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Abstract. In this paper, for a prime p ≡ 3 (mod 4) and an odd n, a new family of almost
perfect nonlinear mappings over the finite field Fpn is presented. These mappings have the form

as f(x) = ux
pn−1

2 −1 + xpn−2, and contain the ternary APN mappings proposed by Ness and
Helleseth as a special case. For p ≥ 7, these mapping are proven to be CCZ-inequivalent to all
known APN power mappings.

1. Introduction and Preliminaries

To efficiently resist against differential attacks [9], cryptographical functions used as S-boxes
in block ciphers should have low differential uniformity. In this sense a class of mappings with the
smallest possible differential uniformity, almost perfect nonlinear (APN) mappings, is introduced
as ones opposing an optimum resistance to the differential cryptanalysis [24].

Let Fpn denote a finite field with pn elements, where p is a prime. A function f from Fpn

to itself is called almost perfect nonlinear if, for every a 6= 0 and every b in Fpn , the function
f(x+a)−f(x) = b admits at most two solutions. Few APN mappings are known, and all known
monomial APN power mappings are listed as in Table 1.

Until recently, the known constructions of APN mappings are EA-equivalent to power map-
pings over finite fields. Two functions f1 and f2 are called extended affine equivalent (EA-
equivalent) if f2 = A1 ◦ f1 ◦ A2 + A, where mappings A1, A2, A are affine and A1, A2 are
permutations. Up to EA-equivalent, if f1 is not affine, then f1 and f2 have the same algebraic
degree. The mappings f1 and f2 are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent)
if the graphs of f1 and f2, that is, the subsets of {(x, f1(x)) |x ∈ Fpn} and {(x, f2(x)) |x ∈ Fpn}
of Fpn × Fpn , are affine equivalent. Hence, f1 and f2 are CCZ-equivalent if and only if there
exists an affine automorphism L = (L1, L2) of Fpn × Fpn such that

y = f1(x) ⇐⇒ L2(x, y) = f2(L1(x, y)).

CCZ-equivalence is a more general equivalent relation of functions than EA-equivalence, and it
keeps APN properties of functions, i.e., if f1 and f2 are CCZ-equivalent, then f1 is APN if and
only if f2 is APN [10]. By applying CCZ-transformation of functions [10], new classes of binary
APN functions EA-inequivalent to power functions are found in [7]. However, these functions are
CCZ-equivalent to Gold power mappings. The first examples of APN functions CCZ-inequivalent
to power mappings are introduced in [15], and they are two quadratic binomials over F210 and
F212 , respectively. Recently, binary APN functions are extensively studied, and some functions
are proven to be CCZ-inequivalent to all known APN functions [1]-[6]. Some nonbinary APN
mappings are also found in [14, 18, 19].
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Table 1 Known monomial APN power mappings over Fpn .

Functions Exponents d Conditions References

Kloosterman pn − 2 p = 2 and n is odd, or p > 2 and p ≡ 2 (mod 3) [8] [24] [19]

Gold 2i + 1 p = 2, gcd (i, n) = 1 [17]

Kasami 22i − 2i + 1 p = 2, gcd (i, n) = 1 [20] [21]

Welch 2t + 3 p = 2, n = 2t + 1 [11]

Niho 2t + 2t/2 − 1 for even t p = 2, n = 2t + 1 [13]

2t + 2
3t+1

2 −1 for odd t

Inverse 22t − 1 p = 2, n = 2t + 1 [8] [24]

Dobbertin 24i + 23i + 22i + 2i − 1 p = 2, n = 5i [12]

Helleseth Sandberg pn−1
2

− 1 p ≡ 3, 7 (mod 20), pn > 7, pn 6= 27 and n is odd [19]

Dobbertin et. al. 3(n+1)/2−1
2

p = 3, n ≡ 3 (mod 4) [14] [16]

Felke 3(n+1)/2−1
2

+ 3n−1
2

p = 3, n ≡ 1 (mod 4)

Dobbertin et. al. 3n+1−1
8

p = 3, n ≡ 3 (mod 4) [14]
3n+1−1

8
+ 3n−1

2
p = 3, n ≡ 1 (mod 4)

