
Oblivious Transfer via McEliece’s PKC and

Permuted Kernels

K. Kobara1, Kirill Morozov1 and R. Overbeck2⋆

1 RCIS, AIST, Japan
{k-kobara,kirill.morozov}@aist.go.jp

2 EPFL - I&C - ISC - LASEC
Station 14 - Building INF

CH-1015 Lausanne
Switzerland

overbeck@cdc.informatik.tu-darmstadt.de

Abstract. We present two efficient protocols for two flavors of obliv-
ious transfer (OT): the Rabin and 1-out-of-2 OT using the McEliece
cryptosystem and Shamir’s zero-knowledge identification scheme based
on permuted kernels. This is a step towards diversifying computational
assumptions on which OT – the primitive of central importance – can
be based.

Although we obtain a weak version of Rabin OT (where the malicious
receiver may decrease his erasure probability), it can nevertheless be
reduced to secure 1-out-of-2 OT.
Elaborating on the first protocol, we provide a practical construction for
1-out-of-2 OT.

Keywords: Oblivious transfer, coding-based cryptography, McEliece
cryptosystem, permuted kernel problem.

1 Introduction

Oblivious transfer (OT) [21, 8, 27] is a cryptographic primitive of central
importance since it implies secure two-party computation [10, 14]. Sending
the data by OT ensures its partial erasure in such a way that the sender
cannot learn what exactly was lost, he can only enforce some loss to occur.

A number of complexity assumptions can be used to construct OT:
generic, e.g., enhanced trapdoor permutations [8, 9, 12], and specific, e.g.,
factoring [21], Diffie-Hellman [3, 18, 1], N’th or Quadratic Residuosity and
Extended Riemann Hypothesis [13].

⋆ Part of this work was done at the Cryptography and Computer Algebra Group,
TU-Darmstadt, Germany. Part of this work was funded by the DFG.

At the same time, until recently, no construction has been devised
using coding-based assumptions. We focus on those related to security of
the McEliece public key cryptosystem [16]: hardness of bounded distance
decoding and pseudorandomness of the generating matrix of a Goppa code
(we refer to these two as the McEliece assumption). They are particularly
interesting due to their “post-quantum” nature – currently, they do not
have polynomial quantum solutions.

Related Work Currently, the list of McEliece-based cryptographic prim-
itives include a digital signature [6] and identity-based identification and
signature schemes [5].

We are also aware of the parallel work [19] on the topic of 1-out-
of-2 oblivious transfer based on McEliece assumption. Their solution is
different from ours and their work is currently in progress. In 1-out-of-2
(string) OT, the sender transmits two bits (or bit strings) such that only
one of them gets through according to the receiver’s choice. The sender
is sure, however, that one of the bits (strings) is erased.

Our contribution We provide practical constructions for two flavors of
OT based on the McEliece assumption and the Permuted Kernel Problem
(PKP),3 in the second one, we also employ the random oracle model. Our
contribution goes in three ways:

1) In the Rabin OT, the input string is either erased with probability 1/2
or gets through unchanged, while the sender does not learn which event
has occurred. We present a construction for the Rabin oblivious transfer
of strings based on the assumption that the McEliece PKC is secure.

In more details, for transmitting a bit-string m, the sender encrypts
it using the McEliece public-key matrix constructed in the following way.
Take a Goppa code correcting up to t errors and concatenate it with
a random matrix, then randomly scramble and permute the resulting
matrix as in the ordinary McEliece encryption. Now, if the error vector
used for the encryption has the Hamming weight ≫ t, the two cases are
possible. Consider the part of the ciphertext corresponding to the Goppa
code. Either up to t errors occur there, in which case m can be efficiently
restored, or more than t occur, so that m cannot be decoded or, in other
words, it is virtually erased. We show that for appropriate parameters
the erasure probability of m is exactly 1/2 when the players follow the
protocol. Note that the honest-but-curious sender cannot learn which of

3 It was introduced to cryptography in Shamir’s identification scheme [24].

the two cases takes place as he does not know the permutation made at
the encryption stage.

Cheating behavior can be avoided by having the players prove their
correct behavior in zero-knowledge (ZK). For this, we employ the ZK
proofs from the Shamir’s identification scheme based on permuted ker-
nels [24] and the Stern’s identification scheme based on syndrome decod-
ing [25].

Note that we provide a new application for the above schemes which
can be of independent interest in the coding-based protocols. Indeed, the
Stern’s scheme can be used for proving that the McEliece encryption is
performed with an error vector of the correct weight. The Shamir’s scheme
can be employed to convince the verifier who possess a code G that the
prover knows a permutation on a given subcode of G without revealing
the permutation itself.

Unfortunately, the malicious receiver may attempt the general decod-
ing, if he obtained erasure. We show that even in this case, his erasure
probability will still be large enough given the proper choice of parameters
and imposing a reasonable assumption on hardness of general decoding.
We will call this weaker version a gap-Rabin OT. Even with this differ-
ence between the erasure probability for a honest receiver and that for a
malicious receiver, this protocol remains meaningful:

2) Rabin OT and 1-out-of-2 OT are polynomially equivalent as it was
shown by Crépeau in [7]. We use a slightly modified version of this reduc-
tion to build an L-out-of-M OT (without a gap for probabilities) from
the gap-Rabin OT. This construction highlights an interesting theoreti-
cal property of the Crépeau’s reduction which has not been thoroughly
studied before – its tolerance to imperfectness of the Rabin OT.

The communication cost of this protocol is 143 KBytes for honest-but-
curious and 129 MBytes for malicious parties and the workload of the best
attack for honest-but-curious parties is estimated as 280 (henceforth, we
do not provide the best attack workload by the fully malicious parties as
these attacks may depend on the security of underlying primitives – hash
functions and pseudorandom generators – which we assume ideal). The
above costs are provided for the case when the players are aided by the
(partially) trusted third party (TTP). They can be substantially improved
if the same techniques are used for building 1-out-of-2 OT directly:

3) We present a protocol for 1-out-of-2 String OT against fully malicious
parties without relying on TTP. For the minimal parameter set, the com-

munication cost is about 13.3 MBytes and the workload of the best attack
by honest-but-curious parties is 280.

