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Abstract. We present a technique to perform key distinguishing agtackblock
ciphers. The method is based on profiling the behaviour ahplsi search algo-
rithm when it is applied to recover the key under which a sénmivn plaintexts
has been encrypted. Even though the probability of findirgdbrrect key is
negligible, it is observed that the solutions (local opfimilded by successive
searches can be highly dependent on the key, forming patteat can be un-
equivocally (in a statistical sense) associated with eactiqular key. When a
cipher suffers from such a weakness, this provides us witffantive procedure
to tell apart ciphertexts generated by different and unknkeys. We illustrate the
method by applying it to the TEA block cipher, for which attaof this kind can
be successfully mounted against the full version (64 rouwith extremely sim-
ple profiling methods. The technique itself is completelgditbox and admits a
number of refinements. We suspect it might be applied to mémr @iphers by
using the same or more complex profiling schemes.

Keywords:Block ciphers; Cryptanalysis; Key distinguishabilitynyiEncryption
Algorithm (TEA).

1 Introduction

Assume thats : GF(2V) x GF(2F) — GF(2M) is the encryption algorithm
of a block cipher. For any plaintextand keyk, it is obvious that no informa-
tion regardingk should be obtained by analysing the ciphertext E(p, k).
Furthermore, ciphertexts should be indistinguishableemi; = E(p, k1) and
co = E(p,k2), an attacker should not be able to find any property;ior c;
such that it helps to indicate that it is the same plaintegtygted under differ-
ent keys, or to tell ciphertexts apart according to the keylub practical terms,
ciphertexts should be indistinguishable from the outputegated by a random
source.

Even when no other information can be derived (e.g. portairthe key),
if an effective procedure to distinguish ciphertexts eptag under different
keys exists, this can be seen as evidence of the cipher’s raodomisation
abilities. The previous observation is still valid if theésatker is allowed to know
(or even to choose) the plaintexts, having at his disposahaanable amount
of plaintext/ciphertext pairs (p/c-pairs) generated undiéferent keys. Note,



however, that keys must remain secret — otherwise identjfttie correct key is
trivial.

Apart from the classical statistical tests of randomnédssapproaches used
to mount distinguishing attacks against ciphers vary aw@rably from one work
to another, often making use of some properties of the cgpheernal compo-
nents. In what follows, we briefly describe the key idea beéhthe technique
proposed in this paper.

1.1 Findind the Key as an Optimisation Problem

The use of guided search techniques to find solutions to@gyaphic problems
has been the subject of considerable interest in recens.yktdras been used
successfully in component design such as Boolean funcéiodsS-boxes with
desirable properties. Almost all cryptanalysis applmadi of guided search have
been restricted to classical substitution and transjpositiphers; there have
been very few applications to modern full-strength crypépipic systems.

Formulating a problem as a search problem is fairly stréogivard. First
the solution space is identified. (In our case this will bekbgspace.) Next, a
fitness or cost is associated with each candidate solktidhis is an evaluation
of how well a candidate solution matches the desired solufibe aim is either
to maximise this evaluation function or else minimise itetarmsfitness func-
tion and cost functionare used for maximisation and minimisation problems
respectively.

Next, a search strategy must be defined that explores thehsgaace, using
the fitness or cost of considered solutions to determine lwbies to consider
next. When a fitness (or cost) function is defined over eachilplessolution to a
problem, the space of solutions is endowed with a spdeifidscapecomposed
of the fitness value taken by each candidate solution.

The specific shape exhibited by the landscape is intimatdted to the
representation chosen for solutions, and the search opggatd fitness function
defined. It is widely recognised that an appropriate fitheegdcape is critical
in virtually any problem attacked by a search proceduretdfasuch as the
degree of smoothness/ruggedness, the number of local ap@msphere of a
given radius, or its neutrality (number and spaciousneptatéaus) exert a great
influence on the effectiveness of the search (see e.g. [3:4,/71)

In case of problems with relevance in cryptography (andiqaderly in
cryptanalysis), the study of fithess landscapes is a suthiathas been scarcely
researched, perhaps because not many problems cdincb#y attacked by a
search technigue. In some circumstances, the very desgprahitive provides
theoretical guarantees that make useless any form of seendht in others the
search space is simply huge.



