
1

Overlap-free Karatsuba-Ofman Polynomial

Multiplication Algorithms

Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam

IET Information security, vol. 4, no. 1, pp. 8-14, 2010.

Abstract

We describe how a simple way to split input operands allows for fast VLSI implementations of

subquadraticGF (2)[x] Karatsuba-Ofman multipliers. The theoretical XOR gate delay of the resulting

multipliers is reduced significantly. For example, it is reduced by about 33% and 25% forn = 2t and

n = 3t (t > 1), respectively. To the best of our knowledge, this parameterhas never been improved

since the original Karatsuba-Ofman algorithm was first usedto designGF (2n) multipliers in 1990.

Index Terms

Karatsuba algorithm, Karatsuba-Ofman algorithm, polynomial multiplication, subquadratic space

complexity multiplier, finite fields, Galois fields.

I. INTRODUCTION

Published in 1962 [1], Karatsuba-Ofman’s algorithm (KOA) was the first integer multiplication

method that broke the quadratic complexity barrier in positional number systems. Due to its

simplicity, its polynomial version is widely adopted to design VLSI parallel multipliers in

GF (2n)-based cryptosystems [12]-[33].

Two parameters are often used to measure the performance of aGF (2n) parallel multiplier,

namely, the space and time complexities. The space complexity is represented in terms of the total

Haining Fan, Jiaguang Sun, Ming Gu, Kwok-Yan Lam are with theSchool of Software, Tsinghua University, Beijing, China.

E-mails:{fhn, sunjg, guming, lamky}@tsinghua.edu.cn



2

number of 2-input XOR and AND gates used. The corresponding time complexity is given in

terms of the maximum delay faced by a signal due to these XOR and AND gates. Symbols “TA”

and “TX” are often used to represent the delays of one 2-input AND gate and one 2-input XOR

gate, respectively. The existing bit parallelGF (2n) multipliers may be simply classified into the

following three categories according to the asymptotic space complexity of the multiplication

algorithm: quadratic, subquadratic and hybrid multipliers. A number of quadratic multipliers

have been proposed in the literature in which different basis representations ofGF (2n) elements

are used, e.g., polynomial, shifted polynomial, normal, dual, weakly dual, and triangular bases.

Their time complexities are lower than those of subquadratic multipliers. The main advantage

of subquadratic multipliers is that their low asymptotic space complexities make it possible to

implement VLSI multipliers for large values ofn. But when the size of operands is small, e.g.,

32-bit, the space complexity may not remain as the critical factor considered by a cryptographic

processor designer. Instead, the computational speed becomes the key factor. Based on this

consideration, the hybrid approach is often used to design practical multipliers [5] [17] [20] [22]

[31]. These multipliers first perform a few KOA iterations toreduce the whole space complexities,

and then a quadratic multiplication algorithm on small input operands to achieve relatively high

speed performance. By selecting different stop conditionsfor the KOA iterations, the hybrid

approach can provide a trade-off between the time and space complexities. For the purpose of

comparison, reference [20] implemented four parallelGF (2233) multipliers on Xilinx FPGAs,

namely classical, hybrid Karatsuba, Massey-Omura, and Sunar-Koç, and analyzed their time and

space complexities in detail. It was shown that for polynomial bases representation the hybrid

Karatsuba is the best choice, while for normal bases the Sunar-Koç. An improved structure of

the hybrid Karatsuba multiplier of [20] was presented laterin [31], where different possibilities

of implementing Karatsuba multipliers were also studied.

Some other related work on KOA multipliers include the following. In [14], the exact space

and time complexities of KOA multipliers were derived. A generalization of the KOA was



3

proposed in [21], and the other generalization, i.e., the Winograd short convolution algorithm,

was presented in [24]. In reference [25], a non-redundant KOA multiplier was proposed. Its space

complexity is lower than that of the original KOA multiplier. References [26] and [27] presented

some improvedt-term (4 < t < 19) GF (2)[x] Karatsuba-like formulae. These formulae may be

mixed with the 2-term and 3-term formulae within recursive constructions, leading to low space

complexity subquadraticGF (2)[x] multipliers. FPGA and ASIC KOA implementations can be

found in, for example, [18], [20], [28], [30], [31] and [33].The interested readers are referred

to [33] for a more detailed comparison of some hardware designs.

