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Abstract. We propose a convertible undeniable signature scheme with-
out random oracles. Our construction is based on Waters’ and Kurosawa
and Heng’s schemes that were proposed in Eurocrypt 2005. The security
of our scheme is based on the CDH and the decision linear assumption.
Comparing only the part of undeniable signatures, our scheme uses more
standard assumptions than the existing undeniable signatures without
random oracles due to Laguillamie and Vergnaud.
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1 Introduction

Standard digital signatures allow universal verification. However in some real
world scenarios, privacy is an important issue. In this situation, we may require
that the verification of signatures is restricted by the signer. Then, the verifi-
cation of a signature requires an interaction with the signer. A signer can deny
generating a signature that he never signs, but cannot deny one that he signs.
The proof by the signer cannot be transferred to convince other verifiers. This
concept is known as the “Undeniable Signatures” that was proposed by Chaum
and van Antwerpen [11]. Later, Boyar, Chaum, Damg̊ard and Pedersen [6] pro-
posed an extension called “Convertible Undeniable Signatures”, that allows the
possibility to transform an undeniable signature into a self-authenticating sig-
nature. This transformation can be restricted to a particular signature only, or
can be applied to all signatures of a signer.

There are many different undeniable signatures with variable features and se-
curity levels. These features include convertibility [6, 13, 23, 24], designated veri-
fier technique [16], designated confirmer technique [10, 25], identity based scheme
[22], time-selective scheme [21], etc. The security for undeniable signatures is
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said to be secure if it is unforgeable, invisible and the confirmation and dis-
avowal protocols are zero-knowledge. It is believed that the zero-knowledgeness
is required to make undeniable signatures non-transferable. However, Kurosawa
and Heng [18] suggested that zero-knowledgeness and non-transferability can be
separated; and the concept of witness indistinguishability can be incorporated.
They proposed another security notion called impersonation attack.

The random oracle model [3] is a popular technique in provable security.
However several papers proved that some cryptosystems secure in the random
oracle were actually provably insecure when the random oracle was instantiated
by any real-world hashing functions [9, 2]. As a result, recently there are many
new signature schemes which prove their security without random oracles, such
as group signatures [1, 8], ring signatures [12, 4], blind signatures [17], group-
oriented signatures [26], undeniable signatures [20], universal designated verifier
signatures [28], etc. Nonetheless, some of them introduce new security assump-
tions that are not well studied, which are the main drawback of some schemes.

Our Contribution. We propose the first convertible undeniable signatures
without random oracles in pairings. Most of the existing convertible undeni-
able signatures are proven secure in the random oracle model only [6, 23, 24, 21]
3, except the recent construction in RSA [19].

Most efficient undeniable signatures are proven secure in the random ora-
cle model only. [14] is secure in the random oracle model currently. 4 Recently,
Languillaumie and Vergnaud proposed the first efficient undeniable signatures
without random oracles [20]. However, their anonymity relies on their new as-
sumption DSDH, while their unforgeability relies on the GSDH assumption with
the access of a DSDH oracle, which seems to be contradictory. Our proposed
variant of undeniable signature is proven unforgeable by the CDH assumption
and anonymous by the decision linear assumption. Therefore by removing the
protocol for convertible parts, our undeniable signature scheme is the first proven
secure scheme without using random oracles and without using a new assumption
in discrete logarithm settings.

We extend the security model of [18] to convertible undeniable signatures.
We also use the 3-move witness indistinguishable (WI) protocol in [18]. There-
fore we incorporate the concept of WI into the convertible undeniable signatures
and propose the first 3-move convertible undeniable signatures.

Organization. The next section briefly explains the pairings and some related
intractability problems. Section 3 gives the security model and some basic build-
ing blocks are given in Section 4. Section 5 gives our construction and security
proofs. The paper ends with some concluding remarks.

3 [13] does not prove the invisibility property. The authors only conjecture the security
in section 5.1 and 5.2.

4 Refer to section 1.1 in [19] for details.
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2 Preliminaries

2.1 Pairings and Intractability Problem

Our scheme uses bilinear pairings on elliptic curves. We now give a brief revision
on the property of pairings and candidate hard problem from pairings that will
be used later.

Let G,GT be cyclic groups of prime order p, writing the group action multi-
plicatively. Let g be a generator of G.

Definition 1. A map ê : G × G → GT is called a bilinear pairing if, for all
x, y ∈ G and a, b ∈ Zp, we have ê(xa, yb) = ê(x, y)ab, and ê(g, g) 6= 1.

Definition 2 (CDH). The Computational Diffie-Hellman (CDH) problem is
that, given g, gx, gy ∈ G for unknown x, y ∈ Z∗p, to compute gxy.