Suppose, for example, théatis a block cipher{ps, ..., p,} a set of known
plaintexts, and

PC ={(pi, Ex(pi)) Yiza )

the corresponding set of p/c-pairs created by using an unkhey k. Assume
now that we face the problem of findikgusing exclusively the set of p/c-pairs.
Given a candidate solutidh, the simplest way of verifying whether it is correct
or not is by checking thaky, (p;) = Ej (p;) for all p;. Equivalently, the problem
can be attacked using a cost function of the form:

n

C(k) =>_ du(Ex(pi), Ej,(p:)) (2)

i=1

dg being the Hamming distance between the ciphertexts. Thigges us with

a very direct (and undoubtedly ineffective) way to reforatalthe question as
an optimisation problem, using expression (2) as guidaneehanism for the
search. It should be clear that for any strong enough ciphemprobability of
finding the correct key (i.e. one with cost zero) through thevipus scheme
should be negligible, regardless of what specific seardhnigqae is applied.
Furthermore, given a candidate solutibneach of its neighbours (e.g. keys
with a low Hamming distance tb) should have no relation with insofar as
costs are concerned.

Assume that we have at our dispo%atiifferent sets of p/c-pairs generated
under the same key, and that for each one we search for the key as described
above. The result is a set of solutiof$k) = {o1,...,or} corresponding to
the local optima (minima, in this case) found by the searckaoh problem
instance. We can pose now two initial questions:

1. For a given fixed key, is there any relation among the individual local
optimao; € S(k)?

2. Given two different key&, andks, is it possible to distinguish between sets
S(k‘l) andS(krg)'?

In this work, we report positive results concerning bothvjmes questions.
Put simply, the main finding is that the set of local optimanigive keys) ob-
tained by the search can be, in some cases, unequivocatigiatesl with the
key under which the input has been generated. As such, thigdes with the
basis to mount a distinguishing attack capable of idemtgiyunder which un-
known key a set of ciphertexts has been encrypted.

In the next section, we describe the specific search algoritbed in our
experimentation and the subsequent analysis performeueset local optima.
Section 3 is devoted to discuss a practical applicationgolBA block cipher,



for which good results have been obtained even for the fudlia (64 rounds.)

To our knowledge, these are the best results attained sorfdri§ algorithm as

far as distinguishability is concerned. This fact makesuspect that the attack
here described could be successfully applied to other @phdoreover, the

analysis we have carried out on the set of local optima i€ty rudimentary.

More refined techniques based on the same principle mighoveghe attack.

Section 4 draws some conclusions regarding this aspectlantfies directions

for future research.

2 Analysis of Local Optima

In this section, we provide a general description of the neghe proposed in
this work. We first describe the search algorithm used and tiosv the local
optima are summed up into profiles.

2.1 Search for a Local Optimum

Given asef(p1,c1),. .., (pn,cn)} Of p/c-pairs, the algorithm starts with an ini-
tial key k,,+ set to zero and its associated cost, as defined by expre&3idrhe
search scans each key bit from left to right. At each posiiiamnew candidate
key l?:opt is generated by flipping bitin £,,;. The costC of the new key is again
obtained and, i’ < O, key l?;opt is accepted as the best solution found so far
andC as its associated cost. Otherwise, the bit flipping is redeend the next
bit position is tried. The scanning procedure is repeatdi nm further single
bit flip can produce an improvement (decrease) in the casteShe number of
key bits considered for flipping ig| the search terminates aftgrl — 1 con-
secutive non-improving moves. A description of the aldomtis given by Fig.
1.

