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Abstract

In this paper, we introduce P-signatures. A P-signature scheme consists of a signature scheme, a commitment
scheme, and (1) an interactive protocol for obtaining a signature on a committed value; (2) a non-interactive proof
system for proving that the contents of a commitment has been signed; (3) a non-interactive proof system for proving
that a pair of commitments are commitments to the same value. We give a definition of security for P-signatures
and show how they can be realized under appropriate assumptions about groups with bilinear map. Namely, we
make extensive use of the powerful suite of non-interactive proof techniques due to Groth and Sahai.

Our P-signatures enable, for the first time, the design of a practical non-interactive anonymous credential system
whose security does not rely on the random oracle model. In addition, they may serve as a useful building block
for other privacy-preserving authentication mechanisms.
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1 Introduction

Anonymous credentials [Cha85, Dam90, Bra99, LRSW99, CL01, CL02, CL04] let Alice prove to Bob that Carol has
given her a certificate. Anonymity means that Bob and Carol cannot link Alice’s request for a certificate to Alice’s
proof that she possesses a certificate. In addition, if Alice proves possession of a certificate multiple times, these
proofs cannot be linked to each other. Anonymous credentials are an example of a privacy-preserving authentication
mechanism, which is an important theme in modern cryptographic research. Other examples include group signa-
tures [CvH91, CS97, ACJT00, BBS04a, BW06, BW07a], electronic cash [CFN90, FY93, CP93, Bra93, EJA+04,
CHL05, Wei05, CHL06, CGH06], and anonymous authentication [TFS04, DDP05, NSN05, TS06, CHK+06]. In a
series of papers, Camenisch and Lysyanskaya [CL01, CL02, CL04] identified a key building block commonly called
“a CL-signature”. A CL-signature is a signature scheme with a pair of useful protocols.

The first protocol, called Issue, lets a user obtain a signature on a committed message without revealing the
message. The user wishes to obtain a signature on a value x from a signer with public key pk . The user forms a
commitment comm to value x and gives comm to the signer. After running the protocol, the user obtains a signature
on x, and the signer learns no information about x other than the fact that he has signed the value that the user has
committed to.

The second protocol, called Prove, is a zero-knowledge proof of knowledge of a signature on a committed value.
The prover has a message-signature pair (x, σpk (x)). The prover has obtained it by either running the Issue protocol, or
by querying the signer on x. The prover also has a commitment comm to x. The verifier also knows comm . The prover
proves in zero-knowledge that he knows a pair (x, σ) and a value opening such that VerifySig(pk , x, σ) = accept and
comm = Commit(x, opening).

It is clear that using general secure two-party computation [Yao86] and zero-knowledge proofs of knowledge
of a witness for any NP statement [GMW86], we can construct the Issue and Prove protocols from any signature
scheme and commitment scheme. Camenisch and Lysyanskaya’s contribution was to construct specially designed
signature schemes that, combined with Pedersen [Ped92] and Fujisaki-Okamoto [FO98] commitments, allowed them
to construct Issue and Prove protocols that are efficient enough to use in practice. CL-signatures have been imple-
mented and standardized [CVH02, BCC04]. They have also been used as a building block in many other construc-
tions [JS04, EJA+04, CHL05, CHL06, DDP06, CHK+06, TS06, CGH06, CLM07].

A shortcoming of the CL signature schemes is that the Prove protocol is interactive. Rounds of interaction are
a valuable resource. In certain contexts, proofs need to be verified by third parties who are not present during the
interaction. For example, in off-line e-cash, a merchant accepts an e-coin from a buyer and later deposits the e-coin to
the bank. The bank must be able to verify that the e-coin is valid.

There are two known techniques for making the CL Prove protocols non-interactive. We can use the Fiat-Shamir
heuristic [FS87], which requires the random-oracle model. A series of papers [CGH04, DNRS03, GT03] show that
proofs of security in the random-oracle model do not imply security. The other option is to use general techniques:
any statement in NP can be proven in non-interactive zero-knowledge [BFM88, DSMP88, BDMP91]. This option is
prohibitively expensive.

In this paper we give the first practical non-interactive zero-knowledge proof of knowledge of a signature on a
committed message. We have two constructions using two different practical signature schemes and a special class of
commitments due to Groth and Sahai [GS07]. Our constructions are secure in the common reference string model.

Due to the fact that these protocols are so useful for a variety of applications, it is important to give a careful
treatment of the security guarantees they should provide. In this paper, we introduce the concept of P-signatures —
signatures with efficient Protocols, and give a definition of security. The main difference between P-signatures and
CL-signatures is that P-signatures have non-interactive proof protocols. (Our definition can be extended to encompass
CL signatures as well.)
OUR CONTRIBUTIONS. Our main contribution is the formal definition of a P-signature scheme and two efficient
constructions.

Anonymous credentials are an immediate consequence of P-signatures (and of CL-signatures [Lys02]). Let us
explain why (see Appendix A for an in-depth treatment). Suppose there is a public-key infrastructure that lets each
user register a public key. Alice registers unlinkable pseudonym AB and AC with Bob and Carol. AB and AC are
commitments to her secret key, and so they are unlinkable by the security properties of the commitment scheme.
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Suppose Alice wishes to obtain a certificate from Carol and show it to Bob. Alice goes to Carol and identifies herself
as the owner of pseudonym AC . They run the P-signature Issue protocol as a result of which Alice gets Carol’s
signature on her secret key. Now Alice uses the P-signature Prove protocol to construct a non-interactive proof that
she has Carol’s signature on the opening of AB .

Our techniques may be of independent interest. Typically, a proof of knowledge π of a witness x to a statement
s implies that there exists an efficient algorithm that can extract a value x′ from π such that x′ satisfies the statement
s. Our work uses Groth-Sahai non-interactive proofs of knowledge [GS07] from which we can only extract f(x)
where f is a one-way function. We formalize the notion of an f -extractable proof of knowledge and develop useful
notation for describing f -extractable proofs that committed values have certain properties. Our notation has helped
us understand how to work with the GS proof system and it may encourage others to use the wealth of this powerful
building block.
TECHNICAL ROADMAP. We use Groth and Sahai’s f -extractable non-interactive proofs of knowledge [GS07] to
build P-signatures. Groth and Sahai give three instantiations for their proof system, using SXDH, DLIN, and SDA
assumptions. We can use either of the first two instantiations. The SDA-based instantiation does not give us the
necessary extraction properties.

Another issue we confront is that Groth-Sahai proofs are f -extractable and not fully extractable. Suppose we
construct a proof whose witness x contains a ∈ Zp and the opening of a commitment to a. For this commitment, we
can only extract ba ∈ f(x) from the proof, for some base b. Note that the proof can be about multiple committed
values. Thus, if we construct a proof of knowledge of (msg , σ) where msg ∈ Zp and VerifySig(pk ,msg , σ) = accept,
we can only extract some function F (msg) from the proof. However, even if it is impossible to forge (msg , σ) pairs,
it might be possible to forge (F (msg), σ) pairs. Therefore, for our proof system to be meaningful, we need to define
F -unforgeable signature schemes, i.e. schemes where it is impossible for an adversary to compute a (F (msg), σ) pair
on his own.

Our first construction uses the Weak Boneh-Boyen (WBB) signature scheme [BB04]. Using a rather strong
assumption, we prove that WBB is F -unforgeable and our P-signature construction is secure. This construction is
simple. Our second construction uses a better assumption (because it is falsfiable [Nao03]) and is based on the Full
Boneh-Boyen signature scheme [BB04]. We had to modify the Boneh-Boyen construction, however, because the GS
proof system would not allow the knowledge extraction of the entire signature.
ORGANIZATION. We define P-signatures in Section 2. Section 3 introduces the complexity assumptions. Section 4
explains non-interactive proofs of knowledge, introduces our new notation, and reviews GS proofs. Finally, Sections 5
and 6 contain our constructions.

2 Definition of a Secure P-Signature Scheme

A P-signature scheme [CL02] lets a user (1) obtain a signature on a committed message without revealing the message,
and (2) construct a non-interactive zero-knowledge proof of knowledge of (F (msg), σ) such that VerifySig(pk,msg , σ) =
accept. In this section, we give the first formal definition of a non-interactive P-signature scheme. We begin by re-
viewing digital signatures and introducing the concept of F -unforgeability.

2.1 Digital Signatures

A signature scheme consists of four algorithms: SigSetup, Keygen, Sign, and VerifySig. SigSetup(1k) generates the
public parameters paramsSig . Keygen(paramsSig) generates a signing key pair (pk , sk). Sign(paramsSig , sk ,msg)
computes a signature σ on msg . VerifySig(paramsSig , pk ,msg , σ) outputs accept if σ is a valid signature on msg ,
reject otherwise.

The standard definition of a secure signature scheme [GMR88] states that no adversary can output (msg , σ),
where σ is a signature on msg , without first previously obtaining a signature on msg (see Appendix B for the GMR
definition). This is insufficient for our purposes. Our P-Signature constructions prove that we know some value y =
F (msg) (for an efficiently computable bijection F ) and a signature σ such that VerifySig(paramsSig , pk ,msg , σ) =
accept. However, even if an adversary cannot output (msg , σ) without first obtaining a signature on msg , he might be
able to output (F (msg), σ). Therefore, we introduce the notion of F -Unforgeability:
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Definition 1 (F -Secure Signature Scheme) We say that a signature scheme is F -secure (against adaptive chosen
message attacks) if it is Correct and F -Unforgeable.

Correct. VerifySig always accepts a signatures obtained using the Sign algorithm.

F -Unforgeable. Let F be an efficiently computable bijection. No adversary should be able to output the pair
(F (msg), σ) unless he has previously obtained a signature on msg . Formally, for every PPTM adversary A,
there exists a negligible function ν such that

Pr[paramsSig ← SigSetup(1k); (pk , sk)← Keygen(paramsSig);

(QSign, y, σ)← A(paramsSig , pk)OSign(paramsSig ,sk ,·) :

VerifySig(paramsSig , pk , F−1(y), σ) = 1 ∧ y 6∈ F (QSign)] < ν(k).

OSign(paramsSig , sk ,msg) records all msg queries on QSign and returns Sign(paramsSig , sk ,msg). F (QSign)
evaluates F on all values on QSign.

Lemma 1 An F -unforgeable signature scheme is secure in the standard [GMR88] sense.

2.2 Commitment Schemes

Recall the standard definition of a non-interactive commitment scheme. It consists of the algorithms ComSetup,
Commit. ComSetup(1k) outputs the public parameters of the commitment scheme paramsCom . Commit(paramsCom ,
x, opening) is a deterministic function that outputs comm , a commitment to x using auxiliary information opening .
We need commitment schemes that are perfectly binding and computationally hiding:

Perfectly Binding. For every bitstring comm , there exists at most one value x such that there exists opening infor-
mation opening so that comm = Commit(params, x, opening). We also require that it be easy to identify the
bitstrings comm for which there exists such an x.

Strongly Computationally Hiding. There exists an alternate setup function HidingSetup(1k) that outputs parameters
(that are computationally indistinguishable from the parameters output by ComSetup(1k)) so that the commitments
become information-theoretically hiding.

2.3 Non-Interactive P-Signatures

A non-interactive P-signature scheme extends a signature scheme (Setup,Keygen,Sign,VerifySig) and a non-interactive
commitment scheme (Setup,Commit). It consists of the algorithms (Setup,Keygen,Sign,VerifySig,Commit,ObtainSig,
IssueSig,Prove,VerifyProof,EqCommProve,VerEqComm).

Setup(1k). Outputs public parameters params . These parameters include parameters for the signature scheme and the
commitment scheme.

ObtainSig(params, pk ,msg , comm, opening)↔ IssueSig(params, sk , comm). These two interactive algorithms ex-
ecute a signature issuing protocol between a user and the issuer. The user takes as input (params, pk ,msg , comm,
opening) such that the value comm = Commit(params,msg , opening) and gets a signature σ as output. The
issuer gets (params, sk , comm) as input and gets nothing as output.

Prove(params, pk ,msg , σ). Outputs the values (comm, π, opening), such that we have comm = Commit(params,msg ,
opening) and π is a proof of knowledge of a signature σ on msg .

VerifyProof(params, pk , comm, π). Takes as input a commitment to a message msg and a proof π that the message
has been signed by owner of public key pk . Outputs accept if π is a valid proof of knowledge of F (msg) and a
signature on msg , and outputs reject otherwise.

EqCommProve(params,msg , opening , opening ′) Takes as input a message and two commitment opening values. It
outputs a proof π that the commitment comm = Commit(msg , opening) is a commitment to the same value as
comm ′ = Commit(msg , opening ′).
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VerEqComm(params, comm, comm ′, π) takes as input two commitments and a proof and accepts if π is a correct
proof that comm , comm ′ are commitments to the same value.

