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ABSTRACT. In this paper, for a prime p = 3 (mod 4) and an odd n such that p™ > 7, a new family
of almost perfect nonlinear mappings over the finite field Fj» is presented. These mappings have

the form as f(z) = upt T + xpn%, and contain the ternary APN mappings proposed by
Ness and Helleseth as a special case. For p > 7, these proposed mappings are proven to be
CCZ-inequivalent to all known APN power mappings.

1. INTRODUCTION AND PRELIMINARIES

To efficiently resist against differential attacks [9], cryptographical functions used as S-boxes
in block ciphers should have low differential uniformity. In this sense a class of mappings with the
smallest possible differential uniformity, almost perfect nonlinear (APN) mappings, is introduced
as ones opposing an optimum resistance to the differential cryptanalysis [24].

Let F,» denote a finite field with p" elements, where p is a prime. A function f from Fjn
to itself is called almost perfect nonlinear if, for every a # 0 and every b in Fj», the function
f(z+a)— f(z) = b admits at most two solutions. Few APN mappings are known, and all known
monomial APN power mappings are listed as in Table 1.

Until recently, the known constructions of APN mappings are EA-equivalent to power map-
pings over finite fields. Two functions f; and fy are called extended affine equivalent (EA-
equivalent) if fo = Aj o fi o Ay + A, where mappings A;, As, A are affine and A;, Ay are
permutations. Up to EA-equivalence, if f; is not affine, then f; and fo have the same algebraic
degree. The mappings f1 and fo are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent)
if the graphs of fi and fo, that is, the subsets {(z, fi(x)) |z € Fpn} and {(z, fa(z)) |z € Fpn} of
Fpyn x Fpn, are affine equivalent. Hence, f1 and fy are CCZ-equivalent if and only if there exists
an affine automorphism L = (L1, L2) of Fjn x Fpn such that

Yy = f1($) — Lg(ﬂi,y) = f2(L1($,y))

Note that the function L (z, fi(x)) has to be a permutation. CCZ-equivalence is a more general
equivalent relation of functions than EA-equivalence, and it keeps APN property of functions,
ie., if f1 and fy are CCZ-equivalent, then f; is APN if and only if f, is APN [10]. By applying
CCZ-transformations of functions [10], new classes of binary APN functions EA-inequivalent
to power functions are found in [7]. However, these functions are CCZ-equivalent to Gold
power mappings. The first examples of APN functions CCZ-inequivalent to power mappings are
introduced in [15], and they are two quadratic binomials defined over two specific fields Fyi0o and
Fi2, respectively. Recently, binary APN functions are extensively studied, and some functions
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are proven to be CCZ-inequivalent to all known APN mappings [1]-[6]. Some nonbinary APN
functions are also found in [14, 18, 19].

Table 1 Known monomial APN power mappings over Fpn.

Functions Exponents d Conditions References
Kloosterman pt—2 p=2and nis odd, or p > 2 and p = 2 (mod 3) | [8] [24] [19]
Gold 2'+1 p=2,gcd (i,n) =1 [17]
Kasami 27 2T 11 p=2,ged (i,n) =1 [20] [21]
Welch 2" +3 p=2,n=2t+1 [11]
Niho 2t 4212 1 for even t p=2,n=2t+1 [13]
2f + 27351 for odd ¢t
Inverse 27 1 p=2,n=2t+1 [8] [24]
Dobbertin oW 4 2% 9% 4 9t 1 p=2,n=5i [12]
Helleseth Sandberg % - 1 p = 3,7 (mod 20), p™ > 7, p" # 27 and n is odd [19]
Dobbertin et. al. % p=3,n=3(mod4) [14] [16]
Felke 3(”;2)/2_1 e p=3,n=1(mod4)
Dobbertin et. al. +1¥:_1 p=3,n=3(mod4) [14]
3—8*1+32—*1 p=3,n=1(mod4)
Helleseth ptl n++ lp — p" = 3 (mod 8) (18]
Rong B p" = 7 (mod8)
i
Sandberg Zp — p" = 2 (mod 3)
p" —3 p=3,n>1,nisodd
Trival 3 p>3 [19]

In this paper, for a prime p = 3 (mod4) and an odd n such that p™ > 7, we study a class of
binomial APN mappings having the form as

flo) =ua"s L g (1)
over Fyn, where the element u € Fjn satisfies
X(u+1)=x(u—1) = —x(5u+3), or x(u+1)=x(u—1) =—x(5u—3) (2)

and the quadratic character y is defined in Section 2. When p = 3 and n > 3, the proposed
family is exactly that found in [23]. Furthermore, for p > 7, these functions are proven to be
CCZ-inequivalent to all known APN power mappings.

The remainder of this paper is organized as follows. Section 2 proves the proposed functions
are APN. Section 3 studies the inequivalence between these functions and all known APN power
mappings. Section 4 concludes the study.

2. A NEw FaMIiLY OF APN MAPPINGS OVER F)n

Throughout this paper, it is always assumed that the prime p = 3 (mod4) and n is odd.

In this section, a family of functions defined by Equality (1) will be proven to be APN. The
following lemma in page 225 of [22] will be used in the proof of the result in this paper.

Lemma 1: Let x be a multiplicative character of Fjn of order m > 1 and let f(z) € Fyn[z] be
a monic polynomial of positive degree that is not an m-th power of a polynomial. Let d be the
number of distinct roots of f in its splitting field over Fj,». Then for every a € Fj», we have

|7 x(@f()] < (d - Dp2,

CEFpn
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The quadratic character on Fj» is defined by

1, if = is a square in Fjyn,
x(xz) =< —1, if zis a nonsquare in Fjn,
0, ifx=0.

n

In another expression, one has x(z) = o

When p = 3 and n > 3 is odd, one has —x(5u + 3) = —x(bu — 3) = x(u), and there exist
elements u € F3n satisfying both formulas in Equality (2) [23]. The number of similar elements
u in the case p > 7 is characterized by the following lemma.

Lemma 2: For a prime p > 7 with p = 3(mod4) and for odd n, let N be the number of
elements u € Fyn satisfying the condition in Equality (2). Then, N > 1. Furthermore, when
n=1and p> 163, or n > 3 and p > 7, the value of N satisfies

é(?,p” —37p?) < N < é(Bp” +37p"/3).
Proof: Let Ny be the number of elements u € Fj» satisfying
x(u+1)=x(u—1)=—x(bu+3)=1.
We first show by a similar method as used in Lemma 1 of [23] that
p" — 5p™/2 <8Ny < p" 4 5p/2,
Let I' = {1,—1,—3/5} be the set of zeroes of three expressions v + 1, u — 1 and 5u + 3. Then,

8N1 = > (L+x(u+ 1)1+ x(u—1)(1—x(5u+3)).

UEFpn \F
The summation Y can be written as »_, — >, and one can easily get the latter summa-
u€Fn\I' u€Fyn  uel
tion. Due to the assumption on p and n, one has xy(—1) = —1. By the property of a multiplicative

character that x(a?b) = x(b) and x(a) = &1 for any a # 0, one can directly calculate

D (4 x(u+ 1)1+ x(u—1))(1 = x(5u+3)) = 0.

uel’
Thus,
—p" 4+ 8N
= —p"+ GZF: (T4 x(u+ 1)1+ x(u—1))(1 — x(5u+3))
= EZF: X(uj—l)%— EZF: x(u—1)— GZF: x(5u + 3)
+ :; X(u2—1)—p§ X((U+1)(5Z+3))— E; x((u—1)(5u+3))
- EzF; X((u+ D — 1)(5u + 3)), ’

and by Lemma 1, one has
8N — p"| < 5p™/2.
Similarly, let No, N3 and Ny be the numbers of elements u € Fpn satisfying x(u + 1) =

X(u—1)==x(u+3)=-1, x(u+1) = x(u—-1) = —x(bu—3) =Land x(u+1) =x(u—1) =
—x(5u — 3) = —1, respectively, and one has for i = 2,3, 4,

$(p" —5p™%) < Ny < 4 (p" + 5p™/?).
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Let N5 and Ng be the numbers of elements u € Fy» satisfying x(u+1) = x(u—1) = —x(bu+3) =
—x(bu—3)=1and x(u+1) = x(u—1) = —x(bu+3) = —x(bu — 3) = —1, respectively. It can
be similarly proven that

16 (" = 17p"?) < N; < 55(p" + 17p"7?)

for ¢ =5, 6.
Thus, the value of N = Ny + No + N3 + Ny — N5 — Ng can be measured as follows:

|N —3p"/8| < (4-5/8+2-17/16)p™"? = 37p""/?/8.

When n = 1 and p > 163, or n > 3 and p > 7, a direct calculation shows that N >
(3p"™ — 37p™?)/8 > 1. When n = 1 and 7 < p < 163, with the help of a computer, we can find
at least one element u € F), satisfying the condition in Equality (2).

This finishes the proof. O

By Lemma 2, when p" is large enough, N is about as large as 3p™/8. The following example
gives a concrete value of IV in the finite field Fs.

Ezample 1: Let Fpyn = Fys. With the help of a computer, one can find N = 128 elements
u € Fys satisfying the condition in Equality (2) such that f(z) = uz'™ + 23*! is an APN
mapping. Among them, there exist 85 elements u satisfying x(u+ 1) = x(u—1) = —x(5u + 3),
85 elements u satisfying x(u + 1) = x(u — 1) = —x(5u — 3), and 42 elements u satisfying
X(u+1)=x(u—-1)=—x(bu—3) = —x(5u + 3).