At the core of our construction is the paradigm, where the receiver
provides the sender with two matrices, a valid McEliece public key Gpub

and a random matrix Q in the order corresponding to the choice bit c.
The sender uses those to encrypt his inputs and sends the encryptions.
The malicious sender cannot tell Gpub from Q, while the malicious receiver
cannot decrypt both strings.

As the players do not trust each other, none is allowed to choose
Q – they generate it by coin flipping. Furthermore, the receiver must
prove a correct choice of Gpub and Q. We employ the PKP-based scheme
by Shamir [24] in order to accomplish this. That requires the following
modification to the protocol. The receiver discloses the generating matrix
G of the Goppa code, corresponding to Gpub. Then, he provides the sender
with the randomly permuted subcodes of G and Q, respectively, which now
play the role of the keys. The ZK proof is used to assure the sender that
the subcodes were indeed taken from G and Q. Employing the subcodes
prevents the sender from telling the keys apart.

The rest of the paper is organized as follows. In Section 2, we briefly
introduce the security model and the main ingredients for our construc-
tions. Our gap-Rabin OT protocol and its reduction to L-out-of-M OT
is presented in Section 3. Section 4 introduces our direct construction
for 1-out-of-2 OT. We provide concluding remarks and open questions in
Section 5.

2 Preliminaries

Let us state what we want to achieve. In our definitions, the players
are represented by probabilistic polynomial time (PPT) Turing machines
having the security parameter N as their common input. The security
requirements must hold for any large enough N and any input which is
polynomial in N .

For vectors, the summation is elementwise in the corresponding field.

2.1 Security Requirements and Assumptions

Rabin oblivious transfer is the trusted erasure channel with fixed proba-
bility 1−P where the input is a bit-vector b ∈ F

k
2 . The malicious sender

S̃en has no knowledge on the output, while the malicious receiver R̃ec

cannot learn the erased input.

The definition of γ-gap-Rabin OT is analogous to the above, but R̃ec

can decrease the erasure probability from his point of view by γ. This
probability is denoted by Q = 1 − P − γ.

In the other flavor of oblivious transfer, 1-out-of-2 String OT, the
sender Sen inputs two bit-vectors b0,b1 ∈ F

a
2. The receiver Rec obtains

one of them according to his choice c ∈ {0, 1}. S̃en is unable to learn c,

while R̃ec remains ignorant about b1−c. See Appendix A for more formal
security definitions of the above primitives.

The security of all schemes we present in this paper is based on the
assumption, that the following problems are hard to solve in the average
case [20, 4]:

Definition 2.1. In the following let all matrices and vectors be over Fq.

(i) Given a k × n matrix, decide if its row-space is within a Goppa code
or was generated at random. (Goppa-code-distinguishing Problem)

(ii) Given a (random) [n, k] code generated by the matrix Gpub, a word
c and an integer w, find e of Hamming weight at most w such that
c = mGpub + e for some m. (General Syndrome Decoding)

(iii) Given a (random) [n, k, d] code generated by the matrix Gpub, a word
c and an integer w ≤ (d− 1)/2, find e of Hamming weight at most w
such that c = mGpub + e for some c. (Bounded Distance Decoding)

(iv) Given a random [n, k] code and a random permuted subcode of dimen-
sion l < k, find the permutation. (Permuted Kernel Problem)

Only Problems (ii) and (iv) are known to be NP-hard in the general case
[24, 25].

2.2 Tools

We shortly recall the principal protocols our OT scheme will be based
on: the McEliece PKC and the zero-knowledge identification protocols
(ZKIP) by Stern and Shamir connected to coding theory. Further, we
give an intuition as for how to build a L-out-of-M OT from Rabin OT.

McEliece’s asymmetric encryption scheme [16] works as follows:
Upon input of the system parameters m, t, the key generation algorithm
outputs the secret key consisting of three matrices: (S,G,P), where G ∈
F

k×n
2 is a canonical generator matrix of an [n, k ≥ n − mt, 2t + 1] binary

irreducible Goppa code, S ∈ F
k×k
2 is non-singular and P ∈ F

n×n
2 is a

permutation matrix. The corresponding public key is (Gpub = SGP, t). To
encrypt a message m ∈ F

k
2 the sender chooses a random binary vector

e of length n and Hamming weight t and computes the ciphertext c =
mGpub + e. The secret key holder now can recover m from c using his
secret key.

For properly chosen parameters, the McEliece PKC is secure [4] and
there exist conversions to obtain CCA2 security [15]. For such variants, or
if only random strings are encrypted, Gpub can be chosen to be systematic
(i.e. with the k-dimensional identity matrix Idk in the first k columns), as
we will do in the following. This reduces space needed to store Gpub.

The size of the ciphertexts can be reduced to n − k if the message is
represented by e. This is known as the Niederreiter PKC, compare [22].
In the latter case (e.g. if a hash of e serves as a random seed or key
for a symmetric encryption scheme) it is sufficient to send the syndrome
e(Gpub)⊥ as ciphertext, where (Gpub)⊥ refers to the systematic check ma-
trix of Gpub.

Stern’s ZKIP [25] has a check matrix H ∈ F
n×(n−k)
q and an integer

w as system parameters. An user’s identity s is computed from the user’s
secret, a vector e ∈ F

n
q of Hamming weight w: s = eH. By Stern’s 3-round

zero-knowledge protocol, the secret key holder can prove his knowledge of
e using two blending factors: a permutation and a random vector. How-
ever, a dishonest prover not knowing e can cheat the verifier in the proto-
col with probability 2/3. Thus, the protocol has to be run several times to
detect cheating provers. Computing e from s is solving Problem (ii) from
Definition 2.1. The communication cost is about n(1 + log2(n)) log2(q)
plus three times the size of the employed commitments (e.g. a hash func-
tion).

