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Abstract. In this paper, the Ness-Helleseth functions over Fpn defined by the form f(x) =

ux
pn

−1
2

−1 + xpn
−2 are proven to be a new class of almost perfect nonlinear (APN) functions

and they are CCZ-inequivalent with all other known APN functions when p ≥ 7. The original
method of Ness and Helleseth showing the functions are APN for p = 3 and odd n ≥ 3 is also
suitable for showing their APN property for any prime p ≥ 7 with p ≡ 3 (mod 4) and odd n.

1. Introduction

To efficiently resist against differential attacks [2, 12, 15, 19], cryptographical functions used
in block ciphers should have low differential uniformity. Let f(x) be a function from a finite field
Fpn to itself, and it achieves an optimum resistance to the differential cryptanalysis if ∆f = 1
or ∆f = 2, where

∆f = max
a, b∈Fpn

{the number of solutions of f(x + a) − f(x) = b | a 6= 0}.

In the former case f(x) is called perfect nonlinear (PN) [3, 5, 6, 11] and in the latter f(x) is
almost perfect nonlinear (APN) [1, 7, 8, 9, 10, 14, 18].

There are a few classes of PN and APN functions are found, and they are mostly power
functions. Table 1 lists all known APN power functions. There is no non-power APN function
found for the odd p case.

Recently, Ness and Helleseth introduced a family of ternary binomial functions [18]. They are
the functions

f(x) = ux
pn

−1

2
−1 + xpn

−2 (1)

defined over Fpn = F3n (n ≥ 3 is odd), where the element u ∈ Fpn satisfies χ(u+1) = χ(u−1) =
χ(u) and χ is the quadratic multiplicative character of Fpn .

In fact, the original method of Ness and Helleseth in [18] showing the functions are APN for
p = 3 is also suitable for showing they are APN for any prime p ≥ 7 with p ≡ 3 (mod 4) and
odd n. That is, assume p is a prime with p ≡ 3 (mod 4), n is odd, pn ≥ 7, and assume u ∈ Fpn

satisfies

χ(u + 1) = χ(u − 1) = −χ(5u + 3), or χ(u + 1) = χ(u − 1) = −χ(5u − 3), (2)

then the Ness-Helleseth functions defined by Equality (1) are APN.
The purpose of the present paper is to prove that the Ness-Helleseth functions are a new

class of APN functions, and they are inequivalent with all other known APN functions for p ≥ 7
under the sense of a strong inequivalence – CCZ inequivalence.

Two functions f1 and f2 are called Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if
the graphs of f1 and f2, namely the subsets {(x, f1(x)) |x ∈ Fpn} and {(x, f2(x)) |x ∈ Fpn} of
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Fpn × Fpn , are affine equivalent. In other words, f1 and f2 are CCZ-equivalent if and only if
there exists an affine automorphism L = (L1, L2) of Fpn × Fpn such that

y = f1(x) ⇐⇒ L2(x, y) = f2(L1(x, y)).

Note that in this case the function L1(x, f1(x)) has to be a permutation. CCZ-equivalence
keeps APN property of functions [4], and it is an extensive equivalence in the sense that other
equivalences such as affine-equivalence and EA-equivalence (extended affine equivalence) are
special CCZ-equivalences.

Table 1. Known APN power functions f(x) = xd over Fpn

Functions Exponents d Conditions References

Kloosterman pn − 2 p = 2 and n is odd, or p > 2 and p ≡ 2 (mod 3) [1] [19] [15]

Gold 2i + 1 p = 2, gcd (i, n) = 1 [13]

Kasami 22i − 2i + 1 p = 2, gcd (i, n) = 1 [16] [17]

Welch 2t + 3 p = 2, n = 2t + 1 [7]

Niho 2t + 2t/2 − 1 for even t p = 2, n = 2t + 1 [9]

2t + 2
3t+1

2
−1 for odd t

Inverse 22t − 1 p = 2, n = 2t + 1 [1] [19]

Dobbertin 24i + 23i + 22i + 2i − 1 p = 2, n = 5i [8]

Helleseth Sandberg pn
−1

2
− 1 p ≡ 3, 7 (mod 20), pn > 7, pn 6= 27 and n is odd [15]

Dobbertin et. al. 3
(n+1)/2

−1

2
p = 3, n ≡ 3 (mod 4) [10] [12]

Felke 3
(n+1)/2

−1

2
+ 3

n
−1

2
p = 3, n ≡ 1 (mod 4)

Dobbertin et. al. 3
n+1

−1

8
p = 3, n ≡ 3 (mod 4) [10]

3
n+1

−1

8
+ 3

n
−1

2
p = 3, n ≡ 1 (mod 4)

Helleseth pn
+1

4
+ pn

−1

2
pn ≡ 3 (mod 8) [14]

Rong pn
+1

4
pn ≡ 7 (mod 8)

Sandberg 2pn
−1

3
pn ≡ 2 (mod 3)

pn − 3 p = 3, n > 1, n is odd

Trival 3 p > 3 [15]

2. Inequivalence of The Ness-Helleseth Functions With Known APN functions

In this section, we assume p ≥ 7 and prove the Ness-Helleseth functions are CCZ-inequivalence
with all APN power functions g(x) = xd listed in Table 1. By Table 1, if the opposite claim is
assumed, the power exponent d will take at most five types of values as listed in Propositions
1-4 and Corollary 1 below. Thus, we need to prove such a CCZ-equivalence is impossible for
these five types of d.

