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Abstract. In this paper, for a prime p ≡ 3 (mod 4) and an odd n such that pn ≥ 7, a new family
of almost perfect nonlinear mappings over the finite field Fpn is presented. These mappings have

the form as f(x) = ux
pn−1

2 −1 + xpn−2, and contain the ternary APN mappings proposed by
Ness and Helleseth as a special case. For p ≥ 7, these proposed mappings are proven to be
CCZ-inequivalent to all known APN power mappings.

1. Introduction And Preliminaries

To efficiently resist against differential attacks [9], cryptographical functions used as S-boxes
in block ciphers should have low differential uniformity. In this sense a class of mappings with the
smallest possible differential uniformity, almost perfect nonlinear (APN) mappings, is introduced
as ones opposing an optimum resistance to the differential cryptanalysis [24].

Let Fpn denote a finite field with pn elements, where p is a prime. A function f from Fpn

to itself is called almost perfect nonlinear if, for every a 6= 0 and every b in Fpn , the function
f(x+a)−f(x) = b admits at most two solutions. Few APN mappings are known, and all known
monomial APN power mappings are listed as in Table 1.

Until recently, the known constructions of APN mappings are EA-equivalent to power map-
pings over finite fields. Two functions f1 and f2 are called extended affine equivalent (EA-
equivalent) if f2 = A1 ◦ f1 ◦ A2 + A, where mappings A1, A2, A are affine and A1, A2 are
permutations. Up to EA-equivalence, if f1 is not affine, then f1 and f2 have the same algebraic
degree. The mappings f1 and f2 are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent)
if the graphs of f1 and f2, that is, the subsets {(x, f1(x)) |x ∈ Fpn} and {(x, f2(x)) |x ∈ Fpn} of
Fpn ×Fpn , are affine equivalent. Hence, f1 and f2 are CCZ-equivalent if and only if there exists
an affine automorphism L = (L1, L2) of Fpn × Fpn such that

y = f1(x) ⇐⇒ L2(x, y) = f2(L1(x, y)).

Note that the function L1(x, f1(x)) has to be a permutation. CCZ-equivalence is a more general
equivalent relation of functions than EA-equivalence, and it keeps APN property of functions,
i.e., if f1 and f2 are CCZ-equivalent, then f1 is APN if and only if f2 is APN [10]. By applying
CCZ-transformations of functions [10], new classes of binary APN functions EA-inequivalent
to power functions are found in [7]. However, these functions are CCZ-equivalent to Gold
power mappings. The first examples of APN functions CCZ-inequivalent to power mappings are
introduced in [15], and they are two quadratic binomials defined over two specific fields F210 and
F212 , respectively. Recently, binary APN functions are extensively studied, and some functions
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are proven to be CCZ-inequivalent to all known APN mappings [1]-[6]. Some nonbinary APN
functions are also found in [14, 18, 19].

Table 1 Known monomial APN power mappings over Fpn .

Functions Exponents d Conditions References

Kloosterman pn − 2 p = 2 and n is odd, or p > 2 and p ≡ 2 (mod 3) [8] [24] [19]

Gold 2i + 1 p = 2, gcd (i, n) = 1 [17]

Kasami 22i − 2i + 1 p = 2, gcd (i, n) = 1 [20] [21]

Welch 2t + 3 p = 2, n = 2t + 1 [11]

Niho 2t + 2t/2 − 1 for even t p = 2, n = 2t + 1 [13]

2t + 2
3t+1

2 −1 for odd t

Inverse 22t − 1 p = 2, n = 2t + 1 [8] [24]

Dobbertin 24i + 23i + 22i + 2i − 1 p = 2, n = 5i [12]

Helleseth Sandberg pn−1
2

− 1 p ≡ 3, 7 (mod 20), pn > 7, pn 6= 27 and n is odd [19]

Dobbertin et. al. 3(n+1)/2−1
2

p = 3, n ≡ 3 (mod 4) [14] [16]

Felke 3(n+1)/2−1
2

+ 3n−1
2

p = 3, n ≡ 1 (mod 4)

Dobbertin et. al. 3n+1−1
8

p = 3, n ≡ 3 (mod 4) [14]
3n+1−1

8
+ 3n−1

2
p = 3, n ≡ 1 (mod 4)

Helleseth pn+1
4

+ pn−1
2

pn ≡ 3 (mod 8) [18]

Rong pn+1
4

pn ≡ 7 (mod 8)

Sandberg 2pn−1
3

pn ≡ 2 (mod 3)
pn − 3 p = 3, n > 1, n is odd

Trival 3 p > 3 [19]

In this paper, for a prime p ≡ 3 (mod 4) and an odd n such that pn ≥ 7, we study a class of
binomial APN mappings having the form as

f(x) = ux
pn−1

2
−1 + xpn−2 (1)

over Fpn , where the element u ∈ Fpn satisfies

χ(u + 1) = χ(u− 1) = −χ(5u + 3), or χ(u + 1) = χ(u− 1) = −χ(5u− 3) (2)

and the quadratic character χ is defined in Section 2. When p = 3 and n ≥ 3, the proposed
family is exactly that found in [23]. Furthermore, for p ≥ 7, these functions are proven to be
CCZ-inequivalent to all known APN power mappings.

The remainder of this paper is organized as follows. Section 2 proves the proposed functions
are APN. Section 3 studies the inequivalence between these functions and all known APN power
mappings. Section 4 concludes the study.

2. A New Family Of APN Mappings Over Fpn

Throughout this paper, it is always assumed that the prime p ≡ 3 (mod 4) and n is odd.
In this section, a family of functions defined by Equality (1) will be proven to be APN. The

following lemma in page 225 of [22] will be used in the proof of the result in this paper.
Lemma 1: Let χ be a multiplicative character of Fpn of order m > 1 and let f(x) ∈ Fpn [x] be

a monic polynomial of positive degree that is not an m-th power of a polynomial. Let d be the
number of distinct roots of f in its splitting field over Fpn . Then for every a ∈ Fpn , we have

|
∑

c∈Fpn

χ(af(c))| ≤ (d− 1)pn/2.
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The quadratic character on Fpn is defined by

χ(x) =





1, if x is a square in Fpn ,
−1, if x is a nonsquare in Fpn ,
0, if x = 0.

In another expression, one has χ(x) = x
pn−1

2 .
When p = 3 and n ≥ 3 is odd, one has −χ(5u + 3) = −χ(5u − 3) = χ(u), and there exist

elements u ∈ F3n satisfying both formulas in Equality (2) [23]. The number of similar elements
u in the case p ≥ 7 is characterized by the following lemma.

Lemma 2: For a prime p ≥ 7 with p ≡ 3 (mod 4) and for odd n, let N be the number of
elements u ∈ Fpn satisfying the condition in Equality (2). Then, N ≥ 1. Furthermore, when
n = 1 and p ≥ 163, or n ≥ 3 and p ≥ 7, the value of N satisfies

1
8
(3pn − 37pn/2) ≤ N ≤ 1

8
(3pn + 37pn/2).

Proof: Let N1 be the number of elements u ∈ Fpn satisfying

χ(u + 1) = χ(u− 1) = −χ(5u + 3) = 1.

We first show by a similar method as used in Lemma 1 of [23] that

pn − 5pn/2 ≤ 8N1 ≤ pn + 5pn/2.

Let Γ = {1,−1,−3/5} be the set of zeroes of three expressions u + 1, u− 1 and 5u + 3. Then,

8N1 =
∑

u∈Fpn\Γ
(1 + χ(u + 1))(1 + χ(u− 1))(1− χ(5u + 3)).

The summation
∑

u∈Fpn\Γ
can be written as

∑
u∈Fpn

− ∑
u∈Γ

, and one can easily get the latter summa-

tion. Due to the assumption on p and n, one has χ(−1) = −1. By the property of a multiplicative
character that χ(a2b) = χ(b) and χ(a) = ±1 for any a 6= 0, one can directly calculate

∑

u∈Γ

(1 + χ(u + 1))(1 + χ(u− 1))(1− χ(5u + 3)) = 0.

Thus,

−pn + 8N1

= −pn +
∑

u∈Fpn

(1 + χ(u + 1))(1 + χ(u− 1))(1− χ(5u + 3))

=
∑

u∈Fpn

χ(u + 1) +
∑

u∈Fpn

χ(u− 1)− ∑
u∈Fpn

χ(5u + 3)

+
∑

u∈Fpn

χ(u2 − 1)− ∑
u∈Fpn

χ((u + 1)(5u + 3))− ∑
u∈Fpn

χ((u− 1)(5u + 3))

− ∑
u∈Fpn

χ((u + 1)(u− 1)(5u + 3)),

and by Lemma 1, one has
|8N1 − pn| ≤ 5pn/2.

Similarly, let N2, N3 and N4 be the numbers of elements u ∈ Fpn satisfying χ(u + 1) =
χ(u− 1) = −χ(5u + 3) = −1, χ(u + 1) = χ(u− 1) = −χ(5u− 3) = 1 and χ(u + 1) = χ(u− 1) =
−χ(5u− 3) = −1, respectively, and one has for i = 2, 3, 4,

1
8(pn − 5pn/2) ≤ Ni ≤ 1

8(pn + 5pn/2).
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Let N5 and N6 be the numbers of elements u ∈ Fpn satisfying χ(u+1) = χ(u−1) = −χ(5u+3) =
−χ(5u− 3) = 1 and χ(u + 1) = χ(u− 1) = −χ(5u + 3) = −χ(5u− 3) = −1, respectively. It can
be similarly proven that

1
16(pn − 17pn/2) ≤ Ni ≤ 1

16(pn + 17pn/2)

for i = 5, 6.
Thus, the value of N = N1 + N2 + N3 + N4 −N5 −N6 can be measured as follows:

|N − 3pn/8| ≤ (4 · 5/8 + 2 · 17/16)pn/2 = 37pn/2/8.

When n = 1 and p ≥ 163, or n ≥ 3 and p ≥ 7, a direct calculation shows that N ≥
(3pn − 37pn/2)/8 ≥ 1. When n = 1 and 7 ≤ p < 163, with the help of a computer, we can find
at least one element u ∈ Fp satisfying the condition in Equality (2).

This finishes the proof. ¤
By Lemma 2, when pn is large enough, N is about as large as 3pn/8. The following example

gives a concrete value of N in the finite field F73 .
Example 1: Let Fpn = F73 . With the help of a computer, one can find N = 128 elements

u ∈ F73 satisfying the condition in Equality (2) such that f(x) = ux170 + x341 is an APN
mapping. Among them, there exist 85 elements u satisfying χ(u + 1) = χ(u− 1) = −χ(5u + 3),
85 elements u satisfying χ(u + 1) = χ(u − 1) = −χ(5u − 3), and 42 elements u satisfying
χ(u + 1) = χ(u− 1) = −χ(5u− 3) = −χ(5u + 3).