2.2 Profiling Local Optima

After runningT instances of the search wiih different sets of p/c-pairs, each
local optima in the seb (k) = {o1,...,0r} can be seen as a derived key that
optimises the criterion defined above for each specific sgf@pairs. If we
denote byo;(j), j = 1,...,|k| the value taken by bij in local optimumo;,

a very simple way of summarizing all the information conéairin S(k) is by
associating with key: the profile:

T
Pk) = (ni,...,np)  nj= > 0i(j) ©)
=1



Input: p/c-pairs{(p1,ci1),..., (Pn,cn)}
maximum number of consecutive non-improving movBsAX NIM = |kopt| — 1)
Output: local optimumék:

1. kopt — 00---0

C — Z dH (Ekopt (p1)7 Ci)

2.
=1
3. nim «— 0
4. b0
5. while (nim < MAXNIM) do
6. Obtaink,,: by flipping bitb in k,,:
7. Computeﬁ «— Zd}{ (El_fopt (pi),ci)
=1
8. if (C<0O)
9. kopt — lzropt
10. C—C
11. nim «— 0
12. else
13. nim «— nim + 1
14. end-if
15. b (b+ 1) mod |kopt|
16. end-while

17. return kop:

Fig. 1. Local search algorithm.

Such profiles are mere histograms wherejnthe j-th component ofP(k),
counts how many times bijtis set to one in the derived keys obtained affer
searches, each one with a different set of p/c-pairs.

Given two key profilesP (k1) = (n1,...,n)) andP(ka)(ny, . .. ,n"k|), a
number of similarity measures can be defined. One of the sghjd the 1-norm
distance given by:

k|
dist(P(k1),P(k2)) = _ |n; —nj| 4)
=1

The previous method is extremely simple and only the valdi@sdividual
key bits in the local optima are taken into account. A sligihtlore sophisticated
analysis may incorporate correlations between bits toe.prbfile is then given
by a|k| x |k| symmetric matrix:

P =[] e = S olion(s) - "2 (5)
t=1



wherein each element; measures the degree of correlation between; tzitsd
J in the set of local optima attained. Valuges andn; correspond to the bit
counts as defined by (3).

Even though more complex distances between matrices dg @aswill
simply use the sum of the absolute values between cells teurethe similarity
between two profiles. Formally, ® (k1) = [c;;] andP(k2) = [c];] are profiles,
the distance between them is given by:

k| K|

dcorr(P(k1), P(ks)) = Z Z lcij — c;j (6)

i=1 j=i
3 Key Distinguishability in TEA

The Tiny Encryption Algorithm (TEA) [18] was designed by Wiher and Need-
ham and rapidly gained some popularity due to its remarksibfyple descrip-
tion —usually, a few lines of code. TEA is a Feistel networattbperates on
64-bit message blocks and uses a 128-bit key. The suggesteolen of rounds
is 64, which are often implemented in pairs termed cycles;d.cycle corre-
sponds to two rounds.

Early cryptanalysis on TEA attacked its extremely simplg kehedule.
Kelsey et al. showed in 1996 the existence of equivalent Ki€§js demonstrat-
ing that the effective key space is 126 bits instead of thertteal 128 bits.
The same authors described in [11] related-key attacksisigtie cipher re-
quiring 223 chosen plaintexts with a time complexity 2. These weaknesses
led the authors to propose in [13] two variants, XTEA and RI®EA, and later
XXTEA [19].

In a series of works [5—8], Hernandez et al. described skaprroaches
aimed at discovering distinguishers for reduced roundimessof TEA. It is
reported that TEA with 5 or fewer cycles can be effectivelstidiguished from
a random source with?> plaintexts. Subsequently, the authors suggest the use
of genetic algorithms to evolve distinguishers. The ba$#aiis to find a subset
of plaintexts such that it maps to a subset of ciphertextsdetactable manner,
particularly by means of & test. The result is a distinguisher that is effective
over such a class. Distinguishers for up to 8 rounds are fduyndsing this
approach.

