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Abstract. We present a technique to perform key distinguishing attacks on block
ciphers. The method is based on profiling the behaviour of a simple search algo-
rithm when it is applied to recover the key under which a set ofknown plaintexts
has been encrypted. Even though the probability of finding the correct key is
negligible, it is observed that the solutions (local optima) yielded by successive
searches can be highly dependent on the key, forming patterns that can be un-
equivocally (in a statistical sense) associated with each particular key. When a
cipher suffers from such a weakness, this provides us with aneffective procedure
to tell apart ciphertexts generated by different and unknown keys. We illustrate the
method by applying it to the TEA block cipher, for which attacks of this kind can
be successfully mounted against the full version (64 rounds) with extremely sim-
ple profiling methods. The technique itself is completely black-box and admits a
number of refinements. We suspect it might be applied to many other ciphers by
using the same or more complex profiling schemes.
Keywords:Block ciphers; Cryptanalysis; Key distinguishability; Tiny Encryption
Algorithm (TEA).

1 Introduction

Assume thatE : GF (2N ) × GF (2L) → GF (2M) is the encryption algorithm
of a block cipher. For any plaintextp and keyk, it is obvious that no informa-
tion regardingk should be obtained by analysing the ciphertextc = E(p, k).
Furthermore, ciphertexts should be indistinguishable; givenc1 = E(p, k1) and
c2 = E(p, k2), an attacker should not be able to find any property inc1 or c2

such that it helps to indicate that it is the same plaintext encrypted under differ-
ent keys, or to tell ciphertexts apart according to the key used. In practical terms,
ciphertexts should be indistinguishable from the output generated by a random
source.

Even when no other information can be derived (e.g. portionsof the key),
if an effective procedure to distinguish ciphertexts encrypted under different
keys exists, this can be seen as evidence of the cipher’s poorrandomisation
abilities. The previous observation is still valid if the attacker is allowed to know
(or even to choose) the plaintexts, having at his disposal a reasonable amount
of plaintext/ciphertext pairs (p/c-pairs) generated under different keys. Note,



however, that keys must remain secret – otherwise identifying the correct key is
trivial.

Apart from the classical statistical tests of randomness, the approaches used
to mount distinguishing attacks against ciphers vary considerably from one work
to another, often making use of some properties of the cipher’s internal compo-
nents. In what follows, we briefly describe the key idea behind the technique
proposed in this paper.

1.1 Findind the Key as an Optimisation Problem

The use of guided search techniques to find solutions to cryptographic problems
has been the subject of considerable interest in recent years. It has been used
successfully in component design such as Boolean functionsand S-boxes with
desirable properties. Almost all cryptanalysis applications of guided search have
been restricted to classical substitution and transposition ciphers; there have
been very few applications to modern full-strength cryptographic systems.

Formulating a problem as a search problem is fairly straightforward. First
the solution space is identified. (In our case this will be thekeyspace.) Next, a
fitness or cost is associated with each candidate solutionk. This is an evaluation
of how well a candidate solution matches the desired solution. The aim is either
to maximise this evaluation function or else minimise it. The termsfitness func-
tion and cost functionare used for maximisation and minimisation problems
respectively.

Next, a search strategy must be defined that explores the search space, using
the fitness or cost of considered solutions to determine which ones to consider
next. When a fitness (or cost) function is defined over each possible solution to a
problem, the space of solutions is endowed with a specificlandscapecomposed
of the fitness value taken by each candidate solution.

The specific shape exhibited by the landscape is intimately related to the
representation chosen for solutions, and the search operators and fitness function
defined. It is widely recognised that an appropriate fitness landscape is critical
in virtually any problem attacked by a search procedure. Factors such as the
degree of smoothness/ruggedness, the number of local optima per sphere of a
given radius, or its neutrality (number and spaciousness ofplateaus) exert a great
influence on the effectiveness of the search (see e.g. [3, 4, 15–17].)