The following lemma is an analog of Lemma 1 in [23]. It will be used to prove the APN
property of the presented functions.

Lemma 3: Assume p ≡ 3 (mod 4), n is odd, pn ≥ 7, and u ∈ Fpn satisfies the condition in
Equality (2). Further assume u 6= 4 and u 6= 7 in the case of p = 11 and n = 1. Then there
exists one nonzero element z ∈ Fpn such that z 6= 1± u and the three elements z2 − 4(u + 1)z,
z2 + 4(u− 1)z and z2 − 4z + 4u2 are all nonsquares in Fpn .

Proof: Let N be the number of elements z ∈ Fpn satisfying the requirements in the lemma,
and let Γ′ = {0, x1 = 4 + 4u, x2 = 4− 4u, x3, x4, 1 + u, 1− u} be the multiset consisting of 1± u
and all zeroes of three polynomials z2− 4(u+1)z, z2 +4(u− 1)z and z2− 4z +4u2, here x3 and
x4 are zeroes of z2 − 4z + 4u2. Denote

h(z) = (1− χ(z2 − 4(u + 1)z))(1− χ(z2 + 4(u− 1)z))(1− χ(z2 − 4z + 4u2)).

Then
8N =

∑

z∈Fpn\Γ′
h(z) =

∑

z∈Fpn

h(z)−
∑

z∈Γ′
h(z).

Note that h(z) takes value 0 at z = 0, takes values at most 4 at each xi (1 ≤ i ≤ 4), and takes
values at most 8 at z = 1±u. Therefore, the summation

∑
z∈Γ′

h(z) ≤ 32. By a direct calculation,

one has ∑
z∈Fpn

χ(z2(z − 4u− 4)(z + 4u− 4))

= (
∑
z=0

+
∑

0 6=z∈Fpn

)χ(z2(z − 4u− 4)(z + 4u− 4))

= 0 +
∑

0 6=z∈Fpn

χ((z − 4u− 4)(z + 4u− 4))

= 1 + (
∑
z=0

+
∑

0 6=z∈Fpn

)χ((z − 4u− 4)(z + 4u− 4))

= 1 +
∑

z∈Fpn

χ((z − 4u− 4)(z + 4u− 4)),
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where the fact χ((−4u − 4)(4u − 4)) = χ(−1)χ(u + 1)χ(u − 1) = −1 is used in the last second
equality. Similarly, one has

∑
z∈Fpn

χ(z2(z − 4u− 4)(z + 4u− 4)(z2 − 4z + 4u2))

= 1 +
∑

z∈Fpn

χ((z − 4u− 4)(z + 4u− 4)(z2 − 4z + 4u2)).

With a same analysis as in the proof of Lemma 2, one has
∑

z∈Fpn

(1− χ(z2 − 4(u + 1)z))(1− χ(z2 + 4(u− 1)z))(1− χ(z2 − 4z + 4u2))

≥ pn − 13pn/2,

and hence,
8N ≥ pn − 13pn/2 − 32.

If pn > 250, then N ≥ 1. For values of parameters pn < 250, with the help of a computer, one
can confirm N ≥ 1 if u satisfies the condition in Equality (2) and satisfies u 6= 4 and u 6= 7 in
the case of p = 11 and n = 1.

This finishes the proof. ¤
Remark 1: When p = 11 and n = 1, both u = 4 and 7 satisfy the condition in Equality (2).

For u = 4, or 7, there is at least one square element in the set

{z2 − 4(u + 1)z, z2 + 4(u− 1)z, z2 − 4z + 4u2}
for any z ∈ F11.

The functions defined by Equality (1) can be proven to be APN for suitable parameters p, n
and u as the following theorem, by applying a similar method as in [19, 23].

Theorem 1: For a prime p ≡ 3 (mod 4) and an odd n such that pn ≥ 7, u ∈ Fpn satisfies the
condition in Equality (2), then the mapping f(x) defined by Equality (1) is APN.

Proof: It needs to prove the equation f(x + a)− f(x) = b, i.e.,

u(x + a)
pn−1

2
−1 + (x + a)pn−2 − (ux

pn−1
2

−1 + xpn−2) = b (3)

has at most two solutions for any given a 6= 0 and b ∈ Fpn . In the following, the number of
solutions to Equation (3) will be investigated.

When x 6= 0 and −a, multiplying both sides of (3) by (x + a)x implies

bx2 + (ab + uχ(x)− uχ(x + a))x + a(uχ(x) + 1) = 0. (4)

That is to say
1) (χ(x + a), χ(x)) = (1, 1):

bx2 + abx + a(1 + u) = 0; (5)

2) (χ(x + a), χ(x)) = (−1,−1):

bx2 + abx + a(1− u) = 0; (6)

3) (χ(x + a), χ(x)) = (1,−1):

bx2 + (ab− 2u)x + a(1− u) = 0; (7)

4) (χ(x + a), χ(x)) = (−1, 1):

bx2 + (ab + 2u)x + a(1 + u) = 0. (8)

On the other hand,
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i) when x = 0, Equation (3) becomes two equivalent ones as follows:

ua
pn−1

2
−1 + apn−2 = b ⇐⇒ 1 + uχ(a) = ab;

ii) when x = −a, one has

−(u(−a)
pn−1

2
−1 + (−a)pn−2) = b ⇐⇒ 1− uχ(a) = ab.

The discussion can be divided into the following three subcases: ab 6= 1± u, ab = 1 + u, and
ab = 1− u.

For a prime p ≡ 3(mod 4) and an odd n, one has pn−1
2 ≡ 1(mod 2) and χ(−1) = −1. For the

element u satisfying the condition in Equality (2), one has u 6= ±1, 0. Otherwise, χ(u + 1) =
χ(2) 6= χ(0) = χ(u − 1) for u = 1, χ(u − 1) = χ(−2) 6= χ(0) = χ(u + 1) for u = −1, and
χ(u − 1) = χ(−1) 6= χ(1) = χ(u + 1) for u = 0, which contradict with the assumption that
χ(u + 1) = χ(u− 1).

(1) ab 6= 1± u.
By i) and ii), neither x = 0 nor −a is the solution of Equation (3).
When b = 0, Equations (5) and (6) have no solutions since u 6= ±1. Each of Equations (7)

and (8) has one solution. Thus, Equation (3) has at most two solutions in this case.
When b 6= 0, for Equations (5) and (6), one has χ(x(x + a)) = χ(x)χ(x + a) = 1. This shows

χ(
a(1± u)

b
) = χ(−x(x + a)) = χ(−1) = −1. (9)

We claim that Equation (5) has at most one solution. Otherwise, if Equation (5) has two
solutions x1 and x2, then both of them are square elements and χ(x1x2) = 1. On the other
hand, x1x2 = a(1+u)

b and by Equality (9), χ(x1x2) = −1. This is a contradiction. Therefore,
Equation (5) has at most one solution. It can be similarly proven that Equation (6) also has
at most one solution. Furthermore, if these two equations have solutions simultaneously, by
Equality (9), one has

χ(
a(1− u)

b
) = χ(

a(1 + u)
b

) = −1

which is impossible since χ(1− u) = −χ(u− 1) = −χ(u + 1). Thus, Equations (5) and (6) have
at most one solution in total.

Assume that each of Equations (7) and (8) has two solutions x1 and x2. Then, one has
x1x2 = a(1∓u)

b and x1 + x2 = −ab∓2u
b . Hence,

(x1 + a)(x2 + a) = x1x2 + a(x1 + x2) + a2

= a(1∓u)
b − a(ab∓2u

b ) + a2

= a(1±u)
b .

Since χ(u− 1) = χ(u + 1), one has

χ(x1x2(x1 + a)(x2 + a)) = χ(−a2(u+1)(u−1)
b2

)
= χ(−(u + 1)(u− 1))
= −1,

which implies that {
χ(x1(x1 + a)) = 1;
χ(x2(x2 + a)) = −1 or

{
χ(x1(x1 + a)) = −1;
χ(x2(x2 + a)) = 1.

(10)

On the other hand, by Equations (7) and (8), one has χ(xi(xi +a)) = −1 for i = 1, 2, and hence
χ(x1x2(x1 + a)(x2 + a)) = 1, which contradicts with the fact χ(x1x2(x1 + a)(x2 + a)) = −1
that can be derived from Equality (10). Therefore, the assumption can not hold and then
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each of Equations (7) and (8) has at most one solution. If these two equations have solutions
simultaneously, denoted by x1 and y1 respectively, then one has

χ(x1 + a) = 1, χ(x1) = −1, χ(y1 + a) = −1, and χ(y1) = 1. (11)

Let x2 6= x1 and y2 6= y1 also satisfy Equations bx2+(ab−2u)x+a(1−u) = 0 and bx2+(ab+2u)x+
a(1 + u) = 0, respectively, then (χ(x2 + a), χ(x2)) 6= (1,−1) and (χ(y2 + a), χ(y2)) 6= (−1, 1).
Note that −(x1 +a) and −(x2 +a) are two solutions to Equation bx2 +(ab+2u)x+a(1+u) = 0,
then one has {−(x1 + a),−(x2 + a)} = {y1, y2}. By Equality (11), one has

x1 + y2 + a = x2 + y1 + a = 0.

The equalities χ(−1) = −1 and (11) show that

1 = χ(x1(−x1 − a)y1(−y1 − a)) = χ(x1y1x2y2) = χ(
a(1− u)

b
· a(1 + u)

b
) = −1.

This is a contradiction. Thus, Equations (7) and (8) have at most one solution in total. Since it
has been proved that Equations (5) and (6) have at most one solution in total, one has Equation
(3) has at most two solutions.

(2) ab = 1 + u.
In this subcase, b = 1+u

a 6= 0 since u 6= ±1. For given a, b, and u, there exists exactly one
solution of Equation (3) in the set {0,−a}, namely x = 0 if χ(a) = 1 and x = −a if χ(a) = −1.

Assume that Equation (3) has one solution x0 other than 0 and −a. Then, this solution
satisfies (x0 + a)x0 6= 0 and it is a solution to Equation (4). We will show that there exists at
most one such x0 in the case of u satisfying the condition in Equality (2).

