
A Fast Protocol for Computationally Private

Information Retrieval

Andy Parrish and Jonathan Trostle
Johns Hopkins University Applied Physics Laboratory

August 20, 2007

Abstract

We present a new private information retrieval (PIR) protocol. The protocol
is based on a single private, non-shared key cryptosystem; the security of
this cryptosystem is based on a new hardness (secret base) assumption. We
prove security for the secret base assumption in an extended generic group
model. We also show parameters that ensure security against a lattice-based
attack. We measure performance using the methodology in [10]; our scheme
is orders of magnitude faster than any existing scheme and faster than the
trivial protocol for the home user scenario.

1 Introduction

Private Information Retrieval (PIR) is any protocol that allows a database
user, or client, to obtain information from a database in a manner that pre-
vents the database from knowing which data was retrieved. Typically, the
database is modeled as an n-bit string and the user wants to obtain bit i in
the string, such that i remains unknown to the database. The trivial protocol
consists of downloading the entire database, which clearly preserves privacy.
The goal of PIR protocols is to obtain better performance (both compu-
tational and communication costs) than the trivial protocol, yet maintain
privacy.

1

1.1 Prior work

Chor [3] introduced information-theoretic PIR where the database is repli-
cated and the replicas are not allowed to communicate; they show that single
database information-theoretic PIR does not exist. Kushilevitz and Ostro-
vsky [6] presented the first single database computational PIR (cPIR) scheme
where the security is established against a computationally bounded adver-
sary. Their scheme is based on the quadratic residuosity assumption. More
generally cPIR schemes can be constructed based on homomorphic public
key cryptosystems. [5] showed how to protect database privacy as well. The
work in [1, 2, 7, 4] demonstrated schemes with polylogarithmic communi-
cation complexity. On the other hand, there has been little work aimed at
improving communication costs on the server (possibly since the server can-
not have better than Ω(n) computational complexity). Sion [10] presented
performance results claiming that all of the existing schemes are slower than
the trivial protocol.

1.2 Our results

Various cPIR protocols have been presented, all relying on known public key
cryptosystems. The entire field of cPIR has been criticized for being too
slow in principle, not just in practice [10]. We aim to counter such claims by
providing a significantly faster cPIR protocol. We do this by allowing several
speedups:

• Users may query several database entries simultaneously.

• Database entries may be viewed as numbers rather than bits.

• The protocol is secure in (Zm, +), allowing fast computation.

Although existing cPIR schemes are based on public key cryptosystems,
the public key is not used as such. In the existing schemes, the user encrypts
with their public key and decrypts the returned data with their private key.
Thus, the public key does not need to be known by outside parties. In our
scheme, we use a single key that is kept private by the user; it is not shared
with any other party.

A simplified, high level description of the idea behind our protocol is as
follows: the user picks some random secret exponents in a bounded range,

2

and picks a secret base number b, raising b to each of the exponents. These
values are sent to the database which then takes the product of the values
corresponding to the “1” bits in the database. The product is returned to
the user who then computes the discrete log (the group is selected as one in
which discrete logs can be efficiently computed). The sum of the exponents
corresponding to the “1” bits can be calculated from the discrete log since
the exponents are in a bounded range. Whether certain factors are present
in the sum then detemines the values of queried indices. If the group is Zm,
then the product corresponds to addition operations which gives very fast
computational performance on the server.

While the protocol will work in any group where discrete log can be
computed, we briefly describe it here in Zm.

1. The user selects a large number m, depending on the number of en-
tries in the database, n, the number of entries requested, r, and the
maximum possible value for entries in the database, N .

2. The user randomly selects a secret value b ∈ Z
∗
m, and

√
n secret coeffi-

cients {ei}, with the restriction that (a)
∑

ei < m, (b) the coefficients
for unrequested rows are multiples of N r, and (c) the coefficients for
requested rows have the form N l + alN

r, for some choice of l < r and
al.

3. The user sends {eib} to the database.

4. For each column, the database multiplies each eib by the corresponding
database entry and adds up all of the results (both modulo m), and
sends the total back to the user.

5. The user multiplies each of the results by b−1, and finds the requested
values in the base N digits of these quotients.

How large should the “large” number m be? For a given parameters

m, n, r, N as above, it takes
√

m√
n(N−1)Nr operations to break security. Thus,

for a security parameter of k, we should have

m ≈ 22k
√

n(N − 1)N r

However, to remain secure from lattice attacks, we need to increase m further.
Say we have a database of 240 32-bit integers, a security parameter of 80, and

3

would like to request one entry. This would require m to be around 1293
bits. To query more entries simultaneously, we need to increase m further –
see Table 1.

The paper is organized as follows: we present our protocol and establish
its correctness in Section 2. We give a definition for security and show a
possible attack in Section 3. In Section 4, we present an extension of the
generic group model, and we show that our protocol requires

√
p operations

in this model to obtain the secret base b, where p is the order of the group. We
describe how our protocol reduces to the problem of determining the secret
base. We also demonstrate a lattice attack against our protocol and give lower
bounds on the values for the group order in order to prevent this attack. The
basic idea here is that by increasing the group order, we increase the number
of vectors that can be returned by the LLL (lattice basis reduction) algorithm.
Therefore the adversary has a small probability of obtaining a vector with
the secret exponent values. In Section 5, we discuss communication and
computational complexity. We cover performance in Section 6. We conclude
in Section 7.

2 Our Protocol

We present our protocol in a more general group setting than Zm.
Let DB = (xi,j) be a database, viewed as a

√
n × √

n table of elements
of ZN . Let G = 〈g〉 be a group of order m relatively prime to N , in which
discrete log can be efficiently computed.

