
1

Overlap-free Karatsuba-Ofman Polynomial

Multiplication Algorithm

Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam

Abstract

We describe how a recently proposed way to split input operands allows for fast VLSI implemen-

tations ofGF (2)[x] Karatsuba-Ofman multipliers. The XOR gate delay of the proposed multiplier is

better than that of previous Karatsuba-Ofman multipliers.For example, it is reduced by about 33% and

25% for n = 2i andn = 3i (i > 1), respectively.

Index Terms

Karatsuba algorithm, Karatsuba-Ofman algorithm, polynomial multiplication, subquadratic space

complexity multiplier, finite field.

I. INTRODUCTION

Published in 1962 [1], Karatsuba-Ofman algorithm (KOA) wasthe first integer multiplication

method broke the quadratic complexity barrier in positional number systems. Due to its simplicity,

its polynomial version is widely adopted to design VLSIGF (2n) parallel multipliers inGF (2n)-

based cryptosystems [9]-[27]. Two parameters are often used to measure the performance of a

GF (2n) parallel multiplier, namely, the space and time complexities. The space complexity

is often represented in terms of the total number of 2-input XOR and AND gates used. The

corresponding time complexity is given in terms of the maximum delay faced by a signal due

to these XOR and AND gates. Symbols “TA” and “TX” are often used to represent the delay of

one 2-input AND and XOR gates, respectively.

E-mails: fanhaining@yahoo.com,{sunjg, guming, lamky}@tsinghua.edu.cn



2

The existing bit parallelGF (2n) multipliers may be simply classified into the following

three categories according to the asymptotic space complexity of the multiplication algorithm :

subquadratic, quadratic and hybrid multipliers. KOA has been used in many subquadratic and

hybrid multipliers. These multipliers first perform a KOA-based multiplication of two input

binary polynomialsA =
∑

n−1

i=0 aix
i andB =

∑

n−1

i=0 bix
i, and then a modulo reduction operation

using the field generating irreducible polynomial. To explain the general idea of KOA easily, we

will assume thatn = 2m = 2i (i > 1) in the following.

First, previous KOA implementations split polynomialsA and B into the “most significant

half” and the “least significant half” as follows:

A =

n−1
∑

i=0

aix
i = xm

m−1
∑

i=0

am+ix
i +

m−1
∑

i=0

aix
i = xmAH + AL,

B =
n−1
∑

i=0

bix
i = xm

m−1
∑

i=0

bm+ix
i +

m−1
∑

i=0

bix
i = xmBH + BL,

whereAH =
∑

m−1

i=0 am+ix
i, AL =

∑

m−1

i=0 aix
i, BH andBL are defined similarly.

Then the productAB is computed recursively using

AB = AHBHx2m + {[(AH + AL)(BH + BL)] − [AHBH + ALBL]}xm + ALBL. (1)

Please note that “−” is the same as “+” inGF (2)[x]. For the VLSI implementation of (1), terms

in square brackets are calculated concurrently, and therefore two XOR gate delays, i.e.,2TX ,

are required to compute the expression in curly brackets besides the cost to compute the three

half sized products.

Finally, the three polynomialsAHBHx2m, [(AH + AL)(BH + BL) − AHBH − ALBL]xm and

ALBL in (1) are XORed in an overlap module by adding coefficients ofcommon exponents of

x together [26]. In order to explain overlaps of common exponents of x clearly, we present the

following table, which shows ranges ofx’s exponents in these three polynomials, and make two

remarks about overlaps.



3

TABLE I

RANGES OFx’ S EXPONENTS IN THREE POLYNOMIALS OF(1)

4m − 2 · · · 2m 2m − 2 · · · 0
...

...
...

...

+1TX

... overlaps
...

... overlaps
...

...
...

...
...