Shamir’s Permuted Kernel ZKIP [24] works quite similarly, i.e. it

has a check matrix H ∈ F
n×(n−k)
q and an integer l as system parameters.

(Shamir proposed to use l = 1 and q to be a large prime. However,
taking q small and l < (n − k) works as well [26].) The user’s identity
K ∈ F

l×n
q is computed from the user’s secret, a permutation Π as follows:

K is taken at random from the right kernel of ΠH. In the following we
can view K as an n-vector over Fql. By Shamir’s 5-round zero-knowledge
protocol, the secret key holder can prove his knowledge of Π using two
blending factors: a permutation and a random n-vector over Fql . However,
a dishonest prover not knowing Π can cheat the verifier in the protocol
with probability (ql + 1)/(2 · ql). Thus, the protocol has to be repeated
several times to detect cheating provers. Computing Π from K is is solving
Problem (iv) from Definition 2.1. The communication cost is about n(l +
log2(n)) log2(q) plus two times the size of the commitments.

Crépeau’s protocol [7] allows to build an 1-out-of-2 from a Rabin
OT and a hash function h: In a first stage, N random messages ri are
sent to the receiver by a Rabin OT with erasure probability Q. Now K
is chosen such that K < PN = (1 − Q)N < 2K < N , i.e. the receiver
obtains at least K and at most 2K − 1 of the random messages ri. Then,
the receiver sends two disjoint sets I,J ⊆ {1, · · ·N} of K indices to
the sender, such that one of the sets contains only indices of not erased
messages ri. For the 1-out-of-2 OT, the messages m0,m1 are encrypted as
c0 = m0 + h((ri)i∈I) and c1 = m1 + h((rj)j∈J). Since the receiver knows
either the set (ri)i∈I or (rj)j∈J , he obtains exactly one of the messages
from c0 and c1. Crépeau’s protocol fails with some probability which is
negligible for large N and can easily be computed. Similarly one obtains
an L-out-of-M protocol.

3 Rabin Oblivious Transfer

Our scheme implementing Rabin OT with erasure probability 1−P con-
sists of two phases: An initialization used for key generation, where a
Goppa code is concatenated with a random code and used as substitute
for the secret code in the McEliece PKC, see Algorithm 3.1. To ensure
correct generation of the public key, we use a trusted third party (TTP)
in Algorithm 3.1, which can be omitted as we will see later on. In the

Algorithm 3.1 Key generation

Input: Security parameters m, t, t′, l ∈ N.

Receiver TTP

Set n = 2m, k = 2m − mt.
Generate a McEliece PKC key pair
with security parameters m, t.
Let (S,G, P) be the secret key with pub-
lic key (Gpub = SGP, t).
Send G

pub to the TTP.

Generate a random matrix G
′ ∈ F

k×l

2

Generate an (n + l) × (n + l) random
permutation matrix P

′

Publish the systematic matrix O
pub

generating the same [n + l, k] code as

ˆ

G
pub

G
′
˜

P
′.

Send P
′ and G

′ to the receiver.
Verify that Opub was generated cor-
rectly.

transmission phase, see Algorithm 3.2, en- and decryption work like in

the McEliece PKC. The difference lies in the modified public key, which
ensures, that the receiver cannot decrypt all valid ciphertexts. The time

Algorithm 3.2 Transmission
Input: The security parameters m, l, t′ and a k-bit message m.
Output: An OT ciphertext c.

Encryption:

Obtain the receiver’s public key Opub.
Generate a random vector e of weight t′ and length 2m + l.
Compute the ciphertext c = mO

pub + e.
Send c to the receiver.

Decryption:

Set (c1, c2) = c(P′)−1, where c1 is an n-bit vector.
Try to apply the error correction algorithm for G to c1P

−1 in order to obtain m.
if (previous step fails) or (mO

pub + c has weight 6= t′) then

return erasure.
else

return m.

complexity for Algorithm 3.2 is O(n · k + n · m · t2) operations [6]. The
size of the ciphertexts is n + l, but as mentioned in Section 2, this can be
reduced to n + l − k by encoding the message into the error vector e.

3.1 Security Analysis

For an outside attacker, the presented OT scheme offers as much resis-
tance as the McEliece PKC with the same parameters, i.e. with a public
k × (n + l) matrix and an error vector of weight t′. Since we consider the
McEliece PKC to resist cryptanalysis for appropriate parameters, there
exist parameters, such that the presented OT scheme resists cryptana-
lytic attacks [4] of outside attackers. However, more important things are
the security issues regarding the parties involved in our protocol.

Correctness. Observe, that if parameters are chosen carefully and every
party follows the protocol, Algorithm 3.2 works correctly: Let us assume
that l = n and t′ = 2t+1. Let (e1, e2) = e(P′)−1 = c(P′)−1+m

[
Gpub G′

]
,

where e1 is an n-bit vector. Then, iff e1 has weight ≤ t, the decryp-
tion procedure returns the correct message m. Else erasure occurs or
the receiver obtains a false message m′ 6= m. However, the latter case

is unlikely to occur, since then, the weight of m′Opub + c is t′. Thus,
m′Opub + c + mOpub + c has weight ≤ 2t′ = 4t + 2. Thus, one has found
a codeword of weight below the Gilbert-Varshamov (GV) bound in Opub,
which is infeasible even if such a codeword exists.

Since every choice of t′ below half of the GV-bound of Opub leads to
a correct scheme, parameters may be chosen, such that the probability P
of obtaining the message m varies. We can compute P as the fraction of
error vectors with no more than t entries on the positions of Gpub:

P :=
t∑

i=0

(n
i

)(l
t′−i

)
(n+l

t′

) = 1 −
t′∑

i=t+1

(n
i

)(l
t′−i

)
(n+l

t′

)
︸ ︷︷ ︸

=:QH

.