A user wants to query DB to learn the values of various entries, all from
rows i0, . . . , ir−1 in such a way that neither an eavesdropper nor DB itself
can determine which entries the user is querying.

The user picks a random y ∈ Z
∗
m, and computes his secret key b = gy.

Since y and m are relatively prime, b generates G. He then randomly picks
secret exponents e1, e2, . . . , e√n < m√

n(N−1)
satisfying the following:

1. If il is one of the queried rows, then eil = N l + ailN
r for some ail .

2. Otherwise, if i is an unqueried row, then ei = aiN
r for some ai.

Note that the restriction on the ei’s requires that each ai is bounded above
by m√

n(N−1)Nr .

The user then calculates bi = bei . He sends {bi} to DB.

4

For each column j, DB computes

Cj =

√
n
∏

i=1

b
xi,j

i

and sends these values to the user.
The user computes hj ≡ logb(Cj) mod m, and writes the result as

(z|m|,j · · · z1,jz0,j)N

in base N . The user concludes that

xi0,j = z0,j

xi1,j = z1,j

...

xir−1,j = zr−1,j

2.1 Correctness

Fix a column j. We omit the corresponding subscripts for simplicity. We
show that the protocol is correct for this column.

h = logb C = logb

(

k
∏

i=1

bxi
i

)

= logb

(

k
∏

i=1

bxiei

)

≡
k
∑

i=1

logb bxiei ≡
k
∑

i=1

xiei mod n

Because each xi ≤ N − 1, and ei < n
k(N−1)

, we see that

k
∑

i=1

xiei <

k
∑

i=1

(N − 1)
n

k(N − 1)
= n

This inequality tells us that the residue modulo n is the number itself, mean-
ing

h =
k
∑

i=1

xiei

Now, the user writes h = (zm · · · z1z0)N . Consider the base N represen-
tation of each ei. For 0 ≤ l < r, eil has a 1 in its (N l)s place. It follows
that xileil has a xil in its (N l)s place. Because eil is the unique exponent
with a non-zero digit in this position, we see that adding the xiei’s causes no
“carries.” From here, we see that the value of zl is precisely the value of xil .

5

3 Security

Fix r, n, N ∈ N — the parameters for a user to query information from r
rows of a

√
n × √

n database whose entries lie in ZN . Fix a group G = 〈g〉
of order m, where (m, N) = 1.

We define security as a game. An adversary provides two sets of r indices
each: i0, . . . , ir−1 ≤

√
n and j0, . . . , jr−1 ≤

√
n.

The game picks a random y ∈ Z
∗
m and calculates its random generator

b = gy. The game then picks random exponents e1, . . . , e√n < m√
n(N−1)

,

each a multiple of N r, and computes bi = bei, placing the results into an
array Q. Now, for each il sent by the adversary, the game picks a random
exponent fl < m√

n(N−1)
of the form N l + alN

r for some al, and computes

cl = bfl . An array Q0 is constructed which differs from Q only in the chosen

indices i0, . . . , ir−1, where the ithl entry is replaced by cl. Another array Q1

is constructed in the same way, using indices j0, . . . , jr−1. A random bit
z ∈ {0, 1} is chosen, and Qz is sent to the adversary.

The adversary wins the game if it outputs the value of z, correctly dis-
tinguishing between the two arrays.

The cPIR protocol is secure with the above parameters r, n, N, G when a
probabilistic polynomial time adversary can win this game with probability
no more than 1

2
+ǫ, where ǫ is a negligible function of |G| for any fixed r, n, N .

Probability is taken over the random choices made by the game as well as
the adversary.

To see why we require (m, N) = 1, suppose we allowed m and N to share a
nontrivial common divisor d. From here, we see that security can be easily
broken by calculating (bi)

m
d . Let i be an unqueried row, and j = i0 be the

exponent for the first queried row. Then

ei = aiN
r = a′

id and ej = 1 + ajN
r = 1 + a′

jd

for some ai, a
′
i, aj, a

′
j . Then we see that

(bi)
m
d = (ba′

id)
m
d = (bm)a′

i = 1

(bj)
m
d = (b1+a′

jd)
m
d = (b

m
d)(bm)a′

j = b
m
d 6= 1

This immediately identifies one of the queried bits, so the adversary can win
the security game.

6

3.1 A potential attack

Although the security of this protocol explicitly depends on determining
whether an exponent is a multiple of N r, a natural attack is to attempt
to find the secret base, b. An adversary who knows b can compute logb bi

to reveal each of the exponents, thus identifying the queried indices. One
approach to finding b is to pick a random x ∈ Zm and any index i, and
compute c = (bi)

x. The special form of the ei’s allows us to easily rule out
most any c 6= b by taking discrete logs with respect to c. Of course, each
attempt has a probability of 1

m
for finding b in this manner. We show how

to increase these chances to approximately
√

n(N−1)Nr

m
.

As before, the adversary picks a random x ∈ Zm and any index i, and
compute (bi)

x. He hopes to find bs−1

for some s ∈ {1, 2, . . . ,√n(N − 1)N r}.
Suppose he succeeds, and finds bs−1

for some unknown s. By taking the
discrete log of bi = bei with respect to bs−1

, the adversary finds numbers
of the form ei

s−1 ≡ eis mod m. He then calculates di ≡ (eis)N
−r mod m.

Assuming i is an unqueried index, we can write ei = aiN
r, and thus di ≡ ais.

If i is a queried index, then di has an effectively random value.
Note that, because ei = aiN

r < m√
n(N−1)

, we see that ai < m√
n(N−1)Nr .