Helleseth pn+1
4

+ pn−1
2

pn ≡ 3 (mod 8) [18]

Rong pn+1
4

pn ≡ 7 (mod 8)

Sandberg 2pn−1
3

pn ≡ 2 (mod 3)
pn − 3 p = 3, n > 1, n is odd

Trival 3 p > 3 [19]

In this paper, for a prime p ≡ 3 (mod 4) and an odd n, we study a class of binomial APN
mappings having the form as

f(x) = ux
pn−1

2
−1 + xpn−2 (1)

over Fpn , where the element u ∈ Fpn satisfies

χ(u + 1) = χ(u− 1) = −χ(5u + 3), or χ(u + 1) = χ(u− 1) = −χ(5u− 3). (2)

When p = 3, the proposed family is exactly that found in [23]. Furthermore, for p ≥ 7, these
functions are proven to be CCZ-inequivalent to all known APN power functions.

The remainder of this paper is organized as follows. Section 2 proves the proposed functions
are APN. Section 3 studies the inequivalence between these functions and known APN functions.
Section 4 concludes the study.

2. A New Family of APN mapping over Fpn

In this section, a family of functions defined by Equality (1) will be proven to be APN.
The following lemma in [22] on page 223 will be used to prove result in this paper.
Lemma 1: Let f(x) ∈ Fpn [x] be of degree d ≥ 1 with gcd(d, pn) = 1 and let χ be a nontrivial

character of Fpn . Then

|
∑

c∈Fpn

χ(f(c))| ≤ (d− 1)pn/2.

The quadratic character on Fpn is defined by

χ(x) =





1, if x is a square in Fpn ,
−1, if x is a nonsquare in Fpn ,
0, if x = 0.

Thus, one has χ(x) = x
pn−1

2 .
When p = 3 and n ≥ 3 is odd, one has −χ(5u + 3) = −χ(5u − 3) = χ(u), and there exist

elements u satisfying the condition in Equality (2) [23]. The number of such elements u for other
cases is characterized by the following lemma.
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Lemma 2: For an integer n ≥ 3 and p ≥ 7, let N be the number of elements u ∈ Fpn satisfying
the condition in Equality (2). Then,

1
8
(3pn − 37pn/2 − 152) ≤ N ≤ 1

8
(3pn + 37pn/2 + 136).

Proof. Let N1 be the number of elements u ∈ Fpn satisfying

χ(u + 1) = χ(u− 1) = −χ(5u + 3) = 1,

and Γ the set consisting of all zeroes of the three polynomials u + 1, u − 1 and 5u + 3. Then,
one has |Γ| = 3. By Lemma 1, one has

8N1 =
∑

u∈Fpn\Γ
(1 + χ(u + 1))(1 + χ(u− 1))(1− χ(5u + 3))

=
∑

u∈Fpn\Γ
1 +

∑
u∈Fpn\Γ

χ(u + 1) +
∑

u∈Fpn\Γ
χ(u− 1)− ∑

u∈Fpn\Γ
χ(5u + 3)

+
∑

u∈Fpn\Γ
χ(u2 − 1)− ∑

u∈Fpn\Γ
χ((u + 1)(5u + 3))− ∑

u∈Fpn\Γ
χ((u− 1)(5u + 3))

− ∑
u∈Fpn\Γ

χ((u + 1)(u− 1)(5u + 3))

≥ (pn − 3)− 3 · 3− 3 · (pn/2 + 3)− (2pn/2 + 3)
= pn − 5pn/2 − 24,

and
8N1 ≤ (pn − |Γ|) + 3 · |Γ|+ 3 · (pn/2 + |Γ|) + (2pn/2 + |Γ|)

= pn + 5pn/2 + 6|Γ|
≤ pn + 5pn/2 + 18.

Let N2, N3 and N4 be the number of elements u ∈ Fpn satisfying χ(u+1) = χ(u−1) = −χ(5u+
3) = −1, χ(u + 1) = χ(u − 1) = −χ(5u − 3) = 1 and χ(u + 1) = χ(u − 1) = −χ(5u − 3) = −1
respectively.