When χ(u+1) = χ(u−1) = −χ(5u+3), the discriminants of Equations (7) and (8) are equal
to

a2b2 − 4ab + 4u2 = (u + 1)2 − 4(u + 1) + 4u2

= 5u2 − 2u− 3
= (5u + 3)(u− 1).

Since χ(5u+3) = −χ(u−1), 4u2+a2b2−4ab is nonsquare. Thus, x0 can not satisfy Equation (7)
or Equation (8). By previous analysis, Equations (5) and (6) totally have at most one solution.
Therefore, in this case, Equation (3) has at most one such x0 other than 0 and −a.

When χ(u + 1) = χ(u− 1) = −χ(5u− 3), if x0 satisfies Equation (5), one has

χ(x0(x0 + a)) = χ(−a(1 + u)
b

) = χ(−a2) = −1,

which contradicts with χ(x0 + a) = 1 and χ(x0) = 1. The discriminant of Equation (6) is equal
to a2b2 + 4ab(u− 1) = (5u− 3)(u + 1), which is nonsquare. Thus, x0 can not satisfy Equation
(5) or Equation (6). Since Equations (7) and (8) totally have at most one solution, Equation
(3) has at most one such x0 other than 0 and −a.

Combining the discussion above, Equation (3) has at most two solutions.
(3) ab = 1− u.
It can be similarly proven that Equation (3) has at most two solutions.
Finally, we prove that there are values for a 6= 0 and b such that f(x + a) − f(x) = b has

exactly two solutions, or equivalently, f(x) is not a perfect nonlinear or planar function in the
sense that for every 0 6= a ∈ Fpn , the function ∆fa(x) = f(x + a)− f(x) induces a permutation
mapping over Fpn . To this end, we only need to prove that there are values for a 6= 0 and b
such that f(x + a) − f(x) = b has no solutions since for any a 6= 0 there is on the average one
solution for each b.
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For u satisfying the condition in Equality (2) and satisfying u 6= 4 and u 6= 7 if p = 11 and
n = 1, the discriminants of Equations (5), (6), (7) and (8) are

a2b2 − 4ab(u + 1), a2b2 + 4ab(u− 1), a2b2 − 4ab + 4u2, a2b2 − 4ab + 4u2,

respectively. Thus, it is sufficient to show that there exists at least one nonzero element z =
ab ∈ Fpn \ {1± u} such that all the discriminants are nonsquares, i.e., such that z2 − 4(u + 1)z,
z2 + 4(u− 1)z and z2 − 4z + 4u2 are nonsquares. This follows Lemma 3.

For p = 11 and n = 1, when u = 4 or 7, it is directly verified that the equation

f(x + 1)− f(x) = u(x + 1)4 + (x + 1)9 − ux4 − x9 = 1

has no solution in F11.
Now we complete the proof of that f(x) is exactly an APN function. ¤
Remark 2: When p = 3, χ(5u ± 3) = χ(−u) = −χ(u), the condition χ(u + 1) = χ(u − 1) =

−χ(5u ± 3) is equivalent to χ(u + 1) = χ(u − 1) = χ(u). Thus, Theorem 1 in [23] is a special
case of our result. For p ≥ 7, the characterization of u is different from the case for p = 3 given
in [23]. Using this characterization, an analog of the APN mapping family in [23] for p ≥ 7 can
be obtained.

When p ≥ 7, the constructed functions in this paper are different from those in [23] and they
will be proven to be CCZ-inequivalent to all known APN mappings in next section.

3. The Inequivalence With Known APN Power Mappings

In this section, we will discuss the inequivalence between f(x) defined in Equality (1) and all
known APN power mappings g(x) = xd as in Table 1 for p ≥ 7 and an odd n.

Suppose that f(x) and g(x) = xd are CCZ-equivalent, then there exists an affine automor-
phism L = (L1, L2) of Fpn × Fpn such that

L2(x, f(x)) = g(L1(x, f(x))) (mod xpn − x),

where L2(x, y) = a+
n−1∑
i=0

aix
pi

+
n−1∑
i=0

biy
pi

, L1(x, y) = c+
n−1∑
i=0

cix
pi

+
n−1∑
i=0

eiy
pi

, a, c, ai, bi, ci, ei ∈ Fpn

and L1(x, f(x)) is a permutation. Thus, one has

a +
n−1∑

i=0

aix
pi

+
n−1∑

i=0

bif(x)pi
= (c +

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
)d (mod xpn − x), (12)

where f(x)pi
can be calculated as

f(x)pi
= (ux

pn−1
2

−1 + xpn−2)pi

= upi
x

pi(pn−1)
2

−pi
+ xpi(pn−1)−pi

= upi
x

pn−1
2

−pi
+ xpn−1−pi

.

By Table 1, the power exponent d takes at most five types of values as listed in Propositions 1-
2 and Corollary 1 below if f(x) is CCZ-equivalent to a known APN power mapping g(x) = xd. In
what follows, we will prove that f(x) is CCZ-inequivalent to these known APN power mappings.

For a given non-negative integer k with p-adic expansion k = k0 +k1p+ · · ·+kn−1p
n−1 where

0 ≤ ki < p, its p-adic weight is defined as the integer k0 + k1 + · · · + kn−1 and denoted by
wt(k). For every non-constant monomial function xγ on Fpn , where γ 6= 0, there is a positive
integer β with 1 ≤ β ≤ pn − 1 such that xγ = xβ (mod xpn − x), namely, β ≡ γ (mod pn − 1) if
γ 6≡ 0 (mod pn − 1), and β = pn − 1 if γ ≡ 0 (mod pn − 1). For a monomial xγ defined on Fpn , it
is sufficient to consider the p-adic weight of such an integer β, and the latter is regarded as the
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weight of γ. The main technique used in the following proofs is to analyze the weights of the
exponents of the monomials in the expansion of some polynomials over Fpn .

In the following proofs to Proposition 1, Corollary 1 and Proposition 2, one will encounter
35 kinds of monomials totally. Their exponents and the possible values of the corresponding
weights are carefully but tediously determined as in Table 2.

Lemma 4: Let 0 ≤ k, s, t, l, v ≤ n − 1, and q = p − 1. The weights of the 35 kinds of
exponents listed in Table 2 are correctly given in that table.

Proof: We show the determination of the weights by illustrating a complicated case, namely
how to determine the weight of the last exponent pk + ps + pn − 1 − pt − pl − pv. Other kinds
of exponents are similarly handled. Without loss of generality, we can assume for this case that
k ≥ s and t ≥ l ≥ v. We show its weight must be one of the several values listed in the last
entry in Table 2.

Firstly, assume pk + ps > pt + pl + pv. Then one has

pk + ps + pn − 1− pt − pl − pv(mod pn − 1) = pk + ps − pt − pl − pv = β,

and k > t, or k = t and s > l.
When k > t, pk − pv = (p− 1)pk−1 + · · ·+ (p− 1)pv and its weight is (k − v)q. If s = k, t, l

or s < v, β has weight (k − v)q − 1. If k > t ≥ l > s ≥ v, pk − pl = (p− 1)pk−1 + · · ·+ (p− 1)pl

has weight (k− l)q and ps − pv = (p− 1)ps−1 + · · ·+ (p− 1)pv has weight (s− v)q. Thus, β has
weight (k + s− l − v)q − 1. Similarly, for k > t > s > l ≥ v, β has weight (k + s− t− v)q − 1.
If k > s > t ≥ l ≥ v, ps − pv = (p− 1)ps−1 + · · · (p− 1)pv and then β has weight (s− v)q − 1.

When k = t and s > l, by the expression of ps − pv, β = ps − pl − pv has weight (s− v)q − 1.
Secondly, assume pk + ps < pt + pl + pv. Then in this case, one has k ≤ t and

pk + ps + pn − 1− pt − pl − pv(mod pn − 1) = pk + ps + pn − 1− pt − pl − pv = β.

When k = t, one has s ≤ l and β = ps + pn − 1 − pl − pv. If v < s ≤ l, β has weight
(n + s− l)q − 1. If s ≤ v, β has weight (n + s− v)q − 1.

When k < t, if k ≥ s > l ≥ v, one has pn − pt = (p − 1)pn−1 + · · · + (p − 1)pt of weight
(n− t)q and ps − 1 = (p− 1)ps−1 + · · ·+ (p− 1) of weight sq. Thus, the weight of β is equal to
(n− t + s)q + 1− 2 = (n + s− t)q − 1. Similarly, one has

wt(β) =





(n + k + s− t− l)q − 1, t > k ≥ l ≥ s > v;
(n + k + s− t− v)q − 1, t > k > l ≥ v ≥ s;
(n + s− l)q − 1, t ≥ l > k ≥ s > v;
(n + k + s− l − v)q − 1, t ≥ l ≥ k ≥ v ≥ s;
(n + s− v)q − 1, t ≥ l ≥ v > k ≥ s.

All the weight values appeared above are ranged into the set of 10 expressions listed in the
last entry of Table 2. ¤

With the weights in Lemma 4, the following Propositions 1-2 and Corollary 1 can be proved.
Another simple fact below will also be used in these proofs.