Suppose that f(x) and g(x) = xd are CCZ-equivalent, then there exists an affine automor-
phism L = (L1, L2) of Fpn × Fpn such that

L2(x, f(x)) = g(L1(x, f(x))) (mod xpn
− x),

where L2(x, y) = a+
n−1
∑

i=0
aix

pi
+

n−1
∑

i=0
biy

pi
, L1(x, y) = c+

n−1
∑

i=0
cix

pi
+

n−1
∑

i=0
eiy

pi
, a, c, ai, bi, ci, ei ∈ Fpn

and L1(x, f(x)) is a permutation. Thus, we have

a +
n−1
∑

i=0

aix
pi

+
n−1
∑

i=0

bif(x)p
i
= (c +

n−1
∑

i=0

cix
pi

+
n−1
∑

i=0

eif(x)p
i
)d (mod xpn

− x), (3)

where f(x)p
i
can be calculated as

f(x)p
i
= (ux

pn
−1

2
−1 + xpn

−2)p
i
= upi

x
pn

−1

2
−pi

+ xpn
−1−pi

since pn
−1
2 ≡ 1 (mod 2) for p ≡ 3 (mod 4) and odd n.
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The technique used in the following proofs is to expand the both sides of some equalities,
and to compare and analyze the weights of the exponents of the monomials appeared in the
expansions. Here a non-negative integer k with p-adic expansion k = k0 + k1p + · · · + kn−1p

n−1

(0 ≤ ki < p) is said to have p-adic weight as wt(k) = k0 + k1 + · · ·+ kn−1. Since we consider the
equality (3) in the sense of moduloing xpn

− x, a non-constant monomial xγ is always treated
by a monomial xβ with 0 < β ≤ pn − 1, where β ≡ γ (mod pn − 1) if γ 6≡ 0 (mod pn − 1) and
β = pn − 1 if γ ≡ 0 (mod pn − 1). The p-adic weight of such an integer β is regarded as the
weight of γ.

In the following proofs to Propositions 1-4 and Corollary 1, we will encounter 35 kinds of
monomials totally. Their exponents and the possible values of the corresponding weights are
determined as in Table 2.

Lemma 1: Let 0 ≤ k, s, t, l, v ≤ n − 1, and q = p − 1. The weights of the 35 kinds of
exponents listed in Table 2 are correctly given in that table.

Proof: This can be carefully but tediously showed. We omit it here. �

Another simple fact below will be frequently used in the inequivalence proofs.

Lemma 2: Let u ∈ Fpn satisfy the condition in Equality (2) and p ≥ 7. Then, none of the
two systems of equations

{

2upi+pj
+ u2pi

+ 1 = 0;

upi+2pj
+ upi

+ 2upj
= 0,

and

{

(u2 + 1)p
i
(u3 + 3u)p

j
+ 2upi

(3u2 + 1)p
j

= 0;

(u2 + 1)p
i
(3u2 + 1)p

j
+ 2upi

(u3 + 3u)p
j

= 0

has solutions for any i, j ∈ {0, 1, · · · , n − 1}.

With the above preparation, the inequivalence of functions can now be discussed. The weights
of exponents in Table 2 depend on p and n, and the proofs will be accordingly divided into three
cases:

(1) p ≥ 7 and n ≥ 3;
(2) p ≥ 19 and n = 1; and
(3) p = 7 or 11, and n = 1.

Below we give all inequivalence proofs only in the first case. Proofs in the second case can
be shown in a similar way, and proofs in the last case can be directly verified with the help of a
computer.

The reader will find the proof of Proposition 4 is very lengthy (more than five pages). We
can not give a unified proof to these propositions and corollary.

Proposition 1: The function f(x) is CCZ-inequivalent to g(x) = x3 on Fpn .

Proof: Suppose that f(x) and g(x) = x3 are CCZ-equivalent. Then, the exponents of inde-
terminate x in Equality (3) have 15 kinds of possible forms, which are exactly the first 15 kinds
of exponents in Table 2.

Consider the exponent 3pi of weight 3, where i ∈ {0, 1, · · · , n − 1}. By the weights of the
first 15 kinds of exponents in Table 2, for p ≥ 7 and n ≥ 3, the exponent 3pi only derives from

the form pk + ps + pt with k = s = t = i. Therefore, the coefficient of x3pi
on the right hand

side (RHS) of Equality (3) is equal to c3
i , and it is zero on the left hand side (LHS). This gives

c3
i = 0, i.e., ci = 0.

Considering the exponent pn − 1− 3pi, similarly, one has pn − 1− 3pi = pn − 1− pk − ps − pt

and then k = s = t = i. As the case of x3pi
, one can get that the coefficient of xpn

−1−3pi
on the

RHS of Equality (3) is equal to e3
i (3u

2pi
+ 1), and it is zero on the LHS. Then, one has

e3
i (3u

2 + 1)p
i
= 0. (4)
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Table 2. Thirty-five kinds of exponents and their p-adic weights (with notation q := p − 1)

Exponent pk pn
−1

2
− pk pn − 1 − pk

Weight 1 nq
2

− 1 nq − 1

Exponent pk + ps pn − 1 − pk − ps pk + pn
−1

2
− ps

Weight 2 nq − 2 nq
2

Exponent pn
−1

2
− pk − ps pk + ps + pt pk + ps + pn

−1

2
− pt

Weight nq
2

− 2 3 nq
2

+ 1

Exponent pk + pn
−1

2
− ps − pt pn

−1

2
− pk − ps − pt pn − 1 − pk − ps − pt

Weight nq
2

− 1 nq
2

− 3 (pn > 7) nq − 3
6 (pn = 7)

Exponent pk + pn − 1 − ps pk + ps + pn − 1 − pt pk + pn − 1 − ps − pt

Weight (k − s)q, or (k − t)q + 1, or (k − min{s, t})q − 1,
(n + k − s)q (s − t)q + 1, or or (n + k − s)q − 1,

(n + min{k, s} − t)q + 1 or (n + k − t)q − 1

Exponent pk + ps + pt + pl pn
−1

2
− pk − ps − pt − pl pk + pn

−1

2
− ps − pt − pl

Weight 4 nq
2

− 4 (p > 7) nq
2

− 2
3n − 4 or 3n + 2 (p = 7)

Exponent pk + ps + pn
−1

2
− pt − pl pk + ps + pt + pn

−1

2
− pl pn − 1 − pk − ps − pt − pl

Weight nq
2

nq
2

+ 2 nq − 4

Exponent pk + pn − 1 − ps − pt − pl pk + ps + pn − 1 − pt − pl pk + ps + pt + pn − 1 − pl

Weight (k − min{s, t, l})q − 2, (k − min{t, l})q, or (k − l)q + 2, or
or (n + k − s)q − 2, (s − min{t, l})q, or (s − l)q + 2, or
or (n + k − t)q − 2, (k + s − t − l)q, or (t − l)q + 2, or
or (n + k − l)q − 2 (n + min{k, s} − l)q, or (n + min{k, s, t} − l)q + 2

(n + min{k, s} − t)q, or
(n + k + s − t − l)q

Exponent pk + ps + pt + pl + pv pn
−1

2
− pk − ps − pt − pl − pv pk + pn

−1

2
− ps − pt − pl − pv

Weight 5 nq
2

− 5 (p ≥ 11, pn > 11) nq
2

− 3 (p > 7),
10(pn = 11) 3n − 3 or 3n + 3 (p = 7)

