' '

1 2 3 4 5( , , , , )c c c c c , the probability of ' '
2 3 2 3( , ) ( , )c c c c=  is negligible because 2 3( , )c c  

is random to the attacker Eve in the phase of simulation. In the Guess Phase, if Eve didn’t 
construct the ciphertext that satisfies ' ' '

1 2 3 4 5( , , , , )c c c c c 1 2 3 4 5( , , , , )c c c c c≠ , then the decrypt result 
gotten from the Decrypt oracle which satisfies ' '

2 3 2 3( , ) ( , )c c c c≠  is the plaintext of 
' ' ' ' '
1 2 3 4 5( , , , , )c c c c c . According the simulation process, the plaintext information in 1 jc T M= ⊕  is not 

been leaked out since T  is isolated from ( )iG q . 
 In the process of simulating oracle G , the challenger answers all the queries using random 
numbers which isolates from T  as long as the query is not ( , )ks a

iq e g g= , so the probability of 
collision can be neglected. On the other hand, because 1 jc T M= ⊕  and T  are chosen uniformly 
at random, it is impossible to get any plaintext information directly from 1 2 3 4 5( , , , , )c c c c c . 
Furthermore, we can see from the process of simulating oracle H and 1H  that the attacker can’t 
get any information from these two oracles. As indicated above, only three aspects may leak out 
the information about the plaintext. The first is the answer which oracle G  outputs for the 
query ( , )ks a

iq e g g= . The second is the matching answer of the query ks
ig g= , and the third is the 

matching answer of the decrypt query ' ' '
1 2 3 4 5( , , , , )c c c c c 1 2 3 4 5( , , , , )c c c c c≠ . If the attacker Eve queries 

the oracle 1H with sk
ig g= , the challenger Alice can detect and find it by the equation (3). Then 

Alice can compute ( , )a
ie g g  via the Eve. If the attacker Eve uses valid ciphertext 

' ' '
1 2 3 4 5( , , , , )c c c c c 1 2 3 4 5( , , , , )c c c c c≠  to query Decrypt oracle, then the ciphertext must satisfy the 

equation (2), i.e.  
' '

2 5( , ) ( , )he g c c e g g= , 
where 'h h≠ . With the properties of bilinear pairing, we have

' 1' ( )
5

h sc g
−+= . The challenger Alice 

can compute 
' 1' ( )( , )h sh g

−+  via the information fed back from the attacker Eve.  
 From above description, if the attacker Eve can output j ’s right answer with a non-negligible 

advantage ε , then the challenger Alice can compute ( , )akse g g  or 
' 1' ( )( , )h sh g

−+  with 
non-negligible probability. It is contradictory to the complexity assumptions. 

■ 
 
6   Conclusions 
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  In an open network environment, clients maybe form some special groups because 
of reasonable relationship. For example, the clients in a virtual community can be 
considered as such group. Then, how to protect the group communication becomes a 
crucial problem, since lots of clients are involved in the communication and the 
instance of the network is variable, even worse, a malicious client is waiting a chance 
to attack the communication by any possible artifice. In this paper, we present a 
group-based encryption scheme which can withstand adaptively chosen ciphertext attack and 
collude attack. Finally, we prove its security in random oracle model. 
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