Lemma 5: Let u ∈ Fpn satisfy the condition in Equality (2) and p ≥ 7. Then, none of the
two systems of equations

{
3u2 + 1 = 0
u2 + 3 = 0 and

{
5u4 + 10u2 + 1 = 0
u4 + 10u2 + 5 = 0

has solutions.
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Table 2. Thirty-five kinds of exponents and their p-adic weights (with notation q := p− 1)

Exponent pk pn−1
2

− pk pn − 1− pk

Weight 1 nq
2
− 1 nq − 1

Exponent pk + ps pn − 1− pk − ps pk + pn−1
2

− ps

Weight 2 nq − 2 nq
2

Exponent pn−1
2

− pk − ps pk + ps + pt pk + ps + pn−1
2

− pt

Weight nq
2
− 2 3 nq

2
+ 1

Exponent pk + pn−1
2

− ps − pt pn−1
2

− pk − ps − pt pn − 1− pk − ps − pt

Weight nq
2
− 1 nq

2
− 3 (pn > 7) nq − 3
6 (pn = 7)

Exponent pk + pn − 1− ps pk + ps + pn − 1− pt pk + pn − 1− ps − pt

Weight (k − s)q, or (k − t)q + 1, or (k −min{s, t})q − 1,
(n + k − s)q (s− t)q + 1, or or (n + k − s)q − 1,

(n + min{k, s} − t)q + 1 or (n + k − t)q − 1

Exponent pk + ps + pt + pl pn−1
2

− pk − ps − pt − pl pk + pn−1
2

− ps − pt − pl

Weight 4 nq
2
− 4 (p > 7) nq

2
− 2

3n− 4 or 3n + 2 (p = 7)

Exponent pk + ps + pn−1
2

− pt − pl pk + ps + pt + pn−1
2

− pl pn − 1− pk − ps − pt − pl

Weight nq
2

nq
2

+ 2 nq − 4

Exponent pk + pn − 1− ps − pt − pl pk + ps + pn − 1− pt − pl pk + ps + pt + pn − 1− pl

Weight (k −min{s, t, l})q − 2, (k −min{t, l})q, or (k − l)q + 2, or
or (n + k − s)q − 2, (s−min{t, l})q, or (s− l)q + 2, or
or (n + k − t)q − 2, (k + s− t− l)q, or (t− l)q + 2, or
or (n + k − l)q − 2 (n + min{k, s} − l)q, or (n + min{k, s, t} − l)q + 2

(n + min{k, s} − t)q, or
(n + k + s− t− l)q

Exponent pk + ps + pt + pl + pv pn−1
2

− pk − ps − pt − pl − pv pk + pn−1
2

− ps − pt − pl − pv

Weight 5 nq
2
− 5 (p ≥ 11, pn > 11) nq

2
− 3 (p > 7),

10 (pn = 11) 3n− 3 or 3n + 3 (p = 7)
3n− 5 or 3n + 1 (p = 7)

Exponent pk + ps + pn−1
2

− pt − pl − pv pk + ps + pt + pn−1
2

− pl − pv pk + ps + pt + pl + pn−1
2

− pv

Weight nq
2
− 1 nq

2
+ 1 nq

2
+ 3 (p > 7),

3n + 3 or 3n− 3 (p = 7)

Exponent pn − 1− pk − ps − pt − pl − pv pk + pn − 1− ps − pt − pl − pv pk + ps + pt + pl + pn − 1− pv

Weight nq − 5 (k −min{s, t, l, v})q − 3, or (k − v)q + 3, or
(n + k − s)q − 3, or (s− v)q + 3, or
(n + k − t)q − 3, or (t− v)q + 3, or
(n + k − l)q − 3, or (l − v)q + 3, or
(n + k − v)q − 3 (n + min{k, s, t, l} − v)q + 3

Exponent pk + ps + pt + pn − 1− pl − pv pk + ps + pn − 1− pt − pl − pv

(k ≥ s ≥ t and l ≥ v) (k ≥ s and t ≥ l ≥ v)

Weight (k − v)q + 1, or (k − v)q − 1, or
(s− v)q + 1, or (s− v)q − 1, or
(t− v)q + 1, or (k + s− l − v)q − 1, or

(k + s− l − v)q + 1, or (k + s− t− v)q − 1, or
(k + t− l − v)q + 1, or (n + s− t)q − 1, or
(s + t− l − v)q + 1, or (n + s− l)q − 1, or

(n + t− l)q + 1, or (n + s− v)q − 1, or
(n + t− v)q + 1, or (n + k + s− t− v)q − 1, or

(n + s + t− l − v)q + 1, or (n + k + s− t− l)q − 1, or
(n + k + t− l − v)q + 1 (n + k + s− l − v)q − 1

With the above preparation, the inequivalence of functions can now be discussed. Since the
weights of exponents in Table 2 depend on the parameters p and n, the inequivalent proof of
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f(x) and all known APN power mappings can be divided into three subcases: (1) p ≥ 7 and
n ≥ 3; (2) p ≥ 19 and n = 1; and (3) p = 7 or 11, and n = 1. We only give the proof of the first
case in Propositions 1-2 and Corollary 1, and the second case can be proved in a similar way.
The third case can be directly verified with the help of a computer. The reader will find the
proof of Proposition 2 is very lengthy (nine pages two of which is devoted to Proposition 2(1)
and the other seven to Proposition 2(2)). We can not give a unified proof to these propositions
and corollary.

Proposition 1: The function f(x) is CCZ-inequivalent to g(x) = xd on Fpn , if
(1) d = 3; or
(2) d = pn − 2 for p ≡ 2(mod 3).
Proof: (1) Suppose that f(x) and g(x) = x3 are CCZ-equivalent. Then, the right hand side

(RHS) of Equality (12) is expanded as

(c +
n−1∑
i=0

cix
pi

+
n−1∑
i=0

eif(x)pi
)3

= c3 + 3
n−1∑
k=0

c2ckx
pk

+ 3
n−1∑
k=0

c2eku
pk

x
pn−1

2
−pk

+ 3
n−1∑
k=0

c2ekx
pn−1−pk

+3
n−1∑

k,s=0

cckcsx
pk+ps

+ 3
n−1∑

k,s=0

cekes(upk+ps
+ 1)xpn−1−pk−ps

+6
n−1∑

k,s=0

cckesu
ps

xpk+ pn−1
2

−ps
+ 6

n−1∑
k,s=0

cckesx
pk+pn−1−ps

+6
n−1∑

k,s=0

cekesu
pk

x
pn−1

2
−pk−ps

+
n−1∑

k,s,t=0

ckcsctx
pk+ps+pt

+3
n−1∑

k,s,t=0

ckcsetu
pt

xpk+ps+ pn−1
2

−pt
+ 3

n−1∑
k,s,t=0

ckcsetx
pk+ps+pn−1−pt

+6
n−1∑

k,s,t=0

ckesetu
ps

xpk+ pn−1
2

−ps−pt

+3
n−1∑

k,s,t=0

ckeset(ups+pt
+ 1)xpk+pn−1−ps−pt

+
n−1∑

k,s,t=0

ekeset(upk+ps+pt
+ 3upk

)x
pn−1

2
−pk−ps−pt

+

+
n−1∑

k,s,t=0

ekeset(3upk+ps
+ 1)xpn−1−pk−ps−pt

.

(13)

The exponents of indeterminant x in Equality (13) have 15 kinds of possible forms, which are
exactly the first 15 kinds of exponents in Table 2.

Consider the exponent 3pi of weight 3, where i ∈ {0, 1, · · · , n− 1}. By the weights of the first
15 kinds of exponents in Table 2, for p ≥ 7 and n ≥ 3, the exponent 3pi only derives from the
form pk + ps + pt with k = s = t = i. Therefore, by Equality (13), the coefficient of x3pi

on
the RHS of Equality (12) is equal to c3

i , and it is zero on the left hand side (LHS). This gives
c3
i = 0, i.e., ci = 0.
Considering the exponent pn − 1− 3pi, similarly, one has pn − 1− 3pi = pn − 1− pk − ps − pt

and then k = s = t = i. As the case of x3pi
, one can get that the coefficient of xpn−1−3pi

on the
RHS of Equality (12) is equal to e3

i (3u2pi
+ 1), and it is zero on the LHS. Then, one has

e3
i (3u2 + 1)pi

= 0. (14)
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Similarly, the following equality can be obtained by considering the coefficient of x
pn−1

2
−3pi

,

e3
i (u

3 + 3u)pi
= 0. (15)

By Lemma 5, Equalities (14) and (15) imply ei = 0 for all i ∈ {0, 1, · · · , n − 1}. Thus
L1(x, f(x)) = c is not a permutation.

Therefore, f(x) and g(x) = x3 are CCZ-inequivalent on Fpn .
(2) Suppose that f(x) and xpn−2 are CCZ-equivalent. By p ≡ 3(mod 4) and p ≡ 2(mod 3),

one has p ≥ 11. Multiplying both sides of Equality (12) by (c+
n−1∑
i=0

cix
pi

+
n−1∑
i=0

eif(x)pi
)2 implies

(a+
n−1∑

i=0

aix
pi

+
n−1∑

i=0

bif(x)pi
)(c+

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
)2 = c+

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
(mod xpn−x).

(16)
The LHS of Equality (16) is equal to

(a +
n−1∑
i=0

aix
pi

+
n−1∑
i=0

bif(x)pi
)(c +

n−1∑
i=0

cix
pi

+
n−1∑
i=0

eif(x)pi
)2

= ac2 +
n−1∑
k=0

(2acck + akc
2)xpk

+
n−1∑
k=0

(c2bk + 2acek)upk
x

pn−1
2

−pk

+
n−1∑
k=0

(c2bk + 2acek)xpn−1−pk
+

n−1∑
k,s=0

(ackcs + 2cakcs)xpk+ps

+
n−1∑

k,s=0

(aekes + 2bkces)(upk+ps
+ 1)xpn−1−pk−ps

+
n−1∑

k,s=0

(2ackes + 2akces + 2bscck)ups
xpk+ pn−1

2
−ps

+
n−1∑

k,s=0

(2ackes + 2akces + 2bscck)xpk+pn−1−ps

+
n−1∑

k,s=0

(2aekes + 2bkces + 2bscek)upk
x

pn−1
2

−pk−ps

+
n−1∑

k,s,t=0

akcsctx
pk+ps+pt

+
n−1∑

k,s,t=0

(2akcset + btckcs)upt
xpk+ps+ pn−1

2
−pt

+
n−1∑

k,s,t=0

(2akcset + btckcs)xpk+ps+pn−1−pt

+
n−1∑

k,s,t=0

(2akeset + 4bscket)ups
xpk+ pn−1

2
−ps−pt

+
n−1∑

k,s,t=0

(akeset + 2bscket)(ups+pt
+ 1)xpk+pn−1−ps−pt

+
n−1∑

k,s,t=0

bkeset(upk+ps+pt
+ upk

+ 2ups
)x

pn−1
2

−pk−ps−pt

+
n−1∑

k,s,t=0

bkeset(2upk+ps
+ ups+pt

+ 1)xpn−1−pk−ps−pt
.

(17)

Equalities (17) and (13) have same exponents of the indeterminant x, i.e., the first 15 kinds of
exponents as listed in Table 2.
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For any i, 0 ≤ i ≤ n − 1, by a similar analysis as above for the coefficients of the exponents
3pi, pn−1

2 − 3pi, and pn − 1− 3pi in Equality (17), one has




aic
2
i = 0;

bie
2
i (u

3 + 3u)pi
= 0;

bie
2
i (3u2 + 1)pi

= 0.