The following lemma is an analog of Lemma 1 in [23]. It will be used to prove the APN
property of the presented functions.

Lemma 3: Assume p = 3 (mod4), n is odd, p™ > 7, and u € Fj» satisfies the condition in
Equality (2). Further assume u # 4 and u # 7 in the case of p = 11 and n = 1. Then there
exists one nonzero element z € Fjn such that 2 # 1 4 u and the three elements 2% — 4(u + 1)z,
22 +4(u — 1)z and 2% — 42 + 4u? are all nonsquares in Fyn.

Proof: Let N be the number of elements z € Fj» satisfying the requirements in the lemma,
and let IV = {0,217 = 4+ 4u, x0 = 4 — 4du, 23,24, 1 + u, 1 — u} be the multiset consisting of 1 +u
and all zeroes of three polynomials 22 —4(u+1)z, 22 +4(u — 1)z and 22 — 4z + 4u?, here x3 and
x4 are zeroes of 22 — 4z + 4u?. Denote

h(z) = (1 — x(2% = 4(u+1)2))(1 — x(22 + 4(u — 1)2))(1 — x(2? — 42 + 4u?)).

8N = D> h(z)= > hz)— ) hz)

ZEFpn\F/ ZEFpn zel

Note that h(z) takes value 0 at z = 0, takes values at most 4 at each z; (1 <i <4), and takes

values at most 8 at z = 1 £ u. Therefore, the summation ) h(z) < 32. By a direct calculation,
z€l”

Then

one has
GZF: X(z2(2—4u—4)(z+4u—4))
= (Zp—i- S (2 (2 — du — 4)(z + 4u — 4))
z=0 07£Z€Fpn
= 0+ Y x((z—4u—4)(z+4u—14))
0#z€F,n
= 1+(>+ > Ix((z—4u—4)(z+4u—4))
2=0 0#2€F,n
= 1+ EZF: X((z —4u — 4)(z + 4u — 4)),
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where the fact x((—4u —4)(4u —4)) = x(—1)x(u+ 1)x(u — 1) = —1 is used in the last second
equality. Similarly, one has

S x(22(z — du — 4) (2 + 4u — 4) (2% — 42 + 4u?))

ZEFpn

= 14+ > x((z—4u—4)(z + 4u — 4)(2? — 42 + 4u?)).
2€F,n

With a same analysis as in the proof of Lemma 2, one has

6; (1—x(22 = 4(u+1)2))(1 — x(2% + 4(u—1)2)) (1 — x(22 — 4z + 4u?))

> ph—13p"/2,
and hence,
8N > p" — 13p™/? — 32.
If p™ > 250, then N > 1. For values of parameters p"™ < 250, with the help of a computer, one

can confirm N > 1 if u satisfies the condition in Equality (2) and satisfies v # 4 and u # 7 in
the case of p =11 and n = 1.

This finishes the proof. U
Remark 1: When p = 11 and n = 1, both u = 4 and 7 satisfy the condition in Equality (2).
For uw = 4, or 7, there is at least one square element in the set
{22 —4(u+1)z2,22 +4(u— 1)z, 2> — 4z + 4u?}
for any z € Fi;.

The functions defined by Equality (1) can be proven to be APN for suitable parameters p, n
and u as the following theorem, by applying a similar method as in [19, 23].

Theorem 1: For a prime p = 3 (mod4) and an odd n such that p” > 7, u € F,» satisfies the
condition in Equality (2), then the mapping f(z) defined by Equality (1) is APN.

Proof: Tt needs to prove the equation f(z +a) — f(x) =10, i.e.,

p"—1

u(z+a) 2 '+ (z4a)f - (ua:p27_1_1 +aP" ") =b (3)

has at most two solutions for any given a # 0 and b € Fj». In the following, the number of
solutions to Equation (3) will be investigated.
When z # 0 and —a, multiplying both sides of (3) by (z + a)z implies

ba? + (ab + ux(z) — ux(z + a)) z + a(ux(z) + 1) = 0. (4)

That is to say
1) (x(z +a),x(x)) = (1,1):

ba? + abx + a(1 + u) = 0; (5)
2) (x(z +a),x(z)) = (=1, -1):
ba?® + abx + a(l — u) = 0; (6)
3) (x(z +a),x(z)) = (1,-1):
ba? + (ab — 2u)z + a(l — u) = 0; (7)
4) (x(z +a),x(z)) = (-1,1):
b’ + (ab+ 2u)z 4 a(l +u) = 0. (8)

On the other hand,
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i) when z = 0, Equation (3) becomes two equivalent ones as follows:
p—1

ua" 2 14 aP" "2 =b <= 1+ux(a) = ab;

ii) when x = —a, one has

—(u(—a)p%l_1 +(—a)’"2)=b <= 1—ux(a)=ab.

The discussion can be divided into the following three subcases: ab # 1 + u, ab =1 + u, and
ab=1—u.

For a prime p = 3(mod 4) and an odd n, one has pnT_l = 1(mod 2) and x(—1) = —1. For the
element u satisfying the condition in Equality (2), one has u # +1,0. Otherwise, x(u + 1) =
x(2) # x(0) = x(u—1) for u =1, x(u—1) = x(-2) # x(0) = x(u+ 1) for v = —1, and
x(u—1) = x(—=1) # x(1) = x(u+ 1) for u = 0, which contradict with the assumption that
x(u+1) = x(u—1).

(1) ab# 1+ u.

By i) and ii), neither z = 0 nor —a is the solution of Equation (3).

When b = 0, Equations (5) and (6) have no solutions since u # 1. Each of Equations (7)
and (8) has one solution. Thus, Equation (3) has at most two solutions in this case.

When b # 0, for Equations (5) and (6), one has x(z(z + a)) = x(z)x(z + a) = 1. This shows

a(ltu
L2 (ae+a) =x(-1) = -1 (9
We claim that Equation (5) has at most one solution. Otherwise, if Equation (5) has two

solutions x; and x3, then both of them are square elements and x(z1z2) = 1. On the other
a(1+u)
b

x(

hand, z129 = and by Equality (9), x(z1z2) = —1. This is a contradiction. Therefore,
Equation (5) has at most one solution. It can be similarly proven that Equation (6) also has
at most one solution. Furthermore, if these two equations have solutions simultaneously, by
Equality (9), one has
a(l —u) a(l+u)
() = () =

which is impossible since x(1 —u) = —x(u—1) = —x(u+ 1). Thus, Equations (5) and (6) have
at most one solution in total.

Assume that each of Equations (7) and (8) has two solutions z; and z3. Then, one has

T1T9 = Llju) and z1 + z0 = — 2324 Hence,
(x1+a)(w2+a) = x22+ a(zy + 22) + a?
_ a(IZFu) _ a(ab:gzu) + 2
a(l+u)

Since x(u — 1) = x(u + 1), one has

X(x1z2(21 + a)(x2 +a)) = X(_GQ(LQ)(“*I))

b
= x(—(u+1(u—-1))
= -1,

which implies that

x(z1(x1 +a)) =1; or x(z1(x1 +a)) = —1; (10)

X(w2(z2 +a)) = -1 X(w2(z2 +a)) = 1.
On the other hand, by Equations (7) and (8), one has x(z;(z;+a)) = —1 for i = 1,2, and hence
X(z1z2(21 + a)(ze + a)) = 1, which contradicts with the fact x(x1z2(x1 4+ a)(z2 + a)) = —1
that can be derived from Equality (10). Therefore, the assumption can not hold and then

~— —
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each of Equations (7) and (8) has at most one solution. If these two equations have solutions
simultaneously, denoted by x1 and y; respectively, then one has

x(z1+a) =1, x(z1) = =1, x(y1 +a) = —1, and x(y1) = 1. 11)

(
Let 2o # x1 and y2 # y; also satisfy Equations bx?+(ab—2u)z+a(1—u) = 0 and bz?+(ab+2u)z+

a(l +u) = 0, respectively, then (x(z2 + a), x(z2)) # (1,—1) and (x(y2 + a), x(y2)) # (—1,1).
Note that —(x1 +a) and — (w9 +a) are two solutions to Equation bz? + (ab+2u)z +a(1+u) = 0,
then one has {—(z1 + a), —(z2 + a)} = {y1,y2}. By Equality (11), one has

r1+y2t+ta=x2+y; +a=0.
The equalities x(—1) = —1 and (11) show that
a(l —u) a(l+u)
b b
This is a contradiction. Thus, Equations (7) and (8) have at most one solution in total. Since it

has been proved that Equations (5) and (6) have at most one solution in total, one has Equation
(3) has at most two solutions.

(2) ab=1+u.
In this subcase, b = 1—% =# 0 since u # +1. For given a,b, and u, there exists exactly one
solution of Equation (3) in the set {0, —a}, namely x = 0 if x(a) =1 and x = —a if x(a) = —1.

L= x(@1(=71 — a)y1(=y1 — a)) = x(z1y17292) = X( )= -1

Assume that Equation (3) has one solution z¢ other than 0 and —a. Then, this solution
satisfies (zg + a)zp # 0 and it is a solution to Equation (4). We will show that there exists at
most one such zg in the case of u satisfying the condition in Equality (2).

When x(u+1) = x(u—1) = —x(5u+3), the discriminants of Equations (7) and (8) are equal
to
a?b? —dab+4u? = (u+1)% —4(u+1) + 4u?
= bu® —2u—3
= (bu+3)(u—1).

Since x(5u+3) = —x(u—1), 4u?+a?b? —4ab is nonsquare. Thus, zo can not satisfy Equation (7)
or Equation (8). By previous analysis, Equations (5) and (6) totally have at most one solution.
Therefore, in this case, Equation (3) has at most one such z( other than 0 and —a.