We say that the (ε, t)-CDH assumption holds in G if no t-time algorithm has
the non-negligible probability ε in solving the CDH problem.

Definition 3 (Decision Linear [5]). The Decision Linear problem is that,
given u, ua, v, vb, h, hc ∈ G for unknown a, b, c ∈ Z∗p, to output 1 if c = a + b
and output 0 otherwise.

We say that the (ε, t)-Decision Linear assumption holds in G if no t-time
algorithm has probability over half ε in solving the Decision Linear problem in
G. The decision linear assumption is proposed in [5] to prove the security of
short group signatures. It is also used in [7] and [15] for proving the security of
anonymous hierarchical identity-based encryption and obfuscating re-encryption
respectively.

3 Undeniable Signature Security Models

In this section we review the security notions and model of (convertible) undeni-
able signatures. Unforgeability and invisibility are popular security requirement
for undeniable signatures. Kurosawa and Heng [18] proposed another security
notion called impersonation. We will use the security model of [18], and extend
it to convertible undeniable signatures. The changes for convertible undeniable
signatures will be given in brackets.

3.1 Security Notions

An (convertible) undeniable signature scheme has the following algorithms:

– Setup. On input security parameter 1λ, outputs public parameters param.
– Key Generation. On input public parameters param, outputs a public key

pk and a secret key sk.
– Sign. On input public parameters param, a secret key sk and a message m,

outputs an undeniable signature σ.
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– Confirm/Deny. This is an interactive protocol between a prover and a ver-
ifier. Their common inputs are public parameters param, a public key pk, a
message m and a signature σ. The prover’s private input is a secret key sk.
At the end of the protocol, the verifier outputs 1 if σ is a valid signature of
m and outputs 0 otherwise.

(The following algorithms are for convertible schemes only.)
– Individual Conversion. On input public parameters param, a secret key

sk, a message m and a signature σ, outputs an individual receipt r which
makes it possible to universally verify σ.

– Individual Verification. On input public parameters param, a public key
pk, a message m, a signature σ and an individual receipt r, outputs ⊥ if r
is an invalid receipt. Otherwise, outputs 1 if σ is a valid signature of m and
outputs 0 otherwise.

– Universal Conversion On input public parameters param and a secret key
sk, outputs an universal receipt R which makes it possible to universally
verify all signatures for pk.

– Universal Verification. On input public parameters param, a public key
pk, a message m, a signature σ and an universal receipt R, outputs ⊥ if R
is an invalid receipt. Otherwise, outputs 1 if σ is a valid signature of m and
outputs 0 otherwise.

3.2 Unforgeability

Existential unforgeability against chosen message attack is defined as in the
following game involving an adversary A and a simulator S.

1. S gives the public keys and parameters to A. (For convertible schemes, S
also gives A the universal receipt R.)

2. A can query the following oracles:
– Signing queries: A adaptively queries qs times with input message mi,

and obtains a signature σi.
– Confirmation/disavowal queries: A adaptively queries qc times with in-

put message-signature pair (mi, σi). If it is a valid pair, the oracle returns
a bit µ = 1 and proceeds with the execution of the confirmation protocol
with A. Otherwise, the oracle returns a bit µ = 0 and proceeds with the
execution of the disavowal protocol with A.
(For convertible scheme, this oracle is not necessary as the universal
receipt is given.)

3. Finally A outputs a message-signature pair (m∗, σ∗) where m∗ has never
been queried to the signing oracle.

A wins the game if σ∗ is a valid signature for m∗.

Definition 4. A (convertible) undeniable signature scheme is (ε, t, qc, qs)-
unforgeable against chosen message attack if there is no t time adversary winning
the above game with probability greater than ε.
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3.3 Invisibility

Invisibility against chosen message attack is defined as in the following game
involving an adversary A and a simulator S.

1. S gives the public keys and parameters to A.
2. A can query the following oracles:

– Signing queries, Confirmation/disavowal queries: same as unforgeability.
– (For convertible schemes only.) Receipt generating oracle: A adaptively

queries qr times with input message-signature pair (mi, σi), and obtains
an individual receipt r.

3. A outputs a message m∗ which has never been queried to the signing oracle,
and requests a challenge signature σ∗ on m∗. σ∗ is generated based on a
hidden bit b. If b = 1, then σ∗ is generated as usual using the signing oracle,
otherwise σ∗ is chosen uniformly at random from the signature space.

4. A can adaptively query the signing oracle and confirmation/disavowal ora-
cle, where no signing query (and receipt generating query) for m∗ and no
confirmation/disavowal query for (m∗, σ∗) is allowed.