3n − 5 or 3n + 1 (p = 7)

Exponent pk + ps + pn
−1

2
− pt − pl − pv pk + ps + pt + pn

−1

2
− pl − pv pk + ps + pt + pl + pn

−1

2
− pv

Weight nq
2

− 1 nq
2

+ 1 nq
2

+ 3 (p > 7),
3n + 3 or 3n − 3 (p = 7)

Exponent pn − 1 − pk − ps − pt − pl − pv pk + pn − 1 − ps − pt − pl − pv pk + ps + pt + pl + pn − 1 − pv

Weight nq − 5 (k − min{s, t, l, v})q − 3, or (k − v)q + 3, or
(n + k − s)q − 3, or (s − v)q + 3, or
(n + k − t)q − 3, or (t − v)q + 3, or
(n + k − l)q − 3, or (l − v)q + 3, or
(n + k − v)q − 3 (n + min{k, s, t, l} − v)q + 3

Exponent pk + ps + pt + pn − 1 − pl − pv pk + ps + pn − 1 − pt − pl − pv

(k ≥ s ≥ t and l ≥ v) (k ≥ s and t ≥ l ≥ v)

Weight (k − v)q + 1, or (k − v)q − 1, or
(s − v)q + 1, or (s − v)q − 1, or
(t − v)q + 1, or (k + s − l − v)q − 1, or

(k + s − l − v)q + 1, or (k + s − t − v)q − 1, or
(k + t − l − v)q + 1, or (n + s − t)q − 1, or
(s + t − l − v)q + 1, or (n + s − l)q − 1, or

(n + t − l)q + 1, or (n + s − v)q − 1, or
(n + t − v)q + 1, or (n + k + s − t − v)q − 1, or

(n + s + t − l − v)q + 1, or (n + k + s − t − l)q − 1, or
(n + k + t − l − v)q + 1 (n + k + s − l − v)q − 1
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Similarly, the following equality can be obtained by considering the coefficient of x
pn

−1

2
−3pi

,

e3
i (u

3 + 3u)p
i
= 0. (5)

By Lemma 2, Equalities (4) and (5) imply ei = 0 for all i ∈ {0, 1, · · · , n−1}. Thus L1(x, f(x)) = c

is not a permutation.
Therefore, f(x) and g(x) = x3 are CCZ-inequivalent on Fpn . �

Corollary 1: The function f(x) is CCZ-inequivalent to g(x) = x
2pn

−1

3 , where pn ≡ 2(mod 3).

Proof: For pn ≡ 2 (mod 3) and p ≡ 3 (mod 4), one has p ≥ 11. If f(x) and g(x) = x
2pn

−1

3 are
CCZ-equivalent on Fpn , then one has

(a +

n−1
∑

i=0

aix
pi

+

n−1
∑

i=0

bif(x)p
i
)3 = c +

n−1
∑

i=0

cix
pi

+

n−1
∑

i=0

eif(x)p
i
(mod xpn

− x). (6)

A same analysis as in Proposition 1 gives ai = bi = 0 for any 0 ≤ i ≤ n− 1. Equality (6) can be
reduced to

a3 = c +

n−1
∑

i=0

cix
pi

+

n−1
∑

i=0

eif(x)p
i
(mod xpn

− x),

which implies ci = ei = 0 for any i. Thus, L1(x, f(x)) = c. This contradicts with that L1(x, f(x))

is a permutation. The contradiction proves CCZ-inequivalence of f(x) and g(x) = x
2pn

−1

3 . �

Proposition 2: The function f(x) is CCZ-inequivalent to g(x) = xpn
−2 on Fpn , where p ≡

2(mod 3).
Proof: Suppose that f(x) and xpn

−2 are CCZ-equivalent. By p ≡ 3(mod 4) and p ≡ 2(mod 3),

one has p ≥ 11. Multiplying both sides of Equality (3) by (c +
n−1
∑

i=0
cix

pi
+

n−1
∑

i=0
eif(x)p

i
)2 implies

(a +

n−1
∑

i=0

aix
pi

+

n−1
∑

i=0

bif(x)p
i
)(c +

n−1
∑

i=0

cix
pi

+

n−1
∑

i=0

eif(x)p
i
)2

= c +
n−1
∑

i=0

cix
pi

+
n−1
∑

i=0

eif(x)p
i
(modxpn

− x). (7)

Then, the exponents of indeterminate x in Equality (7) have 15 kinds of possible forms, which
are exactly the first 15 kinds of exponents in Table 2.

For any i, 0 ≤ i ≤ n − 1, by a similar analysis as above for the coefficients of the exponents
3pi, pn

−1
2 − 3pi, and pn − 1 − 3pi in Equality (7), one has







aic
2
i = 0;

bie
2
i (u

3 + 3u)p
i
= 0;

bie
2
i (3u

2 + 1)p
i
= 0.

(8)

By Lemma 2, Equality (8) gives

aici = 0 and biei = 0. (9)

Considering the exponent pn − 1 − pi − 2pj (0 ≤ i 6= j ≤ n − 1), again by the weights of the
first 15 exponents in Table 2, one has pn − 1 − pi − 2pj = pn − 1 − pk − ps − pt and then k = i,
s = t = j, or s = i, k = t = j, or t = i, k = s = j. Thus, by Equality (8), the coefficient of

xpn
−1−pi

−2pj
on the LHS of Equality (7) is equal to

(bie
2
j + 2bjeiej)(2u

pi+pj
+ u2pj

+ 1) = bie
2
j (2u

pi+pj
+ u2pj

+ 1),
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and it is zero on the RHS. Thus,

bie
2
j(2u

pi+pj
+ u2pj

+ 1) = 0. (10)

Similarly as above, from the coefficient of x
pn

−1

2
−pi

−2pj
(i 6= j), one has

bie
2
j (u

pi+2pj
+ upi

+ 2upj
) = 0, (11)

which together with Equality (10) implies that biej = 0 holds for any 0 ≤ i 6= j ≤ n − 1. This
together with Equality (9) shows that biej = 0 for any i, j ∈ {0, 1, · · · , n − 1}. That is to say
that b0 = b1 = · · · = bn−1 = 0 or e0 = e1 = · · · = en−1 = 0.