Definition 2 (Secure P-Signature Scheme) Let F be a efficiently computable bijection (possibly parameterized by
public parameters). A P-signature scheme is secure if (Setup,Keygen,Sign,VerifySig) form an F -unforgeable sig-
nature scheme, if (Setup,Commit) is a Perfectly Binding, Strongly Computationally Hiding commitment scheme,
if (Setup,EqCommProve,VerEqComm) is a non-interactive proof system, and if the Signer Privacy, User privacy,
Correctness, Unforgeability, and Zero-Knowledge properties hold:

Correctness. An honest user who obtains a P-signature from an honest issuer will be able to prove to an honest verifier
that he has a valid signature.

Signer privacy. No PPTM adversary can tell if it is running IssueSig with an honest issuer or with a simulator who
merely has access to a signing oracle. Formally, there exists a simulator SimIssue such that for all PPTM adversaries
(A1,A2), there exists a negligible function ν so that:∣∣ Pr[params ← Setup(1k); (sk , pk)← Keygen(params);

(msg , opening , state)← A1(params, sk);
comm ← Commit(params,msg , opening);
b← A2(state)↔ IssueSig(params, sk , comm) : b = 1]

−Pr[params ← Setup(1k); (sk , pk)← Keygen(params);
(msg , opening , state)← A1(params, sk);
comm ← Commit(params,msg , opening);
σ ← Sign(params, sk ,msg);
b← A2(state)↔ SimIssue(params, comm, σ) : b = 1]

∣∣ < ν(k)

Note that we ensure that IssueSig and SimIssue gets an honest commitment to whatever msg , opening the adversary
chooses. Since the goal of signer privacy is to prevent the adversary from learning anything except a signature on
the opening of the commitment, this is sufficient for our purposes. Note that our SimIssue will be allowed to rewind
A. Also, we have defined Signer Privacy in terms of a single interaction between the adversary and the issuer. A
simple hybrid argument can be used to show that this definition implies privacy over many sequential instances of
the issue protocol.

User privacy. No PPTM adversary (A1,A2) can tell if it is running ObtainSig with an honest user or with a simulator.
Formally, there exists a simulator Sim = SimObtain such that for all PPTM adversaries A1,A2, there exists a
negligible function ν so that:∣∣ Pr[params ← Setup(1k); (pk ,msg , opening , state)← A1(params);

comm = Commit(params,msg , opening);
b← A2(state)↔ ObtainSig(params, pk ,msg , comm, opening) : b = 1]

−Pr[(params, sim)← Setup(1k); (pk ,msg , opening , state)← A1(params);
comm = Commit(params,msg , opening);
b← A2(state)↔ SimObtain(params, pk , comm) : b = 1]

∣∣ < ν(k)

As in Signer Privacy, we ensure that SimObtain gets an honest commitment. Here again SimObtain is allowed to
rewind the adversary.
Note that we require that only the user’s input msg is hidden from the issuer, but not necessarily the user’s output
σ. The reason that this is sufficient is that in actual applications (for example, in anonymous credentials), a user
would never show σ in the clear; instead, he would just prove that he knows σ.
An alternative, stronger way to define signer privacy and user privacy together, would be to require that the pair
of algorithms ObtainSig and IssueSig carry out a secure two-party computation. This alternative definition would
ensure that σ is hidden from the issuer as well. The alternative definition turns out to be much harder to satisfy with
an efficient construction. Therefore, we preferred to give a special definition.
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Unforgeability. Informally, we require that no PPTM adversary can create a proof for any message msg for which he
has not previously obtained a signature or a non-interactive proof.
We say that a P-signature scheme is unforgeable if there exists an extractor (ExtractSetup,Extract) and a bijection
F such that (1) the output of ExtractSetup(1k) is indistinguishable from the output of Setup(1k), and (2) no PPTM
adversary can output a proof π that VerifyProof accepts, but from which we extract F (msg), σ such that either (a)
σ is not valid signature on msg , or (b) comm is not a commitment to msg or (c) the adversary has never previously
queried the signing oracle on msg . Formally, for all PPTM adversaries A, there exists a negligible function ν such
that:

Pr[params0 ← Setup(1k); (params1, td)← ExtractSetup(1k) : b← {0, 1} :
A(paramsb) = b] < 1/2 + ν(k), and

Pr[(params, td)← ExtractSetup(1k); (pk , sk)← Keygen(params);

(QSign, comm, π)← A(params, pk)OSign(params,sk ,·);
(y, σ)← Extract(params, td , π, comm) :
VerifyProof(params, pk , comm, π) = accept

∧ (VerifySig(params, pk , F−1(y), σ) = reject

∨ (∀opening , comm 6= Commit(params, F−1(y), opening))

∨ (VerifySig(params, pk , F−1(y), σ) = accept ∧ y /∈ F (QSign)))] < ν(k).

Oracle OSign(params, sk ,msg) returns a signature σ on msg . The oracle runs the function Sign(params, sk ,msg)
and returns the result to the adversary. It records the queried message on query tape QSign. By F (QSign) we
mean F applied to every message in QSign.

Zero-knowledge. There exists a simulator Sim = (SimSetup,SimProve,SimEqCommProve), such that for all PPTM
adversaries A1,A2, there exists a negligible function ν such that under parameters output by SimSetup, Commit
is perfectly hiding and (1) the parameters output by SimSetup are indistinguishable from those output by Setup,
but SimSetup also outputs a special auxiliary string sim; (2) when params are generated by SimSetup, the output
of SimProve(params, sim, pk) is indistinguishable from that of Prove(params, pk ,msg , σ) for all (pk ,msg , σ)
where σ ∈ σpk (msg); and (3) when params are generated by SimSetup, the output of
SimEqCommProve(params, sim, comm, comm ′) is indistinguishable from that of
EqCommProve(params,msg , opening , opening ′) for all (msg , opening , opening ′) where
comm = Commit(params,msg , opening) and comm ′ = Commit(params,msg , opening ′).
In GMR notation, this is formally defined as follows:

|Pr[params ← Setup(1k); b← A(params) : b = 1]

− Pr[(params, sim)← SimSetup(1k); b← A(params) : b = 1]| < ν(k), and

|Pr[(params, sim)← SimSetup(1k); (pk ,msg , σ, state)← A1(params, sim);
(comm, π, opening)← Prove(params, pk ,msg , σ); b← A2(state, comm, π) : b = 1]

−Pr[(params, sim)← SimSetup(1k); (pk ,msg , σ, state)← A1(params, sim);
(comm, π)← SimProve(params, sim, pk); b← A2(state, comm, π) : b = 1]| < ν(k), and

|Pr[(params, sim)← SimSetup(1k); (msg , opening , opening ′)← A1(params, sim);
π ← EqCommProve(params,msg , opening , opening ′); b← A2(state, π) : b = 1]

−Pr[(params, sim)← SimSetup(1k); (msg , opening , opening ′)← A1(params, sim);
π ← SimEqCommProve(params, sim,Commit(params,msg , opening),Commit(params,msg , opening ′));
b← A2(state, π) : b = 1]| < ν(k).
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3 Preliminaries

We say that a function ν : Z → R is negligible if for all integers c there exists an integer K such that ∀k > K,
|ν(k)| < 1/kc. We use the standard GMR [GMR88] notation to describe probability spaces.

Let G1, G2 and GT be groups. A function e : G1 × G2 → GT is called a cryptographic bilinear map if it has
the following properties: Bilinear. ∀a ∈ G1, ∀b ∈ G2, ∀x, y ∈ Z the following equation holds: e(ax, by) = e(a, b)xy.
Non-Degenerate. If a and b are generators of their respective groups, then e(a, b) generates the group GT . One-
Way. Let BilinearSetup(1k) be an algorithm that generates the groups G1, G2 and GT , together with algorithms for
sampling from these groups, and the algorithm for computing the function e.

The function BilinearSetup(1k) outputs paramsBM = (p,G1, G2, GT , e, g, h), where p is a prime (of length k),
G1, G2, GT are groups of order p, g is a generator of G1, h is a generator of G2, and e : G1 ×G2 → GT is a bilinear
map.

We informally state the cryptographic assumptions we use. See Appendix D for formal definitions and discussion.
We introduce two new assumptions we call IHSDH and TDH and review the HSDH assumption introduced by Boyen
and Waters [BW07b].

Definition 3 (Interactive Hidden SDH assumption (IHSDH).) No PPTM adversary can compute a tuple (g1/(x+c), hc, uc)
given (g, gx, h, hx, u) and permission to make q queries to oracle Ox(c) that returns g1/(x+c). The c used by the ad-
versary must be different from the values it used to query Ox(·).

Definition 4 (Triple DH (TDH)) On input g, gx, gy, h, hx, {ci, g1/(x+ci)}i=1...q, it is computationally infeasible to
output a tuple (hµx, gµy, gµxy) for µ 6= 0.

Definition 5 (Hidden SDH [BW07b]) On input g, gx, u ∈ G1, h, hx ∈ G2 and {g1/(x+c`), hc` , uc`}`=1...q, it is
computationally infeasible to output a new tuple (g1/(x+c), hc, uc).

Groth-Sahai proofs use either the DLIN or XDH assumption.

4 Non-Interactive Proofs of Knowledge

Our P-signature constructions use the Groth and Sahai [GS07] non-interactive proof of knowledge (NIPK) system.
De Santis et al. [SCP00] give the standard definition of NIPK systems. Their definition does not fully cover the Groth
and Sahai proof system. In this section, we review the standard notion of NIPK. Then we give a useful generaliza-
tion, which we call an f -extractable NIPK, where the extractor only extracts a function of the witness. We develop
useful notation for expressing f -extractable NIPK systems, and explain how this notation applies to the Groth-Sahai
construction. We then review Groth-Sahai commitments and pairing product equation proofs. Finally, we show how
they can be used to prove statments about committed exponents, as this will be necessary later for our constructions.

4.1 Proofs of Knowledge: Notation and Definitions

In this subsection, we review the definition of NIPK, introduce the notion of f -extractability, and develop some useful
notation.

We review the De Santis et al. [SCP00] definition of NIPK. Let L = {s : ∃x s.t. ML(s, x) = accept} be a
language in NP and ML a polynomial-time Turing Machine that verifies that x is a valid witness for the statement
s ∈ L.1 A NIPK system consists of three algorithms: (1) PKSetup(1k) sets up the common parameters paramsPK ; (2)
PKProve(paramsPK , s, x) computes a proof π of the statement s ∈ L using witness x; (3) PKVerify(paramsPK , s, π)
verifies correctness of π. The system must be complete and extractable. Completeness means that for all values
of paramsPK and for all s, x such that ML(s, x) = accept, a proof π generated by PKProve(paramsPK , s, x)
must be accepted by PKVerify(paramsPK , s, π). Extractability means that there exists a polynomial-time extrac-
tor (PKExtractSetup,PKExtract). PKExtractSetup(1k) outputs (td , paramsPK ) where paramsPK is distributed

1We use x to denote a witness to stay consistent with Groth and Sahai [GS07].
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identically to the output of PKSetup(1k). For all PPT adversaries A, the probability that A(1k, paramsPK ) outputs
(s, π) such that PKVerify(paramsPK , s, π) = accept and PKExtract(td , s, π) fails to extract a witness x such that
ML(s, x) = accept is negligible in k. We have perfect extractability if this probability is 0.

We first generalize the notion of NIPK for a language L to languages parameterized by paramsPK – we allow the
Turing machine ML to receive paramsPK as a separate input.

Next, we generalize extractability to f -extractability. We say that a NIPK system is f -extractable if PKExtract
outputs y, such that there ∃x : ML(paramsPK , s, x) = accept ∧ y = f(paramsPK , x). If f(paramsPK , ·) is the
identity function, we get the usual notion of extractability. We denote an f -extractable proof π obtained by running
PKProve(paramsPK , s, x) as

π ← NIPK{paramsPK , s, f(paramsPK , x) : ML(paramsPK , s, x) = accept}.

We omit the paramsPK where they are obvous. In our applications, s is actually a conditional statement about the
properties of the witness x. So ML(s, x) = accept if Condition(x) = accept. Thus the statement π ← NIPK{f(x) :
Condition(x)} is well defined. Suppose s includes a list of commitments cn = Commit(xn, openingn) . The witness
is x = (x1, . . . , xN , opening1, . . . , openingN ), however, we typically can only extract x1, . . . , xN . We write

π ← NIPK{(x1, . . . , xn) : Condition(x) ∧ ∀` : c` = Commit(paramsCom , x`, opening`)}.

We introduce shorthand notation for the above expression: π ← NIPK{((c1 : x1), . . . , (cn : xn)) : Condition(x)}.
For simplicity, we assume the proof π includes s.

4.2 Groth-Sahai Commitments [GS07]

We review the Groth-Sahai [GS07] commitment scheme. We use their scheme to commit to elements of a group G
of prime order p. Technically, their constructions commit to elements of certain modules, but we can apply them to
certain bilinear groups (see Appendix E). Groth and Sahai also have constructions for composite order groups using
the Subgroup Decision assumption; we cannot use them because they do not have certain extraction properties.

GSComSetup(p,G, g). Outputs a common reference string paramsCom .