Together with the bound on s, we get ais < m, meaning that di and ais are
equal, rather than just equivalent modulo m. The adversary can now take
several of these di’s and calculate their GCD. If the indices he uses for this
are unqueried, then we will get

gcd(d1, d2, . . .) = gcd(a1s, a2s, . . .) = s · gcd(a1, a2, . . .)

With high probability, the remaining GCD will be 1 meaning the adversary
learns s. From here, he computes (bs−1

)s = b, and learns every exponent.
Note that, in the game definition of security, the adversary can easily pick

unqueried indices to compute this GCD. In practice, only a small portion of
the rows will be queried, so an adversary who discovers bs−1

can find s —
and b — with high probability.

This attack leads to a good heuristic for picking m. There are
√

n(N −1)N r

possibilities for s. Not all of these will necessarily be invertible modulo m,
but we ignore this to err on the side of caution.

To reduce the probability of this attack succeeding, we want m√
n(N−1)Nr

— the average number of attempts before successfully finding a bs−1

— to be
prohibitively large.

7

4 An extended generic group model

We now prove the security of our protocol in the case of a prime order group.
To emphasize this, we write m = p. We prove this in two steps. First we
prove that it is difficult to discover the secret base. We then show that any
algorithm to break the security of the protocol can be used to find the base.

In the first step, we use a generic group model (GGM) with access to a
generic discrete log oracle. The oracle is generic in the sense that it returns
random strings corresponding to the answer, capturing the notion that taking
the discrete log of an group elements with bounded random exponents will
give random numbers. The adversary is allowed to do ordinary arithmetic
operations on the exponents and use them to exponentiate group elements.

4.1 Modified Protocol

Here we present a strictly stronger variation of the original protocol.
In the original protocol, the user computes bi = bei, and sends these

values to DB. In this variation, the user picks a random secret t ∈ Zn, and
computes bi = bt+ei and sends these instead. For each row j, DB computes
Cj just as before, but also returns

sj =

k
∑

i=1

xi,j

When processing a row, the user now computes

logb Cj = logb

(

k
∏

i=1

(bi)
xi,j

)

= logb

(

k
∏

i=1

bxi,j(ei+t)

)

=
k
∑

i=1

xi,j(ei+t) = hj +sjt

Here, hj is defined as in Section 2. From this point, the user knows sj and t,
so he can find hj and learn the queried values from DB.

Note that this variation eliminates the possibility of the GCD attack given
in Section 3.1. Our security analysis will be carried out on this more general
protocol (the original protocol corresponds to the t = 0 case).

4.2 Security in the Extended Generic Group Model

8

Theorem 4.1 Let p be a large prime number, and G be a group of order p
with random non-identity element b. Let n, N, r be as in the protocol, and
B = ⌊ p√

n(N−1)Nr ⌋ be the upper bound on the values for the ai’s used in the

protocol. If A is any algorithm that makes at most l oracle queries, then the
probability that the adversary ever produces any group element equal to b is
O(l2

p
).

It follows from this theorem that, if the adversary is to find the secret
base b with probability bounded away from zero, then he must make Ω(

√
p)

oracle queries.
In order to prove this, we need the following fact from [8]:

Lemma 4.2 If f ∈ Zp[X1, X2, . . . , Xk] is any polynomial of degree d, and
each Xi is restricted to at most B values, then the probability that a random
assignment of the Xi’s is a root of f is at most d

B
.

Proof: Let i0, . . . ir−1 be the queried indices. Let X1, . . . , X√
n be inde-

terminants in Zp, referred to simultaneously as X. Let Z be an additional
indeterminate.

The game maintains four lists:

• A list of rational functions E1, . . . , Et over Zp, representing the values
exponents of b. The game begins with t =

√
n, so that, when il is

a queried index, Eil(X) = N l + N rXil + Z. Likewise, when i is an
unqueried index, Ei(X) = N rXi + Z. Note that, for all i ≤ √

n, bEi

corresponds exactly to bi in the protocol.

• A list of random strings σ1, . . . , σt ∈ {0, 1}∗, satisfying σi = σj precisely
when Ei = Ej . Each σi corresponds to bEi .

• A list of rational functions h1, . . . , hs over Zp, initially empty. Each hi

represents the answer to a discrete log and other arithmetic query.

• A list of random strings τ1, . . . , τs ∈ {0, 1}∗, satisfying τi = τj precisely
when hi = hj . Each τi corresponds to hi.

At the start of the game, the adversary receives σ1, . . . , σ√
n. The following

queries are allowed:

9

• Group operation — The adversary gives two indices i and j, and a bit
z. The game computes:

Et+1 = Ei + (−1)zEj

and stores it on the list. If Et+1 = Ek for some k ≤ t, then it sets
σt+1 = σk. Otherwise, it generates a new random string σt+1 distinct
from σ1, . . . , σt. Output σt+1 to the adversary.

• Discrete log — The adversary gives two indices i and j. The game sets
hs+1 = logbEi (b

Ej) ≡ Ej

Ei
(mod m). If hs+1 = hk for some k ≤ s, then

it sets τs+1 = τk. Otherwise, it generates a new random string τs+1

distinct from τ1, . . . , τs. Output τs+1 to the adversary.

• Exponentiate — The adversary gives two indices i and j. The game
computes Et+1 = hj · Ei. This is the exponent of (bEi)hj . If Et+1 = Ek

for some k ≤ t, then it sets σt+1 = σk. Otherwise, it generates a
new random string σt+1 distinct from σ1, . . . , σt. Output σt+1 to the
adversary.