Consider the exponent pi + 2pj (i 6= j) of weight 3, where i, j ∈ {0, 1, · · · , n − 1}. Among
the first 15 kinds of exponents in Table 2, the exponent pi + 2pj only derives from the form
pk + ps + pt with k = i and s = t = j, or s = i and k = t = j, or t = i and k = s = j. Therefore,

the coefficient of xpi+2pj
on the LHS of Equality (7) is equal to aic

2
j + 2ajcicj, and it is zero on

the RHS. This gives

aic
2
j + 2ajcicj = 0. (12)

By Equalities (9) and (12), one has aicj = 0 for any i, j ∈ {0, 1, · · · , n− 1}. That is to say that
a0 = a1 = · · · = an−1 = 0 or c0 = c1 = · · · = cn−1 = 0.

Assume that ej = 0 for any j ∈ {0, 1, · · · , n − 1}. Since L1(x, f(x)) is a permutation, there
exists some j0 such that cj0 6= 0. Thus, one has ai = 0 for any i, and then Equality (7) can be
reduced to

(a +
n−1
∑

i=0

bif(x)p
i
)(c +

n−1
∑

i=0

cix
pi

)2 = c +
n−1
∑

i=0

cix
pi

(mod xpn
− x). (13)

By Table 2, the exponent pn − 1 − pi + 2pj (i 6= j) has weight α(p − 1) + 1, where i, j ∈
{0, 1, · · · , n−1} and 1 ≤ α ≤ n−1, then the exponent pn−1−pi +2pj (i 6= j) only derives from

the form pk + ps + pn − 1 − pt with t = i, k = s = j. Therefore, the coefficient of xpn
−1−pi+2pj

on the LHS of Equality (7) is equal to bic
2
j + 2ajcjei, and it is zero on the RHS. This together

with Equality (9) show

bic
2
j = 0. (14)

For j = j0, the equation bic
2
j0

= 0 implies that bi = 0 for any i 6= j0. For i = j0, the equation

bj0c
2
j = 0 implies that bj0 = 0 or cj = 0 for any j 6= j0. In other words, one has bi = 0 for any i,

or bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0.

When bi = 0 for any i ∈ {0, 1, · · · , n − 1}, Equality (3) is equal to

a = (c +
n−1
∑

i=0

cix
pi

)p
n
−2 (mod xpn

− x). (15)

Then L2(x, f(x)) = a and L1(x, f(x))p
n
−2 is a permutation. This is impossible.

When bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0, then Equality (13) is further reduced to

(a + bj0f(x)p
j0

)(c + cj0x
pj0

)2 = c + cj0x
pj0

(mod xpn
− x). (16)

Since the coefficient of x
pn

−1

2
+pj0 on the LHS of Equality (16) is equal to bj0c

2
j0

upj0 , one has

bj0c
2
j0

upj0 = 0 which implies bj0cj0 = 0. That is also a contradiction.

Now one should assume that there exists some integer j0 such that ej0 6= 0. Then bj = 0 for
any j. If ai = 0 for any i, then by Equality (15), one has L1(x, f(x)) = c. This is impossible,
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and then there exists at least one nonzero element in {ai | 0 ≤ i ≤ n − 1}. Thus, cj = 0 for any
j, and Equality (7) is reduced to

(a +

n−1
∑

i=0

aix
pi

)(c +

n−1
∑

i=0

eif(x)p
i
)2 = c +

n−1
∑

i=0

eif(x)p
i
(mod xpn

− x). (17)

Also by Table 2, the exponent pn − 1 + pi − 2pj (i 6= j) has weight α(p − 1) − 1, where i,
j ∈ {0, 1, · · · , n − 1} and 1 ≤ α ≤ n − 1. Then, the exponent pn − 1 + pi − 2pj (i 6= j) only
derives from the form pn − 1 + pk − ps − pt with k = i and s = t = j. Therefore, the coefficient

of xpn
−1+pi

−2pj
on the LHS of Equality (7) is equal to aie

2
j (u

2pj
+ 1), and it is zero on the RHS.

This gives

aie
2
j(u

2 + 1)p
j

= 0, (18)

and then

aie
2
j = 0 (19)

since u2 + 1 6= 0.
For j = j0, the equation aie

2
j0

= 0 implies that ai = 0 for any i 6= j0 since ej0 6= 0. Since there

exists at least one nonzero element in {ai | 0 ≤ i ≤ n − 1}, one has aj0 6= 0 and the equation
aj0e

2
j = 0 implies ej = 0 for any j 6= j0. Thus, one has aj0ej0 6= 0 and bj = cj = 0 for any j.

Equality (7) is reduced to

(a + aj0x
pj0

)(c + ej0f(x)p
j0

)2 = c + ej0f(x)p
j0

(mod xpn
− x). (20)

Considering the coefficient of xpj0 in Equality (20), one has aj0c
2 = 0 and then c = 0. From the

coefficients of xpn
−1−pj0 and x

pn
−1

2
−pj0 , one has
{

aj0e
2
j0

(u2 + 1)p
j0 = ej0;

2aj0e
2
j0

upj0 = ej0u
pj0 ,

which implies u = ±1 since aj0ej0 6= 0. This contradicts with u 6= ±1.

The arguments above prove that f(x) and g(x) = xpn
−2 are CCZ-inequivalent on Fpn . �

By analyzing the weights of the exponents in Equality (3), the following proposition can be
proved in a similar way.

Proposition 3: The functions f(x) and g(x) = xd are CCZ-inequivalent on Fpn , if d = pn+1
4

for pn ≡ 7 (mod 8) and d = pn+1
4 + pn

−1
2 for pn ≡ 3 (mod 8).

Proof: Assume that f(x) and g(x) = xd are CCZ-equivalent. Then, by Equality (3), one has

(a +

n−1
∑

i=0

aix
pi

+

n−1
∑

i=0

bif(x)p
i
)4 = (c +

n−1
∑

i=0

cix
pi

+

n−1
∑

i=0

eif(x)p
i
)2(mod xpn

− x). (21)

The exponents of indeterminate x in Equality (21) have 24 kinds of possible forms, and they

are the first 24 kinds of the exponents in Table 2. From this table, the weight of pn
−1
2 − pk −

ps − pt − pl depends on whether the character p is 7 or not. The following discussion is divided
into two subcases p > 7 and p = 7.