(18)

By Lemma 5, Equality (18) gives

aici = 0 and biei = 0. (19)

Considering the exponent pn − 1 − pi − 2pj (0 ≤ i 6= j ≤ n − 1), again by the weights of the
first 15 exponents in Table 2, one has pn − 1− pi − 2pj = pn − 1− pk − ps − pt and then k = i,
s = t = j, or s = i, k = t = j, or t = i, k = s = j. Thus, by Equality (17), the coefficient of
xpn−1−pi−2pj

on the LHS of Equality (16) is equal to

(bie
2
j + 2bjeiej)(2upi+pj

+ u2pj
+ 1) = bie

2
j (2upi+pj

+ u2pj
+ 1),

and it is zero on the RHS. Thus,

bie
2
j (2upi+pj

+ u2pj
+ 1) = 0. (20)

Similarly as above, from the coefficient of x
pn−1

2
−pi−2pj

(i 6= j), one has

bie
2
j (u

pi+2pj
+ upi

+ 2upj
) = 0. (21)

We claim that biej = 0 holds for any 0 ≤ i 6= j ≤ n − 1. Otherwise, there exist two integers
i0 and j0 such that bi0ej0 6= 0. By Equalities (20) and (21), one has

{
2upi0+pj0 + u2pj0 + 1 = 0;
upi0+2pj0 + upi0 + 2upj0 = 0.

(22)

Denote y = upi0 and z = upj0 . Since u 6= ±1 and 0, Equality (22) implies

y =
z2 + 1
−2z

=
−2z

z2 + 1
.

Then, the element z satisfies the following equation

z4 − 2z2 + 1 = 0, (23)

i.e., z = ±1 and then u = ±1. It is impossible. Therefore, biej = 0 for any i 6= j. This together
with Equality (19) shows that biej = 0 for any i, j ∈ {0, 1, · · · , n − 1}. That is to say that
b0 = b1 = · · · = bn−1 = 0 or e0 = e1 = · · · = en−1 = 0.

Consider the exponent pi + 2pj (i 6= j) of weight 3, where i, j ∈ {0, 1, · · · , n − 1}. Among
the first 15 kinds of exponents in Table 2, the exponent pi + 2pj only derives from the form
pk + ps + pt with k = i and s = t = j, or s = i and k = t = j, or t = i and k = s = j. Therefore,
the coefficient of xpi+2pj

on the LHS of Equality (16) is equal to aic
2
j + 2ajcicj , and it is zero on

the RHS. This gives
aic

2
j + 2ajcicj = 0. (24)

By Equalities (19) and (24), one has aicj = 0 for any i, j ∈ {0, 1, · · · , n − 1}. That is to say
that a0 = a1 = · · · = an−1 = 0 or c0 = c1 = · · · = cn−1 = 0.

Assume that ej = 0 for any j ∈ {0, 1, · · · , n − 1}. Since L1(x, f(x)) is a permutation, there
exists some j0 such that cj0 6= 0. Thus, one has ai = 0 for any i, and then Equality (16) can be
reduced to

(a +
n−1∑

i=0

bif(x)pi
)(c +

n−1∑

i=0

cix
pi

)2 = c +
n−1∑

i=0

cix
pi

(mod xpn − x). (25)
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By Table 2, the exponent pn − 1 − pi + 2pj (i 6= j) has weight α(p − 1) + 1, where i, j ∈
{0, 1, · · · , n−1} and 1 ≤ α ≤ n−1, then the exponent pn−1−pi +2pj (i 6= j) only derives from
the form pk + ps + pn − 1− pt with t = i, k = s = j. Therefore, the coefficient of xpn−1−pi+2pj

on the LHS of Equality (16) is equal to bic
2
j + 2ajcjei, and it is zero on the RHS. This together

with Equality (19) show
bic

2
j = 0. (26)

For j = j0, the equation bic
2
j0

= 0 implies that bi = 0 for any i 6= j0. For i = j0, the equation
bj0c

2
j = 0 implies that bj0 = 0 or cj = 0 for any j 6= j0. In other words, one has bi = 0 for any i,

or bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0.
When bi = 0 for any i ∈ {0, 1, · · · , n− 1}, Equality (25) is equal to

a = (c +
n−1∑

i=0

cix
pi

)pn−2 (mod xpn − x). (27)

Since (pn − 2)2 = (pn − 1)2 − 2(pn − 1) + 1 ≡ 1(mod pn − 1), by Equality (27), one has

apn−2 = c +
n−1∑

i=0

cix
pi

(mod xpn − x). (28)

Obviously, one has ci = 0 for any i ∈ {0, 1, · · · , n − 1} and then L1(x, f(x)) = c is not a
permutation. That is a contradiction.

When bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0, then Equality (25) is further reduced to

(a + bj0f(x)pj0 )(c + cj0x
pj0 )2 = c + cj0x

pj0 (mod xpn − x). (29)

Since the coefficient of x
pn−1

2
+pj0 is equal to bj0c

2
j0

upj0 , one has bj0c
2
j0

upj0 = 0 which implies
bj0cj0 = 0. That is also a contradiction.

Now one should assume that there exists some integer j0 such that ej0 6= 0. Then bj = 0 for
any j. If ai = 0 for any i, then by Equalities (27) and (28), one has L1(x, f(x)) = c. This is
impossible, and then there exists at least one nonzero element in {ai | 0 ≤ i ≤ n − 1}. Thus,
cj = 0 for any j, and Equality (16) is reduced to

(a +
n−1∑

i=0

aix
pi

)(c +
n−1∑

i=0

eif(x)pi
)2 = c +

n−1∑

i=0

eif(x)pi
(mod xpn − x). (30)

Also by Table 2, the exponent pn − 1 + pi − 2pj (i 6= j) has weight α(p − 1) − 1, where i,
j ∈ {0, 1, · · · , n − 1} and 1 ≤ α ≤ n − 1. Then, the exponent pn − 1 + pi − 2pj (i 6= j) only
derives from the form pn−1+pk−ps−pt with k = i and s = t = j. Therefore, the coefficient of
xpn−1+pi−2pj

on the LHS of Equality (16) is equal to aie
2
j (u

2pj
+ 1), and it is zero on the RHS.

This gives
aie

2
j (u

2 + 1)pj
= 0, (31)

and then
aie

2
j = 0, (32)

since u2 + 1 6= 0.
For j = j0, the equation aie

2
j0

= 0 implies that ai = 0 for any i 6= j0 since ej0 6= 0. Since there
exists at least one nonzero element in {ai | 0 ≤ i ≤ n − 1}, one has aj0 6= 0 and the equation
aj0e

2
j = 0 implies ej = 0 for any j 6= j0. Thus, one has aj0ej0 6= 0 and bj = cj = 0 for any j.

Equality (30) is reduced to

(a + aj0x
pj0 )(c + ej0f(x)pj0 )2 = c + ej0f(x)pj0 (mod xpn − x). (33)
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Considering the coefficient of xpj0 in Equality (33), one has aj0c
2 = 0 and then c = 0. From the

coefficients of xpn−1−pj0 and x
pn−1

2
−pj0 , one has
{

aj0e
2
j0

(u2 + 1)pj0 = ej0 ;
2aj0e

2
j0

upj0 = ej0u
pj0 ,

which implies u = ±1 since aj0ej0 6= 0. This contradicts with u 6= ±1.
The arguments above prove that f(x) and g(x) = xpn−2 are CCZ-inequivalent on Fpn . ¤

Corollary 1: The function f(x) is CCZ-inequivalent to g(x) = x
2pn−1

3 , where pn ≡ 2(mod 3).

Proof: For pn ≡ 2 (mod 3) and p ≡ 3 (mod 4), one has p ≥ 11. If f(x) and g(x) = x
2pn−1

3 are
CCZ-equivalent on Fpn , then by Equality (12), one has

(a +
n−1∑

i=0

aix
pi

+
n−1∑

i=0

bif(x)pi
)3 = c +

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
(mod xpn − x). (34)

A same analysis as in Proposition 1 (1) gives ai = bi = 0 for any 0 ≤ i ≤ n − 1. Equality (34)
can be reduced to

a3 = c +
n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
(mod xpn − x),

which implies ci = ei = 0 for any i. Thus, L1(x, f(x)) = c. This contradicts with that L1(x, f(x))

is a permutation. The contradiction proves CCZ-inequivalence of f(x) and g(x) = x
2pn−1

3 . ¤
By analyzing the weights of the exponents in Equality (12), the following proposition can be

proved in a similar way to Proposition 1.
Proposition 2: The functions f(x) and g(x) = xd are CCZ-inequivalent on Fpn , if
(1) d = pn+1

4 for pn ≡ 7 (mod 8) and d = pn+1
4 + pn−1

2 for pn ≡ 3 (mod 8); or
(2) d = pn−1

2 − 1 for p ≡ 3, 7 (mod 20).

Proof: (1) Assume that f(x) and g(x) = xd are CCZ-equivalent. Then, by Equality (12), one
has

(a +
n−1∑

i=0

aix
pi

+
n−1∑

i=0

bif(x)pi
)4 = (c +

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
)2(mod xpn − x). (35)

Then, the LHS of Equality (35) is equal to

(a +
n−1∑
i=0

aix
pi

+
n−1∑
i=0

bif(x)pi
)4

= a4 + 4
n−1∑
k=0

a3akx
pk

+ 4
n−1∑
k=0

a3bku
pk

x
pn−1

2
−pk

+ 4
n−1∑
k=0

a3bkx
pn−1−pk

+6
n−1∑

k,s=0

a2akasx
pk+ps

+ 6
n−1∑

k,s=0

a2bkbs(upk+ps
+ 1)xpn−1−pk−ps

+12
n−1∑

k,s=0

a2akbsu
ps

xpk+ pn−1
2

−ps
+ 12

n−1∑
k,s=0

a2akbsx
pk+pn−1−ps

+12
n−1∑

k,s=0

a2bkbsu
pk

x
pn−1

2
−pk−ps

+ 4
n−1∑

k,s,t=0

aakasatx
pk+ps+pt

+12
n−1∑

k,s,t=0

aakasbtu
pt

xpk+ps+ pn−1
2

−pt
+ 12

n−1∑
k,s,t=0

aakasbtx
pk+ps+pn−1−pt
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+24
n−1∑

k,s,t=0

aakbsbtu
ps

xpk+ pn−1
2

−ps−pt

+12
n−1∑

k,s,t=0

aakbsbt(ups+pt
+ 1)xpk+pn−1−ps−pt

+4
n−1∑

k,s,t=0

abkbsbt(upk+ps+pt
+ 3upk

)x
pn−1

2
−pk−ps−pt

+4
n−1∑

k,s,t=0

abkbsbt(3upk+ps
+ 1)xpn−1−pk−ps−pt

+
n−1∑

k,s,t,l=0

akasatalx
pk+ps+pt+pl

+ 4
n−1∑

k,s,t,l=0

akasatblu
pl

xpk+ps+pt+ pn−1
2

−pl

+4
n−1∑

k,s,t,l=0

akasatblx
pk+ps+pt+pn−1−pl

+12
n−1∑

k,s,t,l=0

akasbtblu
pt

xpk+ps+ pn−1
2

−pt−pl

+6
n−1∑

k,s,t,l=0

akasbtbl(upt+pl
+ 1)xpk+ps+pn−1−pt−pl

+4
n−1∑

k,s,t,l=0

akbsbtbl(ups+pt+pl
+ 3ups

)xpk+ pn−1
2

−ps−pt−pl

+4
n−1∑

k,s,t,l=0

akbsbtbl(3ups+pt
+ 1)xpk+pn−1−ps−pt−pl

+
n−1∑

k,s,t,l=0

bkbsbtbl(upk+ps+pt+pl
+ 6upk+ps

+ 1)xpn−1−pk−ps−pt−pl

+4
n−1∑

k,s,t,l=0

bkbsbtbl(upk+ps+pt
+ upk

)x
pn−1

2
−pk−ps−pt−pl

.