In the work, we will propose a new algorithm for fast hardwareimplementations of the

polynomial KOA. The proposed algorithm uses a simple and straightforward method to split

input operands [2] [3]. The theoretical XOR gate delay of theproposed subquadratic Karatsuba-

OfmanGF (2)[x] multiplier is reduced significantly. For example, it is reduced by about 33% and

25% for n = 2t andn = 3t (t > 1), respectively. To the best of our knowledge, this parameter

has never been improved since the original KOA was first used to designGF (2n) multipliers in

1990 [12].

A. The original KOA inGF (2)[x]

Let A =
∑

n−1

i=0 aix
i and B =

∑

n−1

i=0 bix
i be two GF (2)[x] elements. To explain the general

idea of KOA easily, we will assume thatn = 2m = 2t (t > 1) in the following.

First, the previous KOA implementations split polynomialsA andB into the “most significant

half” and the “least significant half” as follows:

A =

n−1
∑

i=0

aix
i = xm

m−1
∑

i=0

am+ix
i +

m−1
∑

i=0

aix
i = xmAH + AL,

B =

n−1
∑

i=0

bix
i = xm

m−1
∑

i=0

bm+ix
i +

m−1
∑

i=0

bix
i = xmBH + BL,

whereAH =
∑

m−1

i=0 am+ix
i, AL =

∑

m−1

i=0 aix
i, BH andBL are defined similarly.



4

Then the productAB is computed recursively using

AB = AHBHx2m + {[(AH + AL)(BH + BL)] − [AHBH + ALBL]}xm + ALBL. (1)

We note that “−” is the same as “+” inGF (2), and a 2-input XOR gate can be used to realize

a “−” or “+” operation. For VLSI implementations of (1), the expressions in the two square

brackets are calculated concurrently, and one XOR gate delay, i.e., 1TX , is required. Then the

“−” operation is performed at a cost of1TX . Therefore, two XOR gate delays2TX are required

to compute the expression in the curly bracket besides the gate delays to compute the three partial

productsAHBH , ALBL and (AH + AL)(BH + BL). Finally, the three polynomialsAHBHx2m,

[(AH +AL)(BH +BL)−AHBH −ALBL]xm andALBL in (1) are XORed by adding coefficients

of common exponents ofx together. The VLSI module used to perform this XOR operationis

called the overlap module [31]. In order to explain overlapsof common exponents ofx clearly,

we present the following table, which shows ranges ofx’s exponents in these three polynomials.

TABLE I

RANGES OFx’ S EXPONENTS IN THE THREE POLYNOMIALS OF(1)

4m − 2 · · · 2m 2m − 2 · · · 0
...

...
...

...

+1TX

... overlaps
...

... overlaps
...

...
...

...
...

+2TX → 3m − 2 · · · m

From the table, it is clear that overlaps occur only whenn ≥ 4 (or m ≥ 2), and there is no

overlap whenn = 2 (or m = 1).

Because of these overlaps, one XOR gate delay is required in the overlap module to compute

the summation of the three polynomialsAHBHx2m, [(AH +AL)(BH +BL)−AHBH −ALBL]xm

andALBL in (1). Therefore, a total of 3 XOR gate delays, i.e.,3TX , are required in (1) besides

the cost of the recursive computation of the three partial products.



5

In order to compute the exact complexities of the above binary polynomial KOA, we introduce

some symbols from [6]. LetS andD stand for “Space” and “Delay”, respectively. We useS⊗(n)

andS⊕(n) to denote the numbers of multiplication (AND) and addition (XOR) operations,D⊗(n)

andD⊕(n) the gate delays introduced by multiplication and addition operations, respectively.

Our earlier discussion shows that the XOR gate delayD⊕(n) = D⊕(n/2)+3. It is easy to see

that 2TX is required to compute the product of two polynomials of degree 1, i.e.,D⊕(2) = 2.

