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Abstract. In this paper, by elaborately choosing the parameters of Waters Hash function, we propose

a new efficient signature scheme. It is shown that the scheme is secure against strongly unforgeable

chosen-message attacks in the standard model under Computational Diffie-Hellman (CDH) assumption.

Further, among all the known secure signatures in the standard model, our scheme is the shortest one

and has the efficient security reduction as well.
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1 Introduction

The design of an efficient and secure signature scheme is one of the focus of interest in cryp-
tography. Due to the rigorous pressure of the bandwidth, short signatures are most favorable with
respect to the efficiency. On the other hand in view of the security, strongly unforgeable signatures,
which ensure the adversary cannot even produce a new signature for any previously signed message,
are very desirable too. But up to now, in the standard model all the existing signature schemes do
not satisfy the two requirements simultaneously.

In 2004, Boneh and Boyen (BB) constructed a short and strongly unforgeable signature scheme
in the standard model [1]. However, its security reduces to q-strong Diffie-Hellman (q-SDH) assump-
tion, which is a stronger assumption compared with the standard computational Diffie-Hellman
(CDH) assumption. The signature needs one element in pairing group Gp and one element in Zp

based on q-SDH assumption, where p is a prime determined by the security level. Later, several
researchers analyzed the security of strong Diffie-Hellman assumption [7, 5]. They pointed out that
it has computational complexity reduced by O(

√
q) from that of the discrete logarithm problem.

Hence, they recommend that any scheme based on the q-SDH assumption should increase the size
of the elements in groups, e.g. the elements in Gp and Zp, (by up to 50% more bits) for any given
security level, in contrast to the elements in groups built on the CDH assumption.

In 2005, Waters proposed an efficient identity-based (IBE) encryption scheme based on CDH
assumption [12]. The key technique to Waters IBE scheme is the usage of the so called Waters Hash
function. In [12], Waters also gave a signature scheme by the Waters Hash function. The signature
needs two elements in pairing group Gp, but it is not strongly unforgeable.

In 2006, Boneh, Shen and Waters (BSW) presented a strongly unforgeable signature from Waters
signature scheme [4]. The signature needs two elements in pairing group Gp and one element in Zp

based on CDH assumption.



Our Contributions. In this work we construct a short and strongly unforgeable signature
scheme based on the CDH assumption in the standard model. The signature scheme is simple and
efficient. It needs only one element in pairing group Gp and one element in Zp. In generally for a
given security level, the size of the elements in Gp is much bigger than one in Zp (c.f. Table 2 in
Section 4). Therefore, our scheme has the shortest size amongst all the known signatures in the
standard model.

The form of our signature is similar to BLS signature [3], which is a short signature in the
random oracle model. To achieve our signature in the standard model, we employ the Waters Hash
function [12]. In particularly, we elaborately select the parameters of Waters Hash function. This
selection enables us to construct a short and strongly unforgeable signature with tight security
reduction based on the CDH assumption in the standard model.

2 Preliminaries

2.1 The Target Collision Resistant Hash Function

The notion of target collision resistant TCR family of hash functions was presented by Cramer
and Shoup [8]. It is a special case of universal one-way hash function (UOWH) family introduced
by Naor and Yung [11], where a UOWH family can be built from arbitrary one-way functions [11].

In a TCR family, given a randomly chosen tuple of group elements x and a randomly chosen
hash function H, it is infeasible for an adversary A to find a y 6= x such that H(x) = H(y). In
practice, one can use a dedicated cryptographic hash function, like SHA-1 or SHA-256 for 80-bit or
128-bit security levels, respectively. Let n be the output length of the hash function H determined
by the security parameter k. For an efficient adversary A, we define

Advhash−tcr
T CR (k) = Pr[A succeeds].

Hash function is said to be target collision resistant if the advantage function Advhash−tcr
T CR (k) is a

negligible function in k for all polynomial-time adversaries Atcr.

2.2 The Computational Diffie-Hellman (CDH) Assumption

Let G be a group of prime order p, whose size is determined by the security parameter k.
The Computational Diffie-Hellman assumption (CDH) supposes that given the input (g, ga, gb),
where g is a generator of a group G, it should be computationally infeasible to compute gab.
More precisely, the Computational Diffie-Hellman assumption is said to be secure if the advantage
function Advcdh

A (k) is a negligible function in k for all polynomial-time adversaries Acdh, where

Advcdh
A (k) = Pr[A(g, ga, gb) → gab].