(36)

The exponents of indeterminant x in Equality (36) have 24 kinds of possible forms, and they are
the first 24 kinds of the exponents in Table 2. From this table, the weight of pn−1

2 −pk−ps−pt−pl

depends on whether the character p is 7 or not. The following discussion is divided into two
subcases p > 7 and p = 7.

Case 1: p > 7.
Consider the exponent 4pi of weight 4, where i ∈ {0, 1, · · · , n− 1}. By Table 2, the exponent

4pi only derives from pk + ps + pt + pl with k = s = t = l = i. Therefore, the coefficient of x4pi

on the LHS of Equality (35) is equal to a4
i , and it is zero on the RHS. This gives a4

i = 0, i.e.,
ai = 0.

Considering the exponent pn−1
2 − 4pi of weight n(p−1)

2 − 4, by Table 2, pn−1
2 − 4pi = pn−1

2 −
pk − ps − pt − pl and then k = s = t = l = i. Since the coefficient of x

pn−1
2

−4pi
on the LHS of

Equality (35) is equal to b4
i (4u3 + 4u)pi

, and it is zero on the RHS, one has

b4
i (4u3 + 4u)pi

= 0, (37)

which implies that bi = 0 since 4u3 + 4u = 4u(u2 + 1) 6= 0.
Thus, Equality (35) can be rewritten as

a4 = (c +
n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
)2(mod xpn − x). (38)
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By analyzing the coefficients of monomials x with exponents 2pi and pn − 1 − 2pi in the
expansion of Equality (38), one has

{
c2
i = 0;

e2
i (u

2 + 1)pi
= 0.

(39)

This implies ci = 0 and ei = 0 for any i, and then L1(x, f(x)) = c is not a permutation. The
contradiction proves that f(x) is CCZ-inequivalent to g(x) = xd for p > 7.

Case 2: p = 7.
Consider the exponent 3pi + pj (i 6= j) of weight 4, where i, j ∈ {0, 1, · · · , n− 1}. By Table 2,

the exponent 3pi +pj only derives from pk +ps +pt +pl with k = s = t = i and l = j. Therefore,
the coefficient of x3pi+pj

on the LHS of Equality (35) is equal to 4a3
i aj , and it is zero on the

RHS. This gives 4a3
i aj = 0. If ai0 6= 0, then one has ai = 0 for any i 6= i0. That is to say, there

exists at most one nonzero element in {ai | 0 ≤ i ≤ n− 1}.
Considering the exponent pn − 1 − 4pi of weight 6n − 4, by Table 2, the exponent has two

forms pn − 1 − pk − ps − pt − pl with k = s = t = l = i, or pk + ps + pt + pn − 1 − pl with
k = s = t = i, l = i + 1. Since the coefficient of xpn−1−4pi

on the LHS of Equality (35) is equal
to 4a3

i bi+1 + b4
i (u

4 + 6u2 + 1)pi
, and it is zero on the RHS, one has

4a3
i bi+1 + b4

i (u
4 + 6u2 + 1)pi

= 0, (40)

which implies bi = 0 (i 6= i0) since ai = 0 for any i 6= i0 and

u4 + 6u2 + 1 = (u2 + 2)(u2 + 4) = (u2 + 32)(u2 + 22) 6= 0. (41)

For i = i0, one has bi0+1 = 0. Then, the equality 4a3
i0

bi0+1 + b4
i0

(u4 + 6u2 + 1)pi0 = 0 implies
bi0 = 0. Therefore, bi = 0 for any i.

Consider the exponent 4pi of weight 4, where i ∈ {0, 1, · · · , n− 1}. By Table 2, the exponent
4pi has the forms as pk + ps + pt + pl with k = s = t = l = i, or pk + pn − 1− ps − pt − pl with
k = i + 1 and s = t = l = i. Since the coefficient of x4pi

on the LHS of Equality (35) is equal to
a4

i + 12ai+1b
3
i u

2pi
+ 4ai+1b

3
i , and it is zero on the RHS. This gives

a4
i + 12ai+1b

3
i u

2pi
+ 4ai+1b

3
i = 0. (42)

Then, one has
a4

i = 0 (43)

since bi = 0 for any i. Equality (43) shows ai = 0 for any i ∈ {0, 1, · · · , n− 1}. Thus, Equality
(35) can be rewritten as

a4 = (c +
n−1∑
i=0

cix
pi

+
n−1∑
i=0

eif(x)pi
)2 (mod xpn − x). (44)

Similar to the analysis after Equality (38), one has ci = 0 and ei = 0 for any i. Thus,
L1(x, f(x)) = c. That is to say, the function f(x) is CCZ-inequivalent to g(x) = xd for p = 7.

(2) Assume that f(x) and g(x) = xd are CCZ-equivalent. Squaring both sides of Equality

(12) and multiplying (c +
n−1∑
t=0

ctx
pt

+
n−1∑
t=0

etf(x)pt
)3 for both sides imply

(a +
n−1∑
s=0

asx
ps

+
n−1∑
s=0

bsf(x)ps
)2(c +

n−1∑
t=0

ctx
pt

+
n−1∑
t=0

etf(x)pt
)3

= c +
n−1∑
t=0

ctx
pt

+
n−1∑
t=0

etf(x)pt
(mod xpn − x).

(45)
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We claim that there exists some integer j0 such that ej0 6= 0. Otherwise, if ej = 0 holds for
any j, Equality (45) can be reduced to

(a +
n−1∑
s=0

asx
ps

+
n−1∑
s=0

bsf(x)ps
)2(c +

n−1∑
t=0

ctx
pt

)3 = c +
n−1∑
t=0

ctx
pt

(mod xpn − x). (46)

Consider the exponent pn−1
2 −2pi +3pj (i 6= j) of weight n(p−1)

2 +1. By Table 2, the exponent
pn−1

2 −2pi +3pj only has the form pk +ps +pt + pn−1
2 −pl−pv with k = s = t = j and l = v = i.

The coefficient of pn−1
2 −2pi +3pj on the LHS of Equality (46) is equal to 2b2

i c
3
ju

pi
and it is zero

on the RHS. Thus, bicj = 0 for any i 6= j.
Since L1(x, f(x)) is a permutation, there exists some integer j0 such that cj0 6= 0. For i 6= j,

the equation bicj = 0 implies that bi = 0 for any i, or bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0.
When bi = 0 for any i, Equality (46) is equal to

(a +
n−1∑

s=0

asx
ps

)2(c +
n−1∑

t=0

ctx
pt

)3 = c +
n−1∑

t=0

ctx
pt

(mod xpn − x).

Since the coefficient of x5pi
on the LHS of the above equality is a2

i c
3
i and it is zero on the

RHS, one has aici = 0. Similarly, from the coefficient of x2pi+3pj
(i 6= j) in the equality above,

one has a2
i c

3
j + 6aiajcic

2
j + 3a2

jc
2
i cj = a2

i c
3
j = 0 since aici = 0 for any i. Thus, aicj = 0 for any i

and j. The inequality cj0 6= 0 implies ai = 0 for any i.
We next show L1(x, f(x)) is not a permutation when ai = bi = 0 for any i.
By ai = bi = 0, Equality (12) can be reduced to

a = (c +
n−1∑
t=0

ctx
pt

+
n−1∑
t=0

etf(x)pt
)

pn−1
2

−1(mod xpn − x). (47)

Since gcd(pn−1
2 −1, pn−1) = 2, there exists an integer λ such that λ(pn−1

2 −1) ≡ 2(mod pn−1).
Thus, from Equality (47), one has

aλ = (c +
n−1∑
t=0

ctx
pt

+
n−1∑
t=0

etf(x)pt
)2 (mod xpn − x).

By the analysis after Equality (38), one has ci = 0 and ei = 0 for any i. Thus L1(x, f(x)) = c
is not a permutation.

When bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0, Equality (46) becomes

(a +
n−1∑
s=0

asx
ps

+ bj0f(x)pj0 )2(c + cj0x
pj0 )3 = c + cj0x

pj0 (mod xpn − x). (48)

Consider the coefficient of x2pi+3pj0 (i 6= j0) in Equality (48), one has a2
i c

3
j0

= 0. This implies
ai = 0 for i 6= j0 since cj0 6= 0. Thus, Equality (48) becomes

(a + aj0x
pj0 + bj0f(x)pj0 )2(c + cj0x

pj0 )3 = c + cj0x
pj0 (mod xpn − x). (49)

From the coefficients of x5pj0 and x3pj0 in Equality (49), one has
{

a2
j0

c3
j0

= 0;
a2c3

j0
+ 6acaj0c

2
j0

+ 3c2a2
j0

cj0 = 0,

which implies aj0 = a = 0. Furthermore, from the coefficient of x
pn−1

2
−2pj0+3pj0 , one has

b2
j0

c3
j0

= 0. This is a contradiction.
Therefore, there exists some integer j0 such that ej0 6= 0.
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Since the weights of some exponents in Table 2 depend on the concrete values of p and n,
the following discussion will be divided into three subcases: (1) p > 7; (2) p = 7 and n ≥ 5; (3)
p = 7 and n = 3.

Case 1: p > 7.
Consider the exponent pn−1

2 − 5pi of weight n(p−1)
2 − 5, where i ∈ {0, 1, · · · , n − 1}. By

Table 2, the exponent pn−1
2 − 5pi only has the form as pn−1

2 − pk − ps − pt − pl − pv with

k = s = t = l = v = i. Since the coefficient of x
pn−1

2
−5pi

on the LHS of Equality (45) is equal to
b2
i e

3
i (u

5 + 10u3 + 5u)pi
, and it is zero on the RHS, one has

b2
i e

3
i (u

5 + 10u3 + 5u)pi
= 0. (50)

Similarly, comparing the coefficients of xpn−1−5pi
on both sides of Equality (45), one has

b2
i e

3
i (5u4 + 10u2 + 1)pi

= 0. (51)

By Lemma 5, Equalities (50) and (51) imply that biei = 0 for any i.