In case of problems with relevance in cryptography (and particularly in
cryptanalysis), the study of fitness landscapes is a subjectthat has been scarcely
researched, perhaps because not many problems can bedirectly attacked by a
search technique. In some circumstances, the very design ofa primitive provides
theoretical guarantees that make useless any form of search, whilst in others the
search space is simply huge.



Suppose, for example, thatE is a block cipher,{p1, . . . , pn} a set of known
plaintexts, and

PC = {(pi, Ek(pi))}
n
i=1 (1)

the corresponding set of p/c-pairs created by using an unknown keyk. Assume
now that we face the problem of findingk using exclusively the set of p/c-pairs.
Given a candidate solutioñk, the simplest way of verifying whether it is correct
or not is by checking thatEk(pi) = E

k̃
(pi) for all pi. Equivalently, the problem

can be attacked using a cost function of the form:

C(k̃) =
n

∑

i=1

dH(Ek(pi), Ek̃
(pi)) (2)

dH being the Hamming distance between the ciphertexts. This provides us with
a very direct (and undoubtedly ineffective) way to reformulate the question as
an optimisation problem, using expression (2) as guidance mechanism for the
search. It should be clear that for any strong enough cipher,the probability of
finding the correct key (i.e. one with cost zero) through the previous scheme
should be negligible, regardless of what specific search technique is applied.
Furthermore, given a candidate solutionk̃, each of its neighbours (e.g. keys
with a low Hamming distance tõk) should have no relation with̃k insofar as
costs are concerned.

Assume that we have at our disposalT different sets of p/c-pairs generated
under the same keyk, and that for each one we search for the key as described
above. The result is a set of solutionsS(k) = {o1, . . . , oT } corresponding to
the local optima (minima, in this case) found by the search ineach problem
instance. We can pose now two initial questions:

1. For a given fixed keyk, is there any relation among the individual local
optimaoi ∈ S(k)?

2. Given two different keysk1 andk2, is it possible to distinguish between sets
S(k1) andS(k2)?

In this work, we report positive results concerning both previous questions.
Put simply, the main finding is that the set of local optima (tentative keys) ob-
tained by the search can be, in some cases, unequivocally associated with the
key under which the input has been generated. As such, this provides with the
basis to mount a distinguishing attack capable of identifying under which un-
known key a set of ciphertexts has been encrypted.

In the next section, we describe the specific search algorithm used in our
experimentation and the subsequent analysis performed on the set local optima.
Section 3 is devoted to discuss a practical application to the TEA block cipher,



for which good results have been obtained even for the full version (64 rounds.)
To our knowledge, these are the best results attained so far for this algorithm as
far as distinguishability is concerned. This fact makes us suspect that the attack
here described could be successfully applied to other ciphers. Moreover, the
analysis we have carried out on the set of local optima is extremely rudimentary.
More refined techniques based on the same principle might improve the attack.
Section 4 draws some conclusions regarding this aspect and identifies directions
for future research.

2 Analysis of Local Optima

In this section, we provide a general description of the technique proposed in
this work. We first describe the search algorithm used and then how the local
optima are summed up into profiles.

2.1 Search for a Local Optimum

Given a set{(p1, c1), . . . , (pn, cn)} of p/c-pairs, the algorithm starts with an ini-
tial keykopt set to zero and its associated cost, as defined by expression (2). The
search scans each key bit from left to right. At each positionb, a new candidate
key k̃opt is generated by flipping bitb in kopt. The costC̃ of the new key is again
obtained and, ifC̃ < C, key k̃opt is accepted as the best solution found so far
andC̃ as its associated cost. Otherwise, the bit flipping is reversed and the next
bit position is tried. The scanning procedure is repeated until no further single
bit flip can produce an improvement (decrease) in the cost. Since the number of
key bits considered for flipping is|k| the search terminates after|k| − 1 con-
secutive non-improving moves. A description of the algorithm is given by Fig.
1.

