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Abstract

Predicate encryption is a new paradigm generalizing, among other things, identity-based en-
cryption. In a predicate encryption scheme, secret keys correspond to predicates and ciphertexts
are associated with attributes; the secret key SKf corresponding to the predicate f can be used
to decrypt a ciphertext associated with attribute I if and only if f(I) = 1. Constructions of
such schemes are currently known for relatively few classes of predicates.

We construct such a scheme for predicates corresponding to the evaluation of inner products
over ZN (for some large integer N). This, in turn, enables constructions in which predicates
correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulae, or threshold
predicates (among others). Besides serving as what we feel is a significant step forward in the
theory of predicate encryption, our results lead to a number of applications that are interesting
in their own right.

1 Introduction

Traditional public-key encryption, though an extremely useful primitive, is rather coarse-grained:
a sender encrypts a message M with respect to a given public key PK, and only the owner of
the (unique) secret key associated with PK can decrypt the resulting ciphertext and recover the
message. These straightforward semantics suffice for applications such as encrypting data a personal
hard-drive or securing point-to-point communication, where encrypted data is intended for one
particular user who is known in advance by the sender.

As the Internet and applications evolve, more complex types of data will be stored in distributed
settings. These will present a different set of demands for the security of stored data. In many
cases, the sender will want access to the encrypted data to be governed by more complex rules; the
sender may no longer intend the encrypted data for any particular user, but might instead want
to enable decryption by any user satisfying a certain sender-specified policy. For example, in a
health care application a patient’s records should perhaps be accessible only to a physician who
has treated the patient in the past.

In other scenarios, we will want to go even further and limit what a particular user learns about
a record. Consider a researcher studying the correlation between the occurrence of a particular
disease and the age of people that the disease afflicts. The researcher might be authorized to learn
whether a record matches for the disease and, if so, the age of the patient; however, he should not
learn anything more. Another example is an email firewall that should only be able to evaluate
the predicate of whether an encrypted email message is considered to be spam, but should learn
nothing else about the encrypted message.
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Applications such as those sketched above will require new cryptographic mechanisms that
provide more fine-grained control over access to encrypted data. Predicate encryption schemes are
one such tool. At a high level (formal definitions are given in Section 2), secret keys in a predicate
encryption scheme correspond to predicates in some class F , and ciphertexts are associated with
attributes in some set Σ; a ciphertext associated with the attribute I ∈ Σ can be decrypted by
a secret key SKf corresponding to the predicate f ∈ F if and only if f(I) = 1. In predicate
encryption systems we require a strong definition of security where we will evaluate the predicate
over the hidden data (or attributes) itself. For example, these predicate encryption schemes an
adversary as above learns nothing about I beyond the fact that f1(I) = · · · f`(I) = 0. Furthermore,
even a legitimate user who holds SKf and can recover the plaintext from some ciphertext associated
with attribute I learns nothing about I other than the fact that f(I) = 1. (See Definition 2.2 for
a formal statement.)

Related Work The best-known example of encryption systems with fine-grained capabilities is
Identity-Based Encryption (IBE) [18, 6, 12]. Identity-Based Encryption can be viewed as a system
where a ciphertext is associated with a certain attribute or identity, I, and a user can decrypt the
underlying encrypted data M if and only if there is an equality match between the attribute assigned
to the user’s private key and that of the ciphertext. One limitation of IBE systems and more
expressive generalizations such as attribute-based encryption (ABE) [17, 15, 3, 11, 16] is that they
fall into a class of encryption systems that we informally informally refer to as “attribute revealing”.
Attribute-revealing encryption systems can be viewed as encryption systems that guarantee that
an adversary in possession of secret keys SKf1 , . . . , SKf`

and given a ciphertext associated with
the attribute I learns nothing about the underlying plaintext whenever f1(I) = · · · = f`(I) = 0.
However, the adversary may learn I itself. More generally, an attribute-revealing scheme offers no
protection of I whatsoever; typical constructions satisfying this notion reveal I in the clear. In the
context of, e.g., identity-based encryption, a attribute-revealing scheme corresponds to the standard
notion of security while a predicate encryption ( or attribute-hiding) scheme is also anonymous.