• Arithmetic — The adversary gives two indices i and j, and an operation
⋄ ∈ {+,−,×,÷} The game computes hs+1 = hi ⋄ hj If hs+1 = hk

for some k ≤ s, then it sets τs+1 = τk. Otherwise, it generates a
new random string τs+1 distinct from τ1, . . . , τs. Output τs+1 to the
adversary.

If any of the operations involve dividing by 0, the game returns ⊥ and does
not store anything from that query.

When the adversary’s algorithm terminates, the game randomly selects
x1, . . . , x√

n, and z ∈ Zp, instantiations of X1, . . . , X√
n, and Z. The adversary

wins if any of these conditions are met:

• There is an index i such that Ei(x, z) = 1. This means that the adver-
sary found b.

• There are indices i, j such that Ei 6= Ej , but

Ei(x, z) = Ej(x, z)

In this case, the game incorrectly told the adversary that two group
elements were different when they were actually the same.

10

• There are indices i, j such that hi 6= hj, but

hi(x, z) = hj(x, z)

In this case, the game incorrectly told the adversary that the results of
two discrete log or arithmetic operations were different when they were
actually the same.

• For some i ≤ s, hi(x, z) is undefined. This happens when the adversary
asked the game to take a discrete log with respect to the identity, or
to otherwise divide by zero, but the game returned an answer.

At termination, the elements on the group exponent list are of two types:
E(x, z) = p(x, z) where p is a linear polynomial, and E(x, z) = p(x, z)R(x, z)
where p is a linear polynomial and R is a rational function.

Consider this second class of elements where E(x, z) is nonzero. Mul-
tiplication by any of the rational functions (as a result of exponentiation
operations) creates a new random element on the interval [0, n), except the
number of possible values is lower bounded by B. All of these elements are
distinct, so all are distributed throughout the interval, on a set S of points
where |S| ≥ B. We can show this last claim using a simple inductive ar-
gument. Thus the probability that any of these exponents in the second
class is equal to 1 is bounded by 1/B. We now consider the exponents in
the first class. Here we apply the lemma from [8] (Lemma 4.2) and see that
the probability that any of these exponents equals 1 is bounded by 1/B. So
the probability that all exponents on the group list are different from 1 is
(1 − 1/B)r.

We now consider the case where Ei(x, z) = Ej(x, z) for some i and j
where i 6= j. If Ei and Ej are exponents in the first class, then Lemma 4.2
again applies, so the probability of this event is bounded by 1/B. Now
suppose Ei = p is in the first class, and Ej = f/g is in the second class.
Clearly not all terms include every xi, otherwise we wouldn’t have a root.
Let x1 not be included in some term, but present in others. Then we can view
h(x, z) = pg−f as a polynomial in a single variable x1, with nonzero constant
term, and root x1. We can show that the constant term takes on at least
B uniformly distributed different values (factor out one xi and set the other
xi’s and z to arbitrary nonzero values). Therefore Prob(h(x, z) = 0) ≤ 1/B.

Now consider the case where Ei and Ej are both exponents in the second

class. The same argument applies as in the preceding case. There are
(

r
2

)

≈ r2

2

11

such pairings, so the probability that all values are distinct is

(

1 − 1

B

)
r2

2

.

The case where hi(x, z) = hj(x, z) is proved in a similar manner; we get
(

1 − 1

B

)
s2

2

as the probability that all such pairs are distinct.

Also, hi(x, z) is always defined since the group has prime order.
Multiplying all of these together, we get roughly

P (Adversary wins) ≤ 1 −
(

1 − 1

B

)r2+s2

≈ (r2 + s2)/B

This last value is O(l2

p
).

4.3 Reduction of security to finding the secret base

In this section we show that, when DB is viewed as a table of bits, corre-
sponding to N = 2, any attack which can break security can be modified
to find the secret base, already proven difficult. A similar reduction would
work for any small value for N , so long as it is reasonable to perform O(N)
additions.

In this section we show the security of our protocol in the case of N =
2, r = 1, meaning the entries of DB are bits and the user requests a single
entry. A successful attack in this case is one which, given be for some e <

m√
n(N−1)

= m√
n
, can determine whether e is even or odd with a probability

1
2

+ 1
f(log m)

, where f is a polynomial, and the probability is taken over the
choice of b, e, and and coin flips made by the oracle.

We say that such an oracle is reliable when it determines even/odd with
neglibible error, and faulty otherwise.

We will show how to use a reliable even/odd oracle to learn the secret base.
Afterward, we show how turn a faulty oracle into one which is reliable for
our purposes. Finally, we use the security result from Section 4 to conclude
that our protocol is secure.

Theorem 4.3 An adversary who has access to a reliable even/odd oracle
can find the secret base b with high probability, using O(log m) oracle calls
and O(log2 m) group operations.

12

Proof sketch: Let m, n, e1, . . . , e√n, b, b1, . . . , b√n all be as defined in the
protocol.

Fix an integer c, and pick 2c random group elements with even exponents
from {b1, . . . , b√n}. Written as bi = bei , each of the corresponding exponents
is less than B = m√

n
.

For each selected bi, we calculate
√

bi = b
ei
2 . Note that, since 1

2
≡ m+1

2

mod m, each of these calculations takes about log m group operations using
fast exponentiation.

Successively cut each exponent in half until the result is odd. Since each
exponent was originally less than B, we can bound each of the exponents
above by 2−sB, where s is the number of times it has been cut in half.

Given bx, by, with x, y both odd and less than 2−sB, we multiply them and
raise the result to the 1

2
power to get b

x+y
2 , which is still less than 2−sB. With

probability 1
2
, this number will be even, so we make the exponent smaller.