2.2 Profiling Local Optima

After runningT instances of the search withT different sets of p/c-pairs, each
local optima in the setS(k) = {o1, . . . , oT } can be seen as a derived key that
optimises the criterion defined above for each specific set ofp/c-pairs. If we
denote byoi(j), j = 1, . . . , |k| the value taken by bitj in local optimumoi,
a very simple way of summarizing all the information contained inS(k) is by
associating with keyk the profile:

P(k) = (n1, . . . , n|k|) nj =
T

∑

i=1

oi(j) (3)



Input: p/c-pairs{(p1, c1), . . . , (pn, cn)}
maximum number of consecutive non-improving moves (MAXNIM = |kopt| − 1)

Output: local optimumkopt

1. kopt ← 00 · · · 0

2. C ←

n
∑

i=1

dH

(

Ekopt(pi), ci

)

3. nim← 0
4. b← 0
5. while (nim < MAXNIM) do
6. Obtaink̃opt by flipping bitb in kopt

7. ComputeC̃ ←
n

∑

i=1

dH

(

Ek̃opt
(pi), ci

)

8. if (C̃ < C)

9. kopt ← k̃opt

10. C ← C̃

11. nim← 0
12. else
13. nim← nim + 1
14. end-if
15. b← (b + 1) mod |kopt|
16. end-while
17. return kopt

Fig. 1.Local search algorithm.

Such profiles are mere histograms whereinnj, thej-th component ofP(k),
counts how many times bitj is set to one in the derived keys obtained afterT
searches, each one with a different set of p/c-pairs.

Given two key profilesP(k1) = (n1, . . . , n|k|) andP(k2)(n
′
1, . . . , n

′
|k|), a

number of similarity measures can be defined. One of the simplest is the 1-norm
distance given by:

dist(P(k1),P(k2)) =

|k|
∑

i=1

|ni − n′
i| (4)

The previous method is extremely simple and only the values of individual
key bits in the local optima are taken into account. A slightly more sophisticated
analysis may incorporate correlations between bits too. The profile is then given
by a|k| × |k| symmetric matrix:

P(k) = [cij ] cij =
T

∑

t=1

ot(i)ot(j) −
ni · nj

T
(5)



wherein each elementcij measures the degree of correlation between bitsi and
j in the set of local optima attained. Valuesni and nj correspond to the bit
counts as defined by (3).

Even though more complex distances between matrices do exist, we will
simply use the sum of the absolute values between cells to measure the similarity
between two profiles. Formally, ifP(k1) = [cij ] andP(k2) = [c′ij ] are profiles,
the distance between them is given by:

dcorr(P(k1),P(k2)) =

|k|
∑

i=1

|k|
∑

j=i

|cij − c′ij | (6)

3 Key Distinguishability in TEA

The Tiny Encryption Algorithm (TEA) [18] was designed by Wheeler and Need-
ham and rapidly gained some popularity due to its remarkablysimple descrip-
tion –usually, a few lines of code. TEA is a Feistel network that operates on
64-bit message blocks and uses a 128-bit key. The suggested number of rounds
is 64, which are often implemented in pairs termed cycles; i.e. a cycle corre-
sponds to two rounds.

Early cryptanalysis on TEA attacked its extremely simple key schedule.
Kelsey et al. showed in 1996 the existence of equivalent keys[10], demonstrat-
ing that the effective key space is 126 bits instead of the theoretical 128 bits.
The same authors described in [11] related-key attacks against the cipher re-
quiring 223 chosen plaintexts with a time complexity of232. These weaknesses
led the authors to propose in [13] two variants, XTEA and Block TEA, and later
XXTEA [19].

In a series of works [5–8], Hernandez et al. described several approaches
aimed at discovering distinguishers for reduced round versions of TEA. It is
reported that TEA with 5 or fewer cycles can be effectively distinguished from
a random source with225 plaintexts. Subsequently, the authors suggest the use
of genetic algorithms to evolve distinguishers. The basic idea is to find a subset
of plaintexts such that it maps to a subset of ciphertexts in adetectable manner,
particularly by means of aχ2 test. The result is a distinguisher that is effective
over such a class. Distinguishers for up to 8 rounds are foundby using this
approach.