Unfortunately, current predicate encryption systems are rather limited in their expressiveness.
Song, Wagner, and Perrig [20] and Goldreich and Ostrovsky [14] gave the first such encryption
systems for equality predicates in the symmetric setting and Boneh et al. [5] showed how to com-
pute equality tests (that later came to be known as Anonymous IBE) in the public key setting.
Subsequently, Boyen and Waters [9] showed the first such Anonymous IBE scheme that didn’t use
random oracles and also had a hierarchical structure. Gentry [13] gave a different technique for
removing random oracles.

Recently, Boneh and Waters [8] showed how to construct predicates that were a conjunction
over subset of fields, specified by the private key that was used to realize subset and range queries.
Shi et al. [19] showed how to do more efficient queries over a small number of ranges, but in a
weaker security model where the decryptor learns extra information when the predicate evaluates
to true. In other work researchers have looked at issues of correctness definitions in anonymous
IBE [1] and security versus efficiency tradeoffs in equality predicates [2].

1.1 Our Results

An important research direction is to construct predicate encryption schemes for classes F that
are as expressive as possible (with the ultimate goal, of course, being to construct a scheme where
F contains all polynomial-time predicates). The main limitation of all prior work, listed above, is
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that existing techniques for building attribute-hiding schemes are essentially limited to enforcing
conjunctions of equalities. Getting slightly more technical, this is because the underlying cryp-
tographic mechanism in the above schemes is to set up “cancellations” between the private key
components and the ciphertext components. If a particular field in the ciphertext does not match
with the corresponding field in the private key, the result will be random and the decryptor will
know that the predicate evaluates to false.

While these cancellation techniques are useful for conjunction predicates, it is apparent that
very different cryptographic techniques are needed to support predicates that include a disjunctive
component. As a simple example, suppose we want a system that supports a simple OR predicate
over two fields (where the evaluation should not revealing which field satisfied it). Previous can-
cellation mechanisms do not readily support such queries; if a particular ciphertext field does not
match a private key field, then the evaluation should depend upon the second field and not just
be sent to a random group element. While OR queries is just one type of predicate, several other
predicate classes depend on some type of disjunctive mechanism, such as thresholds and evaluating
CNF or DNF formulas. In this work we aim to realize such predicates, so we will need to introduce
new techniques.

Towards realizing this goad we focus on building a class of predicates corresponding to the
computation of inner products of vectors over ZN for some large integer N . By making our
technical objective tied more closely to the underlying mathematics we will able to achieve our
overall objectives. Specifically, we will take Σ = Zn

N as our set of attributes, and our class of
predicates will be F = {f~x | ~x ∈ Zn

N} where f~x(~y) = 1 iff 〈~x, ~y〉 = 0. (We let〈~x, ~y〉 denote the value
of the standard inner product

∑n
i=1 xi · yi mod N of two vectors ~x and ~y.) This can be generalized

in a completely straightforward manner to support more general predicates such as f~x,a(~y) = 1 iff
〈~x, ~y〉 = a.

Our main result is a construction of a scheme as described above in the standard model, based
on two new assumptions in composite-order groups equipped with a bilinear map. Our assumptions
are non-interactive and of fixed size (i.e., not “q-type”). We haven’t done this and we justify them
by showing that they hold in generic groups with a bilinear map. A pessimistic interpretation
of our results would be that we prove security in the generic group model, but we believe it is
of additional importance that we are able to distill our necessary assumptions to ones that are
compact and falsifiable.

We view our main construction as a significant step toward increasing the expressiveness of
predicate encryption in general. In particular, we stress that our desired result does not follow
from any trivial adaptation or combination of the existing schemes highlighted above, and our
construction uses new techniques including the fact that we work in a group whose order is a
product of three primes (but see footnote 1). Moreover, we show that any predicate encryption
scheme supporting “inner product” predicates as described earlier can be used as a building block
to construct predicates of more general types:
• As an easy warm-up, we show that it implies (anonymous) identity-based encryption as well

as hidden-vector encryption. As a consequence, our work implies all the results of [8].