+2TX → 3m − 2 · · · m

Remark 1: Overlaps occur only whenn ≥ 4 (or m ≥ 2), and there is no overlap when

n = 2 (or m = 1). Because of these overlaps, one XOR gate delayTX is required in the overlap

module. Therefore, a total of 3 XOR gate delays, i.e.,3TX , are required in (1) besides the cost

of the recursive computation of three half sized products.

Remark 2: Let n = kd (k > 1 and d > 0), previous generalizations of KOA split the

two input operands intok successive block each withd coefficients. Since the product of two

degree-(d − 1) polynomials is a polynomial of degree-(2d − 2), overlaps always exist ifd > 1.

We now compute exact complexities of the above binary polynomial KOA (1). First, we

introduce some symbols of [5]. LetS and D stand for “Space” and “Delay”, respectively.

We useS⊗(n), S⊕(n),D⊗(n) andD⊕(n) to denote the number of multiplication (AND) and

addition (XOR) operations, the time delays introduced by multiplication and addition operations,

respectively. Then the following recurrence relations, which describe the complexities of KOA,

can be established.






S⊗(2) = 3,

S⊗(n) = 3S⊗(n/2);







D⊗(2) = 1,

D⊗(n) = D⊗(n/2);







S⊕(2) = 4,

S⊕(n) = 3S⊕(n/2) + 4n − 4;
and







D⊕(2) = 2,

D⊕(n) = D⊕(n/2) + 3.

After solving the above recurrence relations using formulae derived in [5], we have the



4

following complexity results for the binary polynomial KOA[9], [26].


























S⊗(n) = nlog2 3,

S⊕(n) = 6nlog2 3 − 8n + 2,

D⊗(n) = 1,

D⊕(n) = 3 log2 n − 1.

Besides KOA, a Toeplitz matrix-vector product approach waspresented recently to construct

subquadraticGF (2n) multipliers [5]. It takes advantage of a shifted polynomialbasis [6] and

applies the coordinate transformation technique of [7] and[8]. Both the space and time com-

plexities of the resulting multiplier are better than thoseof the best KOA-based subquadratic

multipliers. For example, withn = 2i (i > 0), the space complexity is about 8% better, while

the time complexity is about 33% better, respectively.

Since these Toeplitz matrix-vector product formulae are obtained by transposing [3, Th6,

p.17] corresponding polynomial KOA-like formulae, the following question arises naturally: is

it possible to reduce the time or space complexity of KOA further? We answer this question

positively in the next section. We will propose a fast VLSI implementations of the polynomial

Karatsuba-Ofman algorithm. It applies a recently proposedmethod to split input operands

[2]. The XOR gate delay of the proposedGF (2)[x] multiplier is better than that of previous

Karatsuba-Ofman multipliers. For example, it is reduced byabout 33% and 25% forn = 2i and

n = 3i (i > 1), respectively.

II. FAST POLYNOMIAL KOA I MPLEMENTATION

We first introduce the splitting method in [2], where it is used to compute the short product

of two power series. Instead of splitting input operands into the “most significant half” and the

“least significant half”, the method split operands according to the parity ofx’s exponent. That

is to say, we may rewriteA andB as follows

A =
n−1
∑

i=0

aix
i =

m−1
∑

i=0

a2ix
2i +

m−1
∑

i=0

a2i+1x
2i+1 =

m−1
∑

i=0

a2ix
2i + x

m−1
∑

i=0

a2i+1x
2i,



5

B =
n−1
∑

i=0

bix
i =

m−1
∑

i=0

b2ix
2i +

m−1
∑

i=0

b2i+1x
2i+1 =

m−1
∑

i=0

b2ix
2i + x

m−1
∑

i=0

b2i+1x
2i.

Now lety = x2, Ae(y) =
∑

m−1

i=0 a2iy
i andAo(y) =

∑

m−1

i=0 a2i+1y
i. Be(y) andBo(y) are defined

similarly. OperandsA andB can be rewritten asA = Ae(y)+xAo(y) andB = Be(y)+xBo(y).