5. Finally A outputs a guessing bit b′

A wins the game if b = b′. A’s advantage is Adv(A) = |Pr[b′ = b]− 1
2 |.

Definition 5. A (convertible) undeniable signature scheme is (ε, t, qc, qr, qs)-
invisible if there is no t time adversary winning the above game with advantage
greater than ε.

3.4 Impersonation

Impersonation against chosen message attack is defined as in the following game
involving an adversary A and a simulator S.

1. S gives the public keys and parameters to A.
2. A can query the Signing oracle and Confirmation/disavowal oracle, which

are the same as the one in unforgeability.
3. Finally A outputs a message-signature pair (m∗, σ∗) and a bit b. If b = 1,
A executes the confirmation protocol with S. Otherwise A executes the
disavowal protocol with S.

A wins the game if S is convinced that σ∗ is a valid signature for m∗ if b = 1,
or is an invalid signature for m∗ if b = 0.

Definition 6. A (convertible) undeniable signature scheme is (ε, t, qc, qs)-
secure against impersonation if there is no t time adversary winning the above
game with probability at least ε.

Remark: For convertible schemes, if an adversary can forge an individual or
universal receipt, he can always convince a verifier in the interactive protocol, by
directly giving the receipt to him. Therefore the model of impersonation attack
already includes the security notion regarding receipts in convertible schemes.
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4 Basic Building Blocks

4.1 Waters Signature Scheme

Waters [27] presented a secure signature scheme based on CDH problem without
random oracles. The scheme is summarized as follows:

1. Gen. Randomly choose α ∈ Zp and let g1 = gα. Additionally, choose two
random values g2, u

′ ∈ G and a random n-length vector U = (ui), whose
elements are chosen at random from G. The public key is pk = (g1, g2, u

′,U)
and the secret key is gα2 .

2. Sign. To generate a signature on message M = (µ1, . . . , µn) ∈ {0, 1}n, pick
s ∈R Z∗p and output the signature as σ=(gα2 · (u′

∏n
j=1 u

µj

j )s, gs) with his
secret key gα2 .

3. Verify. Given a signature σ = (σ1, σ2) on message M = (µ1, . . . , µn) ∈
{0, 1}n, it outputs 1 if ê(g, σ1) = ê(g1, g2) · ê(u′

∏n
i=1 u

µi

i , σ2). Otherwise, it
outputs 0.

4.2 WI Protocol

We review the witness indistinguishable (WI) protocol for Diffie-Hellman (DH)
tuple and non-DH tuple from [18]. Let G be an Abelian group with prime order
p. Let L be a generator of G. We say that (L,Lα, Lβ , Lγ) is a DH tuple if γ = αβ
mod p. Kurosawa and Heng [18] proposed a WI protocol to prove if (L,M,N,O)
is a DH tuple or non-DH tuple using the knowledge of α (= logLM). For the
details of the definition and security model of WI protocol, please refer to [18]
for details. We summarize the protocols in table 1 and 2.

Prover Verifier

c2, d2, r
R← Zp

z′
1 = Ld2/Nc2

z′
2 = Md2/Oc2

z1 = Lr

1 z2 = Nr z1,z2,z
′
1,z
′
2−→

2
c←− c

R← Zp
c1 = c− c2 mod p

3 d1 = r + c1α mod p
c1,c2,d1,d2−→

c
?
= c1 + c2 mod p

Ld1
?
= z1M

c1

Ld2
?
= z′

1N
c2

Nd1 ?
= z2O

c1

Md2 ?
= z′

2O
c2

Table 1. WI protocol for DH tuple (L,M,N,O)
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Prover Verifier

c2, d
′
1, d

′
2, r, a, b

R← Zp
A′ R← G with A′ 6= 1

z′
1 = Md′1/(Od

′
2A′c2)

z′
2 = Ld

′
1/Nd′2

A = (Nα/O)r

z1 = Na/Ob

1 z2 = La/Mb A,A′,z1,z2,z
′
1,z
′
2−→ A

?

6= 1, A′
?

6= 1

2
c←− c

R← Zp
c1 = c− c2 mod p
d1 = a+ c1αr mod p

3 d2 = b+ c1r mod p
c1,c2,d1,d2,d

′
1,d
′
2−→
c

?
= c1 + c2 mod p

Nd1/Od2
?
= z1A

c1

Md′1/Od
′
2

?
= z′

1A
′c2

Ld1/Md2 ?
= z2

Ld
′
1/Nd′2 ?