2.3 Bilinear Groups

Let G and G1 be a pair of group of prime order p. Let g be a generator of G. A bilinear pairing
is a map e : G×G→ G1 with two properties:

1. bilinearity: e(ga, gb) = e(g, g)ab, ∀a, b ∈ Zp;
2. non-degeneracy: e(g, g) 6= 1.

We say that G is a bilinear group if the group operation in G can be computed efficiently, and there
exists a group G1 and an efficiently computable bilinear pairing e : G×G→ G1 as above.

3 Signature and Security Model

A signature is a tuple (Setup, Sign, Verify) where
Setup. Inputs a security parameter k, outputs public key and secret key pk-sk pair (pk, sk).
Sign. Inputs a message M , public key pk and secret key sk, outputs a signature σ.
Verify. Inputs a message M , signature σ and public key pk, outputs 1 or 0 for valid or invalid.
Strong existential unforgeability under an adaptive chosen-message attack(sucma) is defined

using the following game:
Setup. The challenger gives the adversary the public key pk and keeps the private key sk to

itself.
Signature Queries. The adversary issues signature queries M1, . . . , Mq. To each query Mi

the challenger responds by running Sign to generate a signature σi of Mi and sending σi to the
adversary. These queries may be asked adaptively so that each query Mi may depend on the replies
to M1, . . . , Mi−1.

Output. Finally the adversary outputs a pair (M∗, σ∗). The adversary wins if σ∗ is a valid
signature of M∗ according to Verify and (M∗, σ∗) is not among the pairs (Mi, σi) generated
during the query phase.

We define the advantage of an adversary A in attacking the signature scheme as the probability
that A wins the above game, taken over the random bits of the challenger and the adversary.

Definition 1 A signature scheme is (t, q, εA)-strongly existentially unforgeable under an adaptive
chosen-message attack(sucma) if no t-time adversary A making at most q signature queries has
advantage at least εA = Advsucma

A in the above game.

4 Signature Scheme and Security Proof

4.1 Signature Scheme

Setup. Let G be a bilinear group of prime order p, where security parameter k determines the
size of G. Let e : G×G→ G1 be the bilinear map. Firstly we choose two target collision-resistant



hash functions H1 : {0, 1}∗ → {0, 1}n and H2 : {0, 1}∗ → Zp, where the integer n is determined
by the security parameter k. Next we pick a random generator g ∈ G, choose random a ∈ Zp and
h ∈ G, n-length vector −→u = (ui), whose elements are chosen at random from G. Finally, the public
key pk and secret key sk are given by

pk = (g, ga, h, H1,H2,
−→u = (ui)), sk = (a).

Sign. To sign a message M , the signer chooses a random r ∈ Zp, computes v = H1(M, r) and
gives the signature as

(σ1, σ2) = ((hH2(M,r)
∏

i∈V
ui)a, r)

where the set V is formed by all the is that the ith bit vi of v is 1.

Verify. To verify a signature (σ1, σ2) on M , the receiver computes v = H1(M, σ2) and tests

e(σ1, g) = e((hH2(M,σ2)
∏

i∈V
ui), ga) (1)

if it holds, accepts the signature, otherwise rejects it.

4.2 Security Proof

Theorem 1 If an adversary A can forge a valid signature with advantage εA = Advsucma
A and

running time TimeA(k) we construct a challenger B breaking the CDH assumption with advantage
εB = Advcdh

B (k) and running time TimeB(k) with

εB ≥ εA
2

(1−Advhash−tcr
T CR (k)),

TimeB(k) ≤ TimeA(k) + qts,

where q is an upper bound on the number of signature queries made by adversary A. The ts denotes
the time required for one time signature query computation.

Proof : In this proof the challenger B will solve the CDH assumption successfully with the help
of the forge ability of the adversary A, who interacts with A as follows.

Setup. Assume that the integer n determined by the security parameter k is a multipler of 4.
The challenger B obtains the (g, ga, gb) from CDH assumption. It picks n-length vector −→x = (xi)
and −→y = (yi), whose elements are chosen at random from Z∗p and the (xi) satisfy parity distributing
uniformity. The challenger sets ui = (gb)(−1)xi gyi and −→u = (ui). It selects a random z ∈ Z∗p, sets
h = gz. Finally, it chooses two target collision-resistant hash functions H1 : {0, 1}∗ → {0, 1}n and



H2 : {0, 1}∗ → Zp. For ease of analysis we define two functions: F (v) =
∑

i∈V(−1)xi (mod p) and
J(v) =

∑
i∈V yi (mod p). The public key pk and secret key sk are given by

pk = (g, ga, h, H1,H2,
−→u = (ui)), sk = (a(unknown),−→x = (xi),−→y = (yi), z).