Please note that termsAe(y), Ao(y), Be(y) andBo(y) are polynomials iny of degrees less than

m. Therefore multiplication operations between them may also be computed recursively. Using

the above splitting method ofA andB, we have the following KOA-like formula

AB = (Ae(y) + xAo(y))(Be(y) + xBo(y))

= {Ae(y)Be(y) + x2Ao(y)Bo(y)} + x{Ae(y)Bo(y) + Ao(y)Be(y))}

= {Ae(y)Be(y) + yAo(y)Bo(y)} +

x{[(Ae(y) + Ao(y))(Be(y) + Bo(y))] + [Ae(y)Be(y) + Ao(y)Bo(y)]}. (2)

For the VLSI implementation of (2), multiplying a polynomial by x or y = x2 is equivalent

to shifting its coefficients, and no gate is required. It is easy to see that the expansion of

{Ae(y)Be(y)+yAo(y)Bo(y)} in (2) contains only terms with even exponents ofx sincey = x2,

and the expansion ofx{[(Ae(y)+Ao(y))(Be(y)+Bo(y))]+[Ae(y)Be(y)+Ao(y)Bo(y)]} contains

only terms with odd exponents ofx. Thus, there is no overlap exists when computing their

summation, and no gate is required either. Moreover, terms in square brackets can be computed

concurrently, and the addition operation requires 1 XOR gate delayTX . Therefore, we know that

computingAB via (2) needsonly a total of2TX besides the cost of the recursive computation

of three half sized products. Please recall that the corresponding XOR gate delay is3TX in (1).

Consequently, the following recurrence relations, which describe the algorithm complexities, can



6

be established.






S⊗(2) = 3,

S⊗(n) = 3S⊗(n/2);







D⊗(2) = 1,

D⊗(n) = D⊗(n/2);







S⊕(2) = 4,

S⊕(n) = 3S⊕(n/2) + 4n − 4;
and







D⊕(2) = 2,

D⊕(n) = D⊕(n/2) + 2.

Their solutions are as follows:


























S⊗(n) = nlog2 3,

S⊕(n) = 6nlog2 3 − 8n + 2,

D⊗(n) = 1,

D⊕(n) = 2 log2 n.

Compared to previous implementations of polynomial KOA , the XOR gate delay of (2), i.e.,

D⊕(n), is about 33% better forn = 2i (i > 0).

Similar to the generalizations of KOA, we may also derive some KOA-like formulae for

polynomials of higher degrees. As an example, we show the formula for n = 3k = 3i (i > 1).

Let y = x3 and splitA as follows

A =

n−1
∑

i=0

aix
i =

k−1
∑

i=0

a3ix
3i + x

k−1
∑

i=0

a3i+1x
3i + x2

k−1
∑

i=0

a3i+2x
3i

= A0(y) + xA1(y) + x2A2(y),

whereA0(y) =
∑

k−1

i=0 a3iy
i, A1(y) =

∑

k−1

i=0 a3i+1y
i andA2(y) =

∑

k−1

i=0 a3i+2y
i.

Then we have

AB = {A0B0 + y[(A1 + A2)(B1 + B2) + A1B1 + A2B2]} +

x{[(A0 + A1)(B0 + B1) + A0B0 + A1B1] + yA2B2} +

x2{(A0 + A2)(B0 + B2) + A0B0 + A2B2 + A1B1},

where “(y)”s in expressionsAi(y) andBi(y) are omitted.



7

The following recurrence relations describe the complexities of this formula.






S⊗(3) = 6,

S⊗(n) = 6S⊗(n/3);







D⊗(3) = 1,

D⊗(n) = D⊗(n/3);







S⊕(3) = 12,

S⊕(n) = 6S⊕(n/3) + 22
3
n − 10;

and







D⊕(3) = 3,

D⊕(n) = D⊕(n/3) + 3.