The resistance of TEA and its variants against severalrdifteal attacks
has been recently analysed. Moon et al. show in [12] an iniiplesdifferential
attack against 11-rounds TEA that requi®$® chosen plaintexts and a time
complexity of 284, Hong et al. used in [9] truncated differentials against 17-
rounds TEA with 1920 chosen plaintexts and a time complexity?3-37. The



same previous attacks are carried out against XTEA. Simglys TEA seems
to be stronger than XTEA from this point of view.
Next we present the results of our attack.

3.1 Analysis of Local Optima in TEA

The technique described in Section 2 has been applied to TiEAdiferent
number of rounds. The experiments have been carried out ostabk Satellite
laptop with a 1.6GHz Intel processor and 1Gb of RAM.

In the case of the local search algorithm, we used a numbercoh8ec-
utive non-improving moves (MAXNIM). Only the first 32 bits diie key are
explored, thus obtaining local optima of 32 components (#maining 96 are
set to 0.) The exploration of the full 128 bits might condusetmore refined
characterisation, though it has not proven necessary &rokatisfactory results
in case of TEA.

In order to evaluate the distinguishing abilities of theht@que, we have
performed the following experiment. Firstlyyz different keys are randomly
selected. The procedure described below is then done t8ing this fixed set
of keys:

1. Fori=1...T do:
(a) Select randomly a numbéfp of plaintexts.
(b) Encrypt the plaintexts using each key, obtainivig sets of p/c-pairs.
(c) Forj =1... Nk do: '
i. Search for a local optimura! for key j using the associated set of
p/c-pairs.
i. Add o] to the setS; of local optima for key;.
2. Forj=1...Ng do:
(a) ProfileS; to obtainP;.

The result after the two runs is two sets of profilgB; (1), ..., Pi(kn,)}
and{Pz(k1),...,Pa2(kn, )}, corresponding to the samé, keys. Note that, in
case of the cipher being an ideal mapping, 28é; profiles should have no
relationship among them.

Figure 2 depicts graphically an example of the 10 pairs ofilpsoobtained
for 10 keys by using 16-rounds TEA. Each profile has been gésdifrom 0.5
millions of local optima, and corresponds to the histogravergby expression
3. For visual inspection, we have performed a classicalidioiensional scal-
ing on the 32-components vectors (see e.qg. [2, 14].) Thiseiely a principal
coordinates analysis, after which only the two principahponents of the trans-
formed data (as given by the eigenvectors) are represemte@D map. Even
though there is some loss of information by drawing only twmgponents, it
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Fig. 2. Results after profiling two times the same 10 different keys1f6-rounds TEA. Each
profile (32 dimensions) is reduced to its 2 principal compaséor its representation.

provides a rough picture of the profile distribution and, triogportantly, the
distance among them.

It clearly appears that pairs of profiles corresponding o same key do
have some link between them. This may support the hypotliesishe pro-
files are dependent upon the key, being therefore an instrutoedistinguish
between keys by only observing a sufficient amount of p/cspai

In the next section we elaborate on this fact by presentingerndetailed
experimentation.

3.2 Results for 16, 32 and 64 Rounds

The similarity between each profile in the first set and angroih the second
one can be measured by using one of the distances definedysigvDistances
can be grouped into &k x Nk matrix, D = [d;;], whered;; measures the dis-
tance between profileB; (k;) andP»(k;). Note that perfect distinguishability

is attained ifd;; < d;; Vj, i.e. whenever the nearest neighbour to a profile is that
corresponding to the same key.

We can conceive, however, a less strict measure of disshgbility (or,
equivalently, of classification accuracy) by considerimgvhincorrectly classi-
fied a profile is. Given a profil@; (k;), this can be done e.g. by counting how
many incorrect profiles in the second set are closé?i@:;) than to the correct