When x(u+1) = x(u—1) = —x(bu — 3), if x( satisfies Equation (5), one has

W) y(at)= 1,
which contradicts with x(xo 4+ a) = 1 and x(x0) = 1. The discriminant of Equation (6) is equal
to a?b? + 4ab(u — 1) = (5u — 3)(u + 1), which is nonsquare. Thus, ¢ can not satisfy Equation
(5) or Equation (6). Since Equations (7) and (8) totally have at most one solution, Equation
(3) has at most one such xy other than 0 and —a.

Combining the discussion above, Equation (3) has at most two solutions.

(3) ab=1—u.
It can be similarly proven that Equation (3) has at most two solutions.

Finally, we prove that there are values for a # 0 and b such that f(z + a) — f(x) = b has
exactly two solutions, or equivalently, f(z) is not a perfect nonlinear or planar function in the
sense that for every 0 # a € Fjn, the function Af,(x) = f(z + a) — f(z) induces a permutation
mapping over Fp». To this end, we only need to prove that there are values for a # 0 and b
such that f(x + a) — f(x) = b has no solutions since for any a # 0 there is on the average one
solution for each b.

X(zo(2o + a)) = x(—
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For u satisfying the condition in Equality (2) and satisfying u # 4 and u # 7 if p = 11 and
n = 1, the discriminants of Equations (5), (6), (7) and (8) are
a?b? — 4ab(u + 1), a®b* 4 4ab(u — 1), a®b? — 4ab + 44, a*b* — 4ab + 4u?,

respectively. Thus, it is sufficient to show that there exists at least one nonzero element z =
ab € Fyn \ {1 & u} such that all the discriminants are nonsquares, i.e., such that 22 — 4(u + 1)z,
22+ 4(u — 1)z and 22 — 4z + 4u? are nonsquares. This follows Lemma 3.

For p =11 and n = 1, when u =4 or 7, it is directly verified that the equation
flz+1) —fl@)=uwz+D*+(z+1)° —uz? —2=1
has no solution in Fiy.
Now we complete the proof of that f(z) is exactly an APN function. O
Remark 2: When p = 3, x(5u £ 3) = x(—u) = —x(u), the condition x(u+1) = x(u—1) =
—x(bu £ 3) is equivalent to x(u+ 1) = x(u — 1) = x(u). Thus, Theorem 1 in [23] is a special
case of our result. For p > 7, the characterization of u is different from the case for p = 3 given

in [23]. Using this characterization, an analog of the APN mapping family in [23] for p > 7 can
be obtained.

When p > 7, the constructed functions in this paper are different from those in [23] and they
will be proven to be CCZ-inequivalent to all known APN mappings in next section.

3. THE INEQUIVALENCE WITH KNOWN APN POWER MAPPINGS

In this section, we will discuss the inequivalence between f(x) defined in Equality (1) and all
known APN power mappings g(x) = z% as in Table 1 for p > 7 and an odd n.

Suppose that f(x) and g(z) = 2¢ are CCZ-equivalent, then there exists an affine automor-
phism L = (L1, Ly) of Fpn x Fpn such that

Ly(z, f(x)) = g(Li(z, f(2))) (mod 2" — ),

n—1 . on—1 . n—1 . on—1 .

where Lo (z,y) = a+ 3 a;a? + 3 biy?, Li(z,y) = c+ 3 cia? + 35 eiy”, a,¢, a5, b, iy e € Fyn
i=0 i=0 i=0 i=0

and Li(z, f(x)) is a permutation. Thus, one has

n—1 n—1 n—1 n—1
a+ Y aa” +> bif(@)P =(c+ Y ca’ + ) eif(x)”)? (mod 27" — ), (12)
=0 =0 i=0 =0

where f(z)P' can be calculated as

flz)y' = (ux%_l+xpn_2)pi

. T 1 . . .
— upzxp (p2 )_pz + xpz(pn_l)_pz

e NS B

By Table 1, the power exponent d takes at most five types of values as listed in Propositions 1-
2 and Corollary 1 below if f(x) is CCZ-equivalent to a known APN power mapping g(z) = z%. In
what follows, we will prove that f(x) is CCZ-inequivalent to these known APN power mappings.

For a given non-negative integer k with p-adic expansion k = kg +kip+-- -+ k,—_1p" ' where
0 < k; < p, its p-adic weight is defined as the integer kg + k1 + --- + kp,—1 and denoted by
wt(k). For every non-constant monomial function =¥ on Fyn, where v # 0, there is a positive
integer 3 with 1 < 3 < p™ — 1 such that 27 = 2% (mod 2P" — z), namely, 8 = v (mod p"™ — 1) if
v # 0 (modp™ —1), and = p" —1if y =0 (mod p"” — 1). For a monomial 27 defined on Fjn, it
is sufficient to consider the p-adic weight of such an integer (3, and the latter is regarded as the



A NEW FAMILY OF APN MAPPINGS 9

weight of v. The main technique used in the following proofs is to analyze the weights of the
exponents of the monomials in the expansion of some polynomials over Fjn.

In the following proofs to Proposition 1, Corollary 1 and Proposition 2, one will encounter
35 kinds of monomials totally. Their exponents and the possible values of the corresponding
weights are carefully but tediously determined as in Table 2.

Lemma 4: Let 0 < k, s, t, |, v < n—1, and ¢ = p — 1. The weights of the 35 kinds of
exponents listed in Table 2 are correctly given in that table.

Proof: We show the determination of the weights by illustrating a complicated case, namely
how to determine the weight of the last exponent p* + p* + p” — 1 — p* — p' — p¥. Other kinds
of exponents are similarly handled. Without loss of generality, we can assume for this case that
k> sandt>12>v. We show its weight must be one of the several values listed in the last
entry in Table 2.

Firstly, assume p* 4+ p® > p' + p! + p¥. Then one has
PP+ +p" —1—p' —p —p(mod p" —1) = p" +p° —p' —p' = p" = 3,
and kK >t,or k=t and s > L.

When k > t, p* —p* = (p— 1)p* L +--- + (p — 1)p¥ and its weight is (k —v)q. If s =k, t, [
or s <,  has weight (k —v)g— 1. If k>t >1>s>v, pF —pl = (p—DpF1 4+ (p—1)p
has weight (k —[)q and p* —p® = (p— 1)p* "1 +--- + (p — 1)p" has weight (s —v)q. Thus, 3 has
weight (k+ s — 1 —v)g — 1. Similarly, for £ >t > s > 1 > v, § has weight (k+s—t—wv)q — 1.
Ifk>s>t>1>v,p°—p'=(p—1)p° ' +---(p—1)p¥ and then 8 has weight (s —v)q — 1.

When k =t and s > [, by the expression of p* — p¥, 8 = p* — p' — p* has weight (s — v)q — 1.

Secondly, assume p* + p* < pt + p! + p¥. Then in this case, one has k < t and

PP+ +p" —1—p —p' —p’(mod p" — 1) =p" +p°+p" —1—-p' —p' —p" =

When k = t, one has s < land B = p*+p" —1—p' —p’. If v < s < [, B has weight
(n+s—10)qg—1. If s < v, B has weight (n + s —v)g — 1.

When k < t,if k > s > 1> v, one has p" —p' = (p— 1)p" ' +--- + (p — 1)p’ of weight

(n—t)gand p°* —1=(p—1)p* L +--- 4 (p— 1) of weight sq. Thus, the weight of 3 is equal to
(n—t+s)g+1—2=(n+s—t)g— 1. Similarly, one has

m+k+s—t—Ug—1, t>k>1>s>uv;
m+k+s—t—v)g—1, t>k>1>v>s;
wt(f) =< (n+s—1)g—1, t>10>k>s>uv;
m+k+s—1l—v)g—1, t>1>k>v>s;
(n+s—wv)g—1, t>1>v>k>s.

All the weight values appeared above are ranged into the set of 10 expressions listed in the
last entry of Table 2. O

With the weights in Lemma 4, the following Propositions 1-2 and Corollary 1 can be proved.
Another simple fact below will also be used in these proofs.

Lemma 5: Let u € Fyn satisfy the condition in Equality (2) and p > 7. Then, none of the
two systems of equations