We repeat this process until we find b = b1.
After cutting the original exponents in half, we expect about c odd ex-

ponents less than B
2

(with the others bounded even lower). We would like to
maintain this number of distinct exponents at each level. With c exponents,
there are

(

c
2

)

≈ c2

2
possible values for x+y

2
as above. About half of these will

be even, and a quarter can be cut in half more than once. This gives roughly
c2

8
smaller odd exponents, though some of them may be equal. To give a

much higher chance of getting c distinct smaller exponents, we use c2

8
> 10c.

This suggests c should be around 80. Note that, as the bounds on the ex-
ponents become small, finding distinct exponents becomes impossible, since
(for example) there are only 5 odd numbers less than 10, meaning a search
for 80 of them would be fruitless. Fortunately, if we run out of exponents for
this reason, the last exponents found will still be bounded above by around
c. Let bx be such a group element. Then we can exhaustively test for the
secret base, beginning with bx, then b

x
3 , b

x
5 , . . ., until it is found.

In order to get to b, we need to cut the exponents in half log B times. For
each step, we need to do about c2 oracle calls, and c2 log m group operations.
We must repeat the process log B = log m√

n
times to force an exponent to

be 1. This gives us the promised O(log m) oracle calls and O(log2 m) group
operations.

To complete the reduction, we explain informally how a faulty oracle can
be used to create an oracle which is reliable for our purposes. This would be

13

trivial if even/odd queries were randomly self-reducible, We show that the
problem is self-reducible, but not every reduction is possible.

Suppose we have access to a faulty oracle which, given be for some e < B
determines even/odd with probability 1

2
+ 1

f(log m)
for some polynomial f .

Then, if e is small enough, the oracle can also accept b3e, b5e, and more, each
preserving the parity of e.

Specifically, if e < 2−sB, we have 2s−1 equivalent exponents to query —
e, 3e, 5e, . . . , (2s − 1)e — so random reductions among these can be used to
bolster confidence in the oracle. Once this 2s−1 grows larger than f(log m),
the adversary can decide with high confidence whether a number is even or
odd by making queries to a random selection of these.

Thus, after the exponents decrease to below B
f(log m)

, the faulty oracle can
be used as a reliable one. To get to this point in the reduction, it takes
O(log f(log m)) oracle calls. Since the oracle is accurate with probability
1
2

+ 1
f(log m)

we can repeat the entire reduction 2O(log f(log m)) = O(f(logm))
times, so that we can expect at least one of them to correctly perform until
the oracle becomes reliable.

All told, each call to the reliable oracle takes f(log m) calls to the faulty
oracle, and the reduction above is repeated O(f(logm)) times, meaning the
complete reduction takes O(f(logm)2 log m) oracle calls and O(f(log m) log2 m)
group operations, which are both polylogarithmic in m.

So how hard is it to break the security of our protocol? We know that, if m
is prime, it takes Ω(

√
m) group operations for an adversary to find the secret

base. Taken together, it takes Ω(
√

m−f(log m) log2 m
f(log m) log m

) = Ω(m
1

2
−ǫ) operations to

determine even/odd. Because this is exponential in |m|, we conclude that
our protocol is secure.

4.4 A lattice-based attack

The GGM, and our extension of it, rules out some attacks against our scheme.
In particular, it rules out attacks where the group elements are treated in an
opaque manner by the adversary. In a lattice attack, the group elements are
treated as real numbers, and the resulting vectors are subjected to a distance
metric (a lattice is the set of integral linear combinations of a set of basis
vectors from Rn). Here we show an attack on our algorithm based on the
LLL lattice reduction algorithm. This attack will lead to a necessary lower

14

bound for the choice of m.
Let G, m, n, N, r, e1, . . . , e√n, b, b1, . . . , b√n all be as defined in the modified

protocol. Define B = m√
n(N−1)Nr .

Recall that, for the protocol, it is required that discrete log is efficiently
computable in G. Thus, for each i, we can compute

xi = logb1 bi = logb1 bei+t ≡ (ei + t) logb1 b mod m

Letting x = logb1 b, we see that xi ≡ (ei + t)x mod m. Next, to get rid of t,
we calculate

y′
i ≡ xi − x1 ≡ (ei + t)x − (e1 + t)x ≡ (ei − e1)x mod m

Thus y′
i = (ei − e1)x + kim for some ki ∈ Z. The use of e1 is of course

arbitrary — we use 1 as a convenience, but treat it as an arbitrary unqueried
index.

Now, fix a number c with 1 < c ≤ √
n, and randomly select i1, i2, . . . , ic ≤√

n, unqueried indices from the protocol. Then each ei is a multiple of N r,
so let

yij =
y′

ij

N r
≡ (aij − a1)x mod m

where a1, ai1 , . . . , aic < B are the random numbers chosen by the user.
We now define the following vectors in Z

c:

v0 = (yi1 , yi2, . . . , yic)

v1 = (m, 0, . . . , 0)

v2 = (0, m, . . . , 0)

...

vc = (0, 0, . . . , m)

We are interested in the shortest vector in the lattice spanned by these
c + 1 vectors, in the Euclidean norm.

Let z ≡ x−1 mod m. Then

zv0 = (zyi1 , zyi2 , . . . , zyic) = (ai1 − a1 + k′
1m, . . . , aic − a1 + k′

cm)

for some constants k′
1, . . . , k

′
c ∈ Z.