The resistance of TEA and its variants against several differential attacks
has been recently analysed. Moon et al. show in [12] an impossible differential
attack against 11-rounds TEA that requires252.5 chosen plaintexts and a time
complexity of 284. Hong et al. used in [9] truncated differentials against 17-
rounds TEA with 1920 chosen plaintexts and a time complexityof 2123.37. The



same previous attacks are carried out against XTEA. Surprisingly, TEA seems
to be stronger than XTEA from this point of view.

Next we present the results of our attack.

3.1 Analysis of Local Optima in TEA

The technique described in Section 2 has been applied to TEA with different
number of rounds. The experiments have been carried out on a Toshiba Satellite
laptop with a 1.6GHz Intel processor and 1Gb of RAM.

In the case of the local search algorithm, we used a number of 8consec-
utive non-improving moves (MAXNIM). Only the first 32 bits ofthe key are
explored, thus obtaining local optima of 32 components (theremaining 96 are
set to 0.) The exploration of the full 128 bits might conduce to a more refined
characterisation, though it has not proven necessary to obtain satisfactory results
in case of TEA.

In order to evaluate the distinguishing abilities of the technique, we have
performed the following experiment. Firstly,NK different keys are randomly
selected. The procedure described below is then done twice using this fixed set
of keys:

1. Fori = 1 . . . T do:
(a) Select randomly a numberNP of plaintexts.
(b) Encrypt the plaintexts using each key, obtainingNK sets of p/c-pairs.
(c) Forj = 1 . . . NK do:

i. Search for a local optimumoj
i for key j using the associated set of

p/c-pairs.
ii. Add oj

i to the setSj of local optima for keyj.
2. Forj = 1 . . . NK do:

(a) ProfileSj to obtainPj .

The result after the two runs is two sets of profiles,{P1(k1), . . . ,P1(kNK
)}

and{P2(k1), . . . ,P2(kNK
)}, corresponding to the sameNk keys. Note that, in

case of the cipher being an ideal mapping, the2NK profiles should have no
relationship among them.

Figure 2 depicts graphically an example of the 10 pairs of profiles obtained
for 10 keys by using 16-rounds TEA. Each profile has been generated from 0.5
millions of local optima, and corresponds to the histogram given by expression
3. For visual inspection, we have performed a classical multidimensional scal-
ing on the 32-components vectors (see e.g. [2, 14].) This is merely a principal
coordinates analysis, after which only the two principal components of the trans-
formed data (as given by the eigenvectors) are represented in a 2D map. Even
though there is some loss of information by drawing only two components, it
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Fig. 2. Results after profiling two times the same 10 different keys for 16-rounds TEA. Each
profile (32 dimensions) is reduced to its 2 principal components for its representation.

provides a rough picture of the profile distribution and, most importantly, the
distance among them.

It clearly appears that pairs of profiles corresponding to the same key do
have some link between them. This may support the hypothesisthat the pro-
files are dependent upon the key, being therefore an instrument to distinguish
between keys by only observing a sufficient amount of p/c-pairs.

In the next section we elaborate on this fact by presenting more detailed
experimentation.

3.2 Results for 16, 32 and 64 Rounds

The similarity between each profile in the first set and any other in the second
one can be measured by using one of the distances defined previously. Distances
can be grouped into aNK ×NK matrix,D = [dij ], wheredij measures the dis-
tance between profilesP1(ki) andP2(kj). Note that perfect distinguishability
is attained ifdii ≤ dij ∀j, i.e. whenever the nearest neighbour to a profile is that
corresponding to the same key.