Since biei = 0 for any i, the coefficient of x
pn−1

2
−2pi−3pj

(i 6= j) on the LHS of Equality (45) is

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u2 + 1)pi

(u3 + 3u)pj
+ 2upi

(3u2 + 1)pj
)

= b2
i e

3
j ((u

2 + 1)pi
(u3 + 3u)pj

+ 2upi
(3u2 + 1)pj

),

and it is zero on the RHS. Thus, one has

b2
i e

3
j ((u

2 + 1)pi
(u3 + 3u)pj

+ 2upi
(3u2 + 1)pj

) = 0. (52)

Similarly, from the coefficient of xpn−1−2pi−3pj
(i 6= j), one has

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u2 + 1)pi

(3u2 + 1)pj
+ 2upi

(u3 + 3u)pj
)

= b2
i e

3
j ((u

2 + 1)pi
(3u2 + 1)pj

+ 2upi
(u3 + 3u)pj

) = 0.
(53)

By Equalities (52) and (53), we claim that biej = 0 for any i 6= j. Otherwise, there exist two
integers i, j such that biej 6= 0. Then, one has

{
(u2 + 1)pi

(u3 + 3u)pj
+ 2upi

(3u2 + 1)pj
= 0;

(u2 + 1)pi
(3u2 + 1)pj

+ 2upi
(u3 + 3u)pj

= 0,
(54)

which implies
((u3 + 3u)(3u2 + 1))pj

((u2 + 1)2 − 4u2)pi

= ((u3 + 3u)(3u2 + 1))pj
(u2 − 1)2pi

= 0.
(55)

By Equality (54), if one of u3 +3u and 3u2 +1 is zero, the other is also zero, which contradicts
with Lemma 5. Thus, one has (u3 + 3u)(3u2 + 1) 6= 0. Equality (55) gives u2 − 1 = 0. This
is a contradiction with u 6= ±1. Therefore, biej = 0 holds for any i 6= j. By biei = 0, one has
biej = 0 for any i and j. Since there exists some integer j0 such that ej0 6= 0, one has bi = 0 for
any i.

Consider the exponent 5pi of weight 5, where i ∈ {0, 1, · · · , n− 1}. By Table 2, the exponent
5pi only has the form as pk + ps + pt + pl + pv with k = s = t = l = v = i. Since the coefficient
of x5pi

on the LHS of Equality (45) is equal to a2
i c

3
i , and it is zero on the RHS, one has a2

i c
3
i = 0

for any i. Similarly, considering the coefficient of x2pi+3pj
(i 6= j), one has

a2
i c

3
j + 6aiajcic

2
j + 3a2

jc
2
i cj = a2

i c
3
j = 0. (56)

Thus, ai = 0 for any i or cj = 0 for any j.
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Similarly as described in Equality (47), L1(x, f(x)) is not a permutation if ai = bi = 0 for any
i. Thus, there exists a nonzero element in {ai | 0 ≤ i ≤ n − 1}. Then, cj = 0 for any j. From

the coefficients of xpn−1−3pj+2pi
(i 6= j) and x

pn−1
2

−3pj+2pi
(i 6= j), one has{

(a2
i e

3
j + 6aibjcie

2
j + 3b2

jc
2
i ej)(3u2 + 1)pj

= 0;
(a2

i e
3
j + 6aibjcie

2
j + 3b2

jc
2
i ej)(u3 + 3u)pj

= 0.

Since cj = 0 for any j, the equality above becomes
{

a2
i e

3
j (3u2 + 1)pj

= 0;
a2

i e
3
j (u

3 + 3u)pj
= 0,

which implies that aiej = 0 for any i 6= j by Lemma 5. Thus, by ej0 6= 0, one has aj0ej0 6= 0
and aj = ej = 0 for any j 6= j0. Equality (45) can be reduced to

(a + aj0x
pj0 )2(c + ej0f(x)pj0 )3 = c + ej0f(x)pj0 (mod xpn − x). (57)

From the coefficients of x
pn−1

2
−3pj0 and xpn−1−3pj0 in Equality (57), one has{

a2e3
j0

(u3 + 3u)pj0 = 0;
a2e3

j0
(3u2 + 1)pj0 = 0,

(58)

which implies a = 0. Considering the coefficients of x
pn−1

2
−pj0 and xpn−1−pj0 , one has{

a2
j0

e3
j0

(u3 + 3u)pj0 = ej0u
pj0 ;

a2
j0

e3
j0

(3u2 + 1)pj0 = ej0 ,
(59)

which implies
a2

j0e
3
j0u

pj0 (−2u2 + 2)pj0 = −2a2
j0e

3
j0u

pj0 (u2 − 1)pj0 = 0.

This gives aj0ej0 = 0 since u(u2 − 1) 6= 0. It’s impossible.

According to the arguments above, f(x) and g(x) = x
pn−1

2
−1 are CCZ-inequivalent on Fpn

when p > 7 and n is odd.
Case 2: p = 7, n ≥ 5.
Consider the exponent pn−1

2 −2pi−3pj (i 6= j) of weight 3n−5, where i, j ∈ {0, 1, · · · , n−1}.
By Table 2, the exponent pn−1

2 − 2pi − 3pj only has the form as pn−1
2 − pk − ps − pt − pl − pv

for some k, s, t, l, v ∈ {0, 1, · · · , n − 1}. Since the coefficient of x
pn−1

2
−2pi−3pj

on the LHS of
Equality (45) is equal to

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u2 + 1)pi

(u3 + 3u)pj
+ 2upi

(3u2 + 1)pj
)

and it is zero on the RHS, one has

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u2 + 1)pi

(u3 + 3u)pj
+ 2upi

(3u2 + 1)pj
) = 0. (60)

Similarly, for the exponent pn − 1− 2pi − 3pj , one has

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u2 + 1)pi

(3u2 + 1)pj
+ 2upi

(u3 + 3u)pj
) = 0. (61)

By the analysis in Case 1, Equalities (60) and (61) imply

b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej = ((biej + 3bjei)2 + b2

je
2
i )ej = 0. (62)

For j = j0, since ej0 6= 0 and −1 is nonsquare, one has biej0 + 3bj0ei = bj0ei = 0, i.e.,

biej0 = bj0ei = 0. (63)

This implies that bi = 0 for any i, or bj0 6= 0 and bi = ei = 0 for any i 6= j0.
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From the coefficient of the monomial with exponent 2pi + pn−1
2 − 3pj (i 6= j), one has

(a2
i e

3
j + 6aibjcie

2
j + 3b2

jc
2
i ej)(u3 + 3u)pj

= 0. (64)

Since −1 is a nonsquare element in Fpn , one has χ(3) = χ(−4) = −1. We say u3 + 3u 6= 0.
Otherwise, u = 2 or 5 and then χ(u+1) 6= χ(u−1). This is a contradiction. Therefore, Equality
(64) implies that

a2
i e

3
j + 6aibjcie

2
j + 3b2

jc
2
i ej = ((aiej + 3bjci)2 + b2

jc
2
i )ej = 0. (65)

For j = j0, one has aiej0 +3bj0ci = bj0ci = 0 since −1 is a nonsquare element, i.e., ai = 0 for any
i 6= j0. If bj0 6= 0, then ci = 0 for any i 6= j0. If bi = 0 for any i, Equality (65) can be reduced
to aiej = 0.

According to the discussion after Equalities (63) and (65), we derive that bi = 0 for any i and
aiej = 0 for any i 6= j, or bj0 6= 0 and ai = bi = ci = ei = 0 for any i 6= j0.

Assume that bi = 0 for any i and aiej = 0 for any i 6= j. If aj0 = 0, i.e., ai = 0 for any i since
ej0 6= 0, then L1(x, f(x)) = c is not a permutation. If aj0 6= 0, then aj0ej = 0 implies ej = 0 for
any j 6= j0. Therefore, Equality (45) can be reduced to

(a + aj0x
pj0 )2(c +

n−1∑

i=0

cix
pi

+ ej0f(x)pj0 )3 = c +
n−1∑

i=0

cix
pi

+ ej0f(x)pj0 (mod xpn − x). (66)

Considering the coefficients of the monomials with exponents pn−1
2 −3pj0 , pn−1−3pj0 , pn−1

2 −pj0

and pn − 1− pj0 in Equality (66), one has that Equalities (58) and (59) hold. Then, aj0ej0 = 0,
which is impossible.

Assume that bj0 6= 0 and ai = bi = ci = ei = 0 for any i 6= j0. Equality (45) can be reduced
to

(a+aj0x
pj0 +bj0f(x)pj0 )2(c+cj0x

pj0 +ej0f(x)pj0 )3 = c+cj0x
pj0 +ej0f(x)pj0 (mod xpn−x). (67)

Considering the coefficients of x
pn−1

2
−5pj0 and xpn−1−5pj0 in Equality (67), one has

{
b2
j0

e3
j0

(u5 + 10u3 + 5u)pj0 = 0;
b2
j0

e3
j0

(5u4 + 10u2 + 1)pj0 = 0,

which implies bj0ej0 = 0 by Lemma 5. That’s a contradiction with bj0ej0 6= 0. Therefore, f(x)

and g(x) = x
pn−1

2
−1 are CCZ-inequivalent on F7n , where n ≥ 5 is odd.

Case 3: p = 7, n = 3.
For all integers i, j with 0 ≤ i 6= j ≤ 2, considering the coefficients of x2pi+ pn−1

2
−3pj

, it can
be similarly proven that Equalities (64) and (65) hold. From these two equalities, one has

aiej = ejbjci = 0, i 6= j. (68)

Considering the exponent pn−1
2 − 2pi − 3pj (i 6= j), where i, j = 0, 1, 2, it has two forms

pn−1
2 − pk − ps− pt− pl− pv, and pk + ps + pt + pl with k = i and w 6= i, j, where w = s = t = l.