Similarly, one has

1
8(pn − 5pn/2 − 24) ≤ Ni ≤ 1

8(pn + 5pn/2 + 18), i = 2, 3, 4.

Let N5 and N6 be the number of elements u ∈ Fpn satisfying χ(u + 1) = χ(u− 1) = −χ(5u +
3) = −χ(5u − 3) = 1 and χ(u + 1) = χ(u − 1) = −χ(5u + 3) = −χ(5u − 3) = −1 respectively.
It can be similarly proven that

1
16(pn − 17pn/2 − 64) ≤ Ni ≤ 1

16(pn + 17pn/2 + 56)

for i = 5, 6.
Thus, the range of the value N can be measured as follows:

N = N1 + N2 + N3 + N4 −N5 −N6

≥ 4 · 1
8(pn − 5pn/2 − 24)− 2 · 1

16(pn + 17pn/2 + 56)
= 1

8(3pn − 37pn/2 − 152)

and
N ≤ 4 · 1

8(pn + 5pn/2 + 18)− 2 · 1
16(pn − 17pn/2 − 64)

= 1
8(3pn + 37pn/2 + 136).

This finishes the proof. ¤
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Remark 1: For n ≥ 3 and p ≥ 7, one has

N ≥ (3pn − 37pn/2 − 152)/8
> (3× 7n/2pn/2 − 37pn/2 − 152)/8
= (17pn/2 − 152)/8
> (17× 18− 152)/8
> 19.

This shows that in this case, there also exist elements u satisfying the condition in Equality (2).
When n and p are large enough, N is about as large as 3pn

8 .

The functions defined by Equality (1) can be proven to be APN for suitable parameters p, n
and u as the following theorem, by applying a similar method as in [19, 23].

Theorem 1: For an odd n ≥ 3 and a prime p with p ≡ 3(mod 4), if u ∈ Fpn satisfies the
condition in Equality (2), then the mapping f(x) defined by Equality (1) is APN.

Proof: To finish the proof, it is sufficient to prove the equation f(x + a)− f(x) = b, i.e.,

u(x + a)
pn−1

2
−1 + (x + a)pn−2 − (ux

pn−1
2

−1 + xpn−2) = b (3)

has at most two solutions for any given a 6= 0 and b ∈ Fpn . In the following, the number of
solutions to Equation (3) will be investigated.

When x 6= 0 and −a, multiplying both sides of (3) by (x + a)x implies

bx2 + (ab + uχ(x)− uχ(x + a))x + a(uχ(x) + 1) = 0. (4)

That is to say
1) (χ(x + a), χ(x)) = (1, 1):

bx2 + abx + a(u + 1) = 0; (5)

2) (χ(x + a), χ(x)) = (−1,−1):

bx2 + abx + a(1− u) = 0; (6)

3) (χ(x + a), χ(x)) = (1,−1):

bx2 + (ab− 2u)x + a(1− u) = 0; (7)

4) (χ(x + a), χ(x)) = (−1, 1):

bx2 + (ab + 2u)x + a(1 + u) = 0. (8)

On the other hand,
i) when x = 0, one has

ua
pn−1

2
−1 + apn−2 = b ⇐⇒ 1 + uχ(a) = ab;

ii) when x = −a, one has

−(u(−a)
pn−1

2
−1 + (−a)pn−2) = b ⇐⇒ 1− uχ(a) = ab.

The discussion can be divided into the following three subcases: ab 6= 1± u, ab = 1 + u, and
ab = 1− u.

(1) ab 6= 1± u.
For a prime p ≡ 3(mod 4) and an odd n ≥ 3, one has pn−1

2 ≡ 1(mod 2) and χ(−1) = −1. For
the element u satisfying the condition in the theorem, one has u 6= ±1. Otherwise, χ(u + 1) =
χ(2) 6= χ(0) = χ(u − 1) for u = 1 and χ(u − 1) = χ(−2) 6= χ(0) = χ(u + 1) for u = −1, which
contradicts with χ(u + 1) = χ(u− 1). Thus, neither x = 0 nor −a is the zero of Equation (3).
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When b = 0, Equations (5) and (6) have no solutions. Equations (7) and (8) have only one
solution respectively.