Thus, we have established the recurrence relation of the XORgate delay. Similarly, we may

obtain the recurrence relations ofS⊗(n), S⊕(n) andD⊗(n). These recurrence relations describe

the time and space complexities of the original KOA [31].






S⊗(2) = 3,

S⊗(n) = 3S⊗(n/2);







D⊗(2) = 1,

D⊗(n) = D⊗(n/2);







S⊕(2) = 4,

S⊕(n) = 3S⊕(n/2) + 4n − 4;
and







D⊕(2) = 2,

D⊕(n) = D⊕(n/2) + 3.

After solving the above recurrence relations using the formula derived in [6], we obtain the

following complexity results for the binary polynomial KOA[14], [31].


























S⊗(n) = nlog2 3,

S⊕(n) = 6nlog2 3 − 8n + 2,

D⊗(n) = 1,

D⊕(n) = 3 log2 n − 1.

(2)

B. Motivation

Besides KOA, a Toeplitz matrix-vector product approach waspresented recently to construct

subquadraticGF (2n) multipliers [6]. It takes advantage of the shifted polynomial basis [7]

and applies the coordinate transformation technique of [8]and [9]. Both the space and time

complexities of the resulting multiplier are better than those of the best KOA-based subquadratic

multipliers. For example, withn = 2t (t > 1), the space complexity is about 8% better, while

the time complexity is about 33% better, respectively.



6

Since these Toeplitz matrix-vector product formulae are obtained by transposing [4, Th. 6, p.

17] corresponding polynomial KOA-like formulae, the following question arises naturally: is it

possible to reduce the time or space complexity of the KOA-based subquadraticGF (2)[x] VLSI

multiplier further? In the next section, we will answer thisquestion positively, namely, we will

improve the theoretical XOR gate delay of the KOA-based subquadraticGF (2)[x] multiplier.

The improved KOA algorithm can be used to design multipliersin both ringGF (2)[x] and finite

field GF (2n), while the Toeplitz matrix-vector product method cannot beused directly to design

GF (2)[x] multipliers.

II. NEW METHOD FORFAST IMPLEMENTATIONS OFGF (2)[x] KOAS

We first introduce the splitting method in [2] and [3]. Instead of splitting input operands into

the “most significant half” and the “least significant half”,the method split operands according

to the parity ofx’s exponent. That is to say, we may rewriteA andB as follows

A =

n−1
∑

i=0

aix
i =

m−1
∑

i=0

a2ix
2i +

m−1
∑

i=0

a2i+1x
2i+1 =

m−1
∑

i=0

a2ix
2i + x

m−1
∑

i=0

a2i+1x
2i,

B =

n−1
∑

i=0

bix
i =

m−1
∑

i=0

b2ix
2i +

m−1
∑

i=0

b2i+1x
2i+1 =

m−1
∑

i=0

b2ix
2i + x

m−1
∑

i=0

b2i+1x
2i.

Now let y = x2, Ae(y) =
∑

m−1

i=0
a2iy

i, Ao(y) =
∑

m−1

i=0
a2i+1y

i, and Be(y) and Bo(y) are

defined similarly. OperandsA and B can be rewritten asA = Ae(y) + xAo(y) and B =

Be(y)+ xBo(y). SinceAe(y), Ao(y), Be(y) andBo(y) are polynomials iny of degree less than

m, multiplication operations among them may also be computedrecursively. Therefore, we have

the following KOA-like formula

AB = (Ae(y) + xAo(y))(Be(y) + xBo(y))

= {Ae(y)Be(y) + x2Ao(y)Bo(y)} + x{Ae(y)Bo(y) + Ao(y)Be(y))}

= {[Ae(y)Be(y) + yAo(y)Bo(y)]} +

x{[(Ae(y) + Ao(y))(Be(y) + Bo(y))] − [Ae(y)Be(y) + Ao(y)Bo(y)]}. (3)



7

Clearly, formula (3) also includes three partial products.For VLSI implementations of (3),

multiplying a polynomial byx or y = x2 is equivalent to shifting its coefficients left, and no

gate is required. It is easy to see that the expansion of{Ae(y)Be(y) + yAo(y)Bo(y)} in (3)

contains only terms with even exponents ofx sincey = x2, and the expansion ofx{[(Ae(y) +

Ao(y))(Be(y) + Bo(y))]+ [Ae(y)Be(y)+ Ao(y)Bo(y)]} contains only terms with odd exponents

of x. Thus, no overlap exists when computing their summation, and no gate is required either.

