
A Meet-in-the-Middle Collision Attack
Against the New FORK-256

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK.
m.saarinen@rhul.ac.uk

Abstract. We show that a 2112.9 collision attack exists against the FORK-256
Hash Function. The attack is surprisingly simple compared to existing published
FORK-256 cryptanalysis work, yet is the best known result against the new,
tweaked version of the hash. The attack is based on “splitting” the message
schedule and compression function into two halves in a meet-in-the-middle
attack. This in turn reduces the space of possible hash function results, which
leads to significantly faster collision search. The attack strategy is also applicable
to the original version of FORK-256 published in FSE 2006.

Keywords: FORK-256, Hash Function Cryptanalysis, Meet-in-the-middle
Attack.

1 Introduction

FORK-256 is a dedicated hash function that produces a 256-bit hash from a message of
arbitrary size. The original version of FORK-256 was presented in the first NIST hash
workshop and at FSE 2006 [1]. Several attacks have been outlined against this original
version, namely:

– Matusiewicz, Contini, and Pieprzyk attacked FORK-256 by using the fact that the
functions f and g in the step function were not bijective in the original version.
They used microcollisions to find collisions of 2-branch FORK-256 and collisions
of full FORK-256 with complexity of 2126.6 in [3].

– Independently, Mendel, Lano, and Preneel published the collision-finding attack on
2-branch FORK-256 using microcollisions and raised possibility of its expansion
[5].

– At FSE 2007 [4], Matusiewicz et al. published the result of [3] and another attack
which finds a collision with complexity of 2108 and memory of 264.

In response to these attacks the authors of FORK-256 have recently proposed a
new, tweaked version of FORK-256 [2], which is supposedly resistant to all before-
mentioned attacks. We will present a simple attack which is the best currently known
against the new version of FORK-256, and also applicable to the previous version.



2 Description of New FORK-256

New FORK-256 (hereafter FORK-256) is a Merkle-Damgård hash with a 256-bit (8-
word) internal state and a 512-bit (16-word) message block. Padding and chaining de-
tails are similar to those of the SHA and the MD families of hash functions.

FORK-256 is entirely built on shift, exlusive-or, and addition operations on 32-bit
words. In this paper we use the following notation for these operations:

x⊕ y Bitwise exclusive-or between x and y.
x ¢ y Equal to (x + y) mod 232.
x ¯ y Equal to (x− y) mod 232.

x ≪ y Circular left shift of 32-bit word x by y bits.

The compression function of FORK-256 consists of four independent “branches”.
Each one these branches takes in the 256-bit (8-word) chaining value and a 512-bit
(16-word) message block to produce a 256-bit result. These four branch results are
combined with the chaining value to produce the final compression function result.
Figure 1 illustrates the branch structure.

CV i−1

CV i

Branch
1

Branch
2

Branch
3

Branch
4

Fig. 1. Overall structure of four branches of FORK-256.

The four branches are structurally equivalent, but differ in scheduling of the message
words and round constants. Each branch is computed in eight steps, 0 ≤ s ≤ 7. Each
step utilizes two message words and two round constants.

The scheduling of the message block words M [0 . . . 15] in each branch is given in
Table 1. Round constants δ[0 . . . 15] are given in Table 2 and their schedule in Table 3.
The original description uses auxiliary tables σ and ρ; for convenience we use a (“left



word”), b (“right word”), α (“left constant”), and β (“right constant”) in this description
as follows:

a
(s)
j = M [σj(2s)]

b
(s)
j = M [σj(2s + 1)]

α
(s)
j = δ[ρj(2s)]

β
(s)
j = δ[ρj(2s + 1)]

FORK-256 uses two 32-bit Boolean functions f and g, which were redefined for
the New FORK-256 to avoid microcollisions.

f(x) = x⊕ (x ≪ 15)⊕ (x ≪ 27)
g(x) = x⊕ ((x ≪ 7) ¢ (x ≪ 25)).

Following the convention of the FORK-256 specification, let CV i[0..7] be the result
of the compression function iteration i and CV 0[0..7] the Initialization Vector, given in
Table 4.