• We can also construct predicate encryption schemes supporting polynomial evaluation. Here,
we take ZN as our set of attributes, and predicates corresponds to polynomials over ZN of
some bounded degree; a predicate evaluates to 1 iff the corresponding polynomial evaluates
to 0 on the attribute in question. We can also extend this to include multi-variate polynomials
(in some bounded number of variables). A “dual” of this construction allows the attributes
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to be polynomials, and the predicates to correspond to evaluation at a fixed point.

• Given the above, we can fairly easily support predicates that are disjunctions of other predi-
cates (e.g., equality), thus addressing the open question from [8] noted earlier. In the context
of identity-based encryption, this gives the ability to issue secret keys corresponding to a set
of identities that enables decryption whenever a ciphertext is encrypted to any identity in
this set (without leaking which identity was actually used to encrypt).

• We also show how to handle predicates corresponding to DNF and CNF formulas of some
bounded size.

• Working directly with our “inner product” construction, we can derive a scheme supporting
threshold queries of the following form: Attributes are subsets of A = {1, . . . , `}, and predi-
cates take the form {fS,t | S ⊆ A} where fS,t(S′) = 1 iff S ∩ S′ = t. This is useful for hiding
an encrypted biometric in the “fuzzy IBE” setting of Sahai and Waters [17], which previously
hid only a payload, but revealed the biometric it was encrypted under.

We defer further discussion regarding the above until Section 5.

2 Definitions

We define the syntax of predicate encryption, as well as the notion of “attribute hiding” mentioned
previously. Our definitions follow the general framework of those given in [8]. Throughout this
section, we consider the general case where Σ denotes an arbitrary set of attributes and F denotes
an arbitrary set of predicates over Σ. Formally, both Σ and F might depend on the security
parameter and/or the master public parameters; for simplicity, we leave this implicit.

Definition 2.1. A predicate encryption scheme for the class of predicates F over the set of attributes
Σ consists of four ppt algorithms Setup,GenKey,Enc,Dec such that:
• Setup takes as input the security parameter 1n and outputs a (master) public key PK and a
(master) secret key SK.

• GenKey takes as input the master secret key SK and a (description of a) predicate f ∈ F .
It outputs a key SKf .

• Enc takes as input the public key PK, an attribute I ∈ Σ, and a message M in some
associated message space. It returns a ciphertext C. We write this as C ← EncPK(I, M).

• Dec takes as input a secret key SKf and a ciphertext C. It outputs either a message M or
the distinguished symbol ⊥.

For correctness, we require that for all n, all (PK, SK) generated by Setup(1n), all f ∈ F , any key
SKf ← GenKeySK(f), and all I ∈ Σ:

• If f(I) = 1 then DecSKf
(EncPK(I, M)) = M .

• If f(I) = 0 then DecSKf
(EncPK(I, M)) =⊥ with all but negligible probability.

We will also consider a variant of the above that we call a predicate-only scheme. Here, Enc
takes only an attribute I (and no message); the correctness requirement is that if f(I) = 1 then
DecSKf

(EncPK(I)) = 1 whereas if f(I) = 0 then DecSKf
(EncPK(I)) = 0. A scheme of this sort

can serve as a useful building block toward a full-fledged predicate encryption scheme.
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Our definition of security corresponds to the attribute-hiding notion described informally earlier.
Here, an adversary may request keys corresponding to the predicates f1, . . . , f` and is then given
either EncPK(I0,M0) or EncPK(I1,M1) for attributes I0, I1 such that fi(I0) = fi(I1) for all i.
Furthermore, if M0 6= M1 then it is required that fi(I0) = fi(I1) = 0 for all i. The goal of the
adversary is to determine which attribute/message pair was encrypted, and the stated conditions
ensure that this is not trivial.

Once again, we note that when specialized to the case when F consists of equality queries, this
notion corresponds to anonymous identity-based encryption. However, our definition actually uses
the “selective” notion of security first introduced in [10].