3u2+1=0 d Sut +10u2+1=0
uw?+3=0 ut+10u2+5=0

has solutions.
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Table 2. Thirty-five kinds of exponents and their p-adic weights (with notation ¢ := p — 1)
Exponent " Lz_l —p* Pt —1—pF
Weight 1 -1 ng—1
Exponent P +p° pt—1—p" —p° i e
Weight 2 ng — 2 o
Exponent Pl gk p p* 4 p* +p° P+ pt+ Lt
Weight =2 3 B 41
Exponent pk+p2—1_ps_pt p2—1_pk_ps_pt pn_l_pk_ps_pt
Weight -1 g =30p">T) ng—3
6(p" =7)
Exponent PP pt —1-p° PP pT " —1—p' [ i S i
Weight (k — s)q, or (k—t)g+1,or (k — min{s,t})q — 1,
(n+k—s)q (s—t)g+1,or or (n+k—s)qg—1,
(n + min{k,s} —t)g+1 or(n+k—t)g—1
Exponent P 0+ 1 p”2—1 o —p —p pk+p"2—1 P
Weight 4 B2 —=4(p>T) w2
3n—4or3n+2( *7)
Exponent | p* +p" + E-L —pf —pf pF+p 't + B pt—1—p"—p°—p' —p
Weight & =42 ng —4
Exponent | p* +p" —1—p° —p' —p' p’“+p5+p"—1—pt—pl AR A A e
Weight (k — min{s,t,1})q — 2, (k — min{¢,1})q, or (k=0q+2,or
or (n+k—s)g—2, (s — min{t,1})q, or (s—1)g+2, or
or (n+k—1t)qg—2, (k+s—t—1)g, or (t—10q+2,or
r(n+k—1)qg—2 (n + min{k, s} — l)q, or (n + min{k, s, t} —)g+2
(n 4+ min{k, s} — ¢t)q, or
m+k+s—t—1)g
Exponent pk +ps +pt +pl+pu pn2—1 _pk_ps_pt_pl_pv pk_'_pn—l _ps_pt_pl_p'u
Weight 5 S —5(p>1L,p" > 11) w2 =3p>7),
10 (p™ =11) 3n—30r 3n+3(p="7)
3n—50r3n+1( =7)
Exponent | p*+p° + 252 —p' —p' —p” [ pP+p +p" + B —p —p" | PP+ p +p 4+ + L —p°
Weight -1 "q+1 2 4+3(p>7),
3n+3o0r3n—3(p="7)
Exponent | p" —1—p" —p° —p"—p' —p" [p" +p" —1—p°—p"—p' —p" [p" +p° +p" +p" +p" —1—p"
Weight ng—>5 (k — min{s,t,l,v})qg — 3, or (k—wv)qg+ 3, or
(n+k—s)g—3,or (s —v)g+3, or
(n+k—t)g—3,or (t—wv)g+ 3, or
(n+k—1)g—3,or (I—wv)g+3,or
(n+k—v)g—3 (n + min{k, s, ¢, 1} —v)g+3
Exponent | p* +p°+p' +p" —1—p' —p" [ p" +p"+p" —1—p" —p' —p"
(k>s>tand > v) (k>sandt>1>v)
Weight (k—v)g+1,or (k—v)g—1, or
(s—v)g+1,or (s—v)g—1,or
(t—v)g+1,or (k+s—1l—v)g—1,0r
(k+s—1—v)g+1,o0r (k+s—t—wv)g—1,or
(k+t—1—v)g+1,or (n+s—t)g—1,or
(s+t—1—v)g+1,0r (n+s—10g—1,or
(n+t—1)g+1,or (n+s—v)g—1,or
(n+t—v)g+1,or (n+k+s—t—v)g—1,o0r
(n+s+t—1—v)g+1,or (n+k+s—t—1l)g—1,or
(n+k+t—1—v)g+1 m+k+s—1l—-v)g—1

With the above preparation, the inequivalence of functions can now be discussed. Since the
weights of exponents in Table 2 depend on the parameters p and n, the inequivalent proof of
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f(x) and all known APN power mappings can be divided into three subcases: (1) p > 7 and
n>3;(2)p>19and n=1; and (3) p="7or 11, and n = 1. We only give the proof of the first
case in Propositions 1-2 and Corollary 1, and the second case can be proved in a similar way.
The third case can be directly verified with the help of a computer. The reader will find the
proof of Proposition 2 is very lengthy (nine pages two of which is devoted to Proposition 2(1)
and the other seven to Proposition 2(2)). We can not give a unified proof to these propositions
and corollary.

Proposition 1: The function f(z) is CCZ-inequivalent to g(z) = ¢ on Fjn, if

(1) d=3; or

(2) d =p™ — 2 for p=2(mod 3).

Proof: (1) Suppose that f(z) and g(x) = 2% are CCZ-equivalent. Then, the right hand side
(RHS) of Equality (12) is expanded as

n—1 ; n—1 ;
(c+ X ca? + 3 eif (x)7)?
=0 i=0

3 n-1 9 2 n-1 9 opt-1_ &k —1 9 n_q_pk
= & +3> el +3 ) cfepul xz P £33 cfepal TP
k=0 k=0 k=0
n—1 n—1
k k 1k _
+3 0 cepesx? TPT 43 Y cepes(uP TP 4 1) P TP
k,s=0 k,s=0
n—1 s pk+pn71—p5 n—1 ki 1—ps
+6 > copesuf x +6 > cegegaP TP TITP
k,s=0 k,s=0
n—1 n n—1
k p -1 _k_ s ko t
+6 > cepesuP Tz PP 4 N e PP
k,s=0 k,s,t=0 (13)
= tpF+pt+ 2t —pt Sy k4ps4pm—1—pt
+3 > cpeseuP x +3 > cpeseaP PP p
k,s,t=0 k,s,t=0
n—1 n
k,op —1
+6 > cpesequP xP T
k,s,t=0
n-l1 s t k n S t
k,s,t=0
n—1 n
k t k p =1 __k_,s_,t
k,s,t=0
S pF+p* p"—1—p*—p*—p’
+ > ereser(3u + 1z .
k,s,t=0

—p*—p*

The exponents of indeterminant z in Equality (13) have 15 kinds of possible forms, which are
exactly the first 15 kinds of exponents in Table 2.

Consider the exponent 3p’ of weight 3, where i € {0,1,--- ,n — 1}. By the weights of the first
15 kinds of exponents in Table 2, for p > 7 and n > 3, the exponent 3p’ only derives from the
form p* + p* + p! with k = s = t = 4. Therefore, by Equality (13), the coefficient of 23" on
the RHS of Equality (12) is equal to ¢}, and it is zero on the left hand side (LHS). This gives
cg’ =0, ie., ¢ =0.

Considering the exponent p™ — 1 — 3p, similarly, one has p" — 1 — 3pt=pt—1—pF —p° = pt
and then k = s =t = 4. As the case of x?’pl, one can get that the coefficient of 2P" ~173P" on the
RHS of Equality (12) is equal to e3(3u?" + 1), and it is zero on the LHS. Then, one has

e} (3u + 1)P =0. (14)
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i

Similarly, the following equality can be obtained by considering the coefficient of PR ,
el (u® + 3u)”’ =0. (15)

By Lemma 5, Equalities (14) and (15) imply e; = 0 for all ¢« € {0,1,---,n — 1}. Thus
Ly(z, f(x)) = ¢ is not a permutation.
Therefore, f(z) and g(z) = 23 are CCZ-inequivalent on Fn.

(2) Suppose that f(z) and 2P"~2 are CCZ-equivalent. By p = 3(mod 4) and p = 2(mod 3),
one has p > 11. Multiplying both sides of Equality (12) by (c¢+ Z ciaP + Z eif(x)P ) implies

=0 =0

n—1 n—1 n—1 n—1
(a—|—z ai:rpi—&—z bif(x)pi)(c—kz cixpi—l—z el-f($) = C+Z ciz? —G—Z eif (z)?" (mod zP" —z).
=0 =0 =0 =0

(16)
The LHS of Equality (16) is equal to
n—1 i n—1 i n—1 i n—1 ;
(a+ 3 aa? + 3 bif(@)P)(c+ X ca? + 3 eif (2)7)?
i=0 i=0 i=0 =0
n—1 & n—1 v p"—1 &
= ac® + Y (2acek + apc®)zP” + Y (cPby, + 2ace)uP x 2 P
k=0 k=0

n—1 n—1
+ 3 (c2by, + 2ace,)zP" —1-pt 4 > (ackes + 2caxcs )xp +p°

k=0 k,5=0

n—l k s R n k s
+ Y (aepes + 2bgces)(uP TP 4 1)gP" —lopiop

k,5=0

nS 1 P R
+ Y (2ackes + 2axces + 2bscey )uP” xP o

k,5=0

nS 1 B
+ Y (2ackes + 2axces + 2b cck):vp pt—l-p

k,s=0

ns 1 _ s
+ k§0(2aekes + 2bjces + 2bgcer)uP x ' p (17)

n-l1 kst n-l t ks, pt=1 t
+ 3 apescaP PP 40 N (2agcqeq + byepes)uP P TP T P

k,s,t=0 k,s,t=0

n—1
k t
+ (2apcses + bycgcg )zl TP PP
k,s,t=0

’—‘II

n
p-—1 t
5— —p°—p

Z (2areser + 4bscket)upsxpk+
s =0
n—1

Z (ake.s@t + 2b36k6t)(ups+l)t + 1)xpk+l)n—1—p5—pt

o b gt PR

k s s t n_1_nk_s_t
+ breses(2uP TP 4 uP TP 4 1) P 1=p®—p®—p*

Equalities (17) and (13) have same exponents of the indeterminant x, i.e., the first 15 kinds of
exponents as listed in Table 2
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For any ¢, 0 < i < n — 1, by a similar analysis as above for the coefficients of the exponents
3p°, pT_l —3p’, and p" — 1 — 3p" in Equality (17), one has

aic? = 0;
bie2 (ud + 3u)P" = 0; (18)
bie?(3u? + 1)P' = 0.
By Lemma 5, Equality (18) gives
a;c; = 0 and b;e; = 0. (19)
Considering the exponent p™ — 1 — p’ — 2p? (0 < i # j < n — 1), again by the weights of the
first 15 exponents in Table 2, one has p” — 1 — p' — 2p/ = p"® — 1 — p¥ — p* — p? and then k = 1,
s=t=j,ors=1i,k=t=j,ort =1, k=s=j. Thus, by Equality (17), the coefficient of
2P"=1=P'=20" o the LHS of Equality (16) is equal to

(bie? + 2bjeiej)(2upi+pj +u 4 1) = bie§(2upi+pj +u 4 1),
and it is zero on the RHS. Thus,
bie?(Qupi"’pj +u 4 1)=0. (20)
Similarly as above, from the coefficient of xpnT_l*pLij (i # j), one has
bie? (uP 2 ' 4 2uP’) = 0. (21)

We claim that b;e; = 0 holds for any 0 <7 # j < n — 1. Otherwise, there exist two integers
ip and jo such that b; ej, # 0. By Equalities (20) and (21), one has

PU0 4pJ0 2pJo —_0-
{ 2 F U 41 =0; (22)

uP 020 0 4 9P’ = 0,
Denote y = uw”" and z = uP’°. Since u # +1 and 0, Equality (22) implies
2241 =2z
-2z 22+1

Then, the element z satisfies the following equation

222 41=0, (23)
i.e., z = £1 and then u = £1. It is impossible. Therefore, b;e; = 0 for any 7 # j. This together
with Equality (19) shows that bje; = 0 for any i, j € {0,1,---,n — 1}. That is to say that
b0:b1:---:bn,l:Oor'egze;:---:en,l:().