= z′
2

Table 2. WI protocol for non-DH tuple (L,M,N,O)

5 Convertible Undeniable Signature Scheme

5.1 Scheme Construction

In this section, we present our convertible undeniable signature scheme. The
scheme consists of the following algorithms.

Setup. Let G,GT be groups of prime order p. Given a pairing: ê : G×G→ GT .
Select generators g, g2 ∈ G. Generator u′ ∈ G is selected in random, and a
random n-length vector U = (ui), whose elements are chosen at random from G.

Select an integer d as a system parameter. Denote ` = 2d and k = n/d. Let
Hj : {0, 1}n → Z∗` be collision resistant hash functions, where 1 ≤ j ≤ k.

Key Generation. Randomly select α, β′, βi ∈ Z∗p for 1 ≤ i ≤ `. Set g1 = gα,
v′ = gβ

′
and vi = gβi . The public keys are (g1, v

′, v1, . . . , v`). The secret keys are
(α, β′, β1, . . . , β`).

Sign. To sign a message m = (m1, . . . ,mn) ∈ {0, 1}n, denote m̄j = Hj(m) for
1 ≤ j ≤ k. The signer picks r ∈R Z∗p and computes the signature:

S1 = gα2 (u′
n∏
i=1

umi
i )r S2,j = (v′

∏̀
i=1

v
m̄i

j

i )r

The output signature is (S1, S2,1, . . . , S2,k).
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Confirm/Deny. On input (S1, S2,1, . . . , S2,k), the signer computes for 1 ≤ j ≤ k

L = ê(g, g2)
M = ê(g1, g2)

Nj = ê(v′
∏̀
i=1

v
m̄i

j

i , g2)

Oj = ê(v′
∏̀
i=1

v
m̄i

j

i , S1)/ê(S2,j , u
′
n∏
i=1

umi
i ). (1)

We have the 3-move WI protocols of the equality or the inequality of discrete
logarithm α = logLM and logNj

Oj in GT shown in table 1 and 2.

Individual Conversion. Upon input the signature (S1, S2,1, . . . , S2,k) on the
message m, the signer computes m̄1 = H1(m) and:

S′2 = S
1/(β′+

∑`
i=1 βim̄

i
1)

2,1

Output the individual receipt S′2 for message m.

Individual Verification. Upon input the signature (S1, S2,1, . . . , S2,k) for the
message m and the individual receipt S′2, compute m̄j = Hj(m) for 1 ≤ j ≤ k
and check if:

ê(g, S2,j)
?= ê(S′2, v

′
∏̀
i=1

v
m̄i

j

i )

If they are not equal, output ⊥. Otherwise compare if:

ê(g, S1) ?= ê(g1, g2) · ê(S′2, u′
n∏
i=1

umi
i )

Output 1 if the above holds. Otherwise output 0.

Universal Conversion. The signer publishes his universal receipt (β′, β1, . . .,
β`).

Universal Verification. Upon input the signature (S1, S2,1, . . . , S2,k) on the
message m and the universal receipt (β′, β1, . . . , β`), check if:

v′
?= gβ

′
vi

?= gβi for 1 ≤ i ≤ `

If they are not equal, output ⊥. Otherwise compute m̄j = Hj(m) for 1 ≤ j ≤ k
and compare if:

ê(g, S1) ?= ê(g1, g2) · ê(S1/(β′+
∑`

i=1 βim̄
i
j)

2,j , u′
n∏
i=1

umi
i )

Output 1 if the above holds. Otherwise output 0.
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5.2 Security Result

Theorem 1. The scheme is (ε, t, qs)-unforgeable if the (ε′, t′)-CDH assumption
holds in G, where

ε′ ≥ ε

4qs(n+ 1)

t′ = t+O
(
qsρ+ (n+ `)qsω

)
and Hj : {0, 1}n → Z∗` , where 1 ≤ j ≤ k, are some collision resistant hash
functions and ρ, ω are the time for an exponentiation in G and an addition in
Zp respectively.

Proof. Assume there is a (ε, t, qs)-adversaryA. We are going to construct another
PPT B that makes use of A to solve the CDH problem with probability at least
ε′ and in time at most t′.
B is given a CDH problem instance (g, ga, gb). In order to use A to solve for

the problem, B needs to simulates a challenger and the oracles for A. B does it
in the following way.

Setup. Let lp = 2qs. B randomly selects integer κ such that 0 ≤ κ ≤ n. Also
assume that lp(n+ 1) < p for the given values of qs, and n. It randomly selects
the following integers:

– x′ ∈R Zlp ; y′ ∈R Zp
– xi ∈R Zlp , for i = 1, . . . , n. Let X̂ = {xi}.
– yi ∈R Zp, for i = 1, . . . , n. Let Ŷ = {yi}.