| | k‘o k‘l kz kg k’4 k’5 k6 k’? k78 k9
ko|11426.5028983.44 26686.26 34960.53 30565.78 28377.99 27104.85819A 32055.06 28621.90
k1(25170.4713100.6519690.10 35178.27 29396.72 15364.12 19349.01 28489.485328 29780.3|7
k2(25080.36 19482.111815.9229232.44 24166.71 20238.88 14804.42 28434.69 26915.184220)
k3|34040.78 34479.63 26563.99.118.5314695.92 34045.65 31004.96 36276.79 15509.54 166[73.25
k4|30576.49 30459.02 24916.20 15641 1¥891.4531478.17 29736.91 32897.09 12122.04 11956.59
k5(27194.61 16212.97 21018.17 34584.23 298321.5846.0619489.04 29637.03 31277.04 29610.92

ke|25483.05 19745.69 16439.38 34052.74 29852.42 193751685.0030484.56 32620.55 2950350

k7|13508.91 30573.95 28392.69 37200.39 32530.52 28761.58822811127.9735364.12 32426.03
kg|34151.54 34187.37 27946.60 17430.96 15605.39 33022.188382 35294.332629.3315554.54
k9|26907.18 28186.29 22239.36 17457.22 12668.74 27970.384288) 29294.77 16076.312427.14

N(ko) :[ k7, k27 k67 ks, kg7 k17 k4, ks, k3] Rank(ko) =0
N (k1) = [k, ks, ko, k2, ko, k7, ka, ko, ks, k3] Rank(ki) =0
N(kz) :[ ka, ]€17 k57 kg, ]€47 k07 ks, k7, k‘3] Rank(kz) =0
N(k;) :[ k4, kg, k:g, kg, kg, k:o, k)1, k5, k)7] Rank(k;;) =0
N(k4) :[ kg, kg, k:g, kg, kg, k:1, k)o, k5, k)7] Rank(k4) =0
N(ks) = [ks, k1, ko, k2, ko, ko, k7, ka, ks, k3] Rank(ks) =0
N(ka) :[ kz, k57 /(317 ko, kg7 /(347 k‘77 ks, ](33] Rank(ka) =0
N(k7) :[ ko, k27 /(357 ka, ]€17 k‘g7 k‘47 ks, ](33] Rank(k7) =0
N(ks) = |ks, ko, ka, ks, k2, ke, ks, ko, k1, k7] Rank(ks) =0
N(kg) :[ k4, kg, k:g, kg, kg, k:o, k)5, kl, k)7] Rank(kg) =0

Table 1.Distances and ranks among key profiles for 16-rounds TEA{0o8al optima profiled).

one. More formally:
Rank(P1(ki)) = #{Pa(k;), j # i, such that d;; < d;; } @)

In general, it can be considered that a statistically sicgnifi distinguisha-
bility is achieved if all the ranks are less thaf /2.

Tables 1, 2 and 3 show the results for 16-, 32- and 64-roundswikh 10
keys. In each case, the matrix of distances is first showedtipg out in bold
typeface the lowest distance in each row. The list of neighbd@in increasing
order with respect to distance) and the rank of each profdeshown below.
Note that we have relaxed the notation using jysto indicate the associated
profile.

Fig. 3 depicts graphically (in colour in the electronic ver§ the matrix
of distances for the three cases. The surface has beenaiatiegh to facilitate
its visualisation. Note, therefore, that values out of tbents (4, j), with ¢ and



| | k‘o k‘l kz kg k’4 k’5 k6 k’? k78 k9
ko| 9718.56 24917.68 25601.96 20369.62 12729.52 25313.50 13881.03428824072.76 13498.45
k1(23364.37 9348.07 10802.40 14323.62 30212.35 10447.73 29164.07 15212.133108 30240.25
k2|23473.0910337.5711312.87 14647.85 28865.43 11760.65 28298.17 16596.4241956 29085.2]1
k3|22964.10 15348.32 14475.25 11317.56 24681.15 16160.886X310467.1815512.38 24319.00
k4|16743.99 30014.15 30418.82 25841.46 12047.57 310301069.3426319.84 28222.44 1188792
k5|23120.59 11212.83 10476.68 14595.04 29117.18 10339.98228F 15177.829838.43 28828.52
ke|14891.92 29002.21 29351.05 23830 4H39.6429662.06 12769.38 25127.61 28020.75 11109.22
k7|122829.94 15690.95 14610.79 11331.41 23718.65 16359.4632BD11029.2815724.36 23523.9
kg|22685.17 10839.40 11046.13 14229.63 303671.@108.3929529.86 15708.19 11197.12 29758.77
k9|15251.67 29960.44 29627.52 24200.13 11133.89 30074.7611931 26005.15 28075.410799.47