Moreover, the expressions in the three square brackets can be computed concurrently, and these

addition operations require one XOR gate delay1TX . Since the “−” operation also needs1TX ,

we know that computingAB via (3) needsonly a total of2TX besides the cost of the recursive

computation of the three partial products. Compared to the3TX gate delays required in formula

(1), one XOR gate delay1TX is saved for each recursive iteration. Consequently, the following

recurrence relations, which describe the algorithm complexities, can be established.






S⊗(2) = 3,

S⊗(n) = 3S⊗(n/2);







D⊗(2) = 1,

D⊗(n) = D⊗(n/2);







S⊕(2) = 4,

S⊕(n) = 3S⊕(n/2) + 4n − 4;
and







D⊕(2) = 2,

D⊕(n) = D⊕(n/2) + 2.

Their solutions are as follows:


























S⊗(n) = nlog2 3,

S⊕(n) = 6nlog2 3 − 8n + 2,

D⊗(n) = 1,

D⊕(n) = 2 log2 n.

Compared to the complexities of the originalGF (2)[x] KOA listed in (2), the proposed method

reduces the XOR gate delayD⊕(n) from (3 log2 n− 1) to 2 log2 n, or by about 33% forn = 2t

(t > 1).

Similar to generalizations of the original KOA, which is also called 2-way split, we may

derive some KOA-like formulae forj-way splits (j > 2). As an example, we now present the



8

GF (2)[x] KOA formula for n = 3k = 3t (t > 1). It is based on the following 6-multiplication

formula [4, p. 35].

(a2x
2 + a1x + a0)(b2x

2 + b1x + b0)

= a0b0 + [(a0 + a1)(b0 + b1) + a0b0 + a1b1]x +

[(a0 + a2)(b0 + b2) + a0b0 + a2b2 + a1b1]x
2 +

[(a1 + a2)(b1 + b2) + a1b1 + a2b2]x
3 + a2b2x

4.

Let y = x3 and splitA as follows

A =

n−1
∑

i=0

aix
i =

k−1
∑

i=0

a3ix
3i + x

k−1
∑

i=0

a3i+1x
3i + x2

k−1
∑

i=0

a3i+2x
3i

= A0(y) + xA1(y) + x2A2(y),

whereA0(y) =
∑

k−1

i=0 a3iy
i, A1(y) =

∑

k−1

i=0 a3i+1y
i andA2(y) =

∑

k−1

i=0 a3i+2y
i.

Then we have

AB = {A0B0 + y[(A1 + A2)(B1 + B2) + A1B1 + A2B2]} +

x{(A0 + A1)(B0 + B1) + A0B0 + A1B1 + yA2B2} +

x2{(A0 + A2)(B0 + B2) + A0B0 + A1B1 + A2B2},

where “(y)”s in expressionsAi(y) andBi(y) are omitted.

There are four partial products in the first curly bracket, and they are polynomials iny of

degrees2k − 2, 2k − 1, 2k − 1 and 2k − 1, respectively. Since the constant terms of the last

three partial products are zeroes, we know that computing the expression in the first curly

bracket requires2k + (2k − 2) + (2k − 1) + (2k − 1) = 8k − 4 XOR gates. Similarly, it is

easy to see that the total number of the XOR gates required in the last two curly brackets are

2k + (2k − 2) + (2k − 1) + (2k − 1) = 8k − 4 and 2k + 3(2k − 1) = 8k − 3, respectively.

But the summationA0B0 + A1B1, which appears in the last two curly brackets, can be reused.

Therefore,2k − 1 XOR gates can be saved, and the total number of the XOR gates required in



9

the above formula is(8k − 4) + (8k − 4) + (8k − 3)− (2k − 1) = 22k − 10 besides the cost of

the recursive computation of the six partial products. Based on the above discussion, we obtain

the following recurrence relations that describe the complexities of this formula. Their solutions

will be presented in Table II in the next subsection.