We further define the following functions for binary strings m = (m1, . . . ,mn)
as follow:

F (m) = x′ +
n∑
i=1

ximi − lpκ and J(m) = y′ +
n∑
i=1

yimi

B randomly picks β′, βi ∈ Z∗p for 1 ≤ i ≤ `. Set v′ = gβ
′

and vi = gβi . B
constructs a set of public parameters as follow:

g, g2 = gb, u′ = g
−lpκ+x′

2 gy
′
, ui = gxi

2 g
yi for 1 ≤ i ≤ n

The signer’s public key is (g1 = ga, v′, v1, . . . , v`).
Denote G(m) = β′ +

∑`
i=1 βim

i. Note that we have the following equation:

u′
n∏
i=1

umi
i = g

F (m)
2 gJ(m), v′

∏̀
i=1

v
m̄i

j

i = gG(m̄j) for 1 ≤ j ≤ k

where m̄j = Hj(m) for 1 ≤ j ≤ k. All public parameters and universal receipt
(β′, β1, . . . , β`) are passed to A.
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Oracles Simulation. B simulates the oracles as follow:

(Signing oracle.) Upon receiving query for message mi = {m1, . . . ,mn}, although
B does not know the secret key, it still can construct the signature by assuming
F (mi) 6= 0 mod p. It randomly chooses ri ∈R Zp and computes the signature as

S1 = g
− J(mi)

F (mi)

1

(
g
F (mi)
2 gJ(mi)

)ri
, S2,j = (g

− 1
F (mi)

1 gri)G(m̄i,j)

where m̄i,j = Hj(mi) for 1 ≤ j ≤ k.
By letting r̃i = ri − a

F (mi)
, it can be verified that (S1, S2,1, . . . , S2,k) is a

signature, shown as follow:

S1 = g
− J(mi)

F (mi)

1 (gF (mi)
2 gJ(mi))ri

= g
− aJ(mi)

F (mi) (gF (mi)
2 gJ(mi))

a
F (mi) (gF (mi)

2 gJ(mi))−
a

F (mi) (gF (mi)
2 gJ(mi))ri

= g
− aJ(mi)

F (mi) ga2g
aJ(mi)
F (mi) (gF (mi)

2 gJ(mi))r̃i

= ga2 (u′
n∏
j=1

u
mj

j )r̃i

S2,j = (g
− 1

F (mi)

1 gri)G(m̄i,j) = (gri− a
F (mi) )G(m̄i,j) = gG(m̄i)r̃i = (v′

∏̀
w=1

v
m̄w

i,j
w )r̃i

B outputs the signature (S1, S2,1, . . . , S2,k). To the adversary, all signatures given
by B are indistinguishable from the signatures generated by the signer.

If F (mi) = 0 mod p, since the above computation cannot be performed (di-
vision by 0), the simulator aborts. To make it simple, the simulator will abort
if F (mi) = 0 mod lp. The equivalence can be observed as follow. From the as-
sumption lp(n + 1) < p, it implies 0 ≤ lpκ < p and 0 ≤ x′ +

∑n
i=1 ximi < p

(∵ x′, xi < lp). We have −p < F (mi) < p which implies if F (mi) = 0 mod p then
F (mi) = 0 mod lp. Hence, F (mi) 6= 0 mod lp implies F (mi) 6= 0 mod p. Thus the
former condition will be sufficient to ensure that a signature can be computed
without abort.

Output. Finally A outputs a signature (S∗1 , S
∗
2,1, . . . , S

∗
2,k) for message m∗. B

checks if F (m∗) = 0 mod p. If not, B aborts. Otherwise B computes m̄∗1 = H1(m∗)
and outputs

S∗1

S∗2,1
J(m∗)/G(m̄∗1)

=
ga2

(
u′
∏n
i=1 u

m∗i
i

)r
(
v′
∏`
i=1 v

m̄∗i1
i

)rJ(m∗)/G(m̄∗1)
=
ga2

(
gJ(m∗)

)r
grJ(m∗)

= gab

which is the solution to the CDH problem instance.

Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:
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1. Sign queries on message mi with F (mi) 6= 0 mod p.
2. Challenge message m∗ with F (m∗) = 0 mod p.