Consider the exponent p° + 2p’ (i # j) of weight 3, where i, j € {0,1,--- ,n —1}. Among
the first 15 kinds of exponents in Table 2, the exponent p' + 2p7 only derives from the form
pk+ps—|—ptwithk_:iands:t:j, ors=iand k=t=j,ort=1¢and k =s = j. Therefore,
the coefficient of 2P +2P" on the LHS of Equality (16) is equal to aic? + 2ajc;cj, and it is zero on
the RHS. This gives

aic? + 2ajc;c; = 0. (24)
By Equalities (19) and (24), one has a;jc; = 0 for any 4, j € {0,1,--- ,n — 1}. That is to say
thataqp=a1=---=ap_1=00rcg=c1=---=cp_1 =0.

Assume that e; = 0 for any j € {0,1,--- ,n — 1}. Since L;(z, f(x)) is a permutation, there
exists some jo such that cj, # 0. Thus, one has a; = 0 for any 4, and then Equality (16) can be

reduced to
n—1

n—1 n—1
(a+ Z bif(x)pi)(c + Z ciwpi)Q =c+ Z cia” (mod zP" — ). (25)
=0 =0

1=0
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By Table 2, the exponent p™ — 1 — p’ 4+ 2p/ (i # j) has weight a(p — 1) + 1, where i, j €
{0,1,--- ,n—1} and 1 < a < n—1, then the exponent p" — 1 —p’ +2p’ (i # j) only derives from
the form p* + p* + p” — 1 — p! with t = i, k = s = j. Therefore, the coefficient of zP" 1P +2P
on the LHS of Equality (16) is equal to bicjz + 2ajcje;, and it is zero on the RHS. This together
with Equality (19) show

bic; = 0. (26)
For j = jo, the equation bicjz0 = 0 implies that b; = 0 for any ¢ # jo. For i = jg, the equation
bjoc? = 0 implies that bj, = 0 or ¢; = 0 for any j # jo. In other words, one has b; = 0 for any ¢,
or bj,cj, # 0 and b; = ¢; = 0 for any j # jo.

When b; = 0 for any i € {0,1,--- ,n — 1}, Equality (25) is equal to

n—1
a=(c+ Z ciz? )P 72 (mod zP" — ). (27)
=0
Since (p" —2)? = (p" —1)2 = 2(p" — 1) + 1 = 1(mod p™ — 1), by Equality (27), one has
n—1
a?" P =c+ Z c;zP (mod 2P” — ). (28)
i=0

Obviously, one has ¢; = 0 for any i € {0,1,---,n — 1} and then Li(z, f(z)) = c is not a
permutation. That is a contradiction.

When bj,c;, # 0 and b; = ¢; = 0 for any j # jo, then Equality (25) is further reduced to

(a + bjo f(@)7°) (e + cjoa”)? = ¢+ cjpa®” (mod a?" — z). (29)
Since the coefficient of "7 T7° is equal to bjoC?oupjo, one has bjocjzgupjo = 0 which implies

bj,cj, = 0. That is also a contradiction.

Now one should assume that there exists some integer jo such that ej, # 0. Then b; = 0 for
any j. If a; = 0 for any 4, then by Equalities (27) and (28), one has Li(x, f(z)) = ¢. This is
impossible, and then there exists at least one nonzero element in {a; |0 < ¢ < n — 1}. Thus,
¢; =0 for any j, and Equality (16) is reduced to

n—1 n—1 n—1
(a+ Z aixpi)(c + Z eif(ac)pi)2 =c+ Z eif(x)pi (mod 2" — z). (30)
i=0 i=0 i=0

Also by Table 2, the exponent p™ — 1 + p* — 2p’ (i # j) has weight a(p — 1) — 1, where 1,
j€{0,1,--- ,n—1}and 1 < o < n — 1. Then, the exponent p" — 1 + p* — 2p/ (i # j) only
derives from the form p" —1+ p*—p*—p! with k =i and s = t = j. Therefore, the coefficient of
xP" 1P =207 on the LHS of Equality (16) is equal to aiei(u%] + 1), and it is zero on the RHS.
This gives _

a,-e?(u2 + 1) =0, (31)
and then
al-e? =0, (32)
since u? 4+ 1 # 0.

For j = jo, the equation aie]zo = 0 implies that a; = 0 for any 7 # jg since e;, # 0. Since there
exists at least one nonzero element in {a; |0 < i < n — 1}, one has aj, # 0 and the equation
ajoe? = 0 implies e; = 0 for any j # jo. Thus, one has ajye;, # 0 and b; = ¢; = 0 for any j.
Equality (30) is reduced to

(a + ajox”)(c + ejo f(2)7°)? = ¢+ e, f ()7 (mod a?" — x). (33)
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Considering the coefficient of 27 in Equality (33), one has aj,c? = 0 and then ¢ = 0. From the
coefficients of 22"~ 1P and z"7 7’ ? one has
{ @€, (1 + 17" = ejy;
2

PO — o, 0
2aj,e5, uP" = ejoul,

which implies © = £1 since aj,e;, # 0. This contradicts with u # £1.

-2

The arguments above prove that f(z) and g(z) = 2P" ~2 are CCZ-inequivalent on Fjn O

Corollary 1: The function f(z) is CCZ-inequivalent to g(x) = x et , where p" = 2(mod 3).
—1

Proof: For p" = 2 (mod 3) and p = 3 (mod 4), one has p > 11. If f(x) and g(z) = 225 are
CCZ-equivalent on Fy», then by Equality (12), one has

n—1 n—1
(a+ Z ax? + Z bif(a;) =c+ Z cia? + Z eif(z mod " — ). (34)
=0 i=0

A same analysis as in Proposition 1 (1) gives a; = b; = 0 for any 0 < i < n — 1. Equality (34)
can be reduced to

a —c+Zchp —i—Zezf modxp —x),

which implies ¢; = e; = 0 for any 7. Thus, Ll(x, f(x)) = c¢. This contradicts with that Ll( , f(x))

is a permutation. The contradiction proves CCZ-inequivalence of f(x) and g(x) = x psil. O

By analyzing the weights of the exponents in Equality (12), the following proposition can be

proved in a similar way to Proposition 1.
d

Proposition 2: The functions f(z) and g(z) = 2% are CCZ-inequivalent on Fjn, if

(1) d= pnjl for p" = 7 (mod 8) and d = 2= +1 + p —L for p" = 3 (mod 8); or

(2) d =B+ = 3,7 (mod 20).

Proof: (1) Assume that f(z) and g(z) = 2% are CCZ-equivalent. Then, by Equality (12), one
has

n—1 n—1
(a+ Z a;z? + Z bif(x)P)* = (c+ Z cia? + Z eif (x)P)?(mod zP" — x). (35)
i=0 i=0
Then, the LHS of Equality (35) is equal to

(a+ ”f aia? + "f bof ()Y

= a*+4 Z aBapr?” + 4 Z a3bpuP” = 3bk:z:p —*
k=0
+6 Z aapasa? P 4 6 Z a2bbs(uP" P 4 1)gP" 1P Pt
k,s=0 k,s=0
n—1 P n—1
+12 Y alagbout’ 2Pt _p+122aakbxp+p*1p
k,s=0 k,s=0
n-l E P"=1__k_ s n-l kst
+12 3 a’bpbsuP w2z PP 44 Y aagasagzP PP
k,s=0 k,s,t=0

= B S Fpspn—1—
+12 > aapashuP x 2 +12 > aagasbaP PP p
k,s,t=0 k,s,t=0

t
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n=l s ko pt—1
+24 > aagbsbuP Pt

k,s,t=0

n=l s t k n s t
12 aapboby(uP" P + 1)gp 1

k,s,t=0

n—1 k+ sS4 t k p"=1_ k_.s_.t
+4 >0 abgpbshy(uP PP £ 3uP )z P TPTP
k,s,t=0

n—l k s n k s t
+4 Y abpbsby(3uP TP 4 1)gP" TP op

—p—p*

k,s,t=0
n—1 n—1 n
ke t ol I pkypsipty P =1 _ 1
+ Y apasapagr? TPTPHAP L4 N aqpagabu? of PP T P
k,s,t,l=0 k,s,t,l=0
S P +p°+pt+p"—1-p!
+4 apasaibjx
k,s,t,1=0
n=1 t by 5+P"*1_ t_ ol (36)
+12 > agasbbpuP 2P TP T PP
k,s,t,l=0
n=1 ¢yl I
+6 > agasbby(uP TP 4 1)aP" PP p=p
k,s,t,1=0
n=1 s 4 pt ! s pk+(1n—17psipt7pl
+4 >0 agbsbiby(uP PP 4 3uP )x 2
k,s,t,1=0
n=-l s+t k:+ n_1_pS_ t_ .l
+4 > agbsbiby(3uP TP 4 1)aP" TP PP P
k,s,t,l=0
n—l1 k+s+t+l k+5 n__1 k s t !
pr+p°+pt+p p*+p p"—1—pF—p°—p'—p
S
+ > brbsbibi(u + 6u + 1)z
k,s,t,1=0
n—1 n
k t k P =1 k_.s_ t_,l
+4 3 bbby (uP TP P T P P R
k,5,,1=0

The exponents of indeterminant x in Equality (36) have 24 kinds of possible forms, and they are
the first 24 kinds of the exponents in Table 2. From this table, the weight of pn% —pF—ps—pt—p
depends on whether the character p is 7 or not. The following discussion is divided into two
subcases p > 7 and p = 7.