15

Since v1, . . . ,vc allow us to remove any multiples of m, we see there is a
vector w in the lattice given by

w = (ai1 − a1, . . . , aic − a1)

Since 0 ≤ ai < B, we see that |aic − a1| < B. Thus,

‖w‖ =

(

c
∑

j=1

(aij − a1)
2

)
1

2

< B
√

c

Of course, if the adversary learns the vector w, she learns the exponents
of known group elements. By exponentiating any of these elements, she can
easily find b. Also, if the adversary learns a small multiple of w, then she
can compute the gcd to find the multiple and therefore find w.

The LLL algorithm, with an input of c + 1 vectors, is guaranteed to return
a vector z such that, for every non-zero vector x in the lattice,

‖z‖ ≤
(

2√
3

)c

‖x‖

Now, looking at the lattice in (Zm)c, we see that v0 is the only basis vector
different from 0. Thus, every vector has the form λv0 for some λ ∈ Zm. Thus,
there are only m− 1 non-zero vectors in the lattice when reduced modulo m
— v0, 2v0, . . . , (m − 1)v0. We use ‖u‖∗ to refer to the norm of the shortest
vector which is congruent to u modulo m. For any 1 ≤ i ≤ m − 1, let xi be
the shortest vector which is congruent to iv0 modulo m. The LLL algorithm
will return one of the xi vectors (if it didn’t, the adversary could reduce
modulo m to obtain an xi vector). (Note: the xi vectors form a Zm module).

We now give lower bounds on the probability P that a vector is in the

proper bounded range to be returned by the LLL algorithm (‖z‖ ≤
(

2√
3

)c

‖s‖
where s is the shortest vector in the lattice.) If the order of the group, m,
is sufficiently large, then the expected number of vectors mP which can
be returned by the LLL algorithm will be so large that the probability of
returning a small multiple of w will be very small. Let s denote the shortest
vector in the above lattice. We first prove a lemma:

Lemma 4.4 ‖w‖ ≥ B/2max{1,− log(ǫ2)/c} with probability ≥ 1 − ǫ2.

16

Proof: Prob(‖w‖ < B/2i) < Prob(all |wi| < B/2i) = (1/2i)c = 1/2ic.
Let ic = −log(ǫ2). Then ‖w‖ ≥ B/2max{1,− log(ǫ2)/c} with probability at least
equal to 1 − ǫ2.

The above lemma will be used with ǫ2 = 1/280. We now obtain lower
bounds on the number of candidate vectors that can be returned by the LLL
algorithm. We handle this task in two cases: the first case being where the
shortest vector in the lattice, s, is equal to w, and the second case being
where they are distinct.

case 1: s = w

Let h(c) =
(

2√
3

)c

‖w‖/√c. Suppose all coordinates of a vector v sat-

isfy |vi| ≤ h(c) Then ‖v‖ ≤
(

2√
3

)c

‖w‖ so v can be returned by the LLL

algorithm.
Thus each |vi| can be either shorter than h(c), or greater than m − h(c)

— a total of 2h(c) possible values.
Since each aij is picked at random from {1, . . . , B}, each coordinate of

w is uniformly distributed in {1 − a1, . . . , B − a1}. Let a be the maximum
coordinate (in absolute value) of w. Then for |λ| < m

2a
, we get that

‖λw‖∗ = ‖λw‖ = |λ| · ‖w‖

since all coordinates are in
(−m

2
, m

2

)

, making them as small as possible. For
|λ| ≥ m

2a
, this is no longer the case, so some mod m reductions can make

the vectors smaller. However, for these values of λ, “wrapping around”
makes the coordinates of λw effectively random. Thus, for a fixed |λ| ≥ m

2a
,

the probability of all c random coordinates in Zm taking only these 2h(c)
permissible values is given by (2h(c)/m)c. Thus

P ≥
(

2

(

2√
3

)c

‖w‖/(
√

c m)

)c

≥
(

2

(

2√
3

)c

B/(
√

c m2max{1,80/c})

)c

=

(

2

(

2√
3

)c

/(
√

c 2max{1,80/c}√n(N − 1)N r)

)c

(1)

where we have used Lemma 4.4 above. We note that we have assumed that
2
(

2√
3

)c

‖w‖/√c ≤ m.

case 2: s 6= w

We will first prove some lemmas:

17

Lemma 4.5 Let α < 1. Consider the set S(α) = {v is wrapped with re-
spect to w (v = λw where λ ≥ m/2a) and |vi| ≤ α‖w‖ for 1 ≤ i ≤
c. Then either the expected size of S(α) is less than or equal to 2−ǫ, or
(2
√

cα/
√

n(N − 1)N r)
c ≥ 2−ǫ/m.

Proof: Since the coordinates of v ∈ S(α) are random, the probabil-
ity that |vi| ≤ α‖w‖ for 1 ≤ i ≤ c, is (2α‖w‖/m)c ≤ (2αB

√
c/m)

c
=

(2α
√

c/
√

n(N − 1)N r)
c
. If this last probability is less than 2−ǫ/m, then the

expected number of vectors in S(α) is less than 2−ǫ.

Lemma 4.6 If w satisfies ‖w‖ ≤
(

2√
3

)c

‖s‖ and ‖s‖ = α‖w‖, then 1/α ≤
(

2√
3

)c

.

Proof: ‖w‖ ≤
(

2√
3

)c

‖s‖ =
(

2√
3

)c

α‖w‖, so 1/α ≤
(

2√
3

)c

.

The conditions of Lemma 4.6 are trivially satisfied, since if w is not in
LLL range, then there is nothing to prove.