When b 6= 0, for Equations (5) and (6), one has χ(x(x + a)) = χ(x)χ(x + a) = 1. This shows

χ(x1x2) = χ(
a(1± u)

b
) = χ(−x(x + a)) = χ(−1) = −1 (9)

and then only one of x1 and x2 can be a square, where x1 and x2 denote two solutions to
Equations (5) and (6). Therefore, both Equations (5) and (6) have at most one solution. If
these two equations simultaneously has one solution, by Equality (9), one has

χ(
a(1− u)

b
) = χ(

a(1 + u)
b

) = −1

which is impossible since χ(1− u) = −χ(u− 1) = −χ(u + 1). Thus, Equations (5) and (6) have
at most one solution in total.

For Equations (7) and (8), one has x1x2 = a(1∓u)
b and x1 + x2 = −ab∓2u

b . Hence,

(x1 + a)(x2 + a) = x1x2 + a(x1 + x2) + a2

= a(1∓u)
b − a(ab∓2u

b ) + a2

= a(1±u)
b .

Since χ(u− 1) = χ(u + 1), one has

χ(x1x2(x1 + a)(x2 + a)) = χ(−a2(u+1)(u−1)
b2

)
= χ(−(u + 1)(u− 1))
= −1,

which implies that
{

χ(x1(x1 + a)) = 1;
χ(x2(x2 + a)) = −1 or

{
χ(x1(x1 + a)) = −1;
χ(x2(x2 + a)) = 1.

Thus, χ(x(x + a)) = −1, and then both Equations (7) and (8) have at most one solution.
Suppose that x1, x2 ∈ Fpn are two solutions to Equation (7), and y1, y2 ∈ Fpn are two solutions
to Equation (8). Note that −(x1 +a) and −(x2 +a) are two solutions to Equation (8), then one
has {−(x1 + a),−(x2 + a)} = {y1, y2}. Suppose

χ(x1 + a) = 1, χ(x1) = −1, χ(y1 + a) = −1, and χ(y1) = 1.

Then

x1 + y2 + a = x2 + y1 + a = 0.

Therefore,

1 = (−1) · (−1) = χ(x1(−x1 − a)y1(−y1 − a)) = χ(x1y1x2y2) = χ(
a(1− u)

b
· a(1 + u)

b
) = −1.

This is impossible. Thus, Equations (7) and (8) have at most one solution in total.
(2) ab = 1 + u
In this subcase, for given a, b, and u, Equation (3) exactly has a solution x = 0 if χ(a) = 1,

and x = −a if χ(a) = −1.
Assume that Equation (3) has another solution x0 other than 0 and −a. Then, this solution

satisfies (x0 + a)x0 6= 0 and it is a solution to Equation (4). We will show that there exists at
most one such x0 in the case of u satisfying the condition in Equality (2).
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When χ(u + 1) = χ(u− 1) = −χ(5u + 3), the discriminant of Equations (7) and (8) is equal
to

a2b2 − 4ab + 4u2 = (u + 1)2 − 4(u + 1) + 4u2

= 5u2 − 2u− 3
= (5u + 3)(u− 1).

Since χ(5u + 3) = −χ(u− 1), 4u2 + a2b2− 4ab is not a square. Thus, x0 has the only possibility
to satisfy Equation (5) or Equation (6). By previous analysis, Equations (5) and (6) totally
have at most one solution. Therefore, in this case, Equation (3) has at most one such x0 other
than 0 and −a.

From u 6= ±1, one has b 6= 0. When χ(u+1) = χ(u−1) = −χ(5u−3), if x0 satisfies Equation
(5), one has

χ(x0(x0 + a)) = χ(−a(1 + u)
b

) = χ(−a2) = −1,

which contradicts with χ(x0 + a) = 1 and χ(x0) = 1. The discriminant of Equation (6) is equal
to a2b2 + 4ab(u + 1) = (5u − 3)(u + 1) is not a square. Thus, x0 is not a solution to Equation
(5). Thus, x0 can not be a solution to Equation (5) or Equation (6). Since Equations (7) and
(8) totally have at most one solution, Equation (3) has at most one such x0 other than 0 and
−a.