We can conceive, however, a less strict measure of distinguishability (or,
equivalently, of classification accuracy) by considering how incorrectly classi-
fied a profile is. Given a profileP1(ki), this can be done e.g. by counting how
many incorrect profiles in the second set are closer toP1(ki) than to the correct



k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

k0 11426.5028983.44 26686.26 34960.53 30565.78 28377.99 27104.85 14168.92 32055.06 28621.90

k1 25170.4713100.6519690.10 35178.27 29396.72 15364.12 19349.01 28489.48 32805.76 29780.37

k2 25080.36 19482.1111815.9229232.44 24166.71 20238.88 14804.42 28434.69 26915.18 24084.09

k3 34040.78 34479.63 26563.9511118.5314695.92 34045.65 31004.96 36276.79 15509.54 16673.25

k4 30576.49 30459.02 24916.20 15641.2411891.4531478.17 29736.91 32897.09 12122.04 11956.59

k5 27194.61 16212.97 21018.17 34584.23 29832.5811746.0619489.04 29637.03 31277.04 29610.92

k6 25483.05 19745.69 16439.38 34052.74 29852.42 19375.5911685.0030484.56 32620.55 29503.50

k7 13508.91 30573.95 28392.69 37200.39 32530.52 28761.53 29048.2811127.9735364.12 32426.03

k8 34151.54 34187.37 27946.60 17430.96 15605.39 33022.10 32238.86 35294.3312629.3315554.54

k9 26907.18 28186.29 22239.36 17457.22 12668.74 27970.31 25084.88 29294.77 16076.3112427.14

N(k0) = [k0, k7, k2, k6, k5, k9, k1, k4, k8, k3] Rank(k0) = 0

N(k1) = [k1, k5, k6, k2, k0, k7, k4, k9, k8, k3] Rank(k1) = 0

N(k2) = [k2, k6, k1, k5, k9, k4, k0, k8, k7, k3] Rank(k2) = 0

N(k3) = [k3, k4, k8, k9, k2, k6, k0, k1, k5, k7] Rank(k3) = 0

N(k4) = [k4, k9, k8, k3, k2, k6, k1, k0, k5, k7] Rank(k4) = 0

N(k5) = [k5, k1, k6, k2, k0, k9, k7, k4, k8, k3] Rank(k5) = 0

N(k6) = [k6, k2, k5, k1, k0, k9, k4, k7, k8, k3] Rank(k6) = 0

N(k7) = [k7, k0, k2, k5, k6, k1, k9, k4, k8, k3] Rank(k7) = 0

N(k8) = [k8, k9, k4, k3, k2, k6, k5, k0, k1, k7] Rank(k8) = 0

N(k9) = [k9, k4, k8, k3, k2, k6, k0, k5, k1, k7] Rank(k9) = 0

Table 1.Distances and ranks among key profiles for 16-rounds TEA (0.5M local optima profiled).

one. More formally:

Rank(P1(ki)) = #{P2(kj), j 6= i, such that dij ≤ dii} (7)

In general, it can be considered that a statistically significant distinguisha-
bility is achieved if all the ranks are less thanNK/2.

Tables 1, 2 and 3 show the results for 16-, 32- and 64-rounds TEA with 10
keys. In each case, the matrix of distances is first showed, pointing out in bold
typeface the lowest distance in each row. The list of neighbours (in increasing
order with respect to distance) and the rank of each profile are shown below.
Note that we have relaxed the notation using justki to indicate the associated
profile.

Fig. 3 depicts graphically (in colour in the electronic version) the matrix
of distances for the three cases. The surface has been interpolated to facilitate
its visualisation. Note, therefore, that values out of the points (i, j), with i and



k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

k0 9718.56 24917.68 25601.96 20369.62 12729.52 25313.50 13881.03 21864.82 24072.76 13498.45

k1 23364.37 9348.07 10802.40 14323.62 30212.35 10447.73 29164.07 15212.13 10803.70 30240.25

k2 23473.0910337.5711312.87 14647.85 28865.43 11760.65 28298.17 16596.42 10564.97 29085.21

k3 22964.10 15348.32 14475.25 11317.56 24681.15 16160.85 25046.6510467.1815512.38 24319.00