Now since s 6= w, we have that ‖s‖ = α‖w‖ for some α < 1 so |si| ≤
α‖w‖, 1 ≤ i ≤ c. Also, s is wrapped with respect to w. Therefore, s ∈ S(α),
and by Lemma 4.5 (with high probability), it follows that

(

2
√

cα/
√

n(N − 1)N r
)c ≥ 2−ǫ/m

c
[

log(2
√

cα) − log(
√

n(N − 1)N r)
]

≥ −ǫ − log(m)

log(2
√

c) + log(α) ≥
[

−ǫ − log(m) + c log(
√

n(N − 1)N r)
]

/c

α ≥ 1

2
√

c
2[−ǫ−log(m)+c log(

√
n(N−1)Nr)]/c

α ≥ 1

2
√

c
2(−ǫ−log(m))/c

√
n(N − 1)N r (2)

At this point, we have two different lower bounds on α which we will use
to establish lower bounds on the number of vectors which can be returned
by the LLL algorithm. We will show that the set of vectors which can be
returned is large.

Theorem 4.7 Given a vector z in the lattice. Then the probability that z

is in LLL range is greater than or equal to

(

2
“

2√
3

”c
α

√
c 2max{1,80/c}β

)c

where β =
√

n(N − 1)N r), ‖s‖ = α‖w‖, with probability greater than 1 − (1/280).

18

Proof: If |zi| ≤
(

2√
3

)c

‖s‖/√c for 1 ≤ i ≤ c, then z is in LLL range.

Thus

P = Prob(z is in LLL range) ≥

2
(

2√
3

)c

‖s‖
√

c m

c

=

2
(

2√
3

)c

α‖w‖
√

c m

c

The last expression is greater than or equal to

2
(

2√
3

)c

αB
√

c 2max{1,80/c}m

c

=

2
(

2√
3

)c

α
√

c 2max{1,80/c}β

c

= Q

with probability greater than 1− 1/280. We have two different lower bounds
on α ((2) and Lemma 4.6); we obtain

Q ≥ max{
(

2√
c 2max{1,80/c}β

)c

,

(

2√
3

)c

c 2max{1,80/c}2(ǫ+log(m))/c

c

}

The first bound decreases as c increases, and the second bound increases
as c increases. Let T be the number of non-mod’d multiples of w in the
lattice (the number of multiples before the largest value wraps due to modulo
m reductions). The following table, Table 1, gives the base 2 log of the group
order (log(m)) values such that mP/T is greater than 280. We note that
we set ǫ = 80 to obtain the results. This ensures that (2) holds with high
probability.

5 Complexity

There are two complexity issues here — communication and computation.
Let DB be a database with n entries, each in ZN . This, as stated earlier,

is viewed as a
√

n ×√
n table of values. Because we are interested in a fast

protocol, we give the complexity when G = (Zm, +), where discrete log is
efficiently computable (as required), and where computations are very fast.
Similar asymptotic bounds hold for other groups.

19

n N r log(m) for s 6= w log(m) for s = w log(m)
240 2 1 1293 812 1293
240 2 32 2874 3850 3850
230 2 1 1038 558 1038
230 2 32 2619 3200 3200
220 2 1 783 367 783
220 2 32 2364 2605 2605
235 232 1 4353 8763 7516
240 232 1 4506 7756 7756

Table 1: Group sizes for our protocol that give 280 or better security against
the lattice attack

Communication — The user sends
√

n group elements to DB, each of
length log2 m, and DB sends as many group elements to the user. These
add up to a total of 2

√
n log2 m bits. As noted in [11], this complexity

can be improved to O(nǫ) by moving from a 2-dimensional database to a
d-dimensional one. However, because our goal is a fast protocol, we note
that increasing the dimension also increases DB’s computation time, which
will turn out to be the bottleneck.

Computation — The user picks
√

n random exponents, and computes as
many group exponentiations. In (Zm, +), an exponentiation is merely mul-
tiplication modulo m. DB performs

√
n group operations (additions modulo

m) for each of
√

n columns, totalling n additions. When the entries of DB
are bits, this is all of the computation done by DB. When they are elements
of ZN , then it also must perform n multiplications of group element by DB
entry. After receiving the output from DB, the user now processes only a
small number of group elements returned. He performs one discrete log (di-
vision modulo m) on each, converts to base N and extracts the queried data,
which takes about logN m time — negligible relative to

√
n. As noted in [11],

DB is destined to be stuck with Ω(m) computation in any PIR scheme, so
we cannot hope for any better.

20

6 Performance analysis

The goal of this protocol is not to push down the bounds on complexity of
cPIR, which has already been done in [1], [2], and [7]. Instead, the goal is
a cPIR protocol which is faster than the trivial PIR protocol — transferring
the entire database in question.

In [10], it was shown that the current best cPIR protocols are orders of
magnitude slower than sending an entire database to the user. His results
explained that, because of the large cost of O(n) modular multiplications in
Z
∗
m for [6], and because data transfer speeds are close enough to processor

speeds, it is unlikely that any cPIR protocol could perform more quickly than
sending the database.

We use the numbers and formulas put together by Sion in [10] to show the
performance of our algorithm, and compare it to that of database transfer.

6.1 Formulas and estimates

First, we define the following variables for any computer:

• B — bandwidth of network connection, in bits per second

• M — the average time required for the CPU to perform a single in-
struction, taken from the MIPS rating (Millions of Instructions Per
Second)

• d — the bit-size of a digit in the CPU’s architecture

• tadd(m) — time needed for the CPU to perform an addition in Zm

• tmul(m, N) — time needed for the CPU to perform a multiplication of
a number in Zm by a number less than N , modulo m

• td — time needed by the CPU to perform a single digit operation

• tt — time needed to transfer a bit over the network

From the verified assumption in [10], we estimate that td ≈ 1
M

, and d = 5.
Additionally, we estimate

tadd(m) ≈ |m|
M × d

1

1A naive approach to addition modulo m takes 2 additions: first adding, and then

(possibly) subtracting m. This would suggest tadd(m) ≡ 2|m|
M×d

. However, in summing

21

tmul(m, N) ≈ |m| × |N |
M × d2

2

Assuming throughput actually matches bandwidth — and therefore over-
estimating transfer speeds — we estimate that tt ≈ 1

B
.