GSCommit(paramsCom , x, opening). Takes as input x ∈ G and some value opening and outputs a commitment
comm . The extension GSCommit(paramsCom , b, θ, opening) takes as input θ ∈ Zp and a base b ∈ G and
outputs (b, comm), where comm = GSCommit(paramsCom , b

θ, opening). (Groth and Sahai compute com-
mitments to elements in Zp slightly differently; Our method allows us to prove equality of exponents committed
using different bases in Section 4.4.)

VerifyOpening(paramsCom , comm, x, opening). Takes x ∈ G and opening as input and outputs accept if comm is a
commitment to x. To verify that (b, comm) is a commitment to exponent θ check VerifyOpening(paramsCom ,
comm, bθ, opening).

For brevity, we write GSCommit(x) to indicate committing to x ∈ G when the parameters are obvious and the value
of opening is chosen appropriately at random. Similarly, GSCommit(b, θ) indicates committing to θ using b ∈ G as
the base.

GS commitments are perfectly binding, strongly computationally hiding, and extractable.
Groth and Sahai [GS07] show how to instantiate commitments that meet the above requirements using either the

SXDH or DLIN assumptions. Commitments based on SXDH consist of 2 elements in G, while those based on DLIN
setting require 3 elements in G. Note that in the Groth-Sahai proof system below, G = G1 or G = G2 for SXDH and
G = G1 = G2 for DLIN.

4.3 Groth-Sahai Pairing Product Equation Proofs [GS07]

Groth and Sahai [GS07] construct an f -extractable NIPK system that lets us prove statements in the context of groups
with bilinear maps. We first give intuition about their result, then provide a formal definition.
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GSSetup(1k) outputs (p,G1, G2, GT , e, g, h), where G1, G2, GT are groups of prime order p, with g a generator
ofG1, h a generator ofG2, and e : G1×G2 → GT a cryptographic bilinear map. GSSetup(1k) also outputs params1
and params2 for constructing GS commitments in G1 and G2, respectively. (If the pairing is symmetric, G1 = G2

and params1 = params2.) The statement s to be proven consists of the following list of values: {aq}q=1...Q ∈ G1,
{bq}q=1...Q ∈ G2, t ∈ GT , and {αq,m}m=1...M,q=1...Q, {βq,n}n=1...N,q=1...Q ∈ Zp, as well as a list of commitments
{cm}m=1...M to values in G1 and {dn}n=1...N to values in G2. Groth and Sahai show how to construct the following
proof:

NIPK{((c1 : x1), . . . , (cM : xM ),(d1 : y1), . . . , (dN : yN )) :
Q∏

q=1

e(aq

M∏
m=1

x
αq,m
m , bq

N∏
n=1

y
βq,n
n ) = t

The proof π includes the statement being proven; this includes the commitments c1, . . . , cM and d1, . . . , dN . Groth
and Sahai provide an efficient extractor that opens these commitments to values x1, . . . , xM , y1, . . . , yN that satisfy
the pairing product equation.

Recall the function GSCommit(params1, b, θ, opening) = (b,GSCommit(params1, bθ, opening)). We can re-
place any of the clauses (cm : xm) with the clause (cm : bθ), and add b to the list of values included in the statement
s (and therefore in the proof π). The same holds for commitments dn. Groth-Sahai proofs also allow us to prove that
the openings of (c1, . . . , cn, d1, . . . , dn) satisfy several equations simultaneously.

We formally define the Groth-Sahai proof system. Let paramsBM ← BilinearSetup(1k).

GSSetup(paramsBM ). Calls GSComSetup to generate params1 and params2 that let it construct commitments
in G1 and G2 respectively. It may also calculates some auxiliary values paramsπ. Outputs paramsGS =
(paramsBM , params1, params2, paramsπ).

GSProve(paramsGS , s, ({xm}1...M , {yn}1...N , openings)). Takes as input the parameters, the statement s = {(c1, . . . ,
cM , d1, . . . , dN ), equations} to be proven, (the statement s includes the commitments and the parameters of the
pairing product equations), the witness consisting of the values {xm}1...M , {yn}1...N and opening information
openings . Outputs a proof π.

GSVerify(paramsGS , π). Returns accept if π is valid, reject otherwise. (Note that it does not take the statement s as
input because we have assumed that the statement is always included in the proof π.)

GSExtractSetup(paramsBM ). Outputs paramsGS and auxiliary information (td1, td2). paramsGS are distributed
identically to the output of GSSetup(paramsBM ). that allows an extractor to discover the contents of all
commitments.

GSExtract(paramsGS , td1, td2, π) outputs x1, . . . , xM and y1, . . . , yN that satisfy the equations and that correspond
to the commitmets (note that the commitments and the equations are included with the proof π).

Groth-Sahai proofs satisfy correctness, extractability, and strong witness indistinguishability. We explain what
these requirements entail in a manner compatible with our notation.

Correctness. An honest verifier always accepts a proof generated by an honest prover.

Extractability. If an honest verifier outputs accept, then the statement is true. This means that, given td1, td2

corresponding to paramsGS , the GSExtract extracts values from the commitments that will satisfy the pairing
product equations with probability 1.

Strong Witness Indistinguishability. There exists a simulator Sim = (SimSetup,SimProve) with the following
two properties: (1) SimSetup(paramsBM ) outputs paramsGS

′ such that they are computationally indistin-
guishable from the output of GSSetup(paramsBM ). Let params′1 ∈ paramsGS

′ be the parameters for the
commitment scheme in G1. Using params′1, commitments are perfectly hiding – this means that for all com-
mitments comm , ∀x ∈ G,∃opening : VerifyOpening(params′1, comm, x, opening) = accept. (2) Using the
paramsGS

′ generated by the challenger, GS proofs become perfectly witness indistinguishable. Suppose an
unbounded adversary A generates a statement s consisting of the pairing product equations and a set of com-
mitments (c1, . . . , cM , d1, . . . , dN ). Next the adversary opens the commitments in two different ways W0 =
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(x(0)
1 , . . . , x

(0)
M , y

(0)
1 , . . . , y

(0)
N , openings0) and W1 = (x(1)

1 , . . . , x
(1)
M , y

(1)
1 , . . . , y

(1)
N , openings1) (with the re-

quirement that these witnesses must both satisfy s). The values openingsb show how to open the commitments
to {x(b)

m , y
(b)
n }. (The adversary can do this because it is unbounded.) The challenger gets the statement s and

the two witnesses W0 and W1. He chooses a bit b ← {0, 1} and computes π = GSProve(paramsGS
′, s,Wb).

Strong witness indistinguishability means that π is distributed independently of b.

Composable Zero-Knowledge. In some contexts, GS pairing product equation proofs are composable zero-knowledge.
See Appendix G.1 for the definition.

Efficiency. See Appendix J for an analysis of the efficiency of GS pairing product equation proofs.

4.4 Proofs about Committed Exponents

We use Groth-Sahai pairing product equations to prove equality of committed exponents.
Equality of Committed Exponents in Different Groups. We want to prove the statement NIPK{((c : gα), (d : hβ)) :
α = β}. We perform a Groth-Sahai pairing product equation proof NIPK{((c : x), (d : y)) : e(x, h)e(1/g, y) = 1}.
Security is straightforward due to the f -extractability property of the GS proof system.
Equality of Committed Exponents in the Same Group. We want to prove the statement NIPK{((c1 : gα), (c2 :
uβ)) : α = β}, where g, u ∈ G1. This is equivalent to proving NIPK{((c1 : gα), (c2 : uβ), (d : hγ) : α = γ∧β = γ}.
Zero-Knowledge Proof of Equality of Committed Exponents. We want to prove the statement NIZKPK{((c1 :
gα), (c2 : gβ) : α = β} in zero-knowledge. We perform the Groth-Sahai pairing product equation proof NIPK{((c1 :
gα), (c2 : gβ), (d : hθ) : e(a/b, hθ) = 1∧ e(g, hθ)e(1/g, h) = 1}. Proof of equality of committed exponents in group
G2 is done analogously. See Appendix G.2 for details.

Remark. We cannot use Groth-Sahai general arithmetic gates [GS07] to construct the above proofs because they only
work when the opening of commitments have the same base.

5 First Construction of P-Signature Scheme

Our first construction of a P-signature scheme uses the Weak Boneh-Boyen signature scheme (WBB) signature
scheme [BB04] as a building block. The WBB scheme is as follows:

WBB-SigSetup(1k) runs BilinearSetup(1k) to get the pairing parameters (p,G1, G2, GT , e, g, h). In the sequel, by
z we denote z = e(g, h).

WBB-Keygen(paramsSig) The secret key is α ← Zp. pk = (v, ṽ), where v = hα, ṽ = gα.2 The correctness of the
public key can be verified by checking that e(g, v) = e(ṽ, h).

WBB-Sign(paramsSig , sk ,msg) calculates σ = g1/(α+msg), where sk = α.

WBB-VerifySig(paramsSig , pk ,msg , σ) outputs accept if the public key is correctly formed and if e(σ, vhmsg) = z,
where pk = (v, ṽ). Outputs reject otherwise.

Boneh and Boyen proved that the Weak Boneh-Boyen signature is only weakly secure given SDH, which is
insufficient for our purposes. In Appendix H, we show that the weak Boneh-Boyen signature scheme is F -secure
given IHSDH (which implies standard [GMR88] security).

Theorem 1 Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as given in the statement of the IHSDH assumption.
The Weak Boneh-Boyen signature scheme is F -secure given IHSDH.

2The shadow value ṽα does not exist in [BB04] and is needed to prove zero-knowledge of our P-signatures in pairing settings in which no
efficient isomorphisms exist.
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We extend the WBB scheme to obtain our first P-signature (Setup,Keygen,Sign,VerifySig,Commit,ObtainSig,
IssueSig,Prove,VerifyProof,EqCommProve,VerEqComm), as follows:

Setup(1k) First, obtain paramsBM = (p,G1, G2, GT , e, g, h) ← BilinearSetup(1k). Next, obtain paramsGS =
(paramsBM , params1, params2, paramsπ) ← GSSetup(paramsBM ). Pick u ← G1. Let params =
(paramsGS , u). As before, z is defined as z = e(g, h).

Keygen(params) Run WBB-Keygen(paramsBM ) and outputs sk = α, pk = (hα, gα) = (v, ṽ).

Sign(params, sk ,msg) Run WBB-Sign(paramsBM , sk ,msg) to obtain σ = g1/(α+msg) where α = sk .

VerifySig(params, pk ,msg , σ) Run WBB-VerifySig(paramsSig , pk ,msg , σ).

Commit(params,msg , opening) To commit to msg , compute C = GSExpCommit(params2, h,msg , opening).
(Recall that GSExpCommit(params2, h,msg , opening) = GSCommit(params2, hmsg , opening), and params2
is part of paramsGS .)

ObtainSig(params, pk ,msg , comm, opening)↔ IssueSig(params, sk , comm). The user and the issuer run the fol-
lowing protocol:

1. The user chooses ρ← Zp.

2. The user and issuer engage in a secure two-party computation protocol [JS07]3, where the user’s private
input is (ρ,msg , opening), and the issuer’s private input is sk = α.
The issuer’s private output is x = (α+ msg)ρ if comm = Commit(params,msg , opening), and x = ⊥
otherwise.

3. If x 6= ⊥, the issuer calculates σ′ = g1/x and sends σ′ to the user.
4. The user computes σ = σ′ρ = g1/(α+msg). The user checks that the signature is valid.

Prove(params, pk ,msg , σ) Check if pk and σ are valid, and if they are not, output ⊥. Else, pick appropriate
opening1, opening2, opening3 and form the following three GS commitments: Mh = GSExpCommit(params2, h,
msg , opening1),Mu = GSExpCommit(params1, u,msg , opening2), Σ = GSCommit(params1, σ, opening3).
Compute the following proof: π = NIPK{((Mh : hα), (Mu : uβ), (Σ : x)) : α = β ∧ e(x, vhα) = z}. Output
(comm, π) = (Mh, π).

VerifyProof(params, pk , comm, π) Outputs accept if the proof π is a valid proof of the statement described above
for Mh = comm and for properly formed pk = (v, ṽ).

EqCommProve(params,msg , opening , opening ′) Let commitment comm = Commit(params,msg , opening) =
GSCommit(params2, hmsg , opening) and comm ′ = Commit(params,msg , opening ′) = GSCommit(params2,
hmsg , opening ′). Use the GS proof system as described in Section 4.4 to compute π ← NIZKPK{((comm :
hα), (comm ′ : hβ) : α = β}.

VerEqComm(params, comm, comm ′, π) Verify the proof π using the GS proof system as described in Section 4.4.

Theorem 2 (Efficiency) Using SXDH, each P-signature proof for the weak Boneh-Boyen signature scheme consists
of 12 elements in G1 and 10 elements in G2. The prover performs 22 multi-exponentiations and the verifier 44
pairings. Using DLIN, each P-signature proof consists of 27 elements in G1 = G2. The prover performs 27 multi-
exponentiations and the verifier 54 pairings. See Appendix J for details.

Theorem 3 (Security) Our first P-signature construction is secure given IHSDH and the security of the GS commit-
ments and proofs.