Case 1: p > 7.
Consider the exponent 4pi of weight 4, where i ∈ {0, 1, · · · , n− 1}. By Table 2, the exponent

4pi only derives from pk + ps + pt + pl with k = s = t = l = i. Therefore, the coefficient of x4pi

on the LHS of Equality (21) is equal to a4
i , and it is zero on the RHS. This gives a4

i = 0, i.e.,
ai = 0.
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Considering the exponent pn
−1
2 − 4pi of weight n(p−1)

2 − 4, by Table 2, pn
−1
2 − 4pi = pn

−1
2 −

pk − ps − pt − pl and then k = s = t = l = i. Since the coefficient of x
pn

−1

2
−4pi

on the LHS of

Equality (21) is equal to b4
i (4u

3 + 4u)p
i
, and it is zero on the RHS, one has

b4
i (4u

3 + 4u)p
i
= 0, (22)

which implies that bi = 0 since 4u3 + 4u = 4u(u2 + 1) 6= 0.

Thus, Equality (21) can be rewritten as

a4 = (c +

n−1
∑

i=0

cix
pi

+

n−1
∑

i=0

eif(x)p
i
)2(mod xpn

− x). (23)

Since the LHS of Equality (21) is a constant and the RHS runs through {z ∈ Fpn |χ(z) = 0, 1},

it is a contradiction, which shows that f(x) is CCZ-inequivalent to g(x) = xd for p > 7.

Case 2: p = 7.
Consider the exponent 3pi + pj (i 6= j) of weight 4, where i, j ∈ {0, 1, · · · , n− 1}. By Table 2,

the exponent 3pi +pj only derives from pk +ps +pt +pl with k = s = t = i and l = j. Therefore,

the coefficient of x3pi+pj
on the LHS of Equality (21) is equal to 4a3

i aj , and it is zero on the
RHS. This gives 4a3

i aj = 0. If ai0 6= 0, then one has ai = 0 for any i 6= i0. That is to say, there
exists at most one nonzero element in {ai | 0 ≤ i ≤ n − 1}.

Considering the exponent pn − 1 − 4pi of weight 6n − 4, by Table 2, the exponent has two
forms pn − 1 − pk − ps − pt − pl with k = s = t = l = i, or pk + ps + pt + pn − 1 − pl with

k = s = t = i, l = i + 1. Since the coefficient of xpn
−1−4pi

on the LHS of Equality (21) is equal

to 4a3
i bi+1 + b4

i (u
4 + 6u2 + 1)p

i
, and it is zero on the RHS, one has

4a3
i bi+1 + b4

i (u
4 + 6u2 + 1)p

i
= 0, (24)

which implies bi = 0 (i 6= i0) since ai = 0 for any i 6= i0 and

u4 + 6u2 + 1 = (u2 + 2)(u2 + 4) = (u2 + 32)(u2 + 22) 6= 0. (25)

For i = i0, one has bi0+1 = 0. Then, the equality 4a3
i0

bi0+1 + b4
i0

(u4 + 6u2 + 1)p
i0 = 0 implies

bi0 = 0. Therefore, bi = 0 for any i.

Consider the exponent 4pi of weight 4, where i ∈ {0, 1, · · · , n− 1}. By Table 2, the exponent
4pi has the forms as pk + ps + pt + pl with k = s = t = l = i, or pk + pn − 1 − ps − pt − pl with

k = i + 1 and s = t = l = i. Since the coefficient of x4pi
on the LHS of Equality (21) is equal to

a4
i + 12ai+1b

3
i u

2pi
+ 4ai+1b

3
i , and it is zero on the RHS. This gives

a4
i + 12ai+1b

3
i u

2pi
+ 4ai+1b

3
i = 0. (26)

Then, one has

a4
i = 0 (27)

since bi = 0 for any i. Equality (27) shows ai = 0 for any i ∈ {0, 1, · · · , n − 1}. Thus, Equality
(23) can be rewritten as

a4 = (c +
n−1
∑

i=0
cix

pi
+

n−1
∑

i=0
eif(x)p

i
)2 (mod xpn

− x). (28)

Similar to the analysis after Equality (23), the function f(x) is CCZ-inequivalent to g(x) = xd

for p = 7.

Proposition 4: The functions f(x) and g(x) = xd are CCZ-inequivalent on Fpn , if d = pn
−1
2 −1

for p ≡ 3, 7 (mod 20).
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Proof: Assume that f(x) and g(x) = xd are CCZ-equivalent. Squaring both sides of Equality

(3) and multiplying (c +
n−1
∑

t=0
ctx

pt
+

n−1
∑

t=0
etf(x)p

t
)3 for both sides imply

(a +
n−1
∑

s=0
asx

ps
+

n−1
∑

s=0
bsf(x)p

s
)2(c +

n−1
∑

t=0
ctx

pt
+

n−1
∑

t=0
etf(x)p

t
)3

= c +
n−1
∑

t=0
ctx

pt
+

n−1
∑

t=0
etf(x)p

t
(mod xpn

− x).

(29)

We claim that there exists some integer j0 such that ej0 6= 0. Otherwise, if ej = 0 holds for
any j, Equality (29) can be reduced to

(a +
n−1
∑

s=0
asx

ps
+

n−1
∑

s=0
bsf(x)p

s
)2(c +

n−1
∑

t=0
ctx

pt
)3 = c +

n−1
∑

t=0
ctx

pt
(mod xpn

− x). (30)

Consider the exponent pn
−1
2 −2pi +3pj (i 6= j) of weight n(p−1)

2 +1. By Table 2, the exponent
pn

−1
2 −2pi +3pj only has the form pk +ps +pt + pn

−1
2 −pl−pv with k = s = t = j and l = v = i.

The coefficient of pn
−1
2 −2pi +3pj on the LHS of Equality (30) is equal to 2b2

i c
3
ju

pi
and it is zero

on the RHS. Thus, bicj = 0 for any i 6= j.
Since L1(x, f(x)) is a permutation, there exists some integer j0 such that cj0 6= 0. For i 6= j,

the equation bicj = 0 implies that bi = 0 for any i, or bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0.

When bi = 0 for any i, Equality (30) is equal to

(a +
n−1
∑

s=0

asx
ps

)2(c +
n−1
∑

t=0

ctx
pt

)3 = c +
n−1
∑

t=0

ctx
pt

(modxpn
− x).