Thus, if n = l and t′ = 2t + 1, the scheme works correctly and we have
P = QH = 1/2.

Dishonest receiver. In this scheme, a dishonest receiver has the possi-
bility to raise its probability to receive the message m. He might choose
to guess a part of the error vector or try to apply a general decoding
algorithm to the erroneous word c2 of the code G′. However, the dis-
honest receiver can obtain the message with probability 1 only if general
decoding is easy:

The probability QA of an erasure for a dishonest receiver spending A
operations on decryption can be computed as follows:

QA =

t1∑

i=t0

(
n
i

)(
l

t′−i

)
(n+l

t′

) ,

if the following conditions are true (we denote e(P′)−1 = (e1, e2)):

(i) Solving the general decoding problem for c and Opub takes more than
A operations. Note that A can be computed taking into account the
(best known) attack by Canteaut and Chabaud [4] using the lower
bound from [22]:

A ≥ 2−t log2(1−k/n). (1)

(ii) The general decoding problem for c2 = mG′ + e2 and G′ cannot be
solved in A operations if e2 has weight ≥ t′ − t1.

(iii) If the weight w of e1 = c1 + mGpub is larger than t0, the receiver
cannot guess a sufficiently large subset of the support of e1 to apply

the decoding algorithm for Goppa codes. This is
(n
w−t

)
(w
w−t

)m3t2 ≥ A, (2)

since each decoding attempt takes m3t2 operations [6] and there are(w
w−t

)
correct guesses.

To our knowledge there exist neither codes with better error correction
ratio than binary irreducible Goppa codes nor efficient list decoding algo-
rithm for binary irreducible Goppa codes [11]. Thus, if wt(e1) > t0, the
receiver either has to guess part of the error or is forced to use a general
decoding algorithm.

There is a non-negligible gap between P = 1 − QH and Q280 , i.e.
1−P −Q280 > 0 is not decreasing exponentially fast in m, t. We will call
our Rabin OT an γ-gap Rabin OT with γ = (1−P−Q280). We can reach
reasonable values for P and Q280 , compare Table 3.1. In fact, one can
even use the dishonest receiver’s strategy in a positive way, i.e., to raise
the chance of obtaining the message. The work factor for decryption is
then given by equation (2). This is useful for protocols like in [7], where
we need to ensure that the receiver gets at least half of the messages,
compare Section 2. Note, that we do not need P = 1−Q280 in Crépeau’s
protocol but only K ≤ PN ≤ (1 −Q280)N < 2K for some K < N/2. By
Crépeau’s protocol we can thus conclude:

Theorem 3.1. γ-gap Rabin OT with erasure probability QH > 0 is poly-
nomial time equivalent to (L = ⌊MP⌋)-out-of-M OT if (P + γ) < L+1

M .

The next corollary follows from the above theorem with L=1, M=2 and
the straightforward reduction from 1-out-of-2 OT to Rabin OT.

Corollary 3.1. A γ-gap Rabin OT with γ < QH < 1/2 is polynomial
time equivalent to Rabin OT.

Parameters Size Public Key Size Ciphertext Decryption QA

m t t′ l = k(n + l − k) = n + l − k runtime QH A = 238 A = 280

12 200 2t + 1 212 1,377 KBytes 812 Bytes 226 0.5 0.41 0.11
13 402 2t + 13 213 4,974 KBytes 1,677 Bytes 228.5 0.66 0.61 0.36
14 800 2t + 1 214 17,874 KBytes 3,448 Bytes 231 0.5 0.46 0.29

Table 3.1. Parameter sets for the Rabin OT

Example 1. With the first parameter set from Table 3.1 and a receiver
spending up to 235 operations on each decryption, we can obtain a 1-out-
of-2 OT by Crépeau’s construction, which fails with probability less than
2−30 if we choose N = 2K = 180. This results in a communication cost
of about 143KB.

Dishonest sender. Since there is no algorithm known, which allows to
distinguish a Goppa code from a random code, a malicious sender cannot
identify the columns of Opub belonging to Gpub. In consequence, honest
but curious sender cannot learn if a message is going to be erased or not.
Nevertheless, a malicious sender could try to send a random string or to
modify t′. However, the receiver can force the sender to prove that the
ciphertext c is a valid one:

Let H = (Opub)⊥ be systematic and w = t′. We will view Stern’s
ZKIP with security parameters H, w and the user identity s = cH [25]
(compare Section 2). Now, if the encryption was made correctly, the error
vector e = mOpub + c can be used by the sender as secret key. Thus, the
honest sender can employ Stern’s ZKIP to convince the receiver by a zero-
knowledge proof that c is indeed a valid ciphertext, while the dishonest
sender will be revealed.

Example 1. (continued) If we want to prove the correctness of every sent
message with a security level of 230 by Stern’s ZKIP, this leads to a
communication cost of 129 Megabytes for the 1-out-of-2 OT.

Reaction attack A third security issue is the reaction of the sender
in the case he gets feedback if an erasure occurred or not. Suppose that
an attacker learns that the receiver cannot decode a certain ciphertext.
Then, the sender can choose to modify the corresponding error vector only
slightly for the next encryption. By this and some statistics the sender
could thus identify the columns of Gpub in Opub, which breaks the scheme.
Nevertheless, the sender should be cautious, as the receiver might detect
such manipulations by comparing ciphertexts.

This might get important as feedback may well come from the higher
level protocols (like Crépeau’s protocol), for which oblivious transfer is
used as a primitive. However, there are plenty of possible countermeasures
against an attack by feedback, compare, e.g., [15].