3Jarecki and Shmatikov give a protocol for secure two-party computation on committed inputs; their construction can be adapted here. In
general using secure two-party computation is expensive, but here we only need to compute a relatively small and simple circuit on the inputs.
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Proof. Correctness follows from correctness of GS proofs.
Signer Privacy. We must construct the SimIssue algorithm that is given as input params, a commitment comm

and a signature σ and must simulate the adversary’s view. SimIssue will invoke the simulator for the two-party
computation protocol. Recall that in two-party computation, the simulator can first extract the input of the adversary:
in this case, some (ρ,msg , opening). Then SimIssue checks that comm = Commit(params,msg , opening); if it
isn’t, it terminates. Otherwise, it sends to the adversary the value σ′ = σ1/ρ. Suppose the adversary can determine
that it is talking with a simulator. Then it must be the case that the adversary’s input to the protocol was incorrect
which breaks the security properties of the two-party computation.

User privacy. The simulator will invoke the simulator for the two-party computation protocol. Recall that in
two-party computation, the simulator can first extract the input of the adversary (in this case, some α′, not necessarily
the valid secret key). Then the simulator is given the target output of the computation (in this case, the value x which
is just a random value that the simulator can pick itself), and proceeds to interact with the adversary such that if
the adversary completes the protocol, its output is x. Suppose the adversary can determine that it is talking with a
simulator. Then it breaks the security of the two-party computation protocol.

Zero knowledge. Consider the following algorithms. SimSetup runs BilinearSetup(1k) to get paramsBM =
(p,G1, G2, GT , e, g, h) and GSSimSetup(paramsBM ) to get paramsGS , simGS . It then picks t ← Zp and sets
up u = gt. The final parameters are params = (paramsGS , u, z = e(g, h)) and sim = (t, simGS). Note that
the distribution of params is indistinguishable from the distribution output by Setup. Also note that using these
parameters, the commitments generated by GSCommit are perfectly hiding.

SimProve receives params , sim , and public key (v, ṽ) and can use trapdoor sim = t to create a random P-
signature forgery as follows. Pick s ← Zp and compute σ = g1/s. We implicitly set msg = s − α. Note that the
simulator does not know msg and α. However, he can compute hmsg = hs/v and umsg = (gs/ṽ)t. Now he can use σ,
hmsg , and umsg to create commitments. The proof π is computed in the same way as in the real Prove protocol using
σ, hmsg , and umsg and the opening information of the commitments as witnesses. By the witness indistinguishability
of the GS proof system, a proof using the faked witnesses is indistinguishable from a proof using a real witness, thus
SimProve is indistinguishable from Prove.

Finally, we need to show that we can simulate proofs of EqCommProve given the trapdoor simGS . This follows
from composable zero knoweldge of EqCommProve. See Appendix G.

Unforgeability. Consider the following algorithms: ExtractSetup(1k) outputs the usual params , except that
it invokes GSExtractSetup to get alternative paramsGS and the trapdoor td = (td1, td2) for extracting from GS
commitments in G1 and G2. The parameters generated by GSSetup are indistinguishable from those generated by
GSExtractSetup, so we know that the parameters generated by ExtractSetup will be indistinguishable from those
genrated by Setup.

Extract(params, td , comm, π) extracts the values from commitment comm and the commitments Mh, Mu

contained in the proof π using the GS commitment extractor. If VerifyProof accepts then comm = Mh. Let
F (msg) = (hmsg , umsg).

Now suppose we have an adversary that can break the unforgeability of our P-signature scheme for this extractor
and this bijection. We create a reduction to break the IHSDH assumption. The reduction gets (p,G1, G2, GT , e, g, X̃, h,
X, u), where X = hx, X̃ = gx for some unknown x. The reduction runs GSExtractSetup(p,G1, G2, GT , e, g, h) to
get paramsGS and td . It otherwise creates params in the same way as Setup (and ExtractSetup). Note that td lets it
open all commitments. The reduction gives (params, pk = (X, X̃) to the adversary. Whenever the adversary queries
OSign on msg , the reduction returns σ ← Ox(msg) and stores msg in QSign.

Eventually, the adversary outputs a proof π. Since π is f -extractable and perfectly sound, Extract(params, td ,
comm, π) will return a = hm, b = um, and σ = g1/(x+m). Thus we have a valid IHSDH tuple and m = F−1(a, b)
will always fulfill VerifySig. We also know that since VerifyProof accepts, comm = Mh = Commit(params,m, opening)
for some opening . Thus, since this is a forgery, it must be the case that (a, b) = F (m) 6∈ F (QSign). This means that
we never queried Ox on m and the reduction has generated a fresh IHSDH tuple. �
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6 Second Construction of P-Signature Scheme

In this section, we present a new signature scheme and then build a P-signature scheme from it. The new signature
scheme is inspired by the full Boneh-Boyen signature scheme, and is as follows:

New-SigSetup(1k) Same as WBB-SigSetup(1k).

New-Keygen(params) picks a random α, β ← Zp. The signer calculates v = hα, w = hβ , ṽ = gα, w̃ = gβ . The
secret-key is sk = (α, β). The public-key is pk = (v, w, ṽ, w̃). The public key can be verified by checking that
e(g, v) = e(ṽ, h) and e(g, w) = e(w̃, h).

New-Sign(params, (α, β),msg) chooses r ← Zp − {α−msg
β } and calculates C1 = g1/(α+msg+βr), C2 = wr,

C3 = ur. The signature is (C1, C2, C3).

New-VerifySig(params, (v, w, ṽ, w̃),msg , (C1, C2, C3)) outputs accept if e(C1, vh
msgC2) = z, e(u,C2) = e(C3, w),

and if the public key is correctly formed, i.e., e(g, v) = e(ṽ, h), and e(g, w) = e(w̃, h).4

Theorem 4 Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as in the HSDH and TDH assumptions. Our new
signature scheme is F -secure given HSDH and TDH.

Proof. See Appendix I for proof. �

We extend the above signature scheme to obtain our second P-signature (Setup,Keygen,Sign,VerifySig,Commit,
ObtainSig, IssueSig,Prove,VerifyProof,EqCommProve,VerEqComm). The algorithms Setup, Commit, EqCommProve
and VerEqComm are the same as in the first construction in Section 5. The rest are as follows:

Keygen(params) Runs the New-Keygen(paramsBM ) and outputs sk = (α, β), pk = (hα, hβ , gα, gβ) = (v, w, ṽ, w̃).

Sign(params, sk ,msg) Run New-Sign(paramsBM , sk ,msg) to obtain σ = (C1, C2, C3) whereC1 = g1/(α+msg+βr),
C2 = wr, C3 = ur, and sk = (α, β)

VerifySig(params, pk ,msg , σ) Run New-VerifySig(paramsSig , pk ,msg , σ).

ObtainSig(params, pk ,msg , comm, opening)↔ IssueSig(params, sk , comm). The user and the issuer run the fol-
lowing protocol:

1. The user chooses ρ1, ρ2 ← Zp.
2. The issuer chooses r′ ← Zp.
3. The user and the issuer run a secure two-party computation protocol where the user’s private inputs are

(ρ1, ρ2,msg , opening), and the issuer’s private inputs are sk = (α, β) and r′.
The issuer’s private output is x = (α + msg + βρ1r

′)ρ2 if comm = Commit(params,msg , opening),
and x = ⊥ otherwise.

4. If x 6= ⊥, the issuer calculates C ′
1 = g1/x, C ′

2 = wr′
and C ′

3 = ur′
, and sends (C ′

1, C
′
2, C

′
3) to the user.

5. The user computesC1 = C ′ρ2
1 ,C2 = C ′ρ1

2 , andC3 = C ′ρ1
3 and then verifies that the signature (C1, C2, C3)

is valid.

Prove(params, pk ,msg , σ) Check if pk and σ are valid, and if they are not, output ⊥. Then the user computes
commitments Σ = GSCommit(params1, C1, opening1), Rw = GSCommit(params1, C2, opening2), Ru =
GSCommit(params1, C3, opening3), Mh = GSExpCommit(params2, h,msg , opening4) =
GSCommit(params2, hmsg , opening4) andMu = GSExpCommit(params1, u,msg , opening5) = GSCommit
(params1, umsg , opening5).

The user outputs the commitment comm = Mh and the proof

π = NIPK{((Σ : C1), (Rw : C2), (Ru : C3)(Mh : hα), (Mu : uβ)) :
e(C1, vh

αC2) = z ∧ e(u,C2) = e(C3, w) ∧ α = β}.

4The latter is needed only once per public key, and is meaningless in a symmetric pairing setting.

12



VerifyProof(params, pk , comm, π) Outputs accept if the proof π is a valid proof of the statement described above
for Mh = comm and for properly formed pk .

EqCommProve,VerEqComm are as in the first P-signature scheme.

Theorem 5 (Efficiency) Using SXDH GS proofs, each P-signature proof for our new signature scheme consists of 18
elements in G1 and 16 elements in G2. The prover performs 34 multi-exponentiation and the verifier 68 pairings. Us-
ing DLIN, each P-signature proof consists of 42 elements in G1 = G2. The prover has to do 42 multi-exponentiations
and the verifier 84 pairings. See Appendix J for details.

Theorem 6 (Security) Our second P-signature construction is secure given HSDH and TDH and the security of the
GS commitments and proofs.

Consult Appendix K for proof.
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A Anonymous Credentials Based on P-Signatures

Recall that the participants in any credential system are users (who obtain credentials), organizations (who grant
credentials) and a certification authority (CA). The existence of a CA allows users and organizations to register public
keys. This is necessary, even if all other transactions are anonymous. Instead of saying “Alice has a credential” which,
in the digital world, is not a well-formed statement, one needs to be able to say “The owner of pkAlice (i.e. whoever
knows skAlicehas a credential.” Then, so long as we believe that Alice does not reveal her secret key to other entities,
there is a reason to believe that indeed it is Alice who has the credential. Here, it does not matter if we are talking
about anonymous credentials or non-anonymous ones: even when we don’t care about Alice’s anonymity, unless users
take steps to protect her secrets, a digital credentials system cannot be very meaningful.

An anonymous credential system consists of the following protocols:
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Setup System parameters params are generated, users and organizations generate their public and secret keys
(pk , sk) and register their public keys with the CA. We will refer to PKI as the collection of all the public
keys, and to the identity of the user as pk , his public key. As a result of this registration step, a user (whose
private input is his secret key) obtains his root credential CCA.

Pseudonym registration As a result of this protocol, a user and an organization agree on a pseudonym (nym) N
for the user. The user’s private input is his (sk , pk) and his CCA; the organization does not have any private
input. Their common output is N . The user’s private output is aux (N), some auxiliary information that may
be needed later.

Credential issue As a result of this protocol, a user obtains a credential from an organization without revealing his
identity, just based on his pseudonym N . The user U ’s private input to the protocol is his (skU , pkU , auxN ),
the organization’s private input is its secret key skO, the user’s private output is the credential C.

Proof of possession of a credential Here, a user who is known to one organization, O1 under pseudonym N1, and to
another, O2, under pseudonym N2, and a credential C1 from O1, proves to O2 that he has a credential from O1.
The user’s private input to this protocol consists of (skU , pkU , P1, auxN1 , auxN2 , C1), while the values N2 and
pkO1

are public. The organization verifies the proof.

An anonymous credential system should satisfy unforgeability and anonymity.
Informally, unforgeability requires that (1) corresponding to each pseudonym there is a well-defined identity and

(2) if a user with pseudonym P successfully convinces an honest organization that she possesses a credential from
another honest organizationO′, then it must be the case that organizationO′ has issued a credential to some pseudonym
P ′ such that the identity of P ′ is the same as that of P .

Anonymity, informally, requires that, even an adversary that corrupts the CA and any subset of the organizations
and users cannot distinguish the following two situations (1) it receives honestly generated public parameters, and is
interfacing with honest users who obtain and show credentials as directed by the adversary; (2) it receives a different
set of parameters, and is interfacing with users who obtain and show credentials as directed by the adversary, but
instead of using the correct protocol for showing their credentials, they use a simulator algorithm that does not receive
any inputs whose distribution depends on the identity of the user.

We now proceed to describe how an anonymous credential scheme can be constructed from P-signatures. Note
that the reason that this scheme can be preferable to known schemes is that the proof of possession of a credential is
non-interactive.

Suppose we are given a P-signature scheme. Then consider the following construction for an anonymous credential
system:

Setup The system parameters params are the parameters for the P-signature scheme. Note that they also include the
parameters for Commit.

A user U ’s secret key skU will be chosen from the message space of the signature scheme (which coincides
with the message space of the commitment scheme). The user’s public key will be pkU = PublicKey(skU ) for
an appropriately defined function PublicKey.

Organizations (including the CA) will generate their key pairs using the key generation algorithm of the P-
signature scheme.

The CA credential will be issued as follows:

1. The user forms his psedonym with the CA, NCA = Commit(params, skU , opening) for an appropri-
ately chosen opening . (Note that, since the commitment scheme is perfectly binding, this automatically
guarantees that the identity associated with this pseudonym is well-defined.)

2. The user proves that he has committed to a sk such that his pkU = PublicKey(sk) using an appropriate
designated verifier [JSI96] non-malleable [Kat03] interactive proof.