©

N(ko) = []z(()7 k4, k97 k‘67 kg, ]€77 k‘87 k‘l, ks, k‘Q] Rank(ko) =0
N (k1) = [k, ks, k2, ks, ks, k7, ko, ke, ka, ko] Rank(ki) =0
N(kz) = [1617 k87 k27 /(357 kg, ]€77 k‘o7 k‘ﬁ, k4, k‘g] Rank(kz) =2
N(ks) = k7, ks, ko, k1, ks, ks, ko, ko, ka, k] Rank(ks) =1
N(k}4) = [k?g, kg, k47 k‘o, k:;, k7, k‘s, k‘1, kg, k‘5] Rank(k:4) =2
N(ks) = [ks, ks, k2, k1, k3, k7, ko, ke, ko, ka] Rank(ks) =1
N(ka) = [k4, k97 kﬁ7 k‘o7 kg, ]€77 k’87 k‘l, kz, ](35] Rank(ka) =2
N(k7) = [kv7 kg, k27 /(317 ks, k57 k‘o7 k‘ﬁ, kg, ](34] Rank(k7) =0
N(kjg) = [k?5, kl, k‘Q, ks, k:;, k7, k‘o, k‘s, kg, k‘4] Rank(kg) =3
N(kg) = [kg7 k4, k(j, k‘o, k:;, k7, k‘s, k‘Q, kl, k‘5] Rank(kg) =0

Table 2. Distances and ranks among key profiles for 32-rounds TEA{0o8al optima profiled).

j integers, do not correspond to any actual result (in fackpés not make any
sense to get a value for them.) When a perfect distinguistyahmong NV, keys
is attained, the main diagonal of the figure contains themmimn values of the
corresponding row and column (in blue in the image.)

In all the cases, the results correspond to profilings ahwig according to
expressions (5) and (6). By using exclusively histogranesfegt distinguisha-
bility is obtained up to 32 rounds. Improvements are onlghea when consid-
ering correlations among key bits as well.

We found in our experimentation that the numiteof local optima profiled
is a crucial parameter. As a general rule, results improwbe(®' increases; in
particular, the more the number of rounds, the more the nuwiftlecal optima
required. For instance, 16-rounds TEA requires to profiteiad 500000 local
optima to attain perfect distinguishability (see TableThg same number with
32-rounds TEA (Table 2) produces satisfactory resultsttamgh it is necessary



k’o k‘l kz kg k’4 k’5 k6 k’? k78 k9 |

ko
k1
ko
k3

;143869.26 72566.78 72328.10 72205.36 76865.30 434561880.3243590.68 77658.13 45636.

43287.8778446.92 76637.20 76495.57 78974.22 44800.44 47062.18243B77421.31 49743.48

76291.84 45245.081608.0544280.74 47962.54 73207.33 79043.87 75134.56 43500.866

76107.35 44025.05 43875.28280.3848043.81 76970.40 80306.66 76486.40 46036.28 760p7.87

75930.0742992.6445455.68 43645.53 43173.39 80517.86 81635.80 78649.2714H 76598.40
72324.15 47993.734946.5446125.68 47450.20 73717.86 78633.92 76179.49 47699.84470%
3

43703.74 77990.99 73619.92 76002.94 75498.64 43806.5204%8 43522.37 78164.143473.78