6.2 Analysis

Let DB be a database with n entries, each a member of Z2. Let k be the
security parameter, and m be an appropriate modulus for the protocol (see
Table 1 for m values), in which we request one or 32 entries.

Let Tpir, Ttrans be the times needed to complete the cPIR protocol, and
to transfer the entire database over a network, respectively.

Trivally, we see that Ttrans = n·tt ·log2 N , since we must transfer n entries,
each with log2 N bits. From Section 5, we get

Tpir = n · tadd(m) + n · tmul(m, N) +
√

n · tmul(m, m) + 2
√

n · tt · log2 m

The first two terms of this formula are the additions and multiplcations
performed by DB, the third is multiplications by the user, and the final term
is communication between the two parties.

Our goal is now to see for which parameters Tpir < Ttrans.
In [10], Sion distinguished three classes of networks: end-user internet

connections, high-end intersite connections, and Ethernet LAN connections.
In 2006, he estimated that the average bandwidths for these were 6 Mbps,
1.5 Gbps, and 10 Gbps respectively. Additionally, he estimated the average
MIPS rating as 25000.

Using these numbers and formulas, we see the following execution times,
based on databases of size 1 MB, 1 GB, and 1 TB, with entries viewed as
bits. With entries viewed as bits, where a single bit is requested, the protocol
mandates m have 783, 1038, and 1293 bits, depending on the database. If
32 bits are requested (r = 32), then we need m to have 2605, 3200, and 3850
bits, respectively. Fix the security parameter as k = 80. For Tpir, we assume
the end-user bandwidth for all data transfers, because the time savings are
negligible.

many terms, we can perform, for example, 100 additions, and then subtract 50m — the
expected magnitude of the result — and make a one-time adjustment at the end of the
summation. Ammortized, this effectively drops the coefficient to 1, as in our estimate.

2This is a natural extension of the estimate from [10].

22

Tpir Ttrans

Size bits integers End-user Inter-site LAN
1 MB 0.0563 s 0.20723 s 1.398 s 0.005592 s 0.0008389 s
1 GB 71.52 s 221.45 s 23.87 mins 5.727 s 0.8590 s
1 TB 25.27 hours 75.275 hours 16.97 days 97.73 mins 14.66 mins

Table 2: Execution times for our protocol and full database transfer, for
various database sizes

From this table, we see that execution time of our protocol is much
faster than database transfer for end-user connections, regardless of how the
database is viewed. For high-end, intersite networks, transfering the database
takes about 7-10% the time as PIR with N = 2, but takes 2% compared to
PIR with r = 32. When operating in a 10 Gbps Ethernet LAN, the triv-
ial protocol enjoys are even larger speed advantage. Summarizing, for the
slower connections, our PIR protocol is faster than the trivial protocol, but
for faster connections, the trivial protocol is faster. In [10], the authors show
that the trivial protocol is significantly faster, on all types of networks, than
all previous cPIR protocols.

7 Conclusions and open problems

We have developed a new protocol which offers several significant speedups
over previous work in cPIR. We have shown that the underlying hardness
assumption, finding the secret base, has a computational lower bound in an
extended generic group model. The security of our protocol also reduces
to this hardness assumption. We have obtained group sizes that are secure
against a LLL lattice based reduction attack. Our protocol is orders of mag-
nitude faster than existing protocols, according to the methodology used in
[10].

The security for the case where the group order is composite instead of
prime, is an open question. The composite case may be vulnerable to lattice
based attacks.

23

References

[1] C. Cachin, S. Micali, and M. Stadler. Private Information Retrieval with
Polylogarithmic Communication. In Proceedings of Eurocrypt, pages 402-
414. Springer-Verlag, 1999.

[2] Y. Chang. Single-Database Private Information Retrieval with Logarith-
mic Communication. In Proceedings of the 9th AUstralasian Conference
on Information Security and Privacy ACISP. Springer-Verlag, 2004.

[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of the 36th Annual IEEE Symp. on Foundations
of Computer Science, pp. 41-51, 1995. Journal version: J. of the ACM
45:965-981, 1998.

[4] C. Gentry and Z. Ramzan. Single Database Private Information Retrieval
with Constant Communication Rate. ICALP 2005, LNCS 3580.

[5] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin. Protecting data pri-
vacy in private information retrieval schemes. In STOC 98: Proceedings
of the thirtieth annual ACM symposium on Theory of computing, pages
151-160, New York, NY, USA, 1998. ACM Press.

[6] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single
database, computationally-private information retrieval. In Proceedings
of FOCS. IEEE Computer Society, 1997.

[7] H. Lipmaa. An oblivious transfer protocol with log-squared communica-
tion. Cryptology ePrint Archive, 2004.

[8] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701-717, 1980.

[9] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems.
Theory and Application of Cryptographic Techniques, 1997.

[10] R. Sion and B. Carbunar. On the Computational Practicality of Pri-
vate Information Retrieval. In Network and Distributed System Security
Symposium NDSS 2007

24

[11] A. Yerukhimovich. A General Framework for One Database Pri-
vate Information Retrieval. Online at http://www.cs.umd.edu/Grad/

scholarlypapers/papers/Arkady-pircomp.pdf

25