3. The user and the CA run the protocol for obtaining a signature on a committed value (i.e. they run the
ObtainSig and IssueSig protocols, respectively).
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Pseudonym registration The user forms his pseudonym by forming a commitment to his secret key: for an ap-
propriately chosen opening , N = Commit(params, skU , opening). (Again, since the commitment scheme is
perfectly binding, this automatically gurantees that the identity associated with this pseudonym is well-defined.)
The user proves that he has a credential from the CA for this pseudonym (as described below). The user then
sends N to the organization and proves knowledge of (sk , opening) using an appropriate designated verifier
non-malleable interactive proof.5

The user’s private output aux (N) = opening .

Credential issue The user U and the organization O run ObtainSig and IssueSig, respectively. The user’s input is
(params, pkO, skU , N, aux (N)), while the organization’s input is (params, skO, N). As a result, the user
obtains a signature σ on his skU , and so his credential is C = σ.

Proof of possession of a credential The user has a credential C = σO1(skU ). He is known to organization O2 as the
owner of the pseudonym N . He needs to issue a non-interactive proof that a credential has been issued to the
owner of N . This is done as follows:

1. Compute (comm, π1, opening)← Prove(params, pkO1
, skU , C).

2. Compute π2 ← EqCommProve(params, skU , opening , aux (N)). (Where EqCommProve is explained
in Section G.2. It is a non-interactive proof that the two commitments comm andN are to the same value.)

3. Output (N, comm, π1, π2).

We must now show that the resulting anonymous credentials scheme is secure.

Lemma 2 The credentials scheme described above is unforgeable.

Proof. (Sketch) Recall that the commitment scheme is perfectly binding. Therefore, corresponding to any set-
ting of params, and any commitment N , there is exactly one value sk and opening opening such that N =
Commit(params, sk , opening), and exactly one corresponding value pk = PublicKey(sk). Therefore, with the
pseudonym N , we can associate the identity pk , and (1) is satisfied. To satisfy (2), first suppose that the credential
system is not unforgeable. Then we set up a reduction that breaks unforgeability of the P-signature scheme. Let F be
the bijection that satisfies the unforgeability definition, and let ExtractSetup,Extract be the corresponding extractor.
The reduction will be given params as output by ExtractSetup, a public key pk , and access to a signing oracle. The
reduction will make pk the public signing key of an arbitrary organizationO under it’s control. It will generate the keys
for all other entities under its control correctly. Finally, it will make a random guess i that the adversary’s ith proof of a
credentialO will be a forgery. Since the pseudonym registration protocol includes an (interactive) proof of knowledge
of the opening to a commitment, every times the adversary wishes to register a pseudonym N with O, the values
(skA, opening) such that N = Commit(params, skA, opening) can be extracted using the knowledge extractor. Ev-
ery time the adversary wishes to obtain a credential from an organization other than O, the reduction interacts with
the adversary using the correct protocol. When the adversary, using pseudonym N , wishes to obtain a credential from
O, the reduction already knows the values (skA, opening) such that N = Commit(params, skA, opening). So it
queries its signing oracle to obtain σ ← Sign(params, sk , skA), and then invokes SimIssue instead of IssueSig. (Note
that SimIssue does not take any additional values, its simulation is based on rewinding the adversary.) The ith time
the adversary produces a proof of possession of a credential from organization O consisting of (N ′, comm, π1, π2),
the reduction outputs π1.

Now we analyze the reduction’s probability of success. Note that the adversary’s view is independent of i, O. If the
reduction has guessed i, O correctly, and if the adversary’s credential forgery is successful, then the identity defined
by N ′ has not been granted a credential by O, but the credential proof will verify successfully. This means that
VerEqComm(params, comm, N ′, π2) = 1 and VerifyProof(params, pk , comm, π1) = 1. Since (EqCommProve,
VerEqComm) is perfectly sound, we know that comm, N ′ are both commitments to the same value x. Since this is

5This ensures that, at registration time, the entity registering the pseudonym knows the secret key associated with this pseudonym, so that,
for example, Alice could not get Bob to commit to his secret key and prove to her that he knows it, only to then have Alice use this commitment
as her own pseudonym with another organization.
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a forgery, we know O never issued a credential to the identity represented by comm, N , which means we have never
queried our signing oracle on the commited value x. This means that when extractor extracts y, σ from π, comm ,
either F−1(y) 6= x, or VerifySig(params, pk , F−1(y), σ) = reject, or VerifySig(params, pk , F−1(y), σ) = accept
and F−1(y) = x and x /∈ QSign. In all cases, we break the unforgeability property.

Note that the reduction above implies unforgeability even as the adversarially controlled users talk to multiple
organizations. However, each organization may only talk to one user at a time, because the reduction must extract the
opening of the commitment (pseudonym) of the user wishing to obtain a credential from O, and it needs to rewind the
adversary for that to happen. Similarly each organization must execute issue protocols sequentially. This is OK only
if the adversary is never rewound to a point in time that happened before the last query to the signing oracle (because
the signing oracle cannot be rewound). �

Lemma 3 The credentials scheme described above is anonymous.

Proof. (Sketch) Recall that we must show that no adversary can distinguish a real execution from one in which it is
interfacing with users who, when obtaining and showing credentials do not use the correct protocols, but instead use
a simulator algorithm that does not receive any inputs whose distribution depends on the identity of the user.

We now describe a series of hybrid experiments.
In hybrid experiment H0, the adversary is interfacing with users and organizations carrying out the real protocols.
In hybrid experiment H1, the parameters params are generated using SimSetup(1k). (Recall that SimSetup gen-

erates parameters for the commitment scheme that result in an information theoretically hiding commitment scheme.)
Other than that, the adversary is interfacing with users and organizations carrying out the real protocols. The adver-
sary’s view in H1 is indistinguishable from his view in H0 because otherwise we could distinguish params generated
using Setup from those generated by SimSetup.

In hybrid experiment H2, the parameters params and the value sim are generated using SimSetup. The hon-
est organizations with which the adversary is interfacing are carrying out the real protocols. The honest users will
always form their pseudonyms correctly, but in the zero-knowledge proof of knowledge protocol that accompanies
the registration (both the registration with the CA and the registration with other adversarial organizations), the users
use the zero-knowledge simulator for that proof and not the actual proof protocol. Hybrid H2 gives the adversary
an indistinguishable view as that in hybrid H1 because otherwise we contradict the zero-knowledge property of the
zero-knowledge proof system.

Recall that, in addition to params, SimSetup also generates sim . The knowledge of sim is empowering in
several important ways. The knowledge of sim allows one to (1) compute simulated proofs of equality of committed
values (i.e. simulate EqCommProve), and (2) simulate a proof that the committed value has been signed (recall the
zero-knowledge part of our definition of P-signatures).

In hybrid experiment H3, the only difference from H2 is that honest users prove equality of committed values
using the SimEqCommProve instead of using EqCommProve. This should be indistinguishable from H2 by the zero
knowledge property of the P-signature.

In hybrid experiment H4, the only difference from H3 is that honest users generate proofs that committed values
have been signed using SimProve instead of Prove. Note that this means they no longer have the opening of the
resulting commitment comm . However, as we are now using SimEqCommProve, we no longer need this opening. If
this makes any difference to the adversary’s view, then we again break the zero-knowledge property of the P-signature.

In hybrid experiment H5, the only difference from H4 is that honest users obtain signatures from adversarial
organizations using SimObtain instead of ObtainSig. (Note that they do not need to obtain the real signatures because
they never use them, since their proofs that a commitment has been signed are always simulated.) If this makes any
difference to the adversary’s view, then it is easy to show that the user privacy part of the definition of security for
P-signatures is broken.

In hybrid experimentH6, the only difference fromH5 is that when honest users register pseudonyms, then commit
to 1 instead of committing to their secret keys. Note that the view that the adversary gets as a result is the same
as the view he gets in H5, because the commitments are information-theoretically hiding, and all the proofs are
simulated. Also note that in this experiment, the honest users run only protocols that never take users’ identities as
input. Therefore, we have obtained the desired simulator. �
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B Secure Digital Signature

Definition 6 (Secure Signature Scheme [GMR88]) We say that a signature scheme is secure (against adaptive cho-
sen message attacks) if it is Correct and Unforgeable.

Correctness. All signatures obtained using the Sign algorithm should be accepted by the VerifySig algorithm.

∀msg ∈ {0, 1}∗ : Pr[paramsSig ← SigSetup(1k); (pk , sk)← Keygen(paramsSig);
σ ← Sign(paramsSig , sk ,msg) : VerifySig(paramsSig , pk ,msg , σ) = 1] = 1

Unforgeability. No adversary should be able to output a valid message/signature pair (msg , σ) unless he has previ-
ously obtained a signature on msg . Formally, for every PPTM adversary A, there exists a negligible function ν
such that

Pr[paramsSig ← SigSetup(1k); (pk , sk)← Keygen(paramsSig);

(QSign,msg , σ)← A(paramsSig , pk)OSign(paramsSig ,sk ,·) :
VerifySig(paramsSig , pk ,msg , σ) = 1 ∧msg 6∈ QSign] < ν(k).

OSign(paramsSig , sk ,msg) records all msg queries on QSign and returns Sign(paramsSig , sk ,msg).

C P-Signature Witness Indistinguishability.

No PPTM adversary can determine which of two message/signature pairs (σ0,msg0) and (σ1,msg1) was used to
generate proof (comm, π). Formally, for all PPTM adversaries A, there exists a negligible function ν such that:

Pr[params ← Setup(1k); (pk , σ0,msg0, σ1,msg1)← A(params); b← {0, 1};
(comm, π)← Prove(params, pk , σb,msgb) : A(comm, π) = b

∧ VerifySig(params, pk , σ0,msg0) = 1 ∧ VerifySig(params, pk , σ1,msg1) = 1] < 1/2 + ν(k)

D Formal Assumptions

Boyen and Waters [BW07b] defined the Hidden SDH assumption over bilinear maps using symmetric groups e :
G × G → GT . We give a definition over asymmetric maps e : G1 × G2 → GT . Note that in the symmetric setting,
this is identical to the Boyen Waters HSDH assumption.

Definition 7 (Hidden SDH) On input g, gx, u ∈ G1, h, hx ∈ G2 and {g1/(x+c`), hc` , uc`}`=1...q, it is computationally
infeasible to output a new tuple (g1/(x+c), hc, uc). Formally, there exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);
u← G1;x, {c`}`=1...q ← Zp;

(A,B,C)← A(p,G1, G2, GT , e, g, g
x, h, hx, u, {g1/(x+c`), gc` , uc`}`=1...q) :

(A,B,C) = (g1/(x+c), hc, uc) ∧ c 6∈ {c`}`=1...q] < ν(k).

We extend the HSDH assumption further and introduce a new assumption we call the Interactive HSDH assump-
tion. We allow the adversary to adaptively query an oracle for HSDH triples on ci of his choice.

Definition 8 (Interactive Hidden SDH assumption.) No PPTM adversary can compute a tuple (g1/(x+c), hc, uc)
given (g, gx, h, hx, u) and permission to make q queries to oracle Ox(c) that returns g1/(x+c). The c used by the
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adversary must be different from the values it used to query Ox(·). Formally, there exists a negligible function ν such
that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);

x← Zp;u← G1; (A,B,C)← AOx(·)(p,G1, G2, GT , e, g, g
x, h, hx, u) :

∃c : (A,B,C) = (g1/(x+c), hc, uc)] < ν(k).

When (p,G1, G2, GT , e, g, h) and H = hx are fixed, we refer to tuples of the form (g1/(x+c), hc, uc) as HSDH
tuples (or, equivalently, as IHSDH tuples).

Note that we can determine whether (A,B,C) form an HSDH tuple using the bilinear map e, as follows: suppose
we get a tuple (A,B,C). We check that e(A,BH) = e(g, h) and that e(u,B) = e(C, h).

We introduce a new assumption, we call the Triple DH.

Definition 9 (Triple DH) On input g, gx, gy, h, hx, {ci, g1/(x+ci)}i=1...q, it is computationally infeasible to output a
tuple (hµx, gµy, gµxy). Formally, there exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k);
(x, y)← Zp; {ci}i=1...q ← Zp;

(A,B,C)← A(p,G1, G2, GT , e, g, g
x, gy, h, hx, {ci, g1/(x+ci)}i=1...q) :

∃µ : (A,B,C) = (hµx, gµy, gµxy)] < ν(k).

We also informally recall the DLIN and SXDH assumptions. These assumptions are needed for the Groth-Sahai
pairing product equation proofs [GS07] (see Section 4).

Definition 10 (Decisional Linear Assumption [BBS04b]) There exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k); r, s← Zp;u, v, w ← G1;

b← {0, 1}; z0 ← ws+t; z1 ← G1 :
A(p,G1, G2, GT , e, g, h, u, v, w, u

r, vs, zb) = b] < 1/2 + ν(k).