Combing discussion above, Equation (3) has at most two solutions.
(3) ab = 1− u.
It can be similarly proven that Equation (3) has at most two solutions.

Finally, we prove that there are values for a 6= 0 and b such that f(x + a)− f(x) = b has two
solutions, equivalently, we only need to prove that there are values for a 6= 0 and b such that
f(x + a) − f(x) = b has no solutions since for a 6= 0 there are on the average one solution for
each b. The discriminants of Equations (5), (6), (7) and (8) are

a2b2 − 4ab(u + 1), a2b2 + 4ab(u− 1), a2b2 − 4ab + 4u2, a2b2 − 4ab + 4u2,

respectively. Thus, it is sufficient to show that there exist at least one nonzero value z = ab ∈ Fpn

such that all the discriminants are nonsquares, i.e., such that z2− 4(u + 1)z, z2 + 4(u− 1)z and
z2 − 4z + 4u2 are nonsquares. This can be proven by the method used in Lemma 2, and there
are such values z = ab 6= 1 ± u in Fpn . Then f(x + a) − f(x) = b has no solutions for these
particular choices of a 6= 0 and b. Thus, for some a, there is a b such that Equation (3) has two
solutions and therefore the function is APN. ¤

Remark 2: When p = 3, χ(5u±3) = χ(−u) = −χ(u). Since χ(u+1) = χ(u−1) implies u 6= 0,
the condition χ(u + 1) = χ(u − 1) = −χ(5u ± 3) is equivalent to χ(u + 1) = χ(u − 1) = χ(u).
Thus, in this case, above theorem is exactly Theorem 1 in [23]. For p > 3, the characterization
of u is different from the case for p = 3 given in [23]. This maybe interprets why the proposed
family of APN in [23] does not seem to have an analog for p > 3.

Example 1: Let F73 be the finite field generated by the primitive polynomial x3 + x2 + x + 2.
With the help of a computer, one can find 128 elements u ∈ F73 satisfying the condition in
Theorem 1 such that f(x) = ux170 + x341 is an APN mapping. Among them, there exist 85
elements u such that χ(u + 1) = χ(u − 1) = −χ(5u + 3), 85 elements u such that χ(u + 1) =
χ(u−1) = −χ(5u−3), and 42 elements u such that χ(u+1) = χ(u−1) = −χ(5u−3) = −χ(5u+3).

When p ≥ 7, the constructed functions in this paper are different from those in [23] and they
will be proven to be CCZ-inequivalent to all known APN mappings in next section.
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3. The inequivalence with known APN mappings

In this section, we will discuss the inequivalence between f(x) defined in Theorem 1 and
known APN power mappings g(x) = xd as in Table 1 for p ≥ 7.

Suppose that f(x) and g(x) = xd are CCZ-equivalent, then there exists an affine automor-
phism L = (L1, L2) of Fpn × Fpn such that

L1(x, f(x)) = g(L2(x, f(x)))(mod xpn − x),

where L1(x, y) = a+
n−1∑
i=0

aix
pi

+
n−1∑
i=0

biy
pi

, L2(x, y) = c+
n−1∑
i=0

cix
pi

+
n−1∑
i=0

eiy
pi

, a, c, ai, bi, ci, ei ∈ Fpn

and L2(x, f(x)) is a permutation. Thus, one has

a +
n−1∑

i=0

aix
pi

+
n−1∑

i=0

bif(x)pi
= (c +

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
)d(mod xpn − x) (10)

where f(x)pi
= (ux

pn−1
2

−1 + xpn−2)pi
= upi

x
pn−1

2
−pi

+ xpn−1−pi
.

In fact, by Table 1, we only need to consider five exponents d in propositions 1-2 and Corollary
1 as follows. The following lemma will be used to prove results in this paper.