S⊗(3) = 6,

S⊗(n) = 6S⊗(n/3);







D⊗(3) = 1,

D⊗(n) = D⊗(n/3);







S⊕(3) = 12,

S⊕(n) = 6S⊕(n/3) + 22

3
n − 10;

and







D⊕(3) = 3,

D⊕(n) = D⊕(n/3) + 3.

A. Comparisons

Table II compares asymptotic complexities of the proposed formulae with the previous KOA

and Toeplitz matrix-vector product (TMVP) formulae over the ground fieldGF (2), where#AND

and#XOR denote the total numbers of AND and XOR gates, respectively. The size of operands

is assumed to ben = 2t or 3t (t > 1). These comparisons are made from a theoretical viewpoint.

For practical designs of VLSI multipliers, it is a better choice to merge the proposed method

into the hybrid approach discussed in the introduction section.

As shown in the table, the proposed method and the previous KOA have the same space

complexities, but the XOR gate delay of the proposed method outperforms the previous KOA

when t > 1. We list complexities of the TMVP in the table because both KOA and TMVP can

be used to designGF (2n) subquadratic parallel multipliers, which is an important application

field of these two algorithms. But we must emphasize that these two algorithms aredistinct,

and each of them have their own application fields [5]. Take the GF (2n) subquadratic parallel

multiplier as an example. Since there is no known value ofn for which an irreducible polynomial

of weightw < 6 does not exist [10], we need only to select either an irreducible trinomial or an

irreducible pentanomial of degreen to generateGF (2n). In order to adopt the TMVP approach

in the design stage, the coordinate transformation technique must be used to obtain the desired



10

Toeplitz matrix [6]. The corresponding transformation matrices for irreducible trinomials and a

special type of irreducible pentanomialsf(u) = un + uk+1 + uk + uk−1 + 1 (1 < k < n − 1)

have been derived when theGF (2n) elements are represented in the shifted polynomial basis

[6]. But no explicit transformation matrices are currentlyavailable for other bases, e.g., the

polynomial basis. On the other hand, the KOA-basedGF (2n) subquadratic parallel multiplier

consists of two steps: (1) the KOA multiplication, and (2) a modulo reduction operation using

an irreducible polynomial. The second step, which depends on the form of the field generating

irreducible polynomials, has been studied by many authors.Therefore, a hardware engineer can

use these theoretical results directly to design anGF (2n) subquadratic parallel multiplier. The

interested reader is referred to a recent survey paper [11] for more details.

TABLE II

COMPARISONS OF ASYMPTOTIC COMPLEXITIES

n Algorithm #AND #XOR Gate delay

KOA [14] [32] nlog2 3 6nlog2 3 − 8n + 2 (3 log2 n − 1)TX + TA

2t Proposed nlog2 3 6nlog2 3 − 8n + 2 (2 log2 n)TX + TA

TMVP [6] nlog2 3 5.5nlog2 3 − 6n + 0.5 (2 log2 n)TX + TA

KOA [14] [32] nlog3 6 16

3
nlog3 6 − 22

3
n + 2 (4 log3 n − 1)TX + TA

3t Proposed nlog3 6 16

3
nlog3 6 − 22

3
n + 2 (3 log3 n)TX + TA

TMVP [6] nlog3 6 24

5
nlog3 6 − 5n + 1

5
(3 log3 n)TX + TA

B. An Example

We now present an example to compare the proposed method withthe original KOA.

Let A = a3x
3 +a2x

2 +a1x+a0 = AHx2 +AL andB = b3x
3 + b2x

2 + b1x+ b0 = BHx2 +BL,

whereAH = a3x + a2, AL = a1x + a0, BH = b3x + b2 andBL = b1x + b0 are polynomials of



11

degree 1 inx. Then the original KOA computes the productAB using

AB = AHBHx4 + {[(AH + AL)(BH + BL)] + [AHBH + ALBL]}x2 + ALBL. (4)

There are three products of polynomials of degree 1 in (4), and they can be computed

recursively using the KOA at a cost of2TX . For example,ALBL = (a1x + a0)(b1x + b0)

can be computed using

(a1x + a0)(b1x + b0) = a1b1x
2 + {[(a1 + a0)(b1 + b0)] + [a1b1 + a0b0]}x + a0b0. (5)

To show the role of the overlap in (4), let group the three products in (4) and write them as

polynomials of degree 2 inx as follows:

k2x
2 + k1x + k0 := AHBH ;

d2x
2 + d1x + d0 := [(AH + AL)(BH + BL)] + [AHBH + ALBL];

e2x
2 + e1x + e0 := ALBL.