Definition 11 (External Diffie-Hellman Assumption (XDH)) There exists a negligible function ν such that

Pr[(p,G1, G2, GT , e, g, h)← BilinearSetup(1k); r, s← Zp;
b← {0, 1}; z0 ← grs, z1 ← G1 : A(p,G,GT , e, g, g

r, gs, zb) = b] < 1/2 + ν(k).

The XDH assumption can be similarly defined to hold in G2. The SXDH assumption states that XDH holds in
both G1 and G2. The SXDH assumption was first used by Scott [Sco02], and has been discussed and used extensively
since [BBS04b, GR04, Ver04, BGdMM].

E Instantiating GS Proofs using Modules

By expressing the implementation of non-interactive proofs in the language of modules Groth and Sahai can remain
general with respect to possible instantiations of their proof system. Modules that fulfill the necessary requirements
for their proofs exist both under the SXDH, the DLIN assumption, and with some restrictions the Subgroup Hiding
assumption.

We follow Groth-Sahai: Let (R,+, ·, 0, 1) be a commutative ring. An R module is a commutative group (M, ·, 1),
such that ∀r, s ∈ R : ∀u, v ∈M : ur+s = urus ∧ (uv)r = urvr.
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Commitments. Commitments are realized using a Zp module. For u1, . . . , uI elements of M , we call U the sub-
module of M generated by u1, . . . , uI . To commit to x ∈ G, x is transformed into a unique element x′ ∈ M that
for the perfectly binding setup is not element of U . For the perfectly hiding setup we create the parameters such that
U = M . Now we commit by choosing r1, . . . , rI ∈ Zp at random and computing

comm = x′
I∏

i=1

uri
i .

NIZK Proofs The NIZK proofs require bilinear maps over modules. Let M1, M2, MT be R modules. Then we
define the bilinear map E : M1×M2 →MT . Let U generated by u1, . . . , uI be a submodule of M1 and V generated
by v1 . . . vI a submodule of M2. The commitments to xi and yi are defined over M1 and M2 respectively.

In order to prove that

NIPK{(x1, . . . , xQ, y1, . . . , yQ) : ∀q : cq = Commit(xq) ∧ dq = Commit(yq) ∧
Q∏

q=1

e(xq, yq) = t},

the prover computes values πi and ψi that fulfill the following verification equation:

Q∏
q=1

E(cq, dq) = t′
I∏

i=1

E(ui, πi)E(ψi, vi).

Where t′ is a mapping of t to MT . The values πi and ψi can be computed from the xi and yi together with their
commitments and opening information.

This will be made more concrete in our instantiation based on the SXDH assumption in Appendix L.

F Committing to group elements

In all of our constructions, we choose bilinear groups G1, G2, GT with bilinear map e, and then use the GS com-
mitments to commit to elements x ∈ G1 ∪ G2. However, most of [GS07] focusses on commitments and proofs for
elements of modules. Here we describe the techniques suggested by Groth and Sahai for using these commitments to
commit to group elements. Using group elements instead of modules also allows us to get the extraction properties
necessary for our construction.

We describe commitment to group elements in the SXDH and DLIN settings.
In the SXDH setting, for commitments to elements in G1 (committing to G2 is similar):
The parameters are generated by choosing random s, z and computing u1 = (g, gz) and u2 = (gs, gsz). The

public parameters are u1, u2. If extraction is necessary, the trapdoor will be s, z.
GS describe commitments to elements in the module M = G × G as follows: To commit to element X =

(x1, x2) ∈M choose random r1, r2 ∈ Zp, and compute Xur1
1 u

r2
2 (where multiplication is entry-wise).

One can commit to x ∈ G by choosing random r1, r2 ∈ Zp and computing (1, x)ur1
1 u2r2. Opening would reveal

x, r1, r2. In this case, given the trapdoor s, z, we will be able to extract x from a commitment (c1, c2) by computing
c2/c

z
1. Thus, this is perfectly binding and extractable.
Note that because all operations in the module M are entry-wise, any relationship that holds over elements

(1, x), (1, y) ∈ M will also hold over group element x, y ∈ G 6. GS proofs demonstrate that the proved relationship
holds over any possible opening for the given commitments. Thus, it must hold for the unique (1, x), (1, y) which are
produced by the extraction algorithm described above, and as mentioned, this means the proved relationshipls must
hold over group elements x, y.

Simulated parameters are generated by choosing random s, z, w ∈ Zp and computing u1 = (g, gz) and u2 =
(gs, gw). The public parameters will be u1, u2. The simulation trapdoor will be s, z, w. Note that these public
parameters will be indistinguishable from those described above by SXDH.

6the bilinear map E over M is not entry-wise, but does still imply that any relationship over E((1, x), (1, y)) also holds over e(x, y)
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Note that the resulting commitment scheme is perfectly hiding. Further, we can form commitments which are
identical to those described above but for which we can use the simulation trpdoor to open to any value for which
we know the discrete logaritm. We compute such a commitment by choosing random c1, c2 ∈ Zp and computing
(gc1 , gc2). To open a commitment this commitment to any value gφ, we need only find a solution (r1, r2) to the
equations c1 = r1 + sr2 and c2 = φ+ zr1 + wr2.

In the DLIN setting, for commitments to elements in G1 (committing to G2 is similar):
The parameters are generated by choosing random a, b, z, s and computing u1 = (ga, 1, g) and u2 = (gb, 1, g),

and u3 = (gaz, gbs, gz+s). The public parameters are u1, u2, u3. If extraction is necessary, the trapdoor will be
a, b, z, s.

GS describe commitments to elements in the module M = G × G as follows: To commit to element X =
(x1, x2, x3) ∈M choose random r1, r2, r3 ∈ Zp, and compute Xur1

1 u
r2
2 u

r3
3 (where multiplication is entry-wise).

One can commit to x ∈ G by choosing random r1, r2r3 ∈ Zp and computing (1, 1, x)ur1
1 u2r2u3. Opening would

reveal x, r1, r2, r3. In this case, given the trapdoor a, b, s, z, we will be able to extract x from a commitment (c1, c2, c3)
by computing c3/(c

1/a
1 c

1/b
2 ).

Note that again any relationship that holds over elements (11, x), (1, 1, y) ∈M will also hold over group element
x, y ∈ G. Thus, we can using GS proofs on commitments to x, y to prove statements about x, y.

Simulated parameters are generated by choosing random a, b, s, z, w ∈ Zp and computing u1 = (ga, 1, g) and
u2 = (gb, 1, g) and u3 = (gaz, gbs, gw). The public parameters will be u1, u2. The simulation trapdoor will be
a, b, s, z. Note that these public parameters will be indistinguishable from those described above by DLIN.

Note that the resulting commitment scheme is perfectly hiding. Further, we can form commitments which are
identical to those described above but for which we can use the simulation trpdoor to open to any value for which
we know the discrete logaritm. We compute such a commitment by choosing random c1, c2, c3 ∈ Zp and computing
(gc1 , gc2 , gc3). To open a commitment this commitment to any value gφ, we need only find a solution (r1, r2, r3) to
the equations c1 = ar1 + azr3, c2 = br2 + bsr3 and c3 = φ+ r1 + r2 + (z + s)r3.

G Extensions to the GS Proof system

G.1 Zero-Knowledge for the GS Proof System

Groth and Sahai [GS07] define a composable zero-knowledge NIPK for pairing product equation proofs. There exists
a simulator Sim = (SimSetup,SimProve) with the following two properties:

1. SimSetup(params) outputs paramsGS
′ such that they are computationally indistinguishable from the output of

GSSetup(params). Let params′1 ∈ paramsGS
′ be the parameters for the commitment scheme in G1. Using

params′1, commitments are perfectly hiding – this means that for all commitments comm ,

∀x ∈ G,∃opening : VerifyOpening(params′1, comm, x, opening) = accept.

2. Using the paramsGS
′ generated by the challenger, GS proofs become zero-knowledge. Suppose an unbounded

adversary A generates a statement s consisting of the pairing product equations and a set of commitments
(c1, . . . , cM , d1, . . . , dN ). The adversary outputs the statement s, and the opening of the commitments W =
(x1, . . . , xM , y1, . . . , yN , openings0) such that they satisfy s. The challenger flips a coin to get b ← {0, 1}. If
b = 0, then he outputs π ← GSProve(paramsGS

′, s,W ). If b = 1, then he outputs π ← SimProve(paramsGS
′, s).

The adversary gets π. The adversary guesses π with probability exactly 1/2.

Groth and Sahai provide some useful tools for helping prove that particular GS proofs are zero-knowledge. Since
GS proofs are witness indistinguishable, all a simulator has to do is come up with some witness for the equations.
Witness indistinguishability guarantees that it is distributed identically to real witnesses. Groth and Sahai construct
a GSSimSetup(params) function that outputs paramsGS that are (1) computationally indistinguishable from the
output of GSSetup(params) and (2) allow us to open comm = GSCommit(G, b, θ, opening) to any θ as long as
we know b, θ, opening . If a GS proof contains multiple pairing product equations, we can open comm in a different
way for each equation. Thus, we can have different witnesses for each equation. (This does not work for value
comm ′ = GSCommit(G, x, opening)).
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G.2 Zero-Knowledge Proof of Equality of Committed Exponents

Suppose we know c1 = GSExpCommit(G1, g, α) and c2 = GSExpCommit(G1, g, α) as well as the openings to c1
and c2. We want to prove the statement

NIPK{((c1 : gα), (c2 : gβ)) : α = β}.

We calculate d = GSExpCommit(G2, h, 1). Then we construct the proof

π ← NIPK{((c1 : a), (c2 : b), (d : hθ)) : e(a/b, hθ) = 1 ∧ e(g, hθ)e(1/g, h) = 1}.

f -Extractability. We use GSExtractSetup(params) to generate paramsGS and a trapdoor td that lets us open all
commitments. Suppose an adversary gives us a proof π. We extract a = gα, b = gβ , and c = hθ. By the soundness
of the GS proof system, we have that e(g, c)e(1/g, h) = 1. This means e(g, c) = e(g, h), so c = h1. Thus we have
θ = 1. We can now transform the clause e(a/b, hθ) = 1 to e(a/b, h) = 1. Since e is non-degenerate, this means
a/b = 1, and thus α = β.

Composable Zero Knowledge. We need to construct Sim = (SimSetup,SimProve). We use the GSSimSetup
algorithm provided by Groth and Sahai that outputs a trapdoor that allows us to open GSExpCommit(G, b, θ, opening)
any way we want, as long as we know b, θ, opening (see Appendix G.1 above). We can open it to different values of
θ in each pairing product equation.

The simulator gets as input c1 and c2. All the simulator needs to do is construct a witness for the individual
equations of the proof

π ← NIPK{((c1 : a), (c2 : b), (d : hθ)) : e(a/b, hθ) = 1 ∧ e(g, hθ)e(1/g, h) = 1}.

It sets θ = 0 and computes d = GSExpCommit(G2, h, 0, opening). Thus, we satisfy the pairing product equation
e(a/b, hθ) = 1 because hθ = 1. To satisfy the second pairing product equation, we open d to θ = 1. Thus, we satisfy
e(g, hθ)e(1/g, h) = 1. As a result, the simulator has a witness for the proof. By witness indistinguishability, the
simulated witness is indistinguishable from real witnesses. Thus we get zero-knowledge.

H Weak Boneh-Boyen Signature

Theorem 7 Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as given in the statement of the IHSDH assumption.
The Weak Boneh-Boyen signature scheme is F -secure given IHSDH.

Proof. The proof of security is trivial given the IHSDH assumption. Correctness is straightforward. To prove unforge-
ability, we create a reduction to the IHSDH assumption. The reduction gets as input (p,G1, G2, GT , e, g,G, h,H, u),
where G = gx and H = hx for some secret x. The reduction sets up the public parameters of the Boneh Boyen
signature scheme params = ((p,G1, G2, GT , e, g, h) and a public-key pk = (H,G). To answer a signature query on
message msg`, the reduction sends a query toOw(msg`) and sends g1/(x+msg`) back to the adversary. Eventually, the
adversary will output a forgery (σ, y), where σ = g1/(x+m), y = F (m) = (hm, um), and m 6= msg` for all `. The
reduction can then output the IHSDH tuple (σ, hm, um). �

I Security of new signature scheme

Theorem 8 Let F (x) = (hx, ux), where u ∈ G1 and h ∈ G2 as in the HSDH and TDH assumptions. Our new
signature scheme is F -secure given HSDH and TDH.

Proof. Correctness is straightforward. Unforgeability is more difficult. Suppose we try to do a straightforward
reduction to HSDH. The reduction will setup the parameters for the signature scheme. Whenever the adversary
queries OSign, the reduction will use one of the provided tuples (g1/(x+c`), gc` , vc`) to construct a signature for input
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message msg`. We choose r` such that c` = msg` + βr`. Thus, C1 = g1/(x+c`), C2 = wr` and C3 = ur` . (The acual
proof will be more complicated, because we don’t know c` and therefore cannot calculate r` directly).