Definition 2.2. A predicate encryption scheme with respect to F and Σ is attribute hiding (or
simple secure) if for all ppt adversaries A, the advantage of A in the following experiment is
negligible in the security parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.

2. Setup(1n) is run to generate PK, SK, and the adversary is given PK.

3. A may adaptively request keys for any predicates f1, . . . , f` ∈ F subject to the restriction that
fi(I0) = fi(I1) for all i. In response, A is given the corresponding keys SKi ← GenKeySK(fi).

4. A outputs two equal-length messages M0,M1. If there is an i for which fi(I0) = fi(I1) = 1,
then it is required that M0 = M1. A random bit b is chosen, and A is given the ciphertext
C ← EncPK(Ib,Mb).

5. The adversary may continue to request keys for additional predicates, subject to the same
restrictions as before.

6. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

For predicate-only encryption schemes we simply omit the messages in the above experiment. For
convenience, we include in Appendix A a re-statement of the definition of security given above for
the particular inner-product predicate we use in our main construction.

3 Background on Pairings and Complexity Assumptions

3.1 Bilinear Groups of Composite Order

We review some general notions about bilinear groups, with an emphasis on groups of composite
order. We follow [7] in which composite-order bilinear groups were first introduced. In contrast to
all prior work using composite-order bilinear groups, however, we present our results using groups
whose order N is a product of three (distinct) primes. This is for simplicity only, since a variant
of our construction can be proven secure based on a “decisional linear”-type assumption [4] in a
group of composite order N which is a product of two primes.1

Let G be an algorithm that takes as input a security parameter 1n and outputs a tuple
(p, q, r, G, GT , ê) where p, q, r are distinct primes, G and GT are two cyclic groups of order N = pqr,
and ê : G×G→ GT is:

1This is analogous to the “folklore” transformation (based on the decisional linear assumption) that converts any
scheme using groups whose order N is a product of two primes, to a scheme that uses prime-order groups.
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• (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.

• (Non-degenerate) ∃g ∈ G such that ê(g, g) has order N in GT .

We assume that the group action in G and GT as well as the bilinear map ê are all computable
in time polynomial in n. Furthermore, we assume that the description of G and GT includes
generators of G and GT respectively.

We use the notation Gp, Gq, Gr to denote the subgroups of G having order p, q, and r, respec-
tively. Observe that G = Gp ×Gq ×Gr. Note also that if g is a generator of G, then the element
gpq is a generator of Gr; the element gpr is a generator of Gq; and the element gqr is a generator
of Gp. Furthermore, if, e.g., hp ∈ Gp and hq ∈ Gq then

ê(hp, hq) = ê
(
(gqr)α1 , (gpr)α2

)
= ê

(
gα1 , grα2

)pqr
= 1,

where α1 = loggqr hp and α2 = loggpr hq. Similar rules hold whenever ê is applied to elements in
disjoint subgroups.

3.2 Our Assumptions

We now state the assumptions we use to prove security of our construction. As remarked earlier,
these assumptions are new but we justify them by proving that they hold in the generic group model
under the assumption that factoring N , the order of the group, is hard. (These proofs are omitted
from the present submission). At a minimum, then, our construction can be viewed as secure in
the generic group model. Nevertheless, we state our assumptions explicitly since our assumptions
are non-interactive and of fixed size, and we view this as an advantage.

Assumption 1. Let G be as in the previous section. We say that G satisfies Assumption 1 if
the advantage of any ppt algorithm A in the following experiment is negligible in the security
parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.

2. Choose random Q1, Q2, Q3 ∈ Gq, random R1, R2, R3 ∈ Gr, random a, b, s ∈ Zp, and a random
bit b. Give to A the values (N, G, GT , ê) as well as

gp, gr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2.

If b = 0 give A the value T = gb2s
p R3, while if b = 1 give A the value T = gb2s

p Q3R3.

3. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

Assumption 2. Let G be as in the previous section. We say that G satisfies Assumption 2 if
the advantage of any ppt algorithm A in the following experiment is negligible in the security
parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.
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2. Choose random h, Q1, Q2 ∈ Gq, random s, γ ∈ Zq, and a random bit b. Give to A the values
(N, G, GT , ê) as well as

gp, gq, gr, h, gs
p, hsQ1, gγ

pQ2, ê(gp, h)γ .