Then we have

AB = (k2x
2 + k1x + k0)x

4 + (d2x
2 + d1x + d0)x

2 + (e2x
2 + e1x + e0)

= k2x
6 + k1x

5 + (k0 + d2)x
4 + d1x

3 + (d0 + e2)x
2 + e1x + e0. (6)

Clearly, one XOR gate delay1TX is required to compute the overlap summations(k0 + d2) and

(d0 + e2). Since we need2TX to perform the XOR operations in the curly bracket of (4), we

know that the total number of XOR gate delays of the original KOA is 2+1+2=5.

Let y = x2. The proposed method splitsA and B as A = a2x
2 + a0 + x(a3x

2 + a1) =

Ae(y) + xAo(y) and B = Be(y) + xBo(y), where Ae(y) = a2y + a0, Ao(y) = a3y + a1,

Be(y) = b2y + b0 andBo(y) = b3y + b1 are polynomials of degree 1 iny.



12

From (3), the proposed method computesAB using

AB = (Ae(y) + xAo(y))(Be(y) + xBo(y))

= {Ae(y)Be(y) + yAo(y)Bo(y)} +

x{[(Ae(y) + Ao(y))(Be(y) + Bo(y))] + [Ae(y)Be(y) + Ao(y)Bo(y)]}.

Now define four polynomials of degree 2 iny as follows:

p2y
2 + p1y + p0 := Ae(y)Be(y);

q2y
2 + q1y + q0 := Ao(y)Bo(y);

r2y
2 + r1y + r0 := [(Ae(y) + Ao(y))(Be(y) + Bo(y))];

s2y
2 + s1y + s0 := [Ae(y)Be(y) + Ao(y)Bo(y)].

We need1TX to perform “+” operations in the last two equations. Since the proposed method

is identical to the original KOA when the two input polynomials are of degree 1, i.e., formula

(5), we need2TX to compute the three products of polynomials of degree 1 iny in the above

four equations. Thus, we need a total of3TX to obtain allGF (2) elementspi, qi, ri and si in

the above four equations, wherei = 0, 1 and2. Now, the productAB can be computed using

AB =

6
∑

i=0

cix
i =

(

3
∑

i=0

aix
i

)(

3
∑

i=0

bix
i

)

= {(p2y
2 + p1y + p0) + y(q2y

2 + q1y + q0)} +

x{(r2y
2 + r1y + r0) + (s2y

2 + s1y + s0)}

= q2x
6 + [p2 + q1]x

4 + [p1 + q0]x
2 + p0 +

[r2 + s2]x
5 + [r1 + s1]x

3 + [r0 + s0]x. (7)

Clearly, one XOR gate delay1TX is required to obtain the summations in the five square brackets.

Therefore, the total number of XOR gate delays required to computeAB is 3+1=4, and1TX is

saved compared to the original KOA.



13

The following arithmetic circuit illustrates the two-level recursion formula (7). The circuits

in the three rectangular dotted boxes are the same, and each of them implements the original

KOA formula (5), which computes the product of two input polynomials of degree 1. Due to the

parallelism, the six XOR operations “+” in the six doted circles contribute no gate delay to the

total XOR gate delays of formula (7). The interested reader may compare this circuit diagram

to Figure 8.1 of [5, p. 222] which illustrates the original KOA two-level recursion formula (6).

a0 a1 a2 a3 b0 b1 b2 b3

c0 c2 c4 c1 c5c3 c6

Fig. 1. An arithmetic circuit illustrating formula (7).