Eventually, the adversary returns F (m) = (hm, um) and a valid signature (C1, C2, C3). Since the signature is
valid, we get that C1 = g1/(x+m+βr), C2 = wr = hβr, and C3 = ur. We can have two types of forgeries. In Type 1,
the adversary returns a forgery such that m+βr 6= msg` +βr` for all of the adversary’s previously queried messages
msg`, in which case we can easily create a new HSDH tuple. In Type 2, the adversary returns a forgery such that
m+ βr = msg` + βr`. In this case, we cannot use the forgery to construct a new HSDH tuple. Therefore, we divide
our proof into two categories. In Type 1, we reduce to the HSDH assumption. In Type 2, we reduce to the TDH
assumption.

Type 1 forgeries: βr +m 6= βr` + msg` for any r`,msg` from a previous query. The reduction gets an instance
of the HSDH problem (p,G1, G2, GT , e, g, v, ṽ, h, u, {C`,H`, U`}`=1...q), such that v = hx and ṽ = gx for some
unknown x, and for all `, C` = g1/(x+c`), H` = hc` , and U` = uc` for some unknown c`. The reduction sets
up the parameters of the new signature scheme as (p,G1, G2, e, g, h, u, z = e(g, h)). Next, the reduction chooses
β ← Zp and calculates w = hβ, w̃ = gβ . The reduction gives the adversary the public parameters and the public-key
(v, w, ṽ, w̃).

Suppose the adversary’s `th query is to Sign message msg`. The reduction will implicitly set r` to be such that
c` = msg` + βr`. This is an equation with two unknowns, so we do not know r` and c`. The reduction sets C1 = C`.
It computes C2 = H`/h

msg` = hc`/hmsg` = wr` . Then it computes C3 = (U`/u
msg`)1/β = (uc`/umsg`)1/β =

u(c`−msg`)/β = ur` . The reduction returns the signature (C1, C2, C3).
Eventually, the adversary returns F (m) = (F1, F2) and a valid signature (C1, C2, C3). Since this is a valid F -

forger, we get that F1 = hm, F2 = um and C1 = g1/(x+m+βr), C2 = wr = hβr, and C3 = ur. Since this is
a Type 1 forger, we also have that m + βr 6= msg` + βr` for any of the adversary’s previous queries. Therefore,
(C1, F1C2, F2C

β
3 ) = (g1/(x+m+βr), hm+βr, um+βr) is a new HSDH tuple.

Type 2 forgeries: βr + m = βr` + msg` for some r`,msg` from a previous query. The reduction receives
(p,G1, G2, GT , e, g, h,X,Z, Y, {σ`, c`}), where X = hx, Z = gx, Y = gy, and for all `, σ` = g1/(x+c`). The
reduction chooses γ ← Zp and sets u = Y γ . The reduction sets up the parameters of the new signature scheme as
(p,G1, G2, e, g, h, u, z = e(g, h)). Next the reduction chooses α ← Zp, and calculates v = hα, w = Xγ , ṽ = gα,
w̃ = Zγ . It gives the adversary the parameters and the public-key (v, w, ṽ, w̃). Note that we set up our parameters
and public-key so that β = xγ, for some unknown β and u = gγy.

Suppose the adversary’s `th query is to Sign message msg`. The reduction sets r` = (α + msg`)/(c`γ) (which
it can compute). The reduction computes C1 = σ

1/(γr`)
` = (g1/(x+c`))1/(γr`) = g1/(γr`(x+c`)) = g1/(α+msg`+βr`).

Since the reduction knows r`, it computes C2 = wr` , C3 = ur` and send (C1, C2, C3) to A.
Eventually, the adversary returns F (m) = (F1, F2) and a valid signature (C1, C2, C3). Since this is an F -forgery,

we get that F1 = hm, F2 = um and that C1 = g1/(x+m+βr), C2 = wr = hβr, and C3 = ur. Since this is a Type
2 forger, we also have that m + βr = msg` + βr` for one of the adversary’s previous queries. (We can learn m`

and r` by comparing F1C2 to hm`wr` for all `.) We define δ = m − msg`. Since m + βr = msg` + βr`, we also
get that δ = β(r` − r). Using β = xγ, we get that δ = xγ(r` − r). We compute: A = F1/h

m` = hm−m` = hδ,
B = ur`/C3 = ur`−r = uδ/γx = gyδ/x and C = (F2/u

m`)1/γ = u(m−m`)/γ = uδ/γ = gδy. We implicitly set
µ = δ/x, thus (A,B,C) = (hµx, gµy, gµxy) is a valid TDH tuple. �

J Efficiency

We begin by giving formulas for calculating the efficiency of GS pairing product equation proofs, in both the SXDH
and the DLIN setting.

First, recall that commitments based on SXDH consist of 2 elements in G, while those based on DLIN setting
require 3 elements in G. Our formulas will include the cost of including the commitments that make up the statement.

Suppose a pairing product equation has a pairing of the form e(aq, bq). We call this a ’constant pairing’, it arises
when ∀m,n : αq,m = βq,n = 0. We call all pairings that are not constant ’non-constant pairings’. Let Q̂ be total
number of non-constant pairings in a set of pairing product equations. We calculate the efficiency of proving/verifying
a set of L pairing product equations, over M variables in G1, N variables in G2, and Q̂ non-constant pairings.
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In the SXDH setting, a proof for a set of pairing product equations as defined above would consist of 4L + 2M
elements of G1 and 4L + 2N elements of G2 (this includes the commitments cm and dn). Calculating each group
element requires a single multi-base exponentiation. The verifier must perform 16L+ 4Q̂ pairings. The DLIN setting
is symmetric, so G1 = G2, and we only have variables xm. The proof consists of 9L+ 3M elements of G1, each of
which requires a single multi-base exponentiation. The verifier performs 18L+ 6Q̂ pairings.

Theorem 9 (Efficiency of our First Construction) Using SXDH, each P-signature proof for the weak Boneh-Boyen
signature scheme consists of 12 elements in G1 and 10 elements in G2. The prover performs 22 multi-exponentiations
and the verifier 44 pairings. Using DLIN, each P-signature proof consists of 27 elements in G1 = G2. The prover
performs 27 multi-exponentiations and the verifier 54 pairings.

Proof. We rewrite the proof as

π = NIPK{((Mh : hα), (Mu : uβ), (Σ : x)) : e(u, hα) · e(uβ, h−1) = 1 ∧ e(x, vhα) = z)}.

We have L = 2 equations, M = 2 variables in G1, N = 1 variable in G2, and Q̂ = 3 non-constant pairings. SXDH
requires 4L + 2M = 12 elements in G1 and 4L + 2N = 10 elements in G2 (Each group element can be calculated
using one multi-exponentiation); the verifier performs 16L+ 4Q̂ = 44 pairings. With M ′ = M +N = 3 variables in
G1 = G2 DLIN requires 9L+ 3M ′ = 27 elements in G1; the verifier performs 18L+ 6Q̂ = 54 pairings. �

See Appendix L for details on the construction.

Theorem 10 (Efficiency of our Second Construction) Using SXDH GS proofs, each P-signature proof for our new
signature scheme consists of 18 elements in G1 and 16 elements in G2. The prover performs 34 multi-exponentiation
and the verifier 68 pairings. Using DLIN, each P-signature proof consists of 42 elements in G1 = G2. The prover has
to do 42 multi-exponentiations and the verifier 84 pairings.

Proof. The non-interactive proof can be rewritten as

π = NIPK{((Σ : C1), (Rw : C2), (Ru : C3)(Mh : hα), (Mu : uβ)) :

e(C1, vh
αC2) = z ∧ e(u,C2) · e(C3, w

−1) = 1 ∧ e(u, hα) · e(uβ , h−1) = 1}.

We have L = 3, M = 3, and N = 2. The number of non-constant pairings Q̂ = 5. SXDH requires 4L + 2M =
18 elements in G1 and 4L + 2N = 16 elements in G1 (Each group element can be calculated using one multi-
exponentiation). The verifier performs 16L + 4Q̂ = 68 pairings. With M ′ = M + N = 5 variables in G1 = G2

DLIN requires 9L+ 3M ′ = 42 elements in G1; the verifier performs 18L+ 6Q̂ = 84 pairings. �

K Security of Second Construction of P-Signatures

Theorem 11 (Security) Our second P-signature construction is secure given HSDH and TDH and the security of the
GS commitments and proofs.

Proof. Correctness. VerifyProof will always accept properly formed proofs.
Signer Privacy. We must construct the SimIssue algorithm that is given as input params, a commitment comm

and a signature σ = (C1, C2, C3) and must simulate the adversary’s view. SimIssue will invoke the simulator for the
two-party computation protocol. Recall that in two-party computation, the simulator can first extract the input of the
adversary: in this case, some (ρ1, ρ2,msg , opening). Then SimIssue checks that comm = Commit(params,msg ,
opening); if it isn’t, it terminates. Otherwise, it sends to the adversary the values (C ′

1 = C
1/ρ2

1 , C ′
2 = C

1/ρ1

2 , C ′
3 =

C
1/ρ1

3 ). Suppose the adversary can determine that it is talking with a simulator. Then it must be the case that the
adversary’s input to the protocol was incorrect which breaks the security properties of the two-party computation.

User Privacy. The simulator will invoke the simulator for the two-party computation protocol. Recall that in two-
party computation, the simulator can first extract the input of the adversary (in this case, some (α′, β′), not necessarily
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the valid secret key). Then the simulator is given the target output of the computation (in this case, the value x which
is just a random value that the simulator can pick itself), and proceeds to interact with the adversary such that if
the adversary completes the protocol, its output is x. Suppose the adversary can determine that it is talking with a
simulator. Then it breaks the security of the two-party computation protocol.

Zero knowledge. Consider the following algorithms. SimSetup runs BilinearSetup to get paramsBM = (p,G1, G2,
GT , e, g, h). It then picks t ← Zp and sets up u = ga. Next it calls GSSimSetup(paramsBM ) to obtain paramsGS

and sim . The final parameters are params = (paramsGS , u, z = e(g, h)) and sim = (a, sim). Note that the dis-
tribution of params is indistinguishable from the distribution output by Setup. SimProve receives params , sim , and
public key (v, ṽ, w, w̃) and can use trapdoor sim to create a random P-signature forgery in SimProve as follows. Pick
s, r ← Zp and compute σ = g1/s. We implicitly set msg = s− α− rβ. Note that the simulator does not know msg
and α. However, he can compute hmsg = hs/(vwr) and umsg = us/(ṽaw̃ar). Now he can use σ, hmsg , umsg , wr, ur

as a witness and construct the proof π in the same way as the real Prove protocol. By the witness indistinguishability
of the GS proof system, a proof using the faked witnesses is indistinguishable from a proof using a real witness, thus
SimProve is indistinguishable from Prove.

Finally, we need to show that we can simulate proofs of EqCommProve given the trapdoor simGS . This follows
from composable zero knoweldge of EqCommProve. See Appendix G.

Unforgeability. Consider the following algorithms: ExtractSetup(1k) outputs the usual params , except that it
invokes GSExtractSetup to get alternative paramsGS and the trapdoor td = (td1, td2) for extracting GS commitments
in G1 and G2. The parameters generated by GSSetup are indistinguishable from those generated by GSExtractSetup,
so we know that the parameters generated by ExtractSetup will be indistinguishable from those genrated by Setup.

Extract(params, td , comm, π) extracts the values from commitment comm and the commitments Mh, Mu

contained in the proof π using the GS commitment extractor. If VerifyProof accepts then comm = Mh. Let
F (msg) = (hmsg , umsg).

Now suppose we have an adversary that can break the unforgeability of our P-signature scheme for this extractor
and this bijection.

A P-signature forger outputs a proof from which we extract (F (m), σ) such that either (1) VerifySig(params, pk ,m, σ) =
reject, or (2) comm is not a commitment to m, or (3) the adversary never queried us on m. Since VerifyProof checks
a set of pairing product equations, f -extractability of the GS proof system trivially ensures that (1) never happens.
Since VerifyProof checks that Mh = comm , this ensures that (2) never happens. Therefore, we consider the third
possibility. The extractor calcualtes F (m) = (hm, um) where m is fresh. Due to the randomness element r in the
signature scheme, we have two types of forgeries. In a Type 1 forgery, the extractor can extract from the proof a tuple
of the form (g1/(α+m+βr), wr, ur, hm, um), where m + rβ 6= msg` + r`β for any (msg`, r`) used in answering the
adversary’s signing or proof queries. The second type of forgery is one where m + rβ = msg` + r`β for (msg`, r`)
used in one of these previous queries. We show that a Type 1 forger can be used to break the HSDH assumption, and
a Type 2 forger can be used to break the TDH assumption.

Type 1 forgeries: βr +m 6= βr` + msg` for any r`,msg` from a previous query. The reduction gets an instance
of the HSDH problem (p,G1, G2, GT , e, g,X, X̃, h, u, {C`,H`, U`}`=1...q), such that X = hx and X̃ = gx for some
unknown x, and for all `, C` = g1/(x+c`), H` = hc` , and U` = uc` for some unknown c`. The reduction sets up the
parameters of the new signature scheme as (p,G1, G2, e, g, h, u, z = e(g, h)). Next, the reduction chooses β ← Zp,
sets v = X, ṽ = X̃ and calculates w = hβ, w̃ = gβ . The reduction gives the adversary the public parameters and the
public-key (v, w, ṽ, w̃).