Lemma 3: Let u ∈ Fpn satisfy the condition in Equality (2) and p ≥ 7. Then, any of the two
systems of equations

{
3u2 + 1 = 0;
u2 + 3 = 0.

and
{

5u4 + 10u2 + 1 = 0;
u4 + 10u2 + 5 = 0.

has no zeros.
Proposition 1: The function f(x) is CCZ-inequivalent to g(x) = x3 on Fpn .
Proof: Suppose that f(x) and g(x) = x3 are CCZ-equivalent. Then, the right side of Equality

(10) is equal to

(c +
n−1∑
i=0

cix
pi

+
n−1∑
i=0

eif(x)pi
)3

= c3 + 3
n−1∑
k=0

c2ckx
pk

+ 3
n−1∑
k=0

c2eku
pk

x
pn−1

2
−pk

+ 3
n−1∑
k=0

c2ekx
pn−1−pk

+

3
n−1∑

k,s=0

cckcsx
pk+ps

+ 3
n−1∑

k,s=0

cekes(upk+ps
+ 1)xpn−1−pk−ps

+

6
n−1∑

k,s=0

cckesu
ps

xpk+ pn−1
2

−ps
+ 6

n−1∑
k,s=0

cckesx
pk+pn−1−ps

+

3
n−1∑

k,s=0

cekes(upk
+ ups

)x
pn−1

2
−pk−ps

+
n−1∑

k,s,t=0

ckcsctx
pk+ps+pt

+

3
n−1∑

k,s,t=0

ckcsetu
pt

xpk+ps+ pn−1
2

−pt
+ 3

n−1∑
k,s,t=0

ckcsetx
pk+ps+pn−1−pt

+

3
n−1∑

k,s,t=0

ckeset(ups
+ upt

)xpk+ pn−1
2

−ps−pt
+

3
n−1∑

k,s,t=0

ckeset(ups+pt
+ 1)xpk+pn−1−ps−pt

+

n−1∑
k,s,t=0

ekeset(upk+ps+pt
+ upk

+ ups
+ upt

)x
pn−1

2
−pk−ps−pt

+

n−1∑
k,s,t=0

ekeset(upk+ps
+ ups+pt

+ upt+pk
+ 1)xpn−1−pk−ps−pt

.

(11)
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The exponents of unknown x in Equality (11) have 16 possible forms. Since p ≥ 7 and n ≥ 3
is odd, it is not difficult to observe that the first 13 kinds of exponents in Table 2 are less than
pn − 1 and their weights are determined as the following table. Now we consider the last three
kind exponents having forms pk + pn− 1 + αps− pt, where α = 0,±1. We only give the analysis
for the weight of pk + pn − 1 − ps − pt (mod pn − 1), and other cases of α = 0 and 1 can be
similarly obtained.

Table 2 Possible forms and weights of exponents in Equality (11)

Exponent 0 pk pn−1
2

− pk pn − 1− pk

Weight 0 1 n(p−1)
2

− 1 n(p− 1)− 1

Exponent pk + ps pn − 1− pk − ps pk + pn−1
2

− ps pn−1
2

− pk − ps

Weight 2 n(p− 1)− 2 n(p−1)
2

n(p−1)
2

− 2

Exponent pk + ps + pt pk + ps + pn−1
2

− pt pk + pn−1
2

− ps − pt pn−1
2

− pk − ps − pt

Weight 3 n(p−1)
2

+ 1 n(p−1)
2

− 1 n(p−1)
2

− 3

Exponent pn − 1− pk − ps − pt pk + pn − 1− ps pk + ps + pn − 1− pt pk + pn − 1− ps − pt

Weight n(p− 1)− 3 (k − s)(p− 1), or 1+(k − t)(p− 1), or (k −min{s, t})(p− 1)− 1,
(n + k − s)(p− 1) 1 + (s− t)(p− 1), or 1+ or (n + k − s)(p− 1)− 1,

(n− t + min{k, s})(p− 1) or (n + k − t)(p− 1)− 1

where 0 ≤ k, s, t ≤ n− 1.

Without loss of generality, we assume s ≥ t. When k > s, one has

pk + pn − 1− ps − pt (mod pn − 1) = pk − ps − pt.