If b = 0 then give A the value ê(gp, h)γs, while if b = 1 then give A a random element of GT .

3. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

Note that both the above assumptions imply the hardness of factoring N .

4 Our Main Construction

Our main construction is a predicate-only scheme where the set of attributes is Σ = Zn
N , and the

class of predicates is F = {f~x | ~x ∈ Zn
N} with f~x(~y) = 1 iff 〈~x, ~y〉 = 0 mod N . In this section

we provide our predicate-only construction and give some intuition about our proof. For space
considerations the details of the proof are presented in Appendix B. In Appendix C we show how
our scheme can be extended to give a full-fledged predicate encryption scheme.

Intuition In our construction, each ciphertext has associated with it a (secret) vector ~x, and each
secret key corresponds to a vector ~v. The decryption procedure must check whether ~x · ~v = 0, and
reveal nothing about ~x but whether this is true. To do this, we will make use of a bilinear group G
whose order N is the product of three primes p, q, and r. Let Gp, Gq, and Gr denote the subgroups
of G having order p, q, and r, respectively. We will (informally) assume, as in [7], that a random
element in any of these subgroups is indistinguishable from a random element of G.2. Thus, we can
use random elements from one subgroup to mask elements from another subgroup.

At a high level, we will use these subgroups as follows. Gq will be used to encode the vectors ~x
and ~v in the ciphertext and secret keys, respectively. Computation of the inner product 〈~v, ~x〉 will
be done in Gq (in the exponent), using the bilinear map. Gp will be used to encode an equation
(again in the exponent) that evaluates to zero when decryption is done properly. This subgroup is
used to prevent an adversary from improperly “manipulating” the computation (by, e.g., changing
the ordering of components of the ciphertext or secret key, raising these components to some power,
etc.). On an intuitive level, if the adversary tries to manipulate the computation in any way, then
the computation occurring in the Gp subgroup will no longer yield the identity, but will instead have
the effect of “masking” the correct answer with a random element of Gp (which will invalidate the
entire computation). Elements in Gr are used for “general masking” of terms in other subgroups;
i.e., random elements of Gr will be multiplied with various components of the ciphertext (and secret
key) in order to “hide” information that might be present in the Gp and Gq subgroups.

We now proceed to the formal description of our scheme.

4.1 Scheme

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with G = Gp×Gq×Gr.
Next, it computes gp, gq, and gr as generators of Gp, Gq, and Gr, respectively. It then chooses

2This is only for intuition. Our actual computational assumption is given in Section 3.
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R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈ Gr uniformly at
random. The public parameters include (N = pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1

)
.

The master secret key SK is
(
p, q, r, gq, {h1,i, h2,i}ni=1

)
.

EncPK(~x) Let ~x = (x1, . . . , xn) with xi ∈ ZN . This algorithm chooses random s, α, β ∈ ZN and
R3,i, R4,i ∈ Gr for i = 1 to n. (Note: a random element R ∈ Gr can be sampled by choosing
random δ ∈ ZN and setting R = gδ

r .) It outputs the ciphertext

C =
(
C0 = gs

p,
{

C1,i = Hs
1,i ·Qα·xi ·R3,i, C2,i = Hs

2,i ·Qβ·xi ·R4,i

}n

i=1

)
.

GenKeySK(~v) Let ~v = (v1, . . . , vn), and recall SK =
(
p, q, r, gq, {h1,i, h2,i}ni=1

)
. This algorithm

chooses random r1,i, r2,i ∈ Zp for i = 1 to n, random R5 ∈ Gr, random f1, f2 ∈ Zq, and random
Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 ·

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

)
.

DecSK~v
(C) Let C and SK~v be as above. The decryption algorithm outputs 1 iff

ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)
?= 1.