In order to make the analysis simple, we will bound the probability of a subcase
of this event. We define the events Ai, A∗ as follow:

A∗ : F (m∗) = 0 mod lp; Ai : F (mi) 6= 0 mod lp where i = 1, . . . , qs

The probability of B not aborting is

Pr[not abort] ≥ Pr
[ qs∧
i=1

Ai ∧A∗
]

The assumption lp(n+ 1) < p implies if F (m∗) = 0 mod p then F (m∗) = 0 mod
lp. In addition, it also implies that if F (m∗) = 0 mod lp, there will be a unique
choice of κ with 0 ≤ κ ≤ n such that F (m∗) = 0 mod p. Since κ, x′ and xi’s are
randomly chosen,

Pr[A∗] = Pr[F (m∗) = 0 mod p ∧ F (m∗) = 0 mod lp]
= Pr[F (m∗) = 0 mod lp] Pr[F (m∗) = 0 mod p | F (m∗) = 0 mod lp]

=
1
lp

1
n+ 1

We have:

Pr
[( qs∧

i=1

Ai|A∗
)]
≥ 1− qs

lp

By letting lp = 2qS , we have

Pr[not abort] = Pr
[ qs∧
i=1

Ai ∧A∗
]

= Pr[A∗] Pr
[ qs∧
i=1

Ai|A∗
]

≥ 1
lp(n+ 1)

(
1− qs

lp

)
=

1
4qs(n+ 1)

Time Complexity Analysis. The time complexity of B is determined as follows.
There are O(1) exponentiations of G element and O(n+ `) modular addition in
Zp in the signing stage. The time complexity of B is

t+O
(
qsρ+ (n+ `)qsω

)
ut
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Theorem 2. The scheme is (ε, t, qc, qr, qs)-invisible if the (ε′, t′)-decision linear
assumption holds in G, where

ε′ ≥ ε · 1
4(qs + 1)(n+ 1)(qs + qr)k

·
(

1− 1
qs + qr

)(qs+qr)k

t′ = t+O
(

(qs + qr)ρ+ qcτ +
(
nqs + `

)
ω
)

where Hj : {0, 1}n → Z∗` , where 1 ≤ j ≤ k, are some collision resistant hash
functions and ρ, τ , ω are the time for an exponentiation in G, an exponentiation
in GT and an addition in Zp respectively, under the assumption that ` > qs+qr.

Proof. Assume there is a (ε, t, qc, qr, qs)-adversary A. We are going to construct
another PPT B that makes use of A to solve the decisional linear problem with
probability at least ε′ and in time at most t′.
B is given a decisional linear problem instance (u, v, h, ua, vb, hc). In order to

use A to solve for the problem, B needs to simulates the oracles for A. B does
it in the following way.

Setup. Let lp = 2(qs+1). B randomly selects integer κ such that 0 ≤ κ ≤ n. Also
assume that lp(n + 1) < p for the given values of qc, qr, qs, and n. It randomly
selects the following integers:

– x′ ∈R Zlp ; y′ ∈R Zp
– xi ∈R Zlp , for i = 1, . . . , n. Let X̂ = {xi}.
– yi ∈R Zp, for i = 1, . . . , n. Let Ŷ = {yi}.

We further define the following functions for binary strings m = (m1, . . . ,mn)
as follow:

F (m) = x′ +
n∑
i=1

ximi − lpκ and J(m) = y′ +
n∑
i=1

yimi − lpκ

Then B randomly picks a set of distinct numbers S = {c∗1, . . . , c∗s} ∈ (Z∗` )s.
We further define the following functions for any integer m̄ ∈ Z∗`

G(m̄) =
∏
i∈S

(m̄− i) =
s∑
i=0

γim̄
i and K(m̄) =

∏̀
i=1,i/∈S

(m̄− i) =
`−s∑
i=0

αim̄
i

for some γi, αi ∈ Z∗p.
B constructs a set of public parameters as follow:

g = u, g2 = h, u′ = g−lk+x′

2 g−lk+y′ , ui = gxi
2 g

yi for 1 ≤ i ≤ n

The signer’s public key is:

g1 = ua, v′ = vα0gγ0 , vi = vαigγi for 1 ≤ i ≤ s, vj = vαi
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for s+ 1 ≤ i ≤ `. Note that we have the following equation:

u′
n∏
i=1

umi
i = g

F (m)
2 gJ(m), v′

`−1∏
i=1

v
m̄i

j

i = gG(m̄j)vK(m̄j) for 1 ≤ j ≤ k

where m̄j = Hj(m) for 1 ≤ j ≤ k. All public parameters are passed to A. B also
maintains an empty list L.