Case 1: p > T.

Consider the exponent 4p’ of weight 4, where 7 € {0,1,--- ,n — 1}. By Table 2, the exponent
4p* only derives from p¥ + p* + p* + p! with k = s =t = [ = i. Therefore, the coefficient of 2"
on the LHS of Equality (35) is equal to af, and it is zero on the RHS. This gives a} = 0, i.e.,
a; = 0.

Considering the exponent pn% — 4p* of weight nlp=b) 4, by Table 2, pg;l —dpt = pn; 1_

2
p* —p* —pt —p' and then k = s = ¢t = | = 4. Since the coefficient of 2" =" on the LHS of

Equality (35) is equal to b}(4u? + 4u)pi, and it is zero on the RHS, one has

bA(4u? + du)?" =0, (37)

which implies that b; = 0 since 4u? + 4u = 4u(u? + 1) # 0.
Thus, Equality (35) can be rewritten as

n—1 n—1
at = (c+ Z cixP + Z eif(x)P)?(mod 2" — ). (38)
=0 i=0
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By analyzing the coefficients of monomials = with exponents 2p’ and p” — 1 — 2p’ in the
expansion of Equality (38), one has
2
c; = 0;
{a (39)

e2(u? + 1)P' = 0.
This implies ¢; = 0 and e; = 0 for any ¢, and then L;i(z, f(x)) = ¢ is not a permutation. The
contradiction proves that f(z) is CCZ-inequivalent to g(z) = z¢ for p > 7.

Case 2: p=T. A ‘

Consider the exponent 3p’ +p’ (i # j) of weight 4, where 4, j € {0,1,--- ,n —1}. By Table 2,
the exponent 3p* +p’ only derives from pF+p*+pt+p! with k = s =t =4 and | = j. Therefore,
the coefficient of 3PP’ on the LHS of Equality (35) is equal to 4a§’aj, and it is zero on the
RHS. This gives 4a§’aj = 0. If a;, # 0, then one has a; = 0 for any ¢ # ip. That is to say, there
exists at most one nonzero element in {a; |0 <i<n—1}.

Considering the exponent p™ — 1 — 4p’ of weight 6n — 4, by Table 2, the exponent has two
forms p" — 1 —p* —p° —pt —p' with k =s =t =1 =1, or p¥ +p* +p' +p" — 1 — p! with
k=s=t=1,1=i+ 1. Since the coefficient of 27" ~1=%" on the LHS of Equality (35) is equal
to 4a3b; i1 + b (ut + 6u? + 1)1,1-7 and it is zero on the RHS, one has

4a3biyq + bl (u* + 6u® + 1) =0, (40)
which implies b; = 0 (i # ig) since a; = 0 for any i # iy and
ut 4 6u’ 4+ 1 = (u? 4+ 2)(u® 4+ 4) = (u? + 32)(u? +2%) #£ 0. (41)

For ¢ = ig, one has bj,+1 = 0. Then, the equality 4a§’0bl-0+1 + b;lo (u* + 6u? + l)pio = 0 implies
bi, = 0. Therefore, b; = 0 for any .

Consider the exponent 4p’ of weight 4, where i € {0,1,--- ,n — 1}. By Table 2, the exponent
4p® has the forms as p* +p* + p' +p' with k=s=t=1=14, or p* +p" — 1 —p* — p' — p' with
k=i+1and s =t=1=i. Since the coefficient of 27" on the LHS of Equality (35) is equal to
af + 12ai+1b§u2pi + 4ai+1b§’, and it is zero on the RHS. This gives

CL? + 12ai+1b§’u2pi + 4ai+1b§ =0. (42)
Then, one has

at =0 (43)

(2
since b; = 0 for any i. Equality (43) shows a; = 0 for any i € {0,1,--- ,n — 1}. Thus, Equality
(35) can be rewritten as

n—1 ) n—1 )
at=(c+ X cx? + Y eif(x)?)? (mod 2P" — z). (44)
i=0 i=0

Similar to the analysis after Equality (38), one has ¢; = 0 and e; = 0 for any . Thus,
Li(z, f(z)) = c. That is to say, the function f(x) is CCZ-inequivalent to g(x) = 2% for p = 7.

(2) Assume that f(z) and g(x) = 2 are CCZ-equivalent. Squaring both sides of Equality
n—1 n—1
(12) and multiplying (c+ 3 cza® + 3 epf(z)P")? for both sides imply
=0 =0
n—1 R n—1 s\o n—1 : n—1 ;
(a+ 3 as2? + 32 b f(2)P)2(c+ 3 ca? + 3 ef(a)P)?
s=0 s=0 t=0 t=0

n—1 . n—1 " "
=c+ > P + > ef(x)P (mod 2P — x).
=0 =0
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We claim that there exists some integer jg such that e;, # 0. Otherwise, if e; = 0 holds for
any j, Equality (45) can be reduced to

n—1 n—1 n—1 n—1
(a4 X asa? + 3 bof ()P )2(c+ 3 ea?’ )P =c+ 3 e (mod 2" — ). (46)
s=0 s=0 t=0 t=0

Consider the exponent pnT_l —2p' 4+ 3p? (i # j) of weight % + 1. By Table 2, the exponent
p"T—l — 2p' +3p7 only has the formpk—kps-i—pt—i-pnT_l—pl—p” withk=s=t=jandl=v=1.
The coefficient of panl —2p' + 3p’ on the LHS of Equality (46) is equal to Qb?cgupi and it is zero
on the RHS. Thus, b;c; = 0 for any i # j.

Since Li(z, f(x)) is a permutation, there exists some integer jo such that c;, # 0. For i # j,
the equation b;c; = 0 implies that b; = 0 for any 4, or bj,c;, # 0 and b; = ¢; = 0 for any j # jo.

When b; = 0 for any i, Equality (46) is equal to

n—1 n—1 n—1
(a+ Z asxP )% (c + Z ctmpt)?’ =c+ Z cz? (mod zP" — ).
s=0 t=0 t=0

Since the coefficient of z°7" on the LHS of the above equality is a?c3

sc; and it is zero on the

RHS, one has a;c; = 0. Similarly, from the coefficient of 22" +3p! (i # j) in the equality above,
one has a?c?- + Gaiajcic? + 3a?c%cj = a?c? = 0 since a;c; = 0 for any 4. Thus, a;c; = 0 for any 4
and j. The inequality cj, # 0 implies a; = 0 for any 1.

We next show Lj(z, f(z)) is not a permutation when a; = b; = 0 for any 1.

By a; = b; = 0, Equality (12) can be reduced to

n—1 t n—1 o opTt—1 "
a=(c+ X ca? + 3 ef(x)P) 2 Y(mod 2" — ). (47)
=0 =0

Since gcd(z% —1,p"—1) = 2, there exists an integer A such that )\(pan —1) =2(mod p" —1).
Thus, from Equality (47), one has

n—1 n—1
=+ X aa? + 3 ef(x)P)? (mod " — z).
t=0 t=0

By the analysis after Equality (38), one has ¢; = 0 and ¢; = 0 for any i. Thus Li(z, f(x)) = ¢
is not a permutation.
When bj,cj, # 0 and b; = ¢; = 0 for any j # jo, Equality (46) becomes
n—1 . . .
(a+ 3 asx?” + by f(2)P°)2(c + ¢jyz? ) = ¢ + ¢j,aP” (mod 2P" — ). (48)
s=0
Consider the coefficient of 22P'+3" (i # jo) in Equality (48), one has a?c?o = 0. This implies
a; = 0 for i # jo since ¢;j, # 0. Thus, Equality (48) becomes

(a+ ajoa:pjo + bjof(x)pjo )2 (c+ cjoa:pjo)g =c+ cjoscpjo (mod 2" — z). (49)
From the coefficients of z%7° and #*"° in Equality (49), one has
2 3 _q.
{ a‘o?sjo = 2 2 2
a“cj + bacajycj) + 3c¢7aj cj, =0,
n_q . .

which implies aj, = a = 0. Furthermore, from the coefficient of o —2P7043070 - one has
b2 ¢3 = 0. This is a contradiction.

Jo jo
Therefore, there exists some integer jo such that ej, # 0.
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Since the weights of some exponents in Table 2 depend on the concrete values of p and n,
the following discussion will be divided into three subcases: (1) p > 7; (2) p=7 and n > 5; (3)
p="7and n=3.