Since the coefficient of x5pi
on the LHS of the above equality is a2

i c
3
i and it is zero on the

RHS, one has aici = 0. Similarly, from the coefficient of x2pi+3pj
(i 6= j) in the equality above,

one has a2
i c

3
j + 6aiajcic

2
j + 3a2

jc
2
i cj = a2

i c
3
j = 0 since aici = 0 for any i. Thus, aicj = 0 for any i

and j. The inequality cj0 6= 0 implies ai = 0 for any i.

We next show L1(x, f(x)) is not a permutation when ai = bi = 0 for any i.
By ai = bi = 0, Equality (3) can be reduced to

a = (c +
n−1
∑

t=0
ctx

pt
+

n−1
∑

t=0
etf(x)p

t
)

pn
−1

2
−1(mod xpn

− x). (31)

Since gcd(pn
−1
2 −1, pn−1) = 2, there exists an integer λ such that λ(pn

−1
2 −1) ≡ 2(mod pn−1).

Thus, from Equality (31), one has

aλ = (c +
n−1
∑

t=0
ctx

pt
+

n−1
∑

t=0
etf(x)p

t
)2 (mod xpn

− x).

By the similar analysis after Equality (23), the equality above is impossible.

When bj0cj0 6= 0 and bj = cj = 0 for any j 6= j0, Equality (30) becomes

(a +
n−1
∑

s=0
asx

ps
+ bj0f(x)p

j0 )2(c + cj0x
pj0 )3 = c + cj0x

pj0 (mod xpn
− x). (32)

Consider the coefficient of x2pi+3pj0 (i 6= j0) in Equality (32), one has a2
i c

3
j0

= 0. This implies

ai = 0 for i 6= j0 since cj0 6= 0. Thus, Equality (32) becomes

(a + aj0x
pj0 + bj0f(x)p

j0 )2(c + cj0x
pj0 )3 = c + cj0x

pj0 (mod xpn
− x). (33)



10 XIANGYONG ZENG, LEI HU, YANG YANG AND WENFENG JIANG

From the coefficients of x5pj0 and x3pj0 in Equality (33), one has
{

a2
j0

c3
j0

= 0;

a2c3
j0

+ 6acaj0c
2
j0

+ 3c2a2
j0

cj0 = 0,

which implies aj0 = a = 0. Furthermore, from the coefficient of x
pn

−1

2
−2pj0+3pj0 , one has

b2
j0

c3
j0

= 0. This is a contradiction.

Therefore, there exists some integer j0 such that ej0 6= 0.

Since the weights of some exponents in Table 2 depend on the concrete values of p and n,
the following discussion will be divided into three subcases: (1) p > 7; (2) p = 7 and n ≥ 5; (3)
p = 7 and n = 3.

Case 1: p > 7.

Consider the exponent pn
−1
2 − 5pi of weight n(p−1)

2 − 5, where i ∈ {0, 1, · · · , n − 1}. By

Table 2, the exponent pn
−1
2 − 5pi only has the form as pn

−1
2 − pk − ps − pt − pl − pv with

k = s = t = l = v = i. Since the coefficient of x
pn

−1

2
−5pi

on the LHS of Equality (29) is equal to

b2
i e

3
i (u

5 + 10u3 + 5u)p
i
, and it is zero on the RHS, one has

b2
i e

3
i (u

5 + 10u3 + 5u)p
i
= 0. (34)

Similarly, comparing the coefficients of xpn
−1−5pi

on both sides of Equality (29), one has

b2
i e

3
i (5u

4 + 10u2 + 1)p
i
= 0. (35)

By Lemma 2, Equalities (34) and (35) imply that biei = 0 for any i.

The coefficient of x
pn

−1

2
−2pi

−3pj
(i 6= j) on the LHS of Equality (29) is

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u

2 + 1)p
i
(u3 + 3u)p

j
+ 2upi

(3u2 + 1)p
j
),

and it is zero on the RHS. Thus, one has

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u

2 + 1)p
i
(u3 + 3u)p

j
+ 2upi

(3u2 + 1)p
j
) = 0. (36)

Similarly, from the coefficient of xpn
−1−2pi

−3pj
(i 6= j), one has

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)((u

2 + 1)p
i
(3u2 + 1)p

j
+ 2upi

(u3 + 3u)p
j
) = 0. (37)

which together with Equality (36) implies
{

b2
i e

3
j ((u

2 + 1)p
i
(u3 + 3u)p

j
+ 2upi

(3u2 + 1)p
j
) = 0;

b2
i e

3
j ((u

2 + 1)p
i
(3u2 + 1)p

j
+ 2upi

(u3 + 3u)p
j
) = 0.

(38)

since biei = 0 for any i.
By Lemma 2, Equality (38) implies that biej = 0 for any i 6= j. By biei = 0, one has biej = 0

for any i and j. Since there exists some integer j0 such that ej0 6= 0, one has bi = 0 for any i.

From the coefficients of xpn
−1−3pj+2pi

(i 6= j) and x
pn

−1

2
−3pj+2pi

(i 6= j), one has
{

(a2
i e

3
j + 6aibjcie

2
j + 3b2

jc
2
i ej)(3u

2 + 1)p
j

= 0;

(a2
i e

3
j + 6aibjcie

2
j + 3b2

jc
2
i ej)(u

3 + 3u)p
j

= 0.

Since bi = 0 for any i, the equality above becomes
{

a2
i e

3
j (3u

2 + 1)p
j

= 0;

a2
i e

3
j (u

3 + 3u)p
j

= 0,



ON THE INEQUIVALENCE OF NESS-HELLESETH APN FUNCTIONS 11

which implies that aiej = 0 for any i 6= j by Lemma 2. For j = j0, the equality aiej0 = 0 implies
ai = 0 for any i 6= j0. Equality (3) can be reduced to

a + aj0x
pj0

= (c +

n−1
∑

i=0

cix
pi

+

n−1
∑

i=0

ejf(x)p
j
)

pn
−1

2
−1 (modxpn

− x). (39)

Since gcd(pn
−1
2 − 1, pn − 1) = 2, the monomial x

pn
−1

2
−1 is not a permutation. The LHS of

Equality (39) is a constant or a permutation and its RHS is not a permutation, i.e., its LHS has
image {a} if aj0 = 0, or Fpn if aj0 6= 0, while its RHS has image {z ∈ Fpn |χ(z) = 0, 1}. Thus,
Equality (39) is impossible.

According to the arguments above, f(x) and g(x) = x
pn

−1

2
−1 are CCZ-inequivalent on Fpn

when p > 7 and n is odd.