Oracles Simulation. B simulates the oracles as follow:

(Signing oracle.) Upon receiving query for message mi = {m1, . . . ,mn}, although
B does not know the secret key, it still can construct the signature by assuming
F (mi) 6= 0 mod p and K(m̄i,j) = 0 mod p, where m̄i,j = Hj(mi) for all 1 ≤ j ≤ k.
It randomly chooses ri ∈R Zp and computes the signature as

S1 = g
− J(mi)

F (mi)

1

(
g
F (mi)
2 gJ(mi)

)ri
, S2,j = (g

− 1
F (mi)

1 gri)G(m̄i,j) for 1 ≤ j ≤ k

Same as the above proof, (S1, S2,1, . . . , S2,k) is a valid signature. B puts (mi, S1,
S2,1, . . ., S2,k) into the list L and then outputs the signature (S1, S2,1, . . . , S2,k).
To the adversary, all signatures given by B are indistinguishable from the signa-
tures generated by the signer.

(Confirmation/Disavowal oracle.) Upon receiving a signature (S1, S2,1, . . . , S2,k)
for message m, B checks whether (m, S1, S2,1, . . . , S2,k) is in L. If so, B outputs
Valid and runs the confirmation protocol with A, to show that (L,M,Nj , Oj) in
equation (1) are DH tuples, for 1 ≤ j ≤ k. Notice that since B knows discrete
logarithm of Nj with base L ( = 1/G(m̄i,j)), it can simulate the interactive proof
perfectly.

If the signature is not in L, B outputs Invalid and runs the disavowal protocol
with A. By theorem 1, the signature is unforgeable if the CDH assumption holds.
B runs the oracle incorrectly only if A can forge a signature. However if one can
solve the CDH problem, he can also solve the decision linear problem.

(Receipt generating oracle.) Upon receive a signature (S1, S2,1, . . . , S2,k) for mes-
sage m, B computes m̄j = Hj(m) for 1 ≤ j ≤ k. If K(m̄j) 6= 0 mod p for any j, B
aborts. Otherwise B outputs S′2 = S

1/G(m̄1)
2,1 , which is a valid individual receipt

for the signature.

Challenge. A gives m∗ = (m∗1, . . . ,m
∗
n) to B as the challenge message. Denote

m̄∗j = Hj(m∗) for 1 ≤ j ≤ k. If F (m∗i ) = 0 mod p, J(m∗i ) 6= 0 mod p or G(m̄∗j ) 6=
0 mod p for any j, B aborts.

Otherwise, B computes:

S∗1 = hc, S∗2,j = vbK(m̄∗j )/F (m∗i ) for 1 ≤ j ≤ k

and returns (S∗1 , S
∗
2,1, . . . , S

∗
2,k) to A.
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Output. Finally A outputs a bit b′. B returns b′ as the solution to the decision
linear problem. Notice that if c = a+ b, then:

S∗1 = ga+b
2 = ga2 (gF (m∗i )

2 )b/F (m∗i ) = ga2 (u′
n∏
i=1

u
m∗i
i )b/F (m∗i ),

S∗2,j = vbK(m̄j
∗)/F (m∗i ) = (v′

∏̀
i=1

v
m̄j

i

i )b/F (m∗i ) for 1 ≤ j ≤ k

Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Sign queries on message mi with F (mi) 6= 0 mod p and K(m̄i,j) = 0 mod p
for all j, where 1 ≤ j ≤ k.

2. Receipt generating queries on message mi with K(m̄i,j) = 0 mod p, for all j,
where 1 ≤ j ≤ k.

3. Challenge message m∗ with F (m∗) 6= 0 mod p, J(m∗) = 0 mod p and G(m̄j
∗)

= 0 mod p for all j, where 1 ≤ j ≤ k.

In order to make the analysis simple, we will bound the probability of a subcase
of this event. We define the events Ai, A∗, Bi, C∗, D∗ as follow:

Ai : F (mi) 6= 0 mod lp where i = 1, . . . , qs
A∗ : F (m∗) 6= 0 mod lp
Bi : K(m̄i,j) = 0 mod p where j = 1, . . . , k and i = 1, . . . , qs + qr

C∗ : J(m∗) = 0 mod lp
D∗ : G(m̄j

∗) = 0 mod p where j = 1, . . . , k

The probability of B not aborting is

Pr[not abort] ≥ Pr
[( qs∧

i=1

Ai ∧A∗
)
∧
( qs+qr∧

i=1

Bi

)
∧ C∗ ∧D∗

]

Note that the events
(∧qS

i=1Ai ∧ A∗
)

,
(∧qs+qr

i=1 Bi

)
, C∗ and D∗ are all in-

dependent. The assumption lp(n + 1) < p implies if J(m∗) = 0 mod p then
J(m∗) = 0 mod lp. In addition, it also implies that if J(m∗) = 0 mod lp, there
will be a unique choice of κ with 0 ≤ κ ≤ n such that J(m∗) = 0 mod p. Since
κ, y′ and yi’s are randomly chosen,