Case 1: p>T.
Consider the exponent 1’% — 5p’ of weight % — 5, where i € {0,1,---,n — 1}. By
Table 2, the exponent % — 5p’ only has the form as % —pF —p* —pt —pl — p¥ with

p—1_

k =s=1t=1=v=1. Since the coefficient of 2" 5" on the LHS of Equality (45) is equal to
b2ed (ud + 10u® + 5u)P’, and it is zero on the RHS, one has
b2e3 (u® + 10u® + bu)?' = 0. (50)
Similarly, comparing the coefficients of 2P"~1-5" on both sides of Equality (45), one has
b2e3 (5ut 4 10u? + 1)P" = 0. (51)
By Lemma 5, Equalities (50) and (51) imply that b;e; = 0 for any 4.
Since bje; = 0 for any ¢, the coeflicient of R (i # 7) on the LHS of Equality (45) is
(b?e;’ + 6bibjeie? + 3b§e?ej)((u2 + )P (ud + 3u)? + 2uP' (3u® + 1)P)
= b%e?-((uQ + 1P (ud + 3u)?’ + 2uP" (3u® + 1)P),
and it is zero on the RHS. Thus, one has
b?e;’((u2 + 1)pi (u? + 3u)pj + 27V4,pi(3u2 + l)pj) =0. (52)
Similarly, from the coefficient of gP" —1=2p'=3p’ (i # j), one has
(b2e2 + Gbibjese? + 3b2e2e;) (w2 + 1) (3u? + 1P + 2u”' (u? + 3u)?’) (53)
= b7ed((u® + 1)P (3u? + 1) + 2uP" (u® + 3u)?’) = 0.

By Equalities (52) and (53), we claim that bje; = 0 for any ¢ # j. Otherwise, there exist two
integers ¢, j such that b;e; # 0. Then, one has

(W2 4+ 1)P' (u3 + 3u)P’ + 2uP' (3u2 + 1)P’ = 0; (54)
(u? + 1) (3u? + 1) + 207 (u® + 3u)?” =0,
which implies
((u? + 3u)(3u2 + 1) (u? +1)2 — 4u?)? (55)

= ((u® +3u) (3u% + 1) (u2 — 1)%' = 0.

By Equality (54), if one of u3 +3u and 3u® +1 is zero, the other is also zero, which contradicts
with Lemma 5. Thus, one has (u? + 3u)(3u? 4+ 1) # 0. Equality (55) gives u> — 1 = 0. This
is a contradiction with u # £1. Therefore, b;e; = 0 holds for any 7 # j. By bje; = 0, one has
bie; = 0 for any ¢ and j. Since there exists some integer jo such that e;, # 0, one has b; = 0 for
any 7.

Consider the exponent 5p’ of weight 5, where i € {0,1,--- ,n — 1}. By Table 2, the exponent
5p’ only has the form as pF 4+ pS+pt +pl +p? with k =s=1t=1=wv=1. Since the coefficient
of #°7" on the LHS of Equality (45) is equal to a?c}, and it is zero on the RHS, one has a?c} = 0

7 : . .
for any i. Similarly, considering the coefficient of 2P'+3P” (5 # j), one has

2.3 qiCiC2 220 — 4203 —
a;jc; +6aajcici + 3ajcic; = ajc; = 0. (56)

Thus, a; = 0 for any 7 or ¢; = 0 for any j.
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Similarly as described in Equality (47), L1 (z, f(x)) is not a permutation if a; = b; = 0 for any
i. Thus, there exists a nonzero element in {a; |0 < i < n — 1}. Then, ¢; = 0 for any j. From

the coefficients of xP"—1=37 +2' (i # j) and e (i # j), one has
(a?e;’ + 6aibjcie? + Sb?cfej)(BUQ +1)? =0;
(a?e? + 6aibjcie? + SIJJQ'C%ej)(u3 +3u)P’ = 0.
Since ¢; = 0 for any j, the equality above becomes
a?e?(?)uz + l)pj. =0;
2 ?(u?’ + 3u)P’ =0,
which implies that a;e; = 0 for any ¢ # j by Lemma 5. Thus, by ej, # 0, one has aj,ej, # 0
and a; = e; = 0 for any j # jo. Equality (45) can be reduced to
(a+aja” ) (c + ejo f(2)7°) = ¢+ ey f ()" (moda?” — x). (57)

From the coefficients of 2" ~37° and 27" ~1-3" in Equality (57), one has

aje

2,3 (,,3 plo _ .
a“el (u’ + 3u =0;

2 ‘;7;0( 2 )jo (58)
a“e; (3u” +1)P7 =0,

which implies a = 0. Considering the coefficients of 257 P and mpn_l_pjo, one has
2 .3 (.3 plo _ o, p0.

{ agoego(u 2+ 3u)pj0 = ejouf; (59)

az €5, (3u” + 1)P7 = ej,

which implies

9 3 i 2 i 2 3 pio, 2 J
ajoejoup 0(—2u + 2)p70 = _Qajoejoupjo (u” —1)” °=0.
This gives aj,ej, = 0 since u(u? — 1) # 0. It’s impossible.
According to the arguments above, f(z) and g(z) = e

when p > 7 and n is odd.

Case 2: p="T,n > 5.

Consider the exponent pnT_l —2p% —3p7 (i # j) of weight 3n —5, where i, j € {0,1,--- ,n—1}.
By Table 2, the exponent pn% — 2p' — 3p7 only has the form as pn% —pF—ps—pt —pt —p?
for some k, s, t, [, v € {0,1,--- ,n — 1}. Since the coefficient of x#ﬁpi%pj on the LHS of
Equality (45) is equal to

(b2e3 + 6bibjeie? + 3b2eZe; ) ((u® + 1) (u® + 3u)? + 2uP' (3u? + 1)P')

and it is zero on the RHS, one has

are CCZ-inequivalent on Fjn

(b?e? + Gbibjeie? + 3b]2~e?ej)((u2 + l)pi (u® + 3u)pj + 2u]”i(3u2 + l)pj) = 0. (60)
Similarly, for the exponent p™ — 1 — 2p’ — 3p’, one has
(b?e? + 6bibjeie§ + Sb]ze?ej)((u2 + 1)pi (3u? + 1)pj +2u” (u® + 3u)pj) = 0. (61)
By the analysis in Case 1, Equalities (60) and (61) imply
b?e? + 6bibjeie? + 3b§e?ej = ((biej + 3bje;)* + b?e?)ej = 0. (62)
For j = jo, since ej, # 0 and —1 is nonsquare, one has b;ej, + 3bj e; = bjye; =0, i.e.,
biej, = bj,e; = 0. (63)

This implies that b; = 0 for any i, or bj, # 0 and b; = e; = 0 for any i # jo.
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From the coefficient of the monomial with exponent 2p* + pg;l —3p? (i # j), one has

(a?e? + 6a¢bjcie? + Bb?czzej)(u?’ + 3u)?’ =0. (64)

Since —1 is a nonsquare element in Fjn, one has x(3) = x(—4) = —1. We say u® + 3u # 0.
Otherwise, u = 2 or 5 and then x(u+1) # x(u—1). This is a contradiction. Therefore, Equality
(64) implies that

a?eg-’ + 6aibjc,~e§ + Sb?c?ej = ((asej + 3bje;)* + b?c?)ej = 0. (65)

For j = jo, one has a;ej, +3bj,c; = bj,c; = 0 since —1 is a nonsquare element, i.e., a; = 0 for any
i # jo. If bjy # 0, then ¢; = 0 for any i # jo. If b; = 0 for any ¢, Equality (65) can be reduced
to a;e; = 0.

According to the discussion after Equalities (63) and (65), we derive that b; = 0 for any ¢ and
aje; = 0 for any i # j, or bj, # 0 and a; = b; = ¢; = ¢; = 0 for any i # jo.

Assume that b; = 0 for any ¢ and a;e; = 0 for any i # j. If aj, =0, i.e., a; = 0 for any ¢ since
ejo # 0, then Ly (x, f(x)) = c is not a permutation. If a;, # 0, then aj,e; = 0 implies e; = 0 for
any j # jo. Therefore, Equality (45) can be reduced to

n—1 n—1
(a+ ajoz?)*(c+ Z cir? +ej fx)P0)3 =c+ Z cir? + ejo f(x)P (mod " —x).  (66)
1=0 1=0

Considering the coefficients of the monomials with exponents pnT_l —3plo, p"—1-3plo, pnT_l —po
and p" — 1 — p in Equality (66), one has that Equalities (58) and (59) hold. Then, aj,ej, = 0,
which is impossible.
Assume that bj, # 0 and a; = b; = ¢; = ¢; = 0 for any i # jo. Equality (45) can be reduced
to
(a+aj, 2 +bjo f(@)P)2 (et cjox?” +ejo f(2)P°) = ctcjoa?”’ +ejy f ()P (mod 2P —x). (67)

n-1 1 7n io . .
Considering the coefficients of 77 O and oP" 18P0 i Equality (67), one has

{ b]zoei-’o (ud 4+ 10u? + 5u)p]:0 =0;
b3 €3 (5ut + 10u* + 1) =0,
which implies bj e;, = 0 by Lemma 5. That’s a contradiction with bj,e;, # 0. Therefore, f(x)
and g(x) = 2571 are CCZ-inequivalent on F7n, where n > 5 is odd.

Case 8: p="T,n=3.

For all integers i, j with 0 < i £ j < 2, considering the coefficients of xzpi+pn2_1*3pj, it can
be similarly proven that Equalities (64) and (65) hold. From these two equalities, one has

a;€5 = ejbjci = 0, ] 7& ] (68)

Considering the exponent pg;l —2p' — 3p’ (i # j), where i,j = 0,1,2, it has two forms
w%—pk—ps—pt—pl—p”, and pF + p* +p! +p! with k =4 and w # i, j, where w = s =t = L.