3.2 Omitting a trusted third party

In a more advanced scheme, correct key generation can be verified by the
sender if we follow the ideas of Shamir’s PKP ZKIP [24] (compare Section
2). The basic idea is, that the sender provides the pseudorandom part G′

of the private key and checks the correct construction of the public key
by the PKP ZKIP. Our proposal is summarized in Algorithm B.1, see
Appendix B.

Due to space limitations, we do not elaborate on the application of
Shamir’s ZKIP here, but rather present a new protocol where it allows
us to provide security against fully malicious players with reasonable ef-
ficiency.

4 1-out-of-2 String Oblivious Transfer

Notation and Tools. For encryption, we employ IND-CCA2 McEliece
PKC [15] where the message length is a bits, a is defined by the particular
conversion (see [15]). As the McEliece private key the players will use a
generating matrix G of the irreducible Goppa [n, k, d]-code with n = 2m,
k = n − mt, d = 2t + 1 (correcting up to t errors). By a slight abuse of
notation, a code and its generating matrix will be referred to using the
same letter.

In our protocol, we use two well-known cryptographic tools: pseu-
dorandom generators (PRG) and collision-resistant hash functions, both
are described in a variety of literature (e.g., see [17] and the references
therein). The particular implementation is not essential in our case. We
denote by PRG(s) = (G,Q) the process of choosing the [n, k, 2t + 1]
Goppa code G and pseudorandom generation of the matrix Q ∈ F

k×n

using a random seed s. A hash function is denoted by h(·).
For proving in zero-knowledge that a permuted subcode belongs to

a given code, we employ the Shamir’s ZKIP [24] essentially in the same
way as described in Subsection B.

For generation of the random entities, the parties use their local ran-
domness unless otherwise stated.

Our protocol is presented in Algorithm 4.1 (see Appendix C.1 for
intuition behind its construction).

4.1 Security Analysis

Correctness. Assume that the players behave honestly. Let us briefly
argue that the receiver always obtains the correct bc. Both players will

Algorithm 4.1 1-out-of-2 String OT

Sender: input: b0,b1 ∈ F
a
2 ; output: none

Receiver: input: c ∈ {0, 1}; output: bc

Sender Receiver

2. Save the received values as wh. Gener-
ate a random seed v. Send h(v).

1. Generate a random seed w. Send h(w).

4. Reject if h(w) 6= wh, otherwise
set s = v + w, PRG(s) = (G, Q). Send v.

3. Save the received value as vh. Send w.

6. Reject if the proof fails, otherwise com-
pute G0, G1 such that
[G0|G1] =

ˆ

Idk
′ ˛

˛NS([C0|C1])
˜

.
For i = 0, 1: Encrypt bi using Gi as the
public key and send the encryption.

5. Reject if h(v) 6= vh, otherwise:

– Set s = v + w and PRG(s) = (G, Q).
– Generate a random permutation ma-

trix P
′ ∈ F

n×n

2 and a random matrix

of rank k′: S
′ ∈ F

k
′
×k

2 .
– Set Cc = S′GP′, C1−c = S′QP′.
– Send NS([C0|C1])
– Prove in ZK that [C0|C1] is a per-

muted subcode of [G|Q].

7. Decrypt and output bc.

not reject in Steps 4 and 5. Moreover, the sender will always accept the
ZK proof.

Finally, the decoding algorithm of G can be used to correct errors in
Gc which is a subcode of G. Indeed, the encryption keys G0 and G1 are
equivalent to C0 and C1, respectively. Suppose that for some non-singular
S̃: S̃[C0|C1] =

[
Idk′

∣∣NS([C0|C1])
]

= [G0|G1]. Then, by linearity, we have

[G0|G1] = [S̃C0|S̃C1].

Remark 4.1. In Steps 1-5, the players use a coin flipping protocol (com-
mitments are implemented using hash functions) to compute the random
seed s for Q. Our proof of security heavily relies on the fact that both
players have no control over the choice of Q. This forces us to assume
that the underlying PRG and hash functions are ideal. In other words,
we assume for now that:

– The output sequence of the PRG is computationally indistinguishable
from random for a randomly chosen seed.

– Hash functions are random oracles. In fact, the random oracle model
is also required for the security of IND-CCA2 McEliece encryption
(see [15] for details).

We will lift these assumptions in Subsection 4.2 where we provide a
realistic non-asymptotic analysis for our construction.

Passive Security. Assume that the players follow the protocol.
Security for Sender. In order to learn b1−c, the receiver must de-

code S′QP′, i.e., the random code. If k′ is not too small, this is infeasible
using general decoding techniques. Moreover, as long as the IND-CCA2
conversion [15] is secure, the plaintext b1−c remains pseudorandom from
the dishonest receiver’s point of view. This can be shown using Theorem 1
of [15].

Security for Receiver. The only way for the sender to learn c is to
distinguish Cc and C1−c which are the random permuted subcodes of G

and Q, respectively. The following theorem establishes hardness of this
problem (see Appendix C.2 for the proof sketch).

Theorem 4.2. For the sender, distinguishing C0 and C1 is as hard as
solving the PKP for [C0|C1] and [G|Q].

Active Security.
Security for Sender. The malicious receiver may try to learn both

b0 and b1 at least partially with non-negligible probability. As a straight-
forward attack, he could use a good code instead of Q. However, he will
not succeed unless he can break Shamir’s ZKIP in Step 5.

The malicious choice of S′ is unlikely to help the receiver. If he could
find a good subcode of Q, he can would be able to do the same for the
McEliece public key, hence violating the security of this PKC.

The receiver cannot hope to substantially improve the code C1−c by
exchanging some of its columns with Cc. The ZK proof will still be valid,
but Cc will become punctured. Note that there is no better decoding
algorithm for the chosen Goppa code than the algebraic decoding. Hence,
the error correcting capability will degrade very rapidly with the number
of columns exchanged, prohibiting to decode even the “valid” code Cc,
while gaining essentially no advantage for C1−c. In the extreme case, when
the Goppa code is split into the two subcodes equally, the adversary must
guess the error vector corresponding to the random part.4 It is easy to
show that this attack has a higher workload than general decoding of the
correctly constructed C1−c.