Pr[C∗] = Pr[J(m∗) = 0 mod p ∧ J(m∗) = 0 mod lp]
= Pr[J(m∗) = 0 mod lp] Pr[J(m∗) = 0 mod p | J(m∗) = 0 mod lp]

=
1
lp

1
n+ 1
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We have:

Pr
[( qs∧

i=1

Ai ∧A∗
)]
≥ 1− qs + 1

lp

Pr
[( qs+qr∧

i=1

Bi

)]
≥
(

1− s

`

)(qs+qr)k

Pr[C∗] =
1
lp

1
n+ 1

Pr[D∗] =
(s
`

)k
By letting lp = 2(qs + 1), s = `

qs+qr
, we have

Pr[not abort] ≥ 1
4(qs + 1)(n+ 1)(qs + qr)k

·
(

1− 1
qs + qr

)(qs+qr)k

Time Complexity Analysis. The time complexity of B is determined as follows.
There are O(1) exponentiations of G element and O(n) modular addition in Zp
in the signing stage. There are O(1) exponentiations of GT element in the con-
firm/disavow stage. There are O(1) exponentiations of G element in the receipt
generating stage. There are O(n+ `) modular addition in Zp in both the setup
stage and the final stage. The time complexity of B is

t+O
(

(qs + qr)ρ+ qcτ +
(
nqs + `

)
ω
)

ut

Theorem 3. The scheme is (ε, t, qc, qs)-secure against impersonation if the (ε′,
t′)-discrete logarithm assumption holds in G, where

ε′ ≥ 1
2

(1− qs
2p

)(ε− 1
p

)2

t′ = t+O
(
qsρ+ qcτ + (n+ `)qsω

)
where Hj : {0, 1}n → Z∗` , for 1 ≤ j ≤ k, are some collision resistant hash
functions and ρ, ω are the time for an exponentiation in G and an addition in
Zp respectively.

Proof. (Sketch) Assume there is a (ε, t, qc, qs)-adversary A. We are going to
construct another PPT B that makes use of A to solve the discrete logarithm
problem with probability at least ε′ and in time at most t′. B is given a discrete
logarithm problem instance (g, ga). The remaining proof is very similar to the
proof of theorem 1 and also the proof in [18], so we sketch the proof here.
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With 1/2 probability, B sets g1 = ga and hence the user secret key is a. The
oracle simulation is the same as the proof in theorem 1, except that B now knows
b = loggg2. At the end of the game, A outputs a message-signature pair (m∗, σ∗)
and a bit b. For either b = 0/1, B can extract a with probability 1/2, as shown
in [18].

With 1/2 probability, B sets v′ = ga and hence B knows the signing key α.
B can simulate the oracles perfectly with α. At the end of the game, A outputs
a message-signature pair (m∗, σ∗) and a bit b. For either b = 0/1, B can extract
a+

∑`
i=1 βim̄

∗
1
i with probability 1/2, as shown in [18]. Hence B can find a.

Probability Analysis. For the simulation to complete without aborting, we re-
quire the following conditions fulfilled:

1. Sign queries on message mi with F (mi) 6= 0 mod p, during the case g1 = ga.
2. B can correctly extract a at the end of the game.

Similar to the previous proof, the first case appears with probability at least
1− qs

2p . By Reset Lemma, [18] shows that the latter case appears with probability
at least 1

2 (ε− 1
p )2. We have

ε′ ≥ 1
2

(1− qs
2p

)(ε− 1
p

)2

Time Complexity Analysis. The time complexity of B is determined as follows.
There are O(1) exponentiations of G element and O(n+ `) modular addition in
Zp in the signing stage. There are O(1) exponentiations of GT element and O(1)
modular addition in Zp in the confirm/disavow stage. The time complexity of B
is

t+O
(
qsρ+ qcτ + (n+ `)qsω

)
ut

Remarks. The security of our scheme is related to the length of our signature,
as shown in the security theorem. For example, the number of qs + qr query and
the value of k (the number of blocks) cannot be very large, in order to claim
an acceptable security. The number of qs + qr query allowed maybe set to 128
and the suitable value of k maybe set to be around 7, to gain a balance between
efficiency and security.

6 Conclusion

In this paper, we propose the first convertible undeniable signatures without
random oracles in pairings. Comparing with the part of undeniable signatures,
our scheme is better than the existing undeniable signatures without random
oracles [20] by using more standard assumption in the security proofs. Further-
more, our scheme is particularly suitable for applications that do not require a
large number of signing queries.
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