Correctness. Let C and SK~v be as above. Then

ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)

= ê

(
gs
p, R5Q6

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê
(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)
= ê

(
gs
p,

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·

n∏
i=1

ê
(
hs

1,i · gα·xi
q , g

r1,i
p gf1·vi

q

)
· ê
(
hs

2,i · gβ·xi
q , g

r2,i
p gf2·vi

q

)
=

n∏
i=1

ê(gq, gq)(αf1+βf2)xivi = ê(gq, gq)(αf1+βf2)〈~x,~v〉.

If 〈~x,~v〉 = 0 mod N , then the above evaluates to 1. If 〈~x,~v〉 6= 0 mod N there are two cases: if
〈~x,~v〉 6= 0 mod q then with all but negligible probability the above evaluates to an element other
than the identity. It is possible that 〈~x,~v〉 = 0 mod q, in which case the above would always
evaluate to 1; however, this would reveal a non-trivial factor of N and so an adversary can cause
this condition to occur with only negligible probability.
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The reader might notice that there appears to be some redundancy in our construction. For
instance, the C1,i and C2,i components play almost identical roles. In fact we can view the encryp-
tion system as two parallel sub-systems linked at the C0 component (and the corresponding private
key component). A natural question is whether this redundancy can be eliminated (i.e. remove
the second sub-system) to achieve better performance. While such a construction appears to be
secure, our current proof (that utilizes a non-interactive assumption) relies in an essential way on
having two parallel subsystems.

4.2 Proof Intuition

The most challenging aspect to providing a proof of our scheme naturally arises from the disjunctive
capabilities of our system. In previous conjunctive systems such as that of Boneh and Waters [8] the
authors proved security by moving through a sequence of hybrid games, in which an encryption of
a vector ~x was changed component-by-component to the encryption of a vector ~y. In these systems
no inner product functionality was given, the adversary could only ask for predicate capabilities
that performed a conjunctive search. In the security game the adversary could only ask for queries
that did not match either ~x or ~y, or queries that did not “look at” the components in which ~x
and ~y differed. There, is was relatively straightforward to perform hybrid experiments over the
components of ~x and ~y that differed, since the private keys given to the adversary did not “look
at” these components.

In our proof an adversary will again try to distinguish between encryption of two vectors ~x and ~y.
However, in this case the adversary can query for a vector ~v such that both 〈~x,~v〉 = 0 and 〈~y,~v〉 = 0;
i.e., this key should enable correct decryption in either case. This is a perfectly legitimate query
since the inner product capability associated with predicate ~v should not be able to distinguish
between ~x and ~y. However, this means that we cannot use the same hybrid proof strategy as in
previous schemes. For example, if we change just one component at a time, then the “hybrid”
vector used in an intermediate step will likely not be orthogonal to ~v (and the adversary will be
able to detect this). Therefore, we need an approach that will enable us to use hybrids in which
entire vectors are changed in one step, instead of changing the vector component-by-component.

To get around this we take advantage of the fact that, as noted earlier, our encryption scheme
has two parallel sub-systems. In our proof we will use a sequence of hybrids where some of the
hybrid challenge ciphertexts will be encryptions of one vector in the first sub-system and a different
vector in the second sub-system. (Note that such a ciphertext will be ill-formed, since any valid
ciphertext will always use the same vector in each sub-system.) Let (~a,~b) denote an encryption
of vector ~a in the first sub-system and ~b in the second su-system. To prove indistinguishability
when encrypting to ~x (which corresponds to (~x, ~x)) and when encrypting to ~y (which corresponds
to (~y, ~y)), we will prove indistinguishability of the following sequence of hybrid games:

(~x, ~x), (~x,~0), (~x, ~y), (~0, ~y), (~y, ~y).

Forming our hybrid proof in this structure allows us to use a simulator that will essentially be
able to evaluate one sub-system, but not know what is happening in the other one. The simulator
embeds a “subgroup decision-like” assumption into the challenge ciphertext for each experiment.
The structure of the challenge will determine whether a sub-system encrypts a particular vector or
the zero vector. Details of our proof and further discussion are given in Appendix B.
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5 Applications of Our Main Construction

In this section we discuss some applications of predicate encryption schemes of the type constructed
in this paper. Our treatment here is general and can be based on any predicate encryption scheme
supporting “inner product” queries; we do not rely on any specific details of our construction.