Security for Receiver. One straightforward attack is to bias the
choice of Q in order to efficiently distinguish Cc and C1−c. This requires
biasing the coin flipping into generating a seed such that PRG produces

4 In the same way, as the honest-but-curious attacker against Algorithm 3.2 does.

the output sequence with efficiently computable correlations. Such cor-
relation may allow the random subcode of Q to be distinguished from a
random subcode of the Goppa code. Note that breaking the coin flipping
requires finding collisions in hash functions. The details on this are out
of scope of our paper – we assume the PRG and the hash function ideal.
For simplicity of our analysis, we also assume that breaking any of those
entities immediately leads to compromising our protocol. Finally, we note
that in reality not every collision leads to the choice of a “bad” seed as
well as not any “bad” seed leads to a distinguishable subcode.
Reaction Attack. The malicious sender may send a random string in-
stead of one of the encryptions, say for the string bi. If i = c then the
receiver will likely encounter a decoding error, but he would be unable
to complain as it reveals his choice. On the other hand, if i = 1 − c, the
receiver accepts the protocol, yet again revealing c.

This attack can be avoided using the pre-computed oblivious transfer
by Beaver [2]. The players can perform OT with random inputs, i.e., “pre-
compute” it. Then, using the Beaver’s technique, they perform oblivious
transfer with their actual inputs.5 Clearly, in this case, the above attack
is not fruitful, because the receiver can safely reject the pre-computing
protocol only revealing the random choice bit instead of c.

See Appendix C.3 for some implementation remarks on our protocol.

4.2 Proposed Parameters

Let us first consider the security for the sender. The dishonest receiver
may try to cheat the ZK proof and provide two good codes in Step 5. He
can succeed with probability Ps = 2−r, where r is the number of rounds in
the ZK proof. Let us require that Ps ≤ 10−9, then 30 rounds are enough.

The above attack must be performed online, while after the comple-
tion of the protocol, the receiver can always try to break the encryption
of b1−c. The workload of this attack is computed according to equation
(1), see Section 2.

For the [2048, 1333, 131] Goppa code with k′ = 1157 (i.e., the dimen-
sion k′ of the subcode will be substituted to the above formula instead of
k), it provides us with complexity at least 280.02.

Now, let us consider the security for the receiver. First, it seems to
be very hard to compute P′ in the Shamir’s ZKP. The best known attack
of this kind is due to Poupard [20] but its workload is exponential in n.

5 The resulting efficiency remains almost the same as only one “randomized” OT is
required.

By approximating the theoretical lower bound on Fig. 4 in [20], one can
see that the workload for attacking the scheme based on [n, k] code is at
least 2n, even if the attacker can use an infinite memory. Although, we
did not try to optimize this attack for our setting, we believe that some
other, completely new approach is needed in order to mount a practical
attack against the Shamir scheme with large binary matrices.

Hence, we believe that it is more fruitful for the dishonest sender to
attempt distinguishing the keys G0 and G1 in Step 5 through influencing
the choice of the matrix Q.

We assume that the workload of finding “bad” seeds (i.e., those which
lead to generation of distinguishable G0 and G1) is B. Then, the work-
load for successful attack is the above plus the workload B′ of finding
collision in the hash function . Hence, the workload for computing c can
be estimated as min{B + B′, 2n}.

Finally, we discuss the problem of choosing an appropriate k′. On
the one hand, this value should not be too small in order to prevent the
general decoding attack. On the other hand, k′ should not be too close
to k in order to prevent a possible attack using the SSA algorithm. We
merely propose to choose k and k′ such that k − k′ is maximal while the
general decoding attack takes at least 280 binary operation. We take the
best attack workload 280 as the minimal security requirement.

Our choice [2048, 1333, 131], k′ = 1157 provides that k − k′ = 176.
The communication cost of our protocol with the above parameters is at
most 13.5 Megabytes. This parameter set minimizes the communication
cost for a reasonable level of security.

Taking into account the discussion in the previous section, we believe
that the attack against ZK proof using the SSA algorithm will have the
success probability which is negligible in k− k′, however, we do not know
the particular parameters. Hence, we propose the second set of parameters
(see Table 4.2) providing a stronger security.

Parameters Success probability for Workload of decoding Communication
n k t k − k′ online attack on ZKP (offline) attack cost, MBytes

2048 1311 67 158 10−9 280.02 13.3
4096 2644 121 500 10−9 2129.38 50.4

Table 4.2. Parameter sets for 1-out-of-2 String OT.

5 Conclusion

We have presented a new approach for constructing oblivious transfer
based on the McEliece cryptosystem. Two flavors are covered: Rabin OT
and 1-out-of-2 OT which can be extended to L-out-of-M OT. Both con-
structions are practical: the first one with aid of TTP, the second one –
against fully malicious players.

A new application for Stern’s and Shamir’s ZKIP in McEliece-based
protocols has been proposed.

As these are one of the first constructions of such kind, the following
open questions can be posed:

(i) Fix the gap for the Rabin OT protocol.

(ii) Improve communication efficiency of both constructions. Of particular
importance is the L-of-M case.

(iii) Perform the realistic security analysis of Shamir’s ZKIP with large
binary matrices.

(iv) Investigate the efficiency of applying the SSA algorithm to random
permuted subcodes.

(v) Propose the codes which can be used in our 1-out-of-2 OT protocol
instead of the Goppa codes. (Note that the answer to this question
immediately implies finding good candidate codes for the McEliece
PKC).

Finally, we note that the communication cost of Shamir’s ZKIP [24]
can be decreased as the number of rounds can be reduced from 5 to 3.
This is the matter of our ongoing research.

References

1. W. Aiello, Y. Ishai, and O. Reingold. Priced oblivious transfer: How to sell digital
goods. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of Lecture Notes
in Computer Science, pages 119–135. Springer, 2001.