Case 2: p = 7, n ≥ 5.
Consider the exponents pn

−1
2 − 2pi − 3pj (i 6= j) and pn − 1 − 2pi − 3pj (i 6= j), one has

Equalities (36) and (37), which implies that

b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej = ((biej + 3bjei)

2 + b2
je

2
i )ej = 0. (40)

For j = j0, since ej0 6= 0 and −1 is nonsquare, one has biej0 + 3bj0ei = bj0ei = 0, i.e.,

biej0 = bj0ei = 0. (41)

This implies that bi = 0 for any i, or bj0 6= 0 and bi = ei = 0 for any i 6= j0.

From the coefficient of the monomial with exponent 2pi + pn
−1
2 − 3pj (i 6= j), one has

(a2
i e

3
j + 6aibjcie

2
j + 3b2

jc
2
i ej)(u

3 + 3u)p
j

= 0. (42)

Since −1 is a nonsquare element in Fpn , one has χ(3) = χ(−4) = −1. We say u3 + 3u 6= 0.
Otherwise, u = 0, 2, or 5 and then χ(u + 1) 6= χ(u − 1). This is a contradiction. Therefore,
Equality (42) implies that

a2
i e

3
j + 6aibjcie

2
j + 3b2

jc
2
i ej = ((aiej + 3bjci)

2 + b2
jc

2
i )ej = 0. (43)

For j = j0, one has aiej0 +3bj0ci = bj0ci = 0 since −1 is a nonsquare element, i.e., ai = 0 for any
i 6= j0. If bj0 6= 0, then ci = 0 for any i 6= j0. If bi = 0 for any i, Equality (43) can be reduced
to aiej = 0.

According to the discussion after Equalities (41) and (43), we derive that bi = 0 for any i and
aiej = 0 for any i 6= j, or bj0 6= 0 and ai = bi = ci = ei = 0 for any i 6= j0.

Assume that bi = 0 for any i and aiej = 0 for any i 6= j. If aj0 = 0, i.e., ai = 0 for any i since
ej0 6= 0, then L1(x, f(x)) = c is not a permutation. If aj0 6= 0, then aj0ej = 0 implies ej = 0 for
any j 6= j0. Therefore, Equality (29) can be reduced to

a + aj0x
pj0

= (c +

n−1
∑

i=0

cix
pi

+ ej0f(x)p
j0

)
pn

−1

2
−1 (mod xpn

− x). (44)

By similar to the analysis after Equality (39), Equality (44) is impossible.
Assume that bj0 6= 0 and ai = bi = ci = ei = 0 for any i 6= j0. Equality (29) can be reduced

to

(a+aj0x
pj0

+bj0f(x)p
j0

)2(c+cj0x
pj0

+ej0f(x)p
j0

)3 = c+cj0x
pj0

+ej0f(x)p
j0

(mod xpn
−x). (45)

Considering the coefficients of x
pn

−1

2
−5pj0 and xpn

−1−5pj0 in Equality (45), one has
{

b2
j0

e3
j0

(u5 + 10u3 + 5u)p
j0 = 0;

b2
j0

e3
j0

(5u4 + 10u2 + 1)p
j0 = 0,
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which implies bj0ej0 = 0 by Lemma 2. That’s a contradiction with bj0ej0 6= 0. Therefore, f(x)

and g(x) = x
pn

−1

2
−1 are CCZ-inequivalent on F7n , where n ≥ 5 is odd.

Case 3: p = 7, n = 3.

For all integers i, j with 0 ≤ i 6= j ≤ 2, considering the coefficients of x2pi+ pn
−1

2
−3pj

, it can
be similarly proven that Equalities (42) and (43) hold. From these two equalities, one has

aiej = ejbjci = 0, i 6= j. (46)

Considering the exponent pn
−1
2 − 2pi − 3pj (i 6= j), where i, j = 0, 1, 2, it has two forms

pn
−1
2 − pk − ps − pt − pl − pv, and pk + ps + pt + pl with k = i and w 6= i, j, where w = s = t = l.

Then, its coefficients on both sides of Equality (29) give

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)[(u

2 + 1)p
i
(u3 + 3u)p

j
+ 2upi

(3u2 + 1)p
j
]

+2aaic
3
w + 6aiawcc2

w + 6aawcic
2
w + 6a2

wccicw = 0.
(47)

For i, j = 0, 1, 2, considering the exponent pn − 1 − 2pi − 3pj (i 6= j), it has a unique form
pn − 1 − pk − ps − pt − pl − pv. Then, its coefficients on both sides of Equality (29) give

(b2
i e

3
j + 6bibjeie

2
j + 3b2

je
2
i ej)[(u

2 + 1)p
i
(3u2 + 1)p

j
+ 2upi

(u3 + 3u)p
j
] = 0. (48)

Considering the coefficients of the monomials with exponents pn−1−2pi+3pi+1(= 19, 133, 247),
one has







(3a2
1c1e

2
0 + 6a1b0c

2
1e0 + b2

0c
3
1)(u

2 + 1) = 0;
(3a2

2c2e
2
1 + 6a2b1c

2
2e1 + b2

1c
3
2)(u

2 + 1)7 = 0;
(3a2

0c0e
2
2 + 6a0b2c

2
0e2 + b2

2c
3
0)(u

2 + 1)49 = 0.
(49)

Since u2 + 1 6= 0 and aiej = 0 for any i 6= j, one has

b2
0c

3
1 = b2

1c
3
2 = b2

2c
3
0 = 0.

Therefore, there exist eight possible cases as follows.

1) c0 = c1 = c2 = 0;
2) c1 = c2 = b2 = 0, c0 6= 0;
3) c2 = c0 = b0 = 0, c1 6= 0;
4) c0 = c1 = b1 = 0, c2 6= 0;
5) c1 = b1 = b2 = 0, c0c2 6= 0;
6) c2 = b2 = b0 = 0, c1c0 6= 0;
7) c0 = b0 = b1 = 0, c2c1 6= 0;
8) b0 = b1 = b2 = 0, c0c1c2 6= 0.

We only give the analysis of Cases 1), 2), 5), and 8). The Cases 3), 4), 6), and 7) can be
similarly analyzed.

1) Considering the exponent pn
−1
2 −5pi (= 5+2p+3p2, 3+5p+2p2, 2+3p+5p2) of weight 10, it

has 4 possible forms as pk+ps+ pn
−1
2 −pt, pk+ps+pt+ pn

−1
2 −pl−pv, and pn

−1
2 −pk−ps−pt−pl−pv

where k, s, t, l, v ∈ {0, 1, 2}.