For improved readability throughout this section, we use boldface to denote vectors. Given a
vector x ∈ Z`

N , we denote by fx : Z`
N → {0, 1} the function such that fx(y) = 1 iff 〈x,y〉 = 0. We

define F ` def= {fx | x ∈ Z`
N}.

5.1 Anonymous Identity-Based Encryption

As a warm-up, we show how anonymous identity-based encryption (IBE) can be recovered from any
inner product encryption system over F2. To generate the master public and secret keys for the
IBE scheme, simply run the setup algorithm of the underlying inner product encryption scheme. To
generate secret keys for the identity I ∈ ZN , set I := (1, I) and output the secret key corresponding
to the predicate fI. To encrypt a message M for the identity I ∈ ZN , set Ī := (−I, 1) and encrypt
the message using the encryption algorithm of the underlying inner product encryption scheme and
the attribute Ī. Since

〈
I, J̄
〉

= 0 iff I = J , both correctness and security follow.

5.2 Hidden-Vector Encryption

Given a set Σ, let Σ? = Σ ∪ {?}. Hidden-vector encryption (HVE) [8] corresponds to a predicate
encryption scheme for the class of predicates Φhve = {φhve

(a1,...,a`)
| a1, . . . , a` ∈ Σ?}, where

φhve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or ai = ?
0 otherwise

.

A generalization of the ideas from the previous section can be used to realize hidden-vector encryp-
tion with Σ = ZN from any inner product encryption scheme (Setup,GenKey,Enc,Dec) for F2` :
• The setup algorithm is unchanged.

• To generate a secret key corresponding to the predicate φhve
(a1,...,a`)

, first construct a vector
A = (A1, . . . , A2`) as follows:

if ai 6= ? : A2i−1 := 1, A2i := ai

if ai = ? : A2i−1 := 0, A2i := 0.

Then output the key obtained by running GenKeySK(fA).

• To encrypt a message M for the attribute x = (x1, . . . , x`), choose random r1, . . . , r` ∈ ZN

and construct a vector Xr = (X1, . . . , X2`) as follows:

X2i−1 := −ri · xi, X2i := ri

(multiplication is done modulo N). Then output the ciphertext C ← EncPK(Xr,M).
To see that correctness holds, let (a1, . . . , a`), A, (x1, . . . , x`), r, and Xr be as above and note that

φhve
(a1,...,a`)

(x1, . . . , x`) = 1 ⇒ ∀r : 〈A,Xr〉 = 0 ⇒ ∀r : fA(Xr) = 1.
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Conversely, security holds since

φhve
(a1,...,a`)

(x1, . . . , x`) = 0 ⇒ Prr[〈A,Xr〉 = 0] = 1/N ⇒ Prr[fA(Xr) = 1] = 1/N,

which is negligible.
A straightforward modification of the above gives a scheme that is the “dual” of HVE, where

the set of attributes is (Σ?)` and the class of predicates is Φ̄hve = {φ̄hve
(a1,...,a`)

| a1, . . . , a` ∈ Σ} with

φ̄hve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or xi = ?
0 otherwise

.

5.3 Predicate Encryption Schemes Supporting Polynomial Evaluation

We can also construct predicate encryption schemes for classes of predicates corresponding to
polynomial evaluation. Let Φ≤d

poly = {fp | p ∈ ZN [x],deg(p) ≤ d}, where

φp(x) =
{

1 if p(x) = 0
0 otherwise

for x ∈ ZN . Given an inner product encryption scheme (Setup,GenKey,Enc,Dec) for Fd+1, we can
construct a predicate encryption scheme for Φ≤d

poly as follows:
• The setup algorithm is unchanged.

• To generate a secret key corresponding to the polynomial p = adx
d + · · · + a0x

0, set p :=
(ad, . . . , a0) and output the key obtained by running GenKeySK(fp).

• To encrypt a message M for the attribute w ∈ ZN , set w := (wd mod N, . . . , w0 mod N) and
output the ciphertext C ← EncPK(w,M).