2. D. Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor,
CRYPTO, volume 963 of Lecture Notes in Computer Science, pages 97–109.
Springer, 1995.

3. M. Bellare and S. Micali. Non-interactive oblivious transfer and spplications. In
Gilles Brassard, editor, CRYPTO, volume 435 of Lecture Notes in Computer Sci-
ence, pages 547–557. Springer, 1989.

4. A. Canteaut and F. Chabaud. A new algorithm for finding minimum-weight words
in a linear code: Application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEETIT: IEEE Transactions on Information Theory, 44,
1998.

5. P.-L. Cayrel, P. Gaborit, and M. Girault. Identity based identification and sig-
nature schemes using correcting codes. In Workshop on coding and cryptography
2007, pages 69–78. INRIA, 2007.

6. N. Courtois, M. Finiasz, and N.Sendrier. How to achieve a McEliece-based digital
signature scheme. In Advances in Cryptology - ASIACRYPT 2001, volume 2248,
pages 157–174. Springer-Verlag, 2001.

7. Claude Crépeau. Equivalence between two flavours of oblivious transfers. In Carl
Pomerance, editor, CRYPTO, volume 293 of Lecture Notes in Computer Science,
pages 350–354. Springer, 1987.

8. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

9. O. Goldreich. Foundations of Cryptography - Volume 2 (Basic Applications). Cam-
bridge University Press, 2004.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

11. V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-
geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,
1999.

12. I. Haitner. Implementing oblivious transfer using collection of dense trapdoor per-
mutations. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 394–409. Springer, 2004.

13. Y. Kalai. Smooth projective hashing and two-message oblivious transfer. In Ronald
Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 78–95. Springer, 2005.

14. J. Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31.
ACM, 1988.

15. K. Kobara and H. Imai. Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC. In Practice and Theory in Public Key Cryptography
- PKC ’01 Proceedings. Springer Verlag, 2001.

16. R.J. McEliece. A public key cryptosystem based on algebraic coding theory. DSN
progress report, 42-44:114–116, 1978.

17. A. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptog-
raphy. CRC Press, 1996.

18. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In SODA, pages
448–457, 2001.

19. A. Nascimento, J. Müller-Quade, M. Fossorier, H. Imai, and K. Morozov. Oblivious
transfer based on McEliece-like assumptions. Manuscript, 2007.

20. G. Poupard. A realistic security analysis of identification schemes based on com-
binatorial problems. European Transactions on Telecommuncations, 8(5):417–480,
September/October 1997.

21. M.O. Rabin. How to exchange secrets by oblivious transfer. Technical report,
Aiken Computation Laboratory, Harvard University, 1981. Tech. Memo TR-81.

22. N. Sendrier. On the security of the McEliece public-key cryptosystem. In
M. Blaum, P.G. Farrell, and H. van Tilborg, editors, Proceedings of Workshop
honoring Prof. Bob McEliece on his 60th birthday, pages 141–163. Kluwer, 2002.

23. N. Sendrier. Finding the permutation between equivalent linear codes: the support
splitting algorithm. IEEE Transactions on Information Theory, 46:1193–1203, Jul
2000.

24. A. Shamir. An efficient identification scheme based on permuted kernels. In Proc.
of Crypto’89, volume 435 of LNCS, pages 606–609. Springer Verlag, 1990.

25. J. Stern. A new identification scheme based on syndrome decoding. In Advances
in Cryptology - CRYPTO’93, volume 773 of LNCS. Springer Verlag, 1994.

26. Serge Vaudenay. Cryptanalysis of the Chor–Rivest cryptosystem. J. Cryptology,
14(2):87–100, 2001.

27. S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

Appendix A Security Definitions

Definition A.2. A protocol [Sen,Rec](b) is said to securely implement
Rabin oblivious transfer, if at the end of its execution, for a random
binary variable E such that Pr[E = 0] = P, the following properties hold:

– Completeness: Assume the players honestly follow the protocol. If E =
0, then Rec outputs b, otherwise “erasure”.

– Security for Sen: After completion of the protocol, if E = 1, Rec learns
nothing about b in PPT.

– Security for Rec: For any b ∈ F
k
2, Sen learns nothing about E in PPT.

Definition A.3. A protocol [Sen,Rec](b0,b1; c) is said to securely im-
plement 1-out-of-2 String oblivious transfer, if at the end of its execution
the following properties hold:

– Completeness: when the players honestly follow the protocol, Rec out-
puts bc.

– Security for Sen: For any c ∈ {0, 1}, Rec learns nothing about b1−c in
PPT.

– Security for Rec: For any b0,b1 ∈ F
a
2 after completion, Sen learns

nothing about c in PPT.

This definition can be extended to the L-out-of-M String OT in a
natural way.

Appendix B Omitting a TTP in Algorithm 3.1.

Our proposal on the key generation that can be verified by the sender
is summarized in Algorithm B.1. However, we do not estimate secure
parameters, but just point out the theoretic possibility to omit the TTP.

The last step of Algorithm B.1 requires some additional explanation:
After the second last step, the sender knows a k′ × n submatrix K of[
Gpub G′

]
and can compute the n + l − k dimensional kernel of Opub

given by a matrix H. Now we can take H and k′ as system parameters for
Shamir’s Permuted Kernel ZKIP. If the receiver is honest and has followed
the protocol, he knows the secret permutation Π = P′ corresponding to
the user’s identity K, i.e. a permutation such that K · Π · H = 0. Thus,
the honest receiver can employ Shamir’s ZKIP to convince the sender by
a zero-knowledge proof that he followed the protocol, while the dishonest
receiver will be revealed.

Algorithm B.1 Public key generation without TTP

Input: Security parameters m, t, t′, l, k′ < 2m − mt ∈ N,
PRG a pseudo random number generator

Output: The public key (Opub, t′).