Then, its coefficients on both sides of Equality (45) give

(b2e3 + 6bibjese? + 3b2eZe;)[(u? + 1)P' (u® + 3u)? + 2u”" (3u? + 1)V’

69
—|—2aaicf’u + Gaiawccfv + 6aawcicfu + 6a12uccicw =0. (69)

For i, = 0,1,2, considering the exponent p" — 1 — 2p — 3p? (i # 7), it has a unique form
p" —1—pF —p* —pt —p! —p?. Then, its coefficients on both sides of Equality (45) give
(b2¢3 + 6bibjese? + 3b2e2e;)[(u? + 1)P' (3u? + 1)P + 2u¥ (u® + 3u)P’] = 0. (70)
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Considering the coefficients of the monomials with exponents p™ —1—2p'+3p*!(= 19,133, 247),
one has

(3a10160 + 6a1bocleo + bocl)(u2 +1) =0;
(3a20261 + 6a2b10261 +bic3)(u? +1)" = 0; (71)
(3a3coe3 + 6agbacies + l)2¢20)(u2 +1)% =0.
Since u? 4+ 1 # 0 and a;e; = 0 for any i # j, one has
bict = b2c3 = b3cd = 0.
Therefore, there exist eight possible cases as follows.
1) co =c1 =cy =0;

co =by = b1 =0, cac1 # 0;
b() = bl = b2 = 0 CoC1C2 7é 0.

We only give the analysis of Cases 1), 2), 5), and 8). The Cases 3), 4), 6), and 7) can be
similarly analyzed.

1) Considering the exponent £2——= =~ _ppi (= 5+2p+3p 3+5p+2p 2+3p+5p ) of Weight 10,

it has4poss1bleformsasp +p +L—p pk+p*+pt +p —pt—p?, pF4pt —1—p° —pt —p,
andp21—pk p*—pt —pl—p? Wherek,s,t,l,ve{o,l,Z}.

If pk + p* +pn_1 pt = pn_l '(modp - 1), one has k = s =4, t = i+ 1. Then, the
coefficient of the monomial Wlth exponent pF + p® + p —plis

2) 6126226220,607&0;
3) CQZC():bO:O,Cl?éO;
4) C():Cl:blzo,CQ?éO;
5) Clzblzbg:O,COCQ#O;
6) CQZbQZbo:O,Clc()#O;
)

8)

3aic ei+1 + 12aa;ccieir1 + 6aibi+1c c; + 3a® ci €i+1 + 6abi+10622 + 6aibi+1czci =0
since ¢; = 0 and azej = 0. Also by ¢; = 0, the coefficient of the monomial with exponent
pF + p* + pt +p — pt — p¥ is equal to 0.

If 2— _1 5p = P +p” —1—p*—p'—p! (modp™ — 1), one has a:pk+pn_1_p5_pt_pl = g
and then T 2P PP By a direct calculation, p* + p L 4 5pf (mod p™ — 1) is of
weight 9, while the weight of p* + p! + p! is 3. This is impossible.

Ingl—pk—ps—pt—pl—p”—p——@) (mod p™ — 1), onehask=s=t=1=v=1
The coefficient of the monomial with such an exponent is equal to b%e3(u® + 10u3 4 5u)P" on the
LHS of Equality (45), and it is zero on the RHS

By the analysis above, the coefficients of 25— — 5p’ on the both sides of Equality (45) satisfy
the following equation _
bZed (ud + 10u® + 5u)?" = 0.
A similar discussion for the exponent p™ — 1 — 5p’ shows
b2e3 (5ut + 10u? + 1)P' = 0.
The two equalities imply b;e; = 0 for any i.
Since ¢; = 0 and b;e; = 0 for any 4, Equalities (69) and (70) give

b2e3((u? + )P (u® + Bu)?’ + 2uP (3u? + 1)P') = 0;
b2 3((u + 1) (3u2 + 1) + 2u” (ud + 3u)?’) = 0.
From Equalities (52) and (53), one has b;e; = 0.
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Therefore, one has b;e; = 0 for any 4 and j, i.e., b; = 0 for any ¢ since e, # 0.

The exponent 2p’ has the possible form as pF 4+ p°, or p* + p* 4+ pt + p" — 1 — p', where
k,s,t, 1 € {0,1,2}. If p¥ +p° = 2p', thenone has k = s =i. fpP +p° +pt +p" —1 —pl =
2p' (mod p™ — 1), then one has k = s =i, t = [. Since ¢; = 0 for all 7, the coefficient of the
monomial zP“+HP*+p 4" =1-p' ig sero, Therefore, the exponent of z2P* only has form as p* + p*
with k& = s = 4. Thus, one has

aZc + 6aa;c’e; + 3a’cc? = atc® =0,
which implies ¢ = 0 or a; = 0 for any ¢. By Equality (68), there exists at most one nonzero

element among ag, a; and ag. If a; = 0 for any ¢, then L;(x, f(x)) = c is not a permutation. If

p—1

some aj, # 0, then c=0and a=c¢ 2 ! implying a = 0. Thus, Equality (45) is reduced to

n—1 n—1
a2 (Y ef (@)’ =Y eif (@) (moda?” —a).
=0 i=0

-1 j n j . .
Comparing the coefficients of 272 P and 27" ~17P° on both sides of equality above, one

has ' v
{ a2, (U8 + 3" = e
a3 el (3u® + P = ej,.
Since ajyej, # 0 and u # 0, one has u® + 3u = (3u® + 1)u, i.e., u = 1. This is impossible.
2) In this case, Equality (45) is reduced to

n—1 ) n—1 .
(a4 X ax? +bof(z) +bif(2)P)%(c+cor + 3 eif(x)P')3
=0 B =0 (72)
n—1 .
=c+cor+ > eif(x)? (modaP" — x).
i=0

By Equality (68), there exists at most one nonzero element among ag, a1, as.

If a1 = as = 0, the coefficient of z° satisfies a%cg = 0 and then ag = 0 since ¢y # 0. The
coefficient of x3 satisfies a%cj = 0, and then a = 0. The coefficient of x1™ satisfies 2b3cgu = 0,
which implies by = 0. Thus, the coefficient of x satisfies c¢g = 0, and it contradicts with the fact
Co 7é 0.

If a1 = 0 and ap # 0, one also has ag = 0. By Equality (68), the equality aze; = 0 implies
eo = e; = 0. Considering the coefficient of #1%1, one has @3¢} = 0. This contradicts with
a2Cqp 75 0.

If a1 # 0 and az = 0, then one has ap = 0. By Equality (68), the equality aje; = 0 implies
eg = es = 0. Considering the coefficient of 7, one has a%cg = 0. This contradicts with a;cg # 0.

5) In this case, Equality (45) can be rewritten as

n—1 ) n—1 )
(a+ 3 aa? +bof(x))2(c+ cox + caa?” + 3 eif(x)P')3
i=0 =0 (73)
, n-l i n
=c+coxr + cx?” + Y e f(x)P (modal — x).
i=0
Considering the coefficient of x!7, the coefficient on the LHS of Equality (73) is equal to a%cg
and it is zero on the RHS. Thus, one has a?cj = 0 and then a; = 0 since ¢ # 0. Similarly, the
coefficient of 20! satisfies

2 2 2. 2 2, 22
ascy + 6agazcocs + 3adcoc = ((asco + 3apez)? + ade3)co = 0.
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Since ¢g # 0 and —1 is nonsquare, one has ascg + 3agce = agea = 0, i.e., ag = ag = 0 since
coco # 0. Thus, Equality (73) can be reduced to

n—1 n—1

(a+bof(z))*(c+cox +ega?” + Z eif(a:)pi)?’ = c+cpz+oga? + Z eif(w)pi (mod 2" —x). (74)
=0 i=0

From the coefficient of 23 in Equality (74), one has a®c3 = 0. Thus, @ = 0 and then ¢ = 0. The
coefficient of 272 satisfies 2b2c3u = 0. This gives by = 0 and then a; = b; = 0 for any i. By
similar arguments after Equality (47), one has L;(z, f(x)) = c¢. That’s a contradiction.

8) In this case, Equality (45) is rewritten as

n—1 n—1 n—1 n—1 n—1
(a+ Z a;zP )2 (c+ Z cie? + Z eif(@)P)} =c+ Z cixP + Z eif(x)P" (modx?" — ). (75)
=0 =0 1=0 i=0 i=0

If ag # 0, then a; = as = 0. By considering the monomial with exponent 53 of weight 5, one
has 3&%6(2)02 = 0, which implies that ag = 0 since cgco # 0. This is impossible.

Similarly, if a; # 0, then ap = ao = 0. By considering the monomial with exponent 29 =
53 - 7(mod 342), one has a; = 0. If ag # 0, one has ap = a; = 0. By considering the monomial
with exponent 203 = 53 - 72(mod 342), one has as = 0.

L

From the arguments of Cases 1-8, f(z) and g(z) =" 2z ~! are CCZ-inequivalent on Fjs.

This finally finishes the proof of Proposition 2. O

As far as the authors are aware, all known APN functions over finite fields of odd characteristic
only include those listed in Table 1 and the family in [23]. By Propositions 1, 2 and Corollary 1,
for p > 7, the proposed functions f(x) are CCZ-inequivalent to all known APN power mappings.
Therefore, these functions are also CCZ-inequivalent to all known APN mappings.

4. CONCLUSION AND FURTHER WORK

This paper proved an infinite family of mappings over finite fields of odd characteristic is
almost perfect nonlinear. For p > 7, the proposed functions are CCZ-inequivalent to all known
APN power mappings. Further work needs for the inequivalence within the proposed family of
APN functions, and the inequivalence between the proposed family in fields of characteristic 3
and all known APN functions.
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