Then, pk − pt = (p − 1)pn−1 + · · · + (p − 1)pt has weight (k − t)(p − 1). Since k > s ≥ t, the
weight of pk − ps − pt is (k − t)(p− 1)− 1. When t < k ≤ s, one has

pk + pn − 1− ps − pt (mod pn − 1) = pk + pn − 1− ps − pt.

Then,
pk + pn − 1− ps

= (pn − ps) + (pk − 1)
= (p− 1)pn−1 + · · ·+ (p− 1)ps + (p− 1)pk−1 + · · ·+ (p− 1),

(12)

whose weight is (n + k − s)(p − 1). Since k − 1 ≥ t, the weight of pk + pn − 1 − ps − pt is
(n + k− s)(p− 1)− 1. When k = t, pk + pn − 1− ps − pt = pn − 1− ps has weight n(p− 1)− 1.
When k < t, by Equality (12), the weight of pk + pn − 1− ps − pt is (n + k − t)(p− 1)− 1.

Consider the exponent 3pi of weight 3, where i ∈ {0, 1, · · · , n− 1}. By Table 2, the exponent
3pi only derives from the form pk + ps + pt with k = s = t = i. Therefore, the coefficient of the
term x3pi

on right hand of Equality (10) is equal to c3
i , and it is zero on the left side. This gives

c3
i = 0, i.e., ci = 0.

Considering the exponents pn − 1− 3pi, by Table 2, pn − 1− 3pi = pn − 1− pk − ps − pt and
then k = s = t = i. As the case of x3pi

, one can get that the coefficient of the term xpn−1−3pi

on right hand of Equality (10) is equal to e3
i (3u2 + 1)pi

, and it is zero on the left side. Then,
one has

e3
i (3u2 + 1)pi

= 0. (13)

Similarly, the following equality can be obtained by considering the exponents pn−1
2 − 3pi,

e3
i (u

3 + 3u)pi
= 0. (14)

By Lemma 3, Equalities (13) and (14) imply ei = 0. Thus L2(x, f(x)) = c is not a permutation.
Therefore, f(x) and g(x) = x3 are CCZ-inequivalent on Fpn . ¤

Corollary 1: The function f(x) is CCZ-inequivalent to g(x) = x
2pn−1

3 , where pn ≡ 2(mod 3).
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Proof: For pn ≡ 2(mod 3) and p ≡ 3(mod 4), one has p ≥ 11. If f(x) and g(x) = x
2pn−1

3 are
CCZ-equivalent on Fpn , then by Equality (10), one has

(a +
n−1∑

i=0

aix
pi

+
n−1∑

i=0

bif(x)pi
)3 = c +

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
(mod xpn − x). (15)

A same analysis as in Proposition 1 gives ai = bi = 0 for any 0 ≤ i ≤ n − 1. Eq. (15) can be
reduced as

a3 = c +
n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
(mod xpn − x), (16)

which implies ci = ei = 0 for any i. Thus, L2(x, f(x)) = c. This contradicts with L2(x, f(x)) is

a permutation. The contradiction proves CCZ-inequivalence of f(x) and g(x) = x
2pn−1

3 . ¤
By analyzing the weight of exponents in Equality (10), the following can be proven in a way

similar to Proposition 1.

Proposition 2: The functions f(x) and g(x) = xd are CCZ-inequivalent on Fpn , if
(1) d = pn+1

4 for pn ≡ 3(mod 8) and d = pn+1
4 + pn−1

2 for pn ≡ 7(mod 8);
(2) d = pn−1

2 − 1 for p ≡ 3, 7(mod 20);
(3) d = pn − 2 for p ≡ 2(mod 3).

By Propositions 1, 2 and Corollary 1, for p ≥ 7, the proposed functions are CCZ-inequivalent
to all known APN power mappings.

4. Conclusion

This paper proved an infinite family of mappings over finite fields of odd Characteristic is
almost perfect nonlinear. For p ≥ 7, the constructed mappings are CCZ-inequivalent to all
known APN power mappings.
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