Each branch j processes eight input words R
(0)
j [t] = CV i[t] to eight output words

R
(8)
j [t], 0 ≤ t ≤ 7. Figure 2 illustrates the step function. For 0 ≤ s ≤ 7:

t1 = f(R(s)
j [0] ¢ a

(s)
j )

t2 = g(R(s)
j [0] ¢ a

(s)
j ¢ α

(s)
j )

t3 = g(R(s)
j [4] ¢ b

(s)
j )

t4 = f(R(s)
j [4] ¢ b

(s)
j ¢ β

(s)
j )

R
(s+1)
j [0] = R

(s)
j [7]⊕ (t4 ≪ 8)

R
(s+1)
j [1] = R

(s)
j [0] ¢ a

(s)
j ¢ α

(s)
j

R
(s+1)
j [2] = R

(s)
j [1] ¢ t1

R
(s+1)
j [3] = (R(s)

j [2] ¢ (t1 ≪ 13))⊕ t2

R
(s+1)
j [4] = R

(s)
j [3]⊕ (t2 ≪ 17)

R
(s+1)
j [5] = R

(s)
j [4] ¢ b

(s)
j ¢ β

(s)
j

R
(s+1)
j [6] = R

(s)
j [5] ¢ t3

R
(s+1)
j [7] = (R(s)

j [6] ¢ (t3 ≪ 3))⊕ t4

The final result of the compression function for each word 0 ≤ t ≤ 7 is

CV i+1[t] = CV i[t] ¢ ((R(8)
1 t ¢ R

(8)
2 [t])⊕ (R(8)

3 [t] ¢ R
(8)
4 [t])).

If i is the final iteration, CV i+1 is the final hash value.



3 Observations

Each branch of the compression function uses each message word M [0 . . . 15] exactly
once. Due to diffusion properties of the step function, message words that are scheduled
for the last steps do not affect all output words.

Consider the sixth output word of each branch, R
(8)
j [5]. The last step is defined as:

R
(8)
j [5] = R

(7)
j [4] ¢ b

(7)
j ¢ β

(7)
j .

Furthermore we “open up” R
(7)
j [4] in the previous step:

R
(7)
j [4] = R

(6)
j [3]⊕ (g(R(6)

j [0] ¢ a
(6)
j ¢ β

(6)
j ) ≪ 17).

Ignoring the round constants α
(s)
j and β

(s)
j , we can observe that the only message

words in steps 6 and 7 affecting R
(8)
j [5] are a

(6)
j and b

(7)
j , the latter having a linear

effect. Constants b
(6)
j and a

(7)
j have no effect in the computation of this word.

By thus inspecting the step function and the message word schedule in Table 1, it is
easy to verify that Rj [5] satisfies the following properties:

Branch 1: R
(8)
1 [5] is independent of M [14] = a

(7)
1 .

Branch 2: R
(8)
2 [5] is linearly dependent on M [1] = b

(7)
2 .

Branch 3: R
(8)
3 [5] is independent of M [1] = a

(7)
3 .

Branch 4: R
(8)
4 [5] is independent of M [14] = b

(6)
4 .

R
(s)
j [0]

R
(s+1)
j [1]

R
(s)
j [1]

R
(s+1)
j [2]

R
(s)
j [2]

R
(s+1)
j [3]

R
(s)
j [3]

R
(s+1)
j [4]

R
(s)
j [4]

R
(s+1)
j [5]

R
(s)
j [5]

R
(s+1)
j [6]

R
(s)
j [6]

R
(s+1)
j [7]

R
(s)
j [7]

R
(s+1)
j [0]

a
(s)
j

f

≪13

α
(s)
j

g

≪17

b
(s)
j

g

≪ 3

β
(s)
j

f

≪ 8

Fig. 2. The new FORK-256 step iteration.



We shall use these simple observations to construct an attack against FORK-256.
We note that due to similarities between the old and new versions of FORK-256, the
same four observations – and the same general attack – apply to both versions, although
there are important technical differences between the old and the new version.

4 A Collision Attack

The main strategy of the attack is to use a fast method for finding messages that hash
into a significantly smaller subset of possible hash values. We do this by forcing the
sixth word of the compression function to remain constant over the hash function itera-
tion, CV 1[5] = CV 0[5], thereby generating hashes in a subset of size 2224. Assuming
uniform distribution, a full collision can be expected after

√
π
2 ∗ 2

224
2 ≈ 2112.3 hashes

in the small subset have been found.
The value of CV 1[5] is combined from the four branches and the initialization vec-

tor as follows:

CV 1[5] = CV 0[5] ¢ ((R(8)
1 5 ¢ R

(8)
2 [5])⊕ (R(8)

3 [5] ¢ R
(8)
4 [5])).