Then, its coefficients on both sides of Equality (45) give

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)[(u2 + 1)pi

(u3 + 3u)pj
+ 2upi

(3u2 + 1)pj
]

+2aaic
3
w + 6aiawcc2

w + 6aawcic
2
w + 6a2

wccicw = 0.
(69)

For i, j = 0, 1, 2, considering the exponent pn − 1 − 2pi − 3pj (i 6= j), it has a unique form
pn − 1− pk − ps − pt − pl − pv. Then, its coefficients on both sides of Equality (45) give

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)[(u2 + 1)pi

(3u2 + 1)pj
+ 2upi

(u3 + 3u)pj
] = 0. (70)
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Considering the coefficients of the monomials with exponents pn−1−2pi+3pi+1(= 19, 133, 247),
one has 




(3a2
1c1e

2
0 + 6a1b0c

2
1e0 + b2

0c
3
1)(u

2 + 1) = 0;
(3a2

2c2e
2
1 + 6a2b1c

2
2e1 + b2

1c
3
2)(u

2 + 1)7 = 0;
(3a2

0c0e
2
2 + 6a0b2c

2
0e2 + b2

2c
3
0)(u

2 + 1)49 = 0.
(71)

Since u2 + 1 6= 0 and aiej = 0 for any i 6= j, one has

b2
0c

3
1 = b2

1c
3
2 = b2

2c
3
0 = 0.

Therefore, there exist eight possible cases as follows.
1) c0 = c1 = c2 = 0;
2) c1 = c2 = b2 = 0, c0 6= 0;
3) c2 = c0 = b0 = 0, c1 6= 0;
4) c0 = c1 = b1 = 0, c2 6= 0;
5) c1 = b1 = b2 = 0, c0c2 6= 0;
6) c2 = b2 = b0 = 0, c1c0 6= 0;
7) c0 = b0 = b1 = 0, c2c1 6= 0;
8) b0 = b1 = b2 = 0, c0c1c2 6= 0.

We only give the analysis of Cases 1), 2), 5), and 8). The Cases 3), 4), 6), and 7) can be
similarly analyzed.

1) Considering the exponent pn−1
2 −5pi (= 5+2p+3p2, 3+5p+2p2, 2+3p+5p2) of weight 10,

it has 4 possible forms as pk +ps + pn−1
2 −pt, pk +ps +pt + pn−1

2 −pl−pv, pk +pn−1−ps−pt−pl,
and pn−1

2 − pk − ps − pt − pl − pv where k, s, t, l, v ∈ {0, 1, 2}.
If pk + ps + pn−1

2 − pt ≡ pn−1
2 − 5pi (mod pn − 1), one has k = s = i, t = i + 1. Then, the

coefficient of the monomial with exponent pk + ps + pn−1
2 − pt is

3a2
i c

2ei+1 + 12aaicciei+1 + 6aibi+1c
2ci + 3a2c2

i ei+1 + 6abi+1cc
2
i + 6aibi+1c

2ci = 0

since ci = 0 and aiej = 0. Also by ci = 0, the coefficient of the monomial with exponent
pk + ps + pt + pn−1

2 − pl − pv is equal to 0.

If pn−1
2 − 5pi ≡ pk + pn− 1− ps− pt− pl (mod pn− 1), one has xpk+pn−1−ps−pt−pl

= x
pn−1

2
−5pi

and then xpk+ pn−1
2

+5pi
= xps+pt+pl

. By a direct calculation, pk + pn−1
2 + 5pi (mod pn − 1) is of

weight 9, while the weight of ps + pt + pl is 3. This is impossible.
If pn−1

2 − pk − ps − pt − pl − pv ≡ pn−1
2 − 5pi (mod pn − 1), one has k = s = t = l = v = i.

The coefficient of the monomial with such an exponent is equal to b2
i e

3
i (u

5 +10u3 +5u)pi
on the

LHS of Equality (45), and it is zero on the RHS.

By the analysis above, the coefficients of pn−1
2 − 5pi on the both sides of Equality (45) satisfy

the following equation
b2
i e

3
i (u

5 + 10u3 + 5u)pi
= 0.

A similar discussion for the exponent pn − 1− 5pi shows

b2
i e

3
i (5u4 + 10u2 + 1)pi

= 0.

The two equalities imply biei = 0 for any i.
Since ci = 0 and biei = 0 for any i, Equalities (69) and (70) give{

b2
i e

3
j ((u

2 + 1)pi
(u3 + 3u)pj

+ 2upi
(3u2 + 1)pj

) = 0;
b2
i e

3
j ((u

2 + 1)pi
(3u2 + 1)pj

+ 2upi
(u3 + 3u)pj

) = 0.

From Equalities (52) and (53), one has biej = 0.
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Therefore, one has biej = 0 for any i and j, i.e., bi = 0 for any i since ej0 6= 0.
The exponent 2pi has the possible form as pk + ps, or pk + ps + pt + pn − 1 − pl, where

k, s, t, l ∈ {0, 1, 2}. If pk + ps = 2pi, then one has k = s = i. If pk + ps + pt + pn − 1 − pl ≡
2pi (mod pn − 1), then one has k = s = i, t = l. Since ci = 0 for all i, the coefficient of the
monomial xpk+ps+pt+pn−1−pl

is zero. Therefore, the exponent of x2pi
only has form as pk + ps

with k = s = i. Thus, one has

a2
i c

3 + 6aaic
2ci + 3a2cc2

i = a2
i c

3 = 0,

which implies c = 0 or ai = 0 for any i. By Equality (68), there exists at most one nonzero
element among a0, a1 and a2. If ai = 0 for any i, then L1(x, f(x)) = c is not a permutation. If

some aj0 6= 0, then c = 0 and a = c
pn−1

2
−1 implying a = 0. Thus, Equality (45) is reduced to

a2
j0x

2pj0 (
n−1∑

i=0

eif(x)pi
)3 =

n−1∑

i=0

eif(x)pi
(mod xpn − x).

Comparing the coefficients of x
pn−1

2
−pj0 and xpn−1−pj0 on both sides of equality above, one

has {
a2

j0
e3
j0

(u3 + 3u)pj0 = ej0u
pj0 ;

a2
j0

e3
j0

(3u2 + 1)pj0 = ej0 .

Since aj0ej0 6= 0 and u 6= 0, one has u3 + 3u = (3u2 + 1)u, i.e., u = ±1. This is impossible.

2) In this case, Equality (45) is reduced to

(a +
n−1∑
i=0

aix
pi

+ b0f(x) + b1f(x)p)2(c + c0x +
n−1∑
i=0

eif(x)pi
)3

= c + c0x +
n−1∑
i=0

eif(x)pi
(mod xpn − x).

(72)

By Equality (68), there exists at most one nonzero element among a0, a1, a2.
If a1 = a2 = 0, the coefficient of x5 satisfies a2

0c
3
0 = 0 and then a0 = 0 since c0 6= 0. The

coefficient of x3 satisfies a2c3
0 = 0, and then a = 0. The coefficient of x172 satisfies 2b2

0c
3
0u = 0,

which implies b0 = 0. Thus, the coefficient of x satisfies c0 = 0, and it contradicts with the fact
c0 6= 0.

If a1 = 0 and a2 6= 0, one also has a0 = 0. By Equality (68), the equality a2ej = 0 implies
e0 = e1 = 0. Considering the coefficient of x101, one has a2

2c
3
0 = 0. This contradicts with

a2c0 6= 0.
If a1 6= 0 and a2 = 0, then one has a0 = 0. By Equality (68), the equality a1ej = 0 implies

e0 = e2 = 0. Considering the coefficient of x17, one has a2
1c

3
0 = 0. This contradicts with a1c0 6= 0.

5) In this case, Equality (45) can be rewritten as

(a +
n−1∑
i=0

aix
pi

+ b0f(x))2(c + c0x + c2x
p2

+
n−1∑
i=0

eif(x)pi
)3

= c + c0x + c2x
p2

+
n−1∑
i=0

eif(x)pi
(mod xpn − x).

(73)

Considering the coefficient of x17, the coefficient on the LHS of Equality (73) is equal to a2
1c

3
0

and it is zero on the RHS. Thus, one has a2
1c

3
0 = 0 and then a1 = 0 since c0 6= 0. Similarly, the

coefficient of x101 satisfies

a2
2c

3
0 + 6a0a2c0c

2
2 + 3a2

0c0c
2
2 = ((a2c0 + 3a0c2)2 + a2

0c
2
2)c0 = 0.
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Since c0 6= 0 and −1 is nonsquare, one has a2c0 + 3a0c2 = a0c2 = 0, i.e., a0 = a2 = 0 since
c0c2 6= 0. Thus, Equality (73) can be reduced to

(a+b0f(x))2(c+c0x+c2x
p2

+
n−1∑

i=0

eif(x)pi
)3 = c+c0x+c2x

p2
+

n−1∑

i=0

eif(x)pi
(mod xpn−x). (74)

From the coefficient of x3 in Equality (74), one has a2c3
0 = 0. Thus, a = 0 and then c = 0. The

coefficient of x172 satisfies 2b2
0c

3
0u = 0. This gives b0 = 0 and then ai = bi = 0 for any i. By

similar arguments after Equality (47), one has L1(x, f(x)) = c. That’s a contradiction.
8) In this case, Equality (45) is rewritten as

(a +
n−1∑

i=0

aix
pi

)2(c +
n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
)3 = c +

n−1∑

i=0

cix
pi

+
n−1∑

i=0

eif(x)pi
(mod xpn − x). (75)

If a0 6= 0, then a1 = a2 = 0. By considering the monomial with exponent 53 of weight 5, one
has 3a2

0c
2
0c2 = 0, which implies that a0 = 0 since c0c2 6= 0. This is impossible.

Similarly, if a1 6= 0, then a0 = a2 = 0. By considering the monomial with exponent 29 ≡
53 · 7(mod 342), one has a1 = 0. If a2 6= 0, one has a0 = a1 = 0. By considering the monomial
with exponent 203 ≡ 53 · 72(mod 342), one has a2 = 0.

From the arguments of Cases 1-8, f(x) and g(x) = x
pn−1

2
−1 are CCZ-inequivalent on F73 .

This finally finishes the proof of Proposition 2. ¤
As far as the authors are aware, all known APN functions over finite fields of odd characteristic

only include those listed in Table 1 and the family in [23]. By Propositions 1, 2 and Corollary 1,
for p ≥ 7, the proposed functions f(x) are CCZ-inequivalent to all known APN power mappings.
Therefore, these functions are also CCZ-inequivalent to all known APN mappings.

4. Conclusion And Further Work

This paper proved an infinite family of mappings over finite fields of odd characteristic is
almost perfect nonlinear. For p ≥ 7, the proposed functions are CCZ-inequivalent to all known
APN power mappings. Further work needs for the inequivalence within the proposed family of
APN functions, and the inequivalence between the proposed family in fields of characteristic 3
and all known APN functions.
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