Signature queries. The challenger B receives a signature query on Mj . It selects a random
r ∈ Zp, which satisfies F (v) = 0 (mod p) for v = H1(Mj , r), and gives the signature as

(σ1,j , σ2,j) = ((hH2(Mj ,r)
∏

i∈V
ui)a, r) = (((gz)H2(Mj ,r)(gb)F (v)gJ(v))a, r) = ((ga)J(v)+zH2(Mj ,r), r).

It is obvious that (σ1,j , σ2,j) is a valid signature on Mj . Later, we will determine the average selection
times of such integers r for an given message Mj .

Output. At this phase the adversaryA returns a signature (σ∗1, σ
∗
2) = ((hH2(M∗,r∗) ∏

i∈V ui)a, r∗)
on any M∗. The challenger firstly verifies it by (1), if not holds rejects the signature. Next computes
v∗ = H1(M∗, r∗) and tests F (v∗) = 0, if holds aborts (we will compute the abort probability in the
forthcoming discussions), otherwise the challenger can computes gab as

gab = (
σ∗1

(ga)J(v∗)+zH2(M∗,σ∗2)
)

1
F (v∗) = (

((gb)F (v∗)gJ(v∗)+zH2(M∗,σ∗2))a

(ga)J(v∗)+zH2(M∗,σ∗2)
)

1
F (v∗) .

In Signature queries phase, the challenger is able to select a certain r with F (v) = 0, where
v = H1(Mj , r). The ability is guaranteed by the following reasonable selections:

− The challenger selects a target collision-resistant hash function H1 of output length n, such that
H1 outputs all 0 and all 1 with negligible probability.

− The challenger chooses −→x = (xi), i = (1, . . . , n), half odd number and half even.
− The challenger sets ui = (gb)(−1)xi gyi , such that the exponents of gb that assemble a sequence

length of nbits, which comprises by 1 and −1 randomly.

Denote Preven the possibility of v with the even numbers of 1. Suppose that v has 2m bits 1
with the possibility Prm, i.e., Preven =

∑n/2
m=0 Prm. From Probability Theory, we have

Prm[F (v) = 0] =
Cm

n/2C
m
n/2

C2m
n

.

Define Cm = (Cm
n/2)

2/C2m
n . It is easy to verify that Cm = Cn/2−m, and Cm > Cm+1, 0 ≤ m < n/4.

Hence, with m ranging from 1 to n/2, the maximum Cmax and the minimum Cmin are respectively

Cmax = C1 =
(C1

n/2)
2

C2
n

=
n/2

n− 1
≈ 1

2
,

Cmin = Cn/4 =
(Cn/4

n/2 )2

C
n/2
n

.

In the following, we give the corresponding minimum Cmin for the security levels 80-bit, 128-bit,
256-bit and 512-bit, which are corresponding for the output length n of the secure hash functions,
i.e., n = 160, 256, 512, 1024(bits), respectively [9].



Table 1 n and Cmin

security level n Cmin

80 160 0.125567
128 256 0.0994438
256 512 0.0704205
512 1024 0.0498313

In addition for the above given security levels, Table 2 derived from [5] is given as follows to
illustrate the elements size representation of pairing group Gp and Zp under the CDH assumption.
Herein we consider concrete case of pairings on supersingular (SS) curves of large characteristic
used in [2], and pairings on MNT curves [10] as described in [3].

Table 2 Size Representation(bits)

SS MNT MNT
80-bit security 80-bit security 128-bit security

Zp 160 160 256
G 512 171 512

From Table 2, we notice that the elements in Zp is nbits at the the security level n/2. Thus for
the integer r ∈ Zp, the size |r| = nbits is as the same as the output length of the hash function H1.
Then when the challenger B signs by selecting r uniformly from Zp, it is reasonable to assume that
Preven =

∑n/2
m=0 Prm = 1/2.

Consequently for the signature signed by B,

Pr[F (v) = 0] =
n/2∑

m=0

Prm · Prm[F (v) = 0]

≥ Cmin

n/2∑

m=0

Prm

= CminPreven

=
Cmin

2
.