III. CONCLUSIONS

We have proposed a new method to implement the polynomial KOAfor VLSI multipliers.

It eliminates overlaps in the previous designs. The XOR gatedelay of the proposedGF (2)[x]

KOA is significantly better than that of the previous KOA. Besides the theoretical significance,



14

the proposed method is also suitable for practical VLSI applications, e.g., designs of hybrid

GF (2n) multipliers.



15

REFERENCES

[1] Karatsuba, A., and Ofman Y. : “Multiplication of Multidigit Numbers on Automata,”Soviet Physics-Doklady (English

translation), vol. 7, no. 7, pp. 595-596, 1963.

[2] Moenck, R. T. : “Practical fast polynomial multiplication,” Proc. 1976 ACM. Symposium on Symbolic and Algebraic

Computation, pp.136-148, 1976

[3] Hanrot, G., and Zimmermann, P. : “A Long Note on Mulders’ Short Product,”Journal of Symbolic Computationvol.37 ,

pp.391-401, 2004

[4] Winograd, S. : “Arithmetic Complexity of Computations”, SIAM, 1980.

[5] Gathen, J. V. Z., and Gerhard, J. : “Modern Computer Algebra,” Cambridge Univ. Press, First ed., 1999, Second ed., 2003.

[6] Fan, H., and Hasan, M. A. : “A New Approach to SubquadraticSpace Complexity Parallel Multipliers for Extended Binary

Fields,” IEEE Transactions on Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

[7] Fan, H., and Dai, Y. : “Fast bit parallelGF (2n) Multiplier for All Trinomials,” IEEE Transactions on Computers, vol.

54, no. 4, pp. 485-490, Apr. 2005.

[8] Hasan, M. A., and Bhargava, V. K. : “Division and Bit-serial Multiplication overGF (qm),” IEE Proceedings-E, vol. 139,

no. 3, pp. 230-236, May 1992.

[9] Hasan, M. A. , and Bhargava, V. K. : “Architecture for Low Complexity Rate-Adaptive Reed-Solomon Encoder,”IEEE

Transactions on Computers, vol. 44, no. 7, pp. 938-942, July 1995.

[10] Seroussi, G. : “Table of Low-Weight Binary IrreduciblePolynomials,”Technical Report HPL-98-135,Hewlett-Packard

Laboratories, Palo Alto, Calif., Aug. 1998 [Online]. Available: http://www.hpl.hp.com/techreports/98/HPL-98-135.html

[11] Erdem, S. S. , Yanik, T. , and Koç, Ç. K. : “Polynomial Basis Multiplication over GF (2m),” Acta Applicandae

Mathematicae: An International Survey Journal on ApplyingMathematics and Mathematical Applications, vol. 93, no.

1-3, pp. 33-55, 2006.

[12] Afanasyev, V.B. : “Complexity of VLSI Implementation of Finite Field Arithmetic,”Proc. II. Intern. Workshop on Algebraic

and Combinatorial Coding Theory, USSR, pp.6-7, 1990

[13] Paar, C. : “Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields,” PhD thesis, University ofEssen,

Germany, 1994

[14] Paar, C. : “A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields,”

IEEE Transactions on Computers, vol. 45, no. 7, pp. 856-861, July 1996.

[15] Paar, C., Cleischmann, V.B. , and Roelse, P. : “EfficientMultiplier Schemes for Galois FieldsGF (24n), ” IEEE Transactions

on Computers, vol. 47, no. 2, pp. 162-170, Feb. 1998.

[16] Elia, M., Leone, M., and Visentin, C. : “Low Complexity Bit-parallel Multipliers forGF (2m) with Generator Polynomial

xm + xk + 1,” IEE Electronics Letters, vol. 35, no.7, pp.551-552, 1999.

[17] Leone, M. : “A New Low Complexity Parallel Multiplier for a Class of Finite Fields,”Proc. Cryptographic Hardware and

Embedded Systems (CHES 2001), LNCS 2162, pp. 160-170, 2001.

[18] Jung, M., Madlener, F., Ernst,M., and Huss, S. : “A Reconfigurable Coprocessor for Finite Field Multiplication inGF (2n),”

Proc. IEEE Workshop Heterogeneous reconfigurable Systems on Chip, 2002.