46012.59 78663.52 77936.00 77118.60 77992.84 44143.39841B41825.7181483.76 47466.3
77035.48 43881.85 43373.04 43335.58 44683.38 79560.93886 78333.741734.1973317.93
45660.03 76732.59 71703.58 72773.38 75298.78 44192.78348842688.0074601.04 45757.4
ko) = []z(()7 k7, k57 k‘67 kg, kg7 k‘27 k‘g, k1, k‘4] Rank(ko) =0
k1) = [k, ks, ks, k1, ka, ks, k7, ko, ko, k¢] Rank(k1) =3
ko) = ks, ke, ki, ks, ka, ko, ko, k7, ks, k¢] Rank(kz) =1
k?:;) = [k?l, k}4, k37 k‘s, kg, k}o, k‘g, k‘7, kg,, k‘s] Rank(k:;;) =2
k}4) = [k?g, k:;, k47 k‘s, kl, ko, k‘g, k‘5, k7, k‘s] Rank(k:4) =2
ks) = ko, k7, ko, ks, ke, k2, ka, ks, k1, ks] Rank(ks) =3
ka) = [ke7 ks, ]€77 k‘o7 kg, k37 /(327 k‘l, k4, k‘g] Rank(ka) =0
k7) = [kv7 ka, k57 k‘o7 kg, k37 /(327 k‘47 k1, k‘g] Rank(k7) =0
ks) = ks, ks, k2, k1, ka, ko, ko, k7, ks, ke¢] Rank(ks) =0
ko) = [k7, ke, ks, ko, ko, ko, ks, ks, ka, k1] Rank(ke) = 4

Table 3. Distances and ranks among key profiles for 64-rounds TEA @lloptima profiled).

to increasel’ up to10° to achieve a rank df for all the keys (distances for this

val

ue are not shown here.) In the case of 64-roupdd0° profiles are enough

to obtain significant results (see Table 3).

4

Conclusions

In this paper, we have introduced a novel technique to cartyistinguishing
attacks against block ciphers. Roughly, the key idea is toadterise the fit-
ness landscape induced by a search technique when appti@zbt@r some un-
known information, e.g. the key. As presented here, thequhae used to profile
the set of local optima is quite rough. Averaging the obtaileeal optima into
a single vector results in a loss of huge amounts of informnatrhich might be
certainly useful. An indication of this is the improvemeetiched when mea-
suring correlations between key bits rather than simply maing distances
between profiles. More precise characterisations of thal logtima (or, more

19
1

5



8- rounds TEA 16-rounds TEA 32-rounds TEA

N e A __ITT
N \l a'."\\\ -]l

Fig. 3. Distances and ranks among key profiles for 32-rounds TEA @&hlloptima profiled and
2M local optima profiled).

generally, of the fitness landscape), along with more effegirocedures for
measuring dissimilarity between profiles, are likely to e considerably the
accuracy of the technique.

Much more interesting, however, would be to identify anynfoof corre-
lation between the local optima produced by the search amdgdits of) the
specific key used. Such correlations would be a remarkabldtyéor it could be
of help to recover portions of the key. Obtaining local otiocorrelated with the
sought secret has been used to break zero knowledge schiniegdn though
the correlation there was very strong, correlations fockldpher analysis are
likely to be much more subtle. In the same paper the authers sdlow how
monitoring the trajectories taken by the search processasaal even more in-
formation about the secret than the final optima. Again, sygroaches deserve
further consideration.

The most obvious improvements to our work would appear tanliehe
development of more sophisticated profiling and distancasmes. Ours are
most rudimentary, but in a sense, this is a warnifg.know of no cipher that
has been designed to be resilient against attacks of the fordemonstrated
in this paper. It has generally been believed (even by cryptography rebees
who use guided search regularly) that the highly discootiisinature of modern
cryptographic systems will protect against guided seatietles. These beliefs
are well founded, in the sense that the search algorithmexairemely unlikely
to produce the real key as an output. However, it is simply @roafaith to
conclude thathe application of search will produce no use informatids this
paper demonstrates, this may simply not be the case. Thadésrsuggest that
the cryptography community must seriously reconsider thtergial of search
based techniques for modern-day cryptanalysis tasks. (thers are currently
investigating the application of similar technigiues to®&nd AES.
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