III. COMPARISONS

Table II compares asymptotic complexities of proposed formulae with the previous KOA and

Toeplitz matrix-vector product (TMVP) formulae over the ground fieldGF (2), where#AND

and#XOR denote the total number of AND and XOR gates, respectively. The size of operands

is assumed to ben = 2t or 3t (t > 0). We list complexities of the TMVP in the table because

both KOA and TMVP can be used to designGF (2n) parallel multipliers, which is an important

application field of these two algorithms. But we must emphasize that these two algorithms are

distinct, and each of them have their own application fields [4].

TABLE II

COMPARISONS OF ASYMPTOTIC COMPLEXITIES FORn = bt

b Algorithm #AND #XOR Gate delay

KOA [26] nlog2 3 6nlog2 3 − 8n + 2 (3 log2 n − 1)TX + TA

2 Proposed nlog2 3 6nlog2 3 − 8n + 2 (2 log2 n)TX + TA

TMVP [5] nlog2 3 5.5nlog2 3 − 6n + 0.5 (2 log2 n)TX + TA

KOA [26] nlog3 6 16

3
nlog3 6 − 22

3
n + 2 (4 log3 n − 1)TX + TA

3 Proposed nlog3 6 16

3
nlog3 6 − 22

3
n + 2 (3 log3 n)TX + TA

TMVP [5] nlog3 6 24

5
nlog3 6 − 5n + 1

5
(3 log3 n)TX + TA



8

IV. CONCLUSIONS

We have proposed a fast VLSI implementation of the polynomial KOA in the ringGF (2)[x]. It

eliminates overlaps in previous designs of KOA multipliers. The XOR gate delay of the proposed

GF (2)[x] multiplier is better than that of previous Karatsuba-Ofmanmultipliers. For example,

it is reduced by about 33% and 25% forn = 2i andn = 3i (i > 1), respectively.



9

REFERENCES

[1] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Automata,”Soviet Physics-Doklady (English

translation), vol. 7, no. 7, pp. 595-596, 1963.

[2] G. Hanrot, P. Zimmermann “A long note on Mulders’ short product” Journal of Symbolic Computationvol.37 , pp.391-401,

2004

[3] S. Winograd, “Arithmetic Complexity of Computations”,SIAM, 1980.

[4] J. von zur Gathen and J. Gerhard, “Modern Computer Algebra,” Second ed., Cambridge Univ. Press, 2003.

[5] H. Fan and M. A. Hasan, “A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary

Fields,” IEEE Transactions on Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

[6] H. Fan and Y. Dai, “ Fast bit parallelGF (2n) Multiplier for All Trinomials,” IEEE Transactions on Computers, vol. 54,

no. 4, pp. 485-490, Apr. 2005.

[7] M. A. Hasan and V. K. Bhargava, “Division and Bit-serial Multiplication overGF (qm),” IEE Proceedings-E, vol. 139,

no. 3, pp. 230-236, May 1992.

[8] M. A. Hasan and V. K. Bhargava, “Architecture for Low Complexity Rate-Adaptive Reed-Solomon Encoder,”IEEE

Transactions on Computers, vol. 44, no. 7, pp. 938-942, July 1995.

[9] C. Paar, “ A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields,”

IEEE Transactions on Computers, vol. 45, no. 7, pp. 856-861, July 1996.

[10] C. Paar, P. Fleischmann, and P. Roelse, “ Efficient Multiplier schemes for Galois FieldsGF (24n), ” IEEE Transactions

on Computers, vol. 47, no. 2, pp. 162-170, Feb. 1998.

[11] M. Elia, M. Leone, and C. Visentin, “Low complexity bit-parallel multipliers forGF (2m) with generator polynomial

xm + xk + 1,” IEE Electronics Letters, vol. 35, no.7, pp.551-552, 1999.