Since p(w) = 0 iff 〈p,w〉 = 0, correctness and security follow.
The above shows that we can construct predicate encryption schemes where predicates corre-

spond to univariate polynomials whose degree d is polynomial in the security parameter. This can
be generalized to the case of polynomials in t variables, and degree at most d in each variable, as
long as dt is polynomial in the security parameter.

We can also construct schemes that are the “dual” of the above, in which attributes correspond
to polynomials and predicates involve the evaluation of the input polynomial at some fixed point.

5.4 Disjunctions, Conjunctions, and Evaluating CNF and DNF Formulas

Given the polynomial-based constructions of the previous section, we can fairly easily build pred-
icate encryption schemes for disjunctions of equality tests. For example, the predicate ORI1,I2 ,
where ORI1,I2(x) = 1 iff either x = I1 or x = I2, can be encoded as the univariate polynomial

p(x) = (x− I1) · (x− I2),

which evaluates to 0 iff the relevant predicate evaluates to 1. Similarly, the predicate ORa1,a2 , where
OR

eq
a1,a2

(x1, x2) = 1 iff either x1 = I1 or x2 = I2, can be encoded as the bivariate polynomial

p′(x1, x2) = (x1 − I1) · (x2 − I2).

11



Conjunctions can be handled in a similar fashion. Consider, for example, the predicate ANDI1,I2

where ANDI1,I2(x1, x1) = 1 if both x1 = I1 and x2 = I2. Here, we determine the relevant secret
key by choosing a random r ∈ ZN and letting the secret key correspond to the polynomial

p′′(x1, x2) = r · (x1 − I1) + (x2 − I2).

Note that if ANDI1,I2(x1, x1) = 1 then p′′(x1, x2) = 0, whereas if ANDI1,I2(x1, x1) = 0 then, with
all but negligible probability over choice of r, it will hold3 that p′′(x1, x2) 6= 0.

The above ideas extend to more complex combinations of disjunctions and conjunctions, and
for boolean variables this means we can handle arbitrary CNF or DNF formulas. (For non-boolean
variables we do not know how to directly handle negation.) As pointed out in the previous section)
the complexity of the resulting scheme depends polynomially on dt, where t is the number of
variables and d is the maximum degree (of the resulting polynomial) of each variable.

5.5 Exact Thresholds

We conclude with an application that relies directly on predicate encryption schemes for computing
inner products (rather than relying on the polynomial-based scheme outlined in Section 5.3). Here,
we consider the setting of “fuzzy IBE” [17], which can be mapped to the predicate encryption
framework as follows: fix a set A = {1, . . . , `} and let the set of attributes be all subsets of A.
Predicates take the form Φ = {φS | S ⊆ A} where φS(S′) = 1 iff |S ∩ S′| ≥ t, i.e., S and S′ overlap
in at least t positions. Sahai and Waters [17] show a construction of a predicate encryption scheme
(satisfying a weaker notion of security than Definition 2.2) for this class of predicates.

We can construct a scheme where the attribute space is the same as before, but the class of
predicates corresponds to overlap in exactly t positions. (Our scheme will also satisfy the stronger
definition of security given here.) Namely, set Φ′ = {φ′

S | S ⊆ A} with φ′
S(S′) = 1 iff |S ∩ S′| = t.

Then, given any predicate encryption scheme over F `+1 :
• The setup algorithm is unchanged.

• To generate a secret key for the predicate φ′
S , first define a vector v ∈ Z`+1

N as follows:

for 1 ≤ i ≤ `: vi = 1 iff i ∈ S

v`+1 = 1.

Then output the key obtained by running GenKeySK(fv).

• To encrypt a message M for the attribute S′ ⊆ A, define a vector v′ as follows:

for 1 ≤ i ≤ `: vi = 1 iff i ∈ S′

v`+1 = −t mod N.

Then output the ciphertext C ← EncPK(v′,M).
Since |S ∩ S′| = t exactly when 〈v,v′〉 = 0, correctness and security follow.

3In general, the secret key may leak the value of