[19] Ernst, M., Jung,M., Madlener,F., Huss, S., and Blumel,R. : “A Reconfigurable System on Chip Implementation for Elliptic

Curve Cryptography overGF (2n),” Proc. Cryptographic Hardware and Embedded Systems (CHES 2002), LNCS 2523,

pp. 381-399, 2003.



16

[20] Grabbe, C., Bednara, M., Shokrollahi, J., Teich, J., and Gathen, J. V. Z. : “FPGA Designs of Parallel High Performance

GF (2233) Multipliers,” Proc. Int’l Symposium on Circuits and Systems (ISCAS 2003), vol. II, pp. 268-271, 2003.

[21] Weimerskirch, A., and Paar, C. : “Generalizations of the Karatsuba Algorithm for Efficient Implementations,” 2003,

http : //www.crypto.ruhr − uni − bochum.de/imperia/md/content/texte/kaweb.pdf .

[22] Rodrı́guez-Henrı́quez, F., and Koç, Ç. K. : “On FullyParallel Karatsuba Multipliers forGF (2m),” Proc. Int’l Conf.

Computer Science and Technology (CST 2003), pp. 405-410, 2003.

[23] Erdem, S. S. , and Koç, Ç. K. : “A Less Recursive Variantof Karatsuba-Ofman Algorithm for Multiplying Operands of

Size a Power of Two,”Proc. 16th IEEE Symposium on Computer Arithmetic (Arith-162003), pp. 28-35, 2003.

[24] Sunar, B. : “A Generalized Method for Constructing Subquadratic ComplexityGF (2k) Multipliers,” IEEE Transactions

on Computers, vol. 53, no. 9, pp. 1097-1105, Sept. 2004.

[25] Chang,N. S. , Kim, C. H. , Park, Y. H. , and Lim, J. : “A Non-Redundant and Efficient Architecture for Karatsuba-Ofman

Algorithm,” Proc. 8th International Conf. on Information Security (ISC2005), LNCS 3650, pp. 288-299, 2005.

[26] Montgomery, P. L. : “Five, Six, and Seven-Term Karatsuba-Like Formulae,”IEEE Transactions on Computers, vol. 54,

no. 3, pp. 362-369, Mar. 2005.

[27] Fan H., and Hasan, M. A. : “Comments on “Five, Six, and Seven-Term Karatsuba-Like Formulae”,”IEEE Transactions

on Computers, vol. 56, no. 5, pp. 716-717, May 2007.

[28] Dyka. Z., and Langendoerfer, P. : “Area Efficient Hardware Implementation of Elliptic Curve Cryptography by Iteratively

Applying Karatsuba’s Method,”Proc. Conf. on Design, Automation and Test in Europe 2005, pp. 70-75, 2005.

[29] Chang, K. Y. , Hong, D., and Cho, H. S. : “Low Complexity Bit-Parallel Multiplier for GF (2m) Defined by All-One

Polynomials Using Redundant Representation”IEEE Transactions on Computers, vol. 54, no. 12, pp. 1628-1630, Dec.

2005.

[30] Cheng, L. S. , Miri, A. , and Yeap, T. H. : “Improved FPGA Implementations of Parallel Karatsuba Multiplication over

GF (2n),” Proc. 23rd Biennial Symposium on Communications, 2006.

[31] Gathen, J. V. Z., and Shokrollahi, J. : “ Efficient FPGA-based Karatsuba Multipliers for Polynomials overF2,” Proc. 12th

Workshop on Selected Areas in Cryptography (SAC 2005), LNCS 3897 pp.359-369, 2006.

[32] Gathen, J. V. Z., and Shokrollahi, J. : “Fast arithmeticfor polynomials overF2 in hardware,”Proc. IEEE Workshop on

Information Theory, pp.107-111, 2006.

[33] Peter, P., and Langendorfer, P. : “An Efficient Polynomial Multiplier in GF (2m) and its Application to ECC Designs,”

Proc. Conf. on Design, Automation and Test in Europe 2007, pp. 1253-1258, 2007.