k4 16743.99 30014.15 30418.82 25841.46 12047.57 31039.0611109.3426319.84 28222.44 11887.92

k5 23120.59 11212.83 10476.68 14595.04 29117.18 10339.96 28702.53 15177.829838.43 28828.52

k6 14891.92 29002.21 29351.05 23830.4510039.6429662.06 12769.38 25127.61 28020.75 11109.22

k7 22829.94 15690.95 14610.79 11331.41 23718.65 16359.46 23053.1111029.2815724.36 23523.99

k8 22685.17 10839.40 11046.13 14229.63 30367.2110708.3929529.86 15708.19 11197.12 29758.77

k9 15251.67 29960.44 29627.52 24200.13 11133.89 30074.75 11461.93 26005.15 28075.4110799.47

N(k0) = [k0, k4, k9, k6, k3, k7, k8, k1, k5, k2] Rank(k0) = 0

N(k1) = [k1, k5, k2, k8, k3, k7, k0, k6, k4, k9] Rank(k1) = 0

N(k2) = [k1, k8, k2, k5, k3, k7, k0, k6, k4, k9] Rank(k2) = 2

N(k3) = [k7, k3, k2, k1, k8, k5, k0, k9, k4, k6] Rank(k3) = 1

N(k4) = [k6, k9, k4, k0, k3, k7, k8, k1, k2, k5] Rank(k4) = 2

N(k5) = [k8, k5, k2, k1, k3, k7, k0, k6, k9, k4] Rank(k5) = 1

N(k6) = [k4, k9, k6, k0, k3, k7, k8, k1, k2, k5] Rank(k6) = 2

N(k7) = [k7, k3, k2, k1, k8, k5, k0, k6, k9, k4] Rank(k7) = 0

N(k8) = [k5, k1, k2, k8, k3, k7, k0, k6, k9, k4] Rank(k8) = 3

N(k9) = [k9, k4, k6, k0, k3, k7, k8, k2, k1, k5] Rank(k9) = 0

Table 2.Distances and ranks among key profiles for 32-rounds TEA (0.5M local optima profiled).

j integers, do not correspond to any actual result (in fact, itdoes not make any
sense to get a value for them.) When a perfect distinguishability amongNk keys
is attained, the main diagonal of the figure contains the minimum values of the
corresponding row and column (in blue in the image.)

In all the cases, the results correspond to profilings carried out according to
expressions (5) and (6). By using exclusively histograms, perfect distinguisha-
bility is obtained up to 32 rounds. Improvements are only reached when consid-
ering correlations among key bits as well.

We found in our experimentation that the numberT of local optima profiled
is a crucial parameter. As a general rule, results improve astheT increases; in
particular, the more the number of rounds, the more the number of local optima
required. For instance, 16-rounds TEA requires to profile around 500000 local
optima to attain perfect distinguishability (see Table 1.)The same number with
32-rounds TEA (Table 2) produces satisfactory results too,though it is necessary



k0 k1 k2 k3 k4 k5 k6 k7 k8 k9

k0 43287.8778446.92 76637.20 76495.57 78974.22 44800.44 47062.14 43882.57 77421.31 49743.48

k1 76291.84 45245.0341608.0544280.74 47962.54 73207.33 79043.87 75134.56 43500.85 77876.26

k2 76107.35 44025.05 43875.2743280.3848043.81 76970.40 80306.66 76486.40 46036.28 76007.87

k3 75930.0742992.6445455.68 43645.53 43173.39 80517.86 81635.80 78649.27 45071.15 76598.40

k4 72324.15 47993.7244946.5446125.68 47450.20 73717.86 78633.92 76179.49 47699.81 72544.78

k5 43703.74 77990.99 73619.92 76002.94 75498.64 43806.52 45620.93 43522.37 78164.1543473.78

k6 43869.26 72566.78 72328.10 72205.36 76865.30 43456.9641880.3243590.68 77658.13 45636.19

k7 46012.59 78663.52 77936.00 77118.60 77992.84 44143.39 42348.4041825.7181483.76 47466.31

k8 77035.48 43881.85 43373.04 43335.58 44683.38 79560.93 82668.50 78333.7741734.1973317.93

k9 45660.03 76732.59 71703.58 72773.38 75298.78 44192.78 43803.7342688.0074601.04 45757.45