Generally speaking, at least the signature scheme is required to have 80-bit security level, i.e.,
n=160bits. Accordingly, Pr[F (v) = 0] ≥ 0.06278, averagely if selecting 16 times random r, the
challenger will get a v = H1(Mj , r) such that F (v) = 0 (mod p). If the security level is extended to
128-bit, 256-bit, or 512-bit, then averagely the challenger obtains a certain r satisfying F (v) = 0
from at most 21, 29, or 40 times selections.

In the output phase, the challenger will abort in two independent cases:



1. The adversary A outputs a forge signature with F (v∗) = 0 (mod p). Obviously F (v∗) = 0 (mod
p) only occurs for v∗ = H1(M∗, r∗) having even number of 1. Similar to the analysis in Signa-
ture Query phase,

Pr[abort]F (v∗)=0 =
n/2∑

m=0

Prm · Prm[F (v∗) = 0]

=
n/2−1∑

m=1

Prm · Prm[F (v∗) = 0]

≤ Cmax

n/2−1∑

m=1

Prm[F (v∗) = 0]

= CmaxPreven

=
Preven

2
,

where the second identity comes from the fact that the Hash function H1 outputs m = 0 or n/2
with negligible probability, and Preven is the possibility of v∗ submitted by A with the even
numbers of 1.
In Signature Query phase, all the signatures on Mj , signed by the challenger B, satisfies the
property that v = H1(Mj , r) possesses even number of 1. In Output phase, a clever adversary
A may observe this property. So, it is most likely that A always generates forge signatures with
v∗ = H1(M∗, r∗) having even number of 1, i.e., Preven = 1. Then,

Pr[abort]F (v∗)=0 ≤
1
2
,

2. The adversary A submit a tuples (M∗, r∗) 6= (Mj , r) to make H1(M∗, r∗) = H1(Mj , r) or
H2(M∗, r∗) = H2(Mj , r). This case occurs with probability

Pr[abort]target hash collision = Advhash−tcr
T CR (k).

That is, the simulation will not abort with probability

Pr[abort] = (1− Pr[abort]F (v∗)=0)(1− Pr[abort]target hash collision)

≥ 1
2
(1−Advhash−tcr

T CR (k)).

Thus, we have

εB ≥ εA
2

(1−Advhash−tcr
T CR (k)), TimeB(k) ≤ TimeA(k) + qts.

In particular, we should emphasize that the reduction probability is always εB ≥ εA
2 (1 −

Advhash−tcr
T CR (k)), whatever n = 160, 256, 512, 1024 etc. That is, our scheme possess an advan-

tage that the security reduction will maintain the same efficiency with the security level enhances
(the n increase).



4.3 Similarity to Waters hash function

Indeed, our proof is based on a modification of Waters Hash function [12], by simply replacing
ui = (gb)xigyi in Waters scheme with ui = (gb)(−1)xi gyi . Whereas the slight modification is powerful
to ensure that our signature has an efficient security reduction.

5 Efficiency Comparison and Conclusion

Table 3 gives the comprehensive comparison among our signature scheme and other three
schemes. In particular, the size of elements in G and Zp are based on CDH assumption and the
size of elements in G′ and Z′p are based on q-SDH assumption, denotes by |G|, |Zp|, |G′| and |Z′p|,
respectively. As mentioned in Section 1, it should be noticed that at the same security level |G′| and
|Z′p| should increase by up to 50% (bits) on the basis of |G| and |Zp|, respectively, to compensate
for Cheon’s attack [7].

Table 3 Comprehensive Comparison

Scheme Signature size Standard Model Assumption Security Reduction Strong unforgeable

Ours |G|+ |Zp|
√

CDH 1
√

BB [1] |G′|+ |Z′p|
√

q-SDH 1
√

BSW [4] 2|G|+ |Zp|
√

CDH 1
nq

√

Waters [12] 2|G| √
CDH 1

nq −

Based on Tables 2 and 3, the size of the various signatures is then given in Table 4. From it, one
can see that our signature is always the shortest no matter what security levels and what pairing
groups are used.

Table 4 Size Comparison(bits)

Scheme SS MNT MNT
80-bit security 80-bit security 128-bit security

Ours 672 331 768
BB [1] 1008 497 1152

BSW [4] 1184 502 1280
Waters [12] 1024 342 1024

Therefore, by slightly modifying the parameters selection of Waters Hash function, we construct
a short and strongly unforgeable signature scheme based on the standard computational Diffie-
Hellman(CDH) assumption in the standard model. The signature scheme is simple and has tight
security reduction. It needs only one element in pairing group Gp and one element in Zp.
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