Suppose the adversary’s `th query is to Sign message msg`. The reduction will implicitly set r` to be such that
c` = msg` + βr`. This is an equation with two unknowns, so we do not know r` and c`. The reduction sets C1 = C`.
It computes C2 = H`/h

msg` = hc`/hmsg` = wr` . Then it computes C3 = (U`)1/β/umsg`/β = (uc`)1/β/umsg`/β =
u(c`−msg`)/β = ur` The reduction returns the signature (C1, C2, C3).

Eventually, the adversary returns a proof π. Since π is f -extractable and perfectly sound, we extract σ =
g1/(x+m+βr), a = wr, b = ur, c = hm, and d = um. Since this is a P-signature forgery, (c, d) = (hm, um) 6∈
F (QSign). Since this is a Type 1 forger, we also have that m+ βr 6= msg` + βr` for any of the adversary’s previous
queries. Therefore, (σ, ca, dbβ) = (g1/(x+m+βr), hm+βr, um+βr) is a new HSDH tuple.

Type 2 forgeries: βr + m = βr` + msg` for some r`,msg` from a previous query. The reduction receives
(p,G1, G2, GT , e, g, h,X,Z, Y, {σ`, c`}), where X = hx, Z = gx, Y = gy, and for all `, σ` = g1/(x+c`). The
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reduction chooses γ ← Zp and sets u = Y γ . The reduction sets up the parameters of the new signature scheme as
(p,G1, G2, e, g, h, u, z = e(g, h)). Next the reduction chooses α ← Zp, and calculates v = hα, w = Xγ , ṽ = gα,
w̃ = Zγ . It gives the adversary the parameters and the public-key (v, w, ṽ, w̃). Note that we set up our parameters
and public-key so that β is implicitly defined as β = xγ, and u = gγy.

Suppose the adversary’s `th query is to Sign message msg`. The reduction sets r` = (α + msg`)/(c`γ) (which
it can compute). The reduction computes C1 = σ

1/(γr`)
` = (g1/(x+c`))1/(γr`) = g1/(γr`(x+c`)) = g1/(α+msg`+βr`).

Since the reduction knows r`, it computes C2 = wr` , C3 = ur` and send (C1, C2, C3) to A.
Eventually, the adversary returns a proof π. The proof π is f -extractable and perficetly sound, the reduction can

extract σ = g1/(x+m+βr), a = wr, b = ur, c = hm, and d = um. Therefore, VerifySig will always accept m =
F−1(c, d), σ, a, b. We also know that if this is a forgery, then VerifyProof accepts, which means that comm = Mh,
which is a commitment to m. Thus, since this is a P-signature forgery, it must be the case that (c, d) = (hm, um) 6∈
F (QSign). However, since this is a Type 2 forger, we also have that ∃` : m+ βr = msg` + βr`, where msg` is one of
the adversary’s previous Sign or Prove queries. We implicitly define δ = m−msg`. Since m+βr = msg` +βr`, we
also get that δ = β(r` − r). Using β = xγ, we get that δ = xγ(r` − r). We compute: A = c/hm` = hm−m` = hδ,
B = ur`/b = ur`−r = uδ/(γx) = gyδ/x and C = (d/um`)1/γ = u(m−m`)/γ = uδ/γ = gδy. We implicitly set
µ = δ/x, thus (A,B,C) = (hµx, gµy, gµxy) is a valid TDH tuple. �

L Instantiation of P-Signatures using SXDH

L.1 Instantiating Groth-Sahai Proofs using SXDH [GS07]

We review the Groth-Sahai [GS07] witness indistinguishable proofs based on the SXDH assumption. LetG be a group
of prime order p. Then M = G×G is a module over the ring Zp, with the operation being entry-wise multiplication:
∀(a, b), (x, y) ∈M : (a, b) · (x, y) = (ax, by). If e : G1 ×G2 → GT is a bilinear map, over groups G1, G2, and GT

of prime order p, we can construct modules M1 = G1×G1, M2 = G2×G2, and MT = GT ×GT ×GT ×GT using
entry-wise multiplication. We define a bilinear map E : M1 ×M2 →MT between modules as

E((a, b), (x, y)) =
(
e(a, x), e(a, y), e(b, x), e(b, y)

)
GSSetup(p,G1, G2, GT , e, g, h). Choose z1, z2, s1, s2 ← Zp. We set u1 = (g, gz1) and u2 = us1

1 = (gs1 , gz1s1)
for commitments in G1. Similarly we set v1 = (h, hz2) and v2 = vs2

1 = (gs2 , gz2s2) for commitments in G2.
Output the common random string (p, params1 = (G1, g, u1, u2), params2 = (G2, h, v1, v2), GT , e).

Commit(paramsi, x, (r1, r2)). Let paramsi be (G1, g, u1, u2), w.l.o.g. . Use opening information r1, r2 ∈ Zp to
output comm = (1, x)ur1

1 u
r1
2 .

GSExpCommit(paramsi, b, θ, opening). Here we depart from Groth-Sahai. Let b be a base of the correct group. We
compute comm and output (b, comm), where comm = Commit(paramsi, (1, bθ), opening). 7

VerifyOpening(paramsi, comm, x, (r1, r2)). Let paramsi be (G1, g, u1, u2), w.l.o.g. . Output accept if comm =
(1, x)ur1

1 u
r1
2 . Note that a commitment (b, comm) to exponent θ with opening opening can be verified using

VerifyOpening(paramsi, comm, bθ, opening).

GSProve(paramsGS , s, ({xm}m=1,...,M , {yn}n=1,...,N ), ({rm1, rm2}m=1,...,M , {sn1, sn2}n=1,...,M ). A true statement
s contains commitments

cm = Commit(params1, xm, (rm1, rm2)) = (1, xm)urm1
1 urm2

2 and
dn = Commit(params2, yn, (sn1, sn2)) = (1, yn)vsn1

1 vsn2
2 ,

7Groth and Sahai use opening r ← Zp and output comm = uθ
1u

r
2. This is more efficient than our construction, but gives up some flexibility,

e.g. in choosing the base b.
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and the following values {aq}q=1...Q ∈ G1, {bq}q=1...Q ∈ G2, t ∈ GT , and {αq,m}m=1...M,q=1...Q ∈ Zp,
{βq,n}n=1...N,q=1...Q ∈ Zp such that the pairing product equation in the following proof description holds.

NIPK{((c1 : x1), . . . , (cM : xM ),(d1 : y1), . . . , (dN : yN )) :
Q∏

q=1

e(aq

M∏
m=1

x
αq,m
m , bq

N∏
n=1

y
βq,n
n ) = t.

Note that the commitments are homomorphic, i.e., the product of two commitments (and the sum of the open-
ings) is a commitment (opening) to the product of the committed values:

(1, x1)ur11
1 ur12

2 · (1, x2)ur21
1 ur22

2 = (1, x1x2)ur11+r21
1 ur12+r22

2 .

Constants a are treated as commitments with 0 opening. Similarly, the power of a commitment to the α (and
the product of the opening with α) is a commitment to the committed value to the α:

((1, x1)ur11
1 ur12

2 )α = (1, xα
1 )ur11α

1 ur12α
2

We use this property to compute shadow commitments

c̃q = (1, x̃q = aq

M∏
m=1

x
αq,m
m )ur̃m1

1 ur̃m2
2 , d̃n = (1, ỹq = bq

N∏
n=1

y
βq,n
n )vs̃n1

1 vs̃n2
2 .

We choose {ti,j}i,j=1...2 ← Zp and compute

π1 = vt11
1 vt12

2

Q∏
q=1

d̃
r̃q1
q ψ1 = u−t11

1 u−t21
2

Q∏
q=1

(1, x̃q)s̃q1

π2 = vt21
1 vt22

2

Q∏
q=1

d̃
r̃q2
q ψ2 = u−t12

1 u−t22
2

Q∏
q=1

(1, x̃q)s̃q2 .

We output the proof (π1, π2, ψ1, ψ2, s).

GSVerify(paramsGS , (π1, π2, ψ1, ψ2, s). The verifier uses the commitments and values contained in the statement s
to reconstruct c̃q and d̃q and outputs accept if

Q∏
q=1

E(c̃q, d̃q) =
(

1 1
1 t

)
E(u1, π1)E(u2, π2)E(ψ1, v1)E(ψ2, v2).

Groth and Sahai [GS07] prove that the scheme outlined above is complete, sound, and witness indistinguishable.
Proofs consists of 4 group elements of G1 and 4 group elements of G2. Soundness comes from the fact that for
the commitments correspond to the ElGamal ciphertexts, e.g. for G1, Commit(x) corresponds to the ciphertext
(gr1+s1r2 , (gz1)r1+s1r2x) with public key gz1 and secret key z1. Consequently, we can extract x given z1. In the case of
GSExpCommit, we can use z1 to extract bθ. We get witness indistinguishability because if we choose u1, u2 ∈ G1×G1

and v1, v2 ∈ G2 ×G2, such that u1 and v1 are linear independent from u2 and v2 respectively, then commitments are
perfectly hiding. By the SXDH assumption, we cannot distinguish the common reference string from such a simulated
reference string.
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L.2 Instantiation for Construction Based on Weak Boneh-Boyen Signatures

Setup(1k). Runs BilinearSetup(1k) to get params = (p,G1, G2, GT , e, g, h). Runs GSSetup(params) to get
params1 and params2. Choose u← G. Output params = (p, params1, params2, GT , e, u).

ObtainSig(params, pk ,msg , comm, opening)↔ IssueSig(params, sk , comm). This does not depend on the GS proof
system.

Prove(params, v,msg , σ). First, checks that σ is a valid signature on msg and terminates if it is not. Choose
smsg1, smsg2, rmsg1, rmsg2, rσ1, rσ2. Compute

Mh = GSExpCommit(params2, h,msg) = (1, hmsg)vsmsg1

1 v
smsg2

2

Mu = GSExpCommit(params1, u,msg) = (1, umsg)urmsg1

1 u
rmsg2

2

Σ = Commit(params1, σ) = (1, σ)urσ1
1 urσ2

2 .

We need to construct the proof

NIPK{((Mh : hα), (Mu : uβ), (Σ : x)) : α = β ∧ e(x, vhα) = z)}.

As described in Section 4.4, this is equivalent to the proof

NIPK{((Mh : H), (Mu : U), (Σ : x)) : e(u,H) · e(U, h−1) = 1 ∧ e(x, vH) = z)}.

We need to do two pairing product equation proofs. First we prove NIPK{((Mh : H), (Mu : U)) : e(u,H) ·
e(U, h−1) = 1}. GSProve computes “shadow” commitments to u as (1, u)u0

1u
0
2 = (1, u) and h−1 as (1, h−1)v0

1v
0
2 =

(1, h−1). We choose {ti,j}i,j=1...2 ← Zp and compute

π1 = vt11
1 vt12

2 M0
h(1, h−1)rmsg1 ψ1 = u−t11

1 u−t21
2 (1, u)smsg1(1, umsg)0

π2 = vt21
1 vt22

2 M0
h(1, h−1)rmsg2 ψ2 = u−t12

1 u−t22
2 (1, u)smsg2(1, umsg)0

Next we prove NIPK{((Mh : H), (Σ : x)) : ∧e(x, v · H) · e(x, pk) = z)}. GSProve computes a “shadow”
commitment to vH as vMh = (1, vH)vsmsg1

1 v
smsg2

2 . We choose {t′i,j}i,j=1...2 ← Zp and compute

π′1 = v
t′11
1 v

t′12
2 (vMh)rσ1 ψ′

1 = u
−t′11
1 u

−t′21
2 (1, σ)smsg1

π′2 = v
t′21
1 v

t′22
2 (vMh)rσ2 ψ′

2 = u
−t′12
1 u

−t′22
2 (1, σ)smsg2

We output comm = Mh and π = (π1, π2, ψ1, ψ2, π
′
1, π

′
2, ψ

′
1, ψ

′
2,Mh,Mu,Σ). The rest of the statement is

implicit in the construction and shared between prover and verifier.

VerifyProof(params, pk , comm, π = (π1, π2, ψ1, ψ2, π
′
1, π

′
2, ψ

′
1, ψ

′
2,Mh,Mu,Σ)) outputs accept if comm = Mh

and

E
(
(1, u),Mh

)
E

(
Mu,

(
1
h−1

))
=

(
1 1
1 1

)
E(u1, π1)E(u2, π2)E(ψ1, v1)E(ψ2, v2)∧

E
(
Σ,

(
1
v

)
Mh

)
=

(
1 1
1 z

)
E(u1, π

′
1)E(u2, π

′
2)E(ψ′

1, v1)E(ψ′
2, v2),

and reject otherwise. Note that multiplication is always elementwise and the pairing E is as defined above.8

8`
a
b

´
·

`
x
y

´
=

`
ax
by

´
, E

``
a
b

´
, (x, y)

´
=

„
ax ay
bx by

«
, and

„
a b
c d

«
·

„
w x
y z

«
=

„
aw bx
cy dz

«
.
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