Receiver Sender

Set n = 2m, k = 2m − mt.
Generate a McEliece PKC key pair
with security parameters m, t.
Let (S, G, P) be the secret key with pub-
lic key (Gpub, t).
Choose an (n+ l)× (n+ l) random per-
mutation matrix P′.

Choose a seed s0 and generate the ma-
trix PRG(s0) = G′ ∈ F

k×l

2 .
Send k commitments to the rows of
G

pub to the sender.
Send s0 to the receiver

Publish the systematic matrix O
pub

generating the same [n + l, k] code as
ˆ

G
pub

G
′
˜

P
′, where G

′ = PRG(s0).
Choose a random subset K′ of cardinal-
ity k′ from {1, . . . , k}. Ask the sender
to reveal the commitments for K′.
Compute the rows of

ˆ

G
pub

G
′
˜

with
indices in K′.

Use the protocol of [24] to proof to
the sender, that there is a permutation,
such that the rows of

ˆ

G
pub

G
′
˜

with
indices in K′ are simultaneously in the
code generated by Opub.

Appendix C Details on Security of Algorithm 4.1.

C.1 Intuition

Let us provide some intuition behind Algorithm 4.1. A straightforward
approach for the receiver would be to provide the sender (see Step 5) with
two matrices: a McEliece public key (derived from the Goppa code G) and
a (pseudo)random matrix Q (in the order which depends on his choice
c). In the next step, the sender uses the matrices (while being unable to
tell which one is the valid key) as the McEliece public keys to encrypt
his secrets b0 and b1. Hence, the receiver can decrypt bc while remaining
ignorant about b1−c.

The cheating receiver might send arbitrary matrices in Step 5 (in par-
ticular, two valid keys!), hence we have him prove correctness of his input
in zero-knowledge. The PKP-based proof requires some rearrangements:

the sender will obtain the random permuted subcodes of G and Q – how-
ever, they still can be used as the public keys for b0 and b1 with the
same effect as before. To make the proof work, the receiver discloses G

in Step 1, this will not harm his privacy due to the hardness of the PKP
problem.

Finally, one cannot entrust the generation of Q to either player: the
dishonest receiver may instead provide a good code, while the cheating
sender may try to facilitate his distinguishing of the keys in Step 5. Hence,
the players generate a seed for the pseudorandom Q by coin flipping
(Steps 1-5).

C.2 Proof Sketch of Theorem 4.2

Let us informally introduce the Decisional Permuted Kernel Problem
(DPKP) which is about distinguishing a randomly permuted subcode
of the given code from a random matrix. First, we note that DPKP must
be as hard as PKP.

Lemma C.1. DPKP is polynomially reducible to PKP.

Proof (Sketch). The reduction proceeds as follows. 6 First, we puncture
the given [n, k] code G at the i-th position and the subcode S′GP′ at
the j-th position. Then, we submit the two resulting codes to the DPKP
oracle. If the oracle answers that the permutation still exists, it is very
likely that P′ maps the i-th position to the j-th position. Iterating this
procedure gives us the permutation up to the automorphism group of
S′GP′ in n(n − 1)/2 oracle queries.

Note that the above reduction works only for an oracle which always
answers correctly. However, the adversary may have at his disposal an
oracle which answers correctly only from time to time. Note that we have
got k′ < k, hence application of the SSA algorithm is a non-trivial task.
However, the SSA algorithm can be generalized for computing a permuta-
tion of a random subcode of a given code. For k′ which are close to k, such
the modified algorithm may succeed with non-negligible probability. This
will correspond to the non-negligible bias in the DPKP oracle’s answers.
In this case, we can use the same reduction as above except that we feed
our oracle in parallel with several random k′′-dimensional (k′′ < k′) per-
muted subcodes of G and take the majority vote on the oracle’s answers.
Together with Lemma C.1 it concludes the proof.

6 Essentially, the same way as the SSA algorithm [23] does.

As a side remark, let us provide an intuitive explanation on the perfor-
mance of the modified SSA algorithm. In the original SSA, the so-called
signature of a code is computed using the weight distribution of a hull
of the code. Now, suppose that k′ = k − 1. Consider the weight dis-
tribution W (H(C)), where H(·) denotes the hull of a code, and C is a
randomly permuted k′ × n subcode of the code G. It is easy to see that
the components of W (H(C)) will be different from the respective com-
ponents of W (H(G)) for some constant fraction (which will depend on
the particular matrix G). Nonetheless, some correlation of the two weight
distributions will be preserved. Hence, the modified algorithm is likely to
succeed in computing the permutation. Now, when k−k′ is increasing, the
shape of W (H(C)) will decorrelate with W (H(G)) very quickly. In fact,
for k − k′ of about 150, we conjecture that there is no better attack than
the following brute force one. Given G and the subcodes Cc = S′GP′ and
C1−c = S′QP′, for any rank k′ matrix S′′ ∈ F

k′×k
2 do the following until the

permutation is revealed. Compute S′′G and run in parallel SSA(S′′G,Cc)
and SSA(S′′G,C1−c). There are 2k′(k−k′) possible matrices S′′, hence the
workload is exponential in k when k′ is of the same order as k.

C.3 Implementation Remarks

Let us provide some remarks on construction of Algorithm 4.1.

– L-out-of-M String Oblivious Transfer. This protocol can be eas-
ily extended to the case of L-out-of-M Sting OT. Unfortunately, the
communication cost is growing quite fast in M mainly due to the
contribution by the ZK proof.

– Trusted Third Party (TTP). The presence of TTP would greatly
simplify the protocol, as it could be delegated generation of the sub-
codes Ci in the way similar to Algorithm 3.1.

– Independent Random Source. Such source can be used by the
players to avoid the coin flipping in Steps 1-5 by merely reading s
from the source.

– Fixed Code. If the designer allows to use always the same Goppa
code in the private key, G may be set as a system parameter but not
generated each time anew.