[12] M. Jung, F. Madlener, M. Ernst, and S. Huss, “A Reconfigurable Coprocessor for Finite Field Multiplication inGF (2n),”

Proc. IEEE Workshop Heterogeneous reconfigurable Systems on Chip, 2002.

[13] M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel, “AReconfigurable System on Chip Implementation for Elliptic

Curve Cryptography overGF (2n),” Proc. Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS 2523,

pp. 381-399, 2003.

[14] C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich and J. von zur Gathen, “ FPGA Designs of parallel hign performance

GF (2233) Multipliers,” Proc. Int’l Symposium on Circuits and Systems (ISCAS 2003), vol. II, pp. 268-271, 2003.

[15] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba Algorithm for Efficient Implementations,” 2003,

http : //www.crypto.ruhr − uni − bochum.de/imperia/md/content/texte/kaweb.pdf .

[16] F. Rodrı́guez-Henrı́quez and Ç. K. Koç, “On fully parallel Karatsuba multipliers forGF (2m),” Proc. Int’l Conf. Computer

Science and Technology (CST 2003), pp. 405-410, 2003.

[17] S. S. Erdem and Ç. K. Koç, “A Less Recursive Variant of Karatsuba-Ofman Algorithm for Multiplying Operands of Size

a Power of Two,”Proc. 16th IEEE Symposium on Computer Arithmetic (Arith-162003), pp. 28-35, 2003.

[18] A. E. Cohen and K. K. Parhi, “Implementation of scalableelliptic curve cryptosystem crypto-accelerators forGF (2m),”

Proc. 13th Asilomar Conf. on Signals, Systems and Computers, vol. 1, pp. 471 - 477, Nov. 2004.

[19] B. Sunar, “ A Generalized Method for Constructing Subquadratic ComplexityGF (2k) Multipliers,” IEEE Transactions

on Computers, vol. 53, no. 9, pp. 1097-1105, Sept. 2004.

[20] P. L. Montgomery, “ Five, Six, and Seven-Term Karatsuba-Like Formulae,”IEEE Transactions on Computers, vol. 54, no.

3, pp. 362-369, Mar. 2005.



10

[21] H. Fan and M. A. Hasan, “Comments on “five, Six, and Seven-Term Karatsuba-Like Formulae”,”IEEE Transactions on

Computers, vol. 56, no. 5, pp. 716-717, May 2007.

[22] N. S. Chang, C. H. Kim, Y. H. Park, and J. Lim, “A Non-Redundant and Efficient Architecture for Karatsuba-Ofman

Algorithm,” Proc. 8th International Conf. on Information Security (ISC2005), LNCS 3650, pp. 288-299, 2005.

[23] Z. Dyka and P. Langendoerfer, “Area efficient hardware implementation of elliptic curve cryptography by iteratively

applying karatsuba’s method,”Proc. Conf. on Design, Automation and Test in Europe 2005, pp. 70-75, 2005.

[24] K. Y. Chang, D. Hong, and H. S. Cho, “Low Complexity Bit-Parallel Multiplier for GF (2m) Defined by All-One

Polynomials Using Redundant Representation”IEEE Transactions on Computers, vol. 54, no. 12, pp. 1628-1630, Dec.

2005.

[25] L. S. Cheng, A. Miri and T. H. Yeap, “Improved FPGA Implementations of Parallel Karatsuba Multiplication overGF (2n),”

Proc. 23rd Biennial Symposium on Communications, 2006.

[26] J. von zur Gathen and J. Shokrollahi, “ Efficient FPGA-based Karatsuba Multipliers for Polynomials overF2,” Proc. 12th

Workshop on Selected Areas in Cryptography (SAC 2005), LNCS 3897 pp.359-369, 2006.

[27] S. Peter and P. Langendorfer, “An Efficient Polynomial Multiplier in GF (2m) and its Application to ECC Designs,”Proc.

Conf. on Design, Automation and Test in Europe 2007, pp. 1253-1258, 2007.