By substituting CV 1[5] = CV 0[5] and regrouping branches 2 and 3 on the left side
and branches 1 and 4 on the right side, we obtain the following necessary and sufficient
condition for CV 1[5] = CV 0[5]:

R
(8)
2 [5] ¯ R

(8)
3 [5] = R

(8)
1 [5] ¯ R

(8)
4 [5].

Our attack is based on choosing two message words M [1] and M [14] in a specific
way to satisfy CV 1[5] = CV 0[5], which is possible due to the observations given in
the previous section. The values of the fourteen other message words are arbitrary and
can be chosen at random (as long as they remain constant through the two phases of
the attack). The two phases can be repeated any number of times to produce sufficient
amount of hashes in the subset.

4.1 First Phase

Set M [1] = 0 and loop over M [14] = 0, 1, 2, · · · , 232 − 1. Compute branches 2 and 3
for each M [14] to obtain x = R

(8)
2 5 ¯ R

(8)
3 [5]. Place x and M [14] into a look-up table

so that the value of M [14] can be immediately retrieved based on the corresponding x
value (i.e. M [14] is indexed by x).

Note that since the mapping from M [14] to x is not surjective, about 1/e ≈ 36.8%
of the values of x will never occur. On the other hand, many x can be obtained with
more than one value of M [14]. Using a straightforward lookup cannot handle the latter
situation, but simple data structures with negligible expansion exist that can be used for
these cases. The table does not need to be larger than 16 gigabytes.



4.2 Second Phase

Loop over the 232 values of M [1]. Compute branches 1 and 4 for each M [1] to obtain
y = R

(8)
1 [5] ¯ R

(8)
4 [5] ¢ M [1]. The M [1] term is included due to the linear dependence

of R
(8)
2 [5] on it (this is also why M [1] is set to zero in the first phase).

In each step, perform a look-up. If a match or matches x = y are found, the nec-
essary and sufficient condition is satisfied and we have found a message (or rather,
a pair of M [1] and M [14] values) that produces one or more hashes that satisfy
CV 1[5] = CV 0[5].

4.3 Runtime Analysis

Each loop step in the second phase produces one match in the lookup table on average.
This is due to the fact that even though the mapping is not surjective, there is a total of
232 M [14] entries in the table. Hence approximately 232 hashes with the property are
produced in the second phase.

Since computation of only two branches out of four are needed, the computational
effort in the first and second phases is roughly equivalent to 231 full hash computations
each, or 232 total. If the full 8 words in phase 1 are not stored, branches 2 and 3 need
to be computed again to reproduce a full hash, bringing the total number to 3 ∗ 231.
The average cost of producing a hash in the 2224 subset therefore is 3

2 hash function
invocations.

Unfortunately we have been unable to come up with a method of utilizing “mem-
oryless” random-walk collision search methods such as those discussed in [6]. This
is due to the fact that the algorithm outlined above only works in “batches” of 232

to obtain a favorable average cost for each hash with the desired property CV 1[5] =
CV 0[5]. The memory requirement is therefore equivalent to running time requirement,
3
2

√
π
2 ∗ 2

224
2 = 2112.9.

5 Further Work

The same observations about the effects of M [1] and M [14] on the final hash can be
easily be adopted into a pre-image attack that recovers the values of these two message
words with 232 effort, rather than 264 as expected in a brute-force search.

It may be possible to “fix” more than 32 bits by using additional words of keying
material besides M [1] and M [14] in the attack. This would naturally lead to a more
effective overall collision attack. Terms M [0] and M [5] appear to be good candidates
as they are only used in steps 5 and 6 of branches 2 and 3, respectively, and are therefore
not fully diffused at the end of step 7.

6 Conclusion

We have presented a 2112.9 collision attack against the new, improved version of the
hash function FORK-256. This represents a speed improvement of factor 215.4 over a
straightforward collision search. The attack strategy is surprisingly simple, and can also
be applied against the original version of FORK-256 in slightly modified form.



References

1. D. HONG, D. CHANG, J. SUNG, S. LEE, S. HONG, J. LEE, D. MOON, AND S. CHEE.
“A New Dedicated 256-Bit Hash Function: FORK-256.” FSE 2006, LNCS 4047, Springer-
Verlag, pp. 195 – 209, 2006.