N(k0) = [k0, k7, k5, k6, k9, k3, k2, k8, k1, k4] Rank(k0) = 0

N(k1) = [k2, k8, k3, k1, k4, k5, k7, k0, k9, k6] Rank(k1) = 3

N(k2) = [k3, k2, k1, k8, k4, k9, k0, k7, k5, k6] Rank(k2) = 1

N(k3) = [k1, k4, k3, k8, k2, k0, k9, k7, k5, k6] Rank(k3) = 2

N(k4) = [k2, k3, k4, k8, k1, k0, k9, k5, k7, k6] Rank(k4) = 2

N(k5) = [k9, k7, k0, k5, k6, k2, k4, k3, k1, k8] Rank(k5) = 3

N(k6) = [k6, k5, k7, k0, k9, k3, k2, k1, k4, k8] Rank(k6) = 0

N(k7) = [k7, k6, k5, k0, k9, k3, k2, k4, k1, k8] Rank(k7) = 0

N(k8) = [k8, k3, k2, k1, k4, k9, k0, k7, k5, k6] Rank(k8) = 0

N(k9) = [k7, k6, k5, k0, k9, k2, k3, k8, k4, k1] Rank(k9) = 4

Table 3.Distances and ranks among key profiles for 64-rounds TEA (2M local optima profiled).

to increaseT up to106 to achieve a rank of0 for all the keys (distances for this
value are not shown here.) In the case of 64-rounds,2 · 106 profiles are enough
to obtain significant results (see Table 3).

4 Conclusions

In this paper, we have introduced a novel technique to carry out distinguishing
attacks against block ciphers. Roughly, the key idea is to characterise the fit-
ness landscape induced by a search technique when applied torecover some un-
known information, e.g. the key. As presented here, the procedure used to profile
the set of local optima is quite rough. Averaging the obtained local optima into
a single vector results in a loss of huge amounts of information which might be
certainly useful. An indication of this is the improvement reached when mea-
suring correlations between key bits rather than simply computing distances
between profiles. More precise characterisations of the local optima (or, more
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Fig. 3.Distances and ranks among key profiles for 32-rounds TEA (2M local optima profiled and
2M local optima profiled).

generally, of the fitness landscape), along with more effective procedures for
measuring dissimilarity between profiles, are likely to improve considerably the
accuracy of the technique.

Much more interesting, however, would be to identify any form of corre-
lation between the local optima produced by the search and (some bits of) the
specific key used. Such correlations would be a remarkable result, for it could be
of help to recover portions of the key. Obtaining local optima correlated with the
sought secret has been used to break zero knowledge schemes [1]. Even though
the correlation there was very strong, correlations for block cipher analysis are
likely to be much more subtle. In the same paper the authors also show how
monitoring the trajectories taken by the search process canreveal even more in-
formation about the secret than the final optima. Again, suchapproaches deserve
further consideration.

The most obvious improvements to our work would appear to liein the
development of more sophisticated profiling and distance measures. Ours are
most rudimentary, but in a sense, this is a warning.We know of no cipher that
has been designed to be resilient against attacks of the formdemonstrated
in this paper. It has generally been believed (even by cryptography researchers
who use guided search regularly) that the highly discontinuous nature of modern
cryptographic systems will protect against guided search attacks. These beliefs
are well founded, in the sense that the search algorithms areextremely unlikely
to produce the real key as an output. However, it is simply an act of faith to
conclude thatthe application of search will produce no use information. As this
paper demonstrates, this may simply not be the case. These results suggest that
the cryptography community must seriously reconsider the potential of search
based techniques for modern-day cryptanalysis tasks. The authors are currently
investigating the application of similar techniqiues to DES and AES.
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