If pk + ps + pn
−1
2 − pt ≡ pn

−1
2 − 5pi (mod pn − 1), one has k = s = i, t = i + 1. Then, the

coefficient of the monomial with exponent pk + ps + pn
−1
2 − pt is

3a2
i c

2ei+1 + 12aaicciei+1 + 6aibi+1c
2ci + 3a2c2

i ei+1 + 6abi+1cc
2
i + 6aibi+1c

2ci = 0

since ci = 0 and aiej = 0, where subscripts are operated mod n. Also by ci = 0, the coefficient

of the monomial with exponent pk + ps + pt + pn
−1
2 − pl − pv is equal to 0.
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If pn
−1
2 − pk − ps − pt − pl − pv ≡ pn

−1
2 − 5pi (mod pn − 1), one has k = s = t = l = v = i.

The coefficient of the monomial with such an exponent is equal to b2
i e

3
i (u

5 + 10u3 + 5u)p
i
on the

LHS of Equality (29), and it is zero on the RHS.

By the analysis above, the coefficients of pn
−1
2 − 5pi on the both sides of Equality (29) satisfy

the following equation

b2
i e

3
i (u

5 + 10u3 + 5u)p
i
= 0.

A similar discussion for the exponent pn − 1 − 5pi shows

b2
i e

3
i (5u

4 + 10u2 + 1)p
i
= 0.

The two equalities imply biei = 0 for any i.
Since ci = 0 and biei = 0 for any i, Equalities (47) and (48) give

{

b2
i e

3
j ((u

2 + 1)p
i
(u3 + 3u)p

j
+ 2upi

(3u2 + 1)p
j
) = 0;

b2
i e

3
j ((u

2 + 1)p
i
(3u2 + 1)p

j
+ 2upi

(u3 + 3u)p
j
) = 0,

which implies that biej = 0 for any 0 ≤ i 6= j ≤ n − 1.

Therefore, one has biej = 0 for any i and j, i.e., bi = 0 for any i since ej0 6= 0.
By Equality (46), the equality aiej0 = 0 implies that ai = 0 for any i 6= j0. Thus, Equality

(3) is reduced to

a + aj0x
pj0

= (c +

n−1
∑

i=0

eif(x)p
i
)

pn
−1

2
−1 (mod xpn

− x). (50)

By similar analysis after Equality (39), Equality (50) is impossible.

2) In this case, Equality (29) is reduced to

(a +
n−1
∑

i=0
aix

pi
+ b0f(x) + b1f(x)p)2(c + c0x +

n−1
∑

i=0
eif(x)p

i
)3

= c + c0x +
n−1
∑

i=0
eif(x)p

i
(mod xpn

− x).

(51)

By Equality (46), there exists at most one nonzero element among a0, a1, a2.
If a1 = a2 = 0, the coefficient of x5 satisfies a2

0c
3
0 = 0 and then a0 = 0 since c0 6= 0. The

coefficient of x3 satisfies a2c3
0 = 0, and then a = 0. The coefficient of x172 satisfies 2b2

0c
3
0u = 0,

which implies b0 = 0. Thus, the coefficient of x satisfies c0 = 0, and it contradicts with the fact
c0 6= 0.

If a1 = 0 and a2 6= 0, one also has a0 = 0. By Equality (46), the equality a2ej = 0 implies
e0 = e1 = 0. Considering the coefficient of x101, one has a2

2c
3
0 = 0. This contradicts with

a2c0 6= 0.
If a1 6= 0 and a2 = 0, then one has a0 = 0. By Equality (46), the equality a1ej = 0 implies

e0 = e2 = 0. Considering the coefficient of x17, one has a2
1c

3
0 = 0. This contradicts with a1c0 6= 0.

5) In this case, Equality (29) can be rewritten as

(a +
n−1
∑

i=0
aix

pi
+ b0f(x))2(c + c0x + c2x

p2

+
n−1
∑

i=0
eif(x)p

i
)3

= c + c0x + c2x
p2

+
n−1
∑

i=0
eif(x)p

i
(mod xpn

− x).

(52)

Considering the coefficient of x17, the coefficient on the LHS of Equality (52) is equal to a2
1c

3
0

and it is zero on the RHS. Thus, one has a2
1c

3
0 = 0 and then a1 = 0 since c0 6= 0. Similarly, the
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coefficient of x101 satisfies

a2
2c

3
0 + 6a0a2c0c

2
2 + 3a2

0c0c
2
2 = ((a2c0 + 3a0c2)

2 + a2
0c

2
2)c0 = 0.

Since c0 6= 0 and −1 is nonsquare, one has a2c0 + 3a0c2 = a0c2 = 0, i.e., a0 = a2 = 0 since
c0c2 6= 0. Thus, Equality (52) can be reduced to

(a+b0f(x))2(c+c0x+c2x
p2

+
n−1
∑

i=0

eif(x)p
i
)3 = c+c0x+c2x

p2

+
n−1
∑

i=0

eif(x)p
i
(mod xpn

−x). (53)

From the coefficient of x3 in Equality (53), one has a2c3
0 = 0. Thus, a = 0 and then c = 0. The

coefficient of x172 satisfies 2b2
0c

3
0u = 0. This gives b0 = 0 and then ai = bi = 0 for any i. By

similar arguments after Equality (31), one has L1(x, f(x)) = c. That’s a contradiction.

8) In this case, Equality (29) is rewritten as

a + aj0x
pj0

= (c +
n−1
∑

i=0

cix
pi

+
n−1
∑

i=0

eif(x)p
i
)

pn
−1

2
−1 (mod xpn

− x). (54)

By similar analysis after Equality (39), Equality (54) is impossible.

From the arguments of Cases 1-8, f(x) and g(x) = x
pn

−1

2
−1 are CCZ-inequivalent on F73 .

This finally finishes the proof of Proposition 4. �

3. Conclusion

As far as the authors are aware, except the Ness-Helleseth family in [18], all known APN
functions over finite fields of odd characteristic are listed in Table 1. Therefore, by Propositions
1-4, and Corollary 1 proven above, for p ≥ 7 and odd n, the Ness-Helleseth functions are CCZ-
inequivalent to all other known APN functions, and they are a new class of APN functions.
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