2. D. HONG, D. CHANG, J. SUNG, S. LEE, S. HONG, J. LEE, D. MOON, AND S. CHEE.
“New FORK-256.” Cryptology ePrint Archive 2007/185, Jul., 2007.

3. K. MATUSIEWICZ, S. CONTINI, AND J. PIEPRZYK. “Weaknesses of the FORK-256 Com-
pression Function.” Cryptology ePrint Archive 2006/317 (Second version), Nov., 2006.

4. K. MATUSIEWICZ, T. PEYRIN, O. BILLET, S. CONTINI, AND J. PIEPRZYK. “Cryptanaly-
sis of FORK-256.” Preproceeding of FSE 2007, 2007.

5. F. MENDEL, J. LANO, AND B. PRENEEL. “Cryptanalysis of Reduced Variants of the
FORK-256 Hash Function.” CT-RSA, LNCS 4377, Springer-Verlag, pp. 85 – 100, 2007.

6. P. VAN OORSCHOT AND M. WIENER. “Parallel collision search with cryptanalytic applica-
tions.” Journal of Cryptology, 12 (1999), pp. 1 – 28, 1999.



Step Branch 1 Branch 2 Branch 3 Branch 4
s a

(s)
1 b

(s)
1 a

(s)
2 b

(s)
2 a

(s)
3 b

(s)
3 a

(s)
4 b

(s)
4

0 M [0] M [1] M [14] M [15] M [7] M [6] M [5] M [12]
1 M [2] M [3] M [11] M [9] M [10] M [14] M [1] M [8]
2 M [4] M [5] M [8] M [10] M [13] M [2] M [15] M [0]
3 M [6] M [7] M [3] M [4] M [9] M [12] M [13] M [11]
4 M [8] M [9] M [2] M [13] M [11] M [4] M [3] M [10]
5 M [10] M [11] M [0] M [5] M [15] M [8] M [9] M [2]
6 M [12] M [13] M [6] M [7] M [5] M [0] M [7] M [14]
7 M [14] M [15] M [12] M [1] M [1] M [3] M [4] M [6]

Table 1. Message word schedule for FORK-256. It is easy to observe that in branch 2 and branch
3, M [1] only affects the result in the last step. M [14] is used in the last and next-to-last steps in
branches 1 and 4, correspondingly. These observations are used in the attack.

δ[0] = 0x428a2f98 δ[1] = 0x71374491
δ[2] = 0xb5c0fbcf δ[3] = 0xe9b5dba5
δ[4] = 0x3956c25b δ[5] = 0x59f111f1
δ[6] = 0x923f82a4 δ[7] = 0xab1c5ed5
δ[8] = 0xd807aa98 δ[9] = 0x12835b01

δ[10] = 0x243185be δ[11] = 0x550c7dc3
δ[12] = 0x72be5d74 δ[13] = 0x80deb1fe
δ[14] = 0x9bdc06a7 δ[15] = 0xc19bf174

Table 2. Round constants.

Step Branch 1 Branch 2 Branch 3 Branch 4
s α

(s)
1 β

(s)
1 α

(s)
2 β

(s)
2 α

(s)
3 β

(s)
3 α

(s)
4 β

(s)
4

0 δ[0] δ[1] δ[15] δ[14] δ[15] δ[14] δ[14] δ[15]
1 δ[2] δ[3] δ[13] δ[12] δ[13] δ[12] δ[12] δ[13]
2 δ[4] δ[5] δ[11] δ[10] δ[11] δ[10] δ[10] δ[11]
3 δ[6] δ[7] δ[9] δ[8] δ[9] δ[8] δ[8] δ[9]
4 δ[8] δ[9] δ[7] δ[6] δ[7] δ[6] δ[6] δ[7]
5 δ[10] δ[11] δ[5] δ[4] δ[5] δ[4] δ[4] δ[5]
6 δ[12] δ[13] δ[3] δ[2] δ[3] δ[2] δ[2] δ[3]
7 δ[14] δ[15] δ[1] δ[0] δ[1] δ[0] δ[0] δ[1]

Table 3. Round constant schedule.

CV 0[0] = 0x6a09e667 CV 0[1] = 0xbb67ae85
CV 0[2] = 0x3c6ef372 CV 0[3] = 0xa54ff53a
CV 0[4] = 0x510e527f CV 0[5] = 0x9b05688c
CV 0[6] = 0x1f83d9ab CV 0[7] = 0x5be0cd19

Table 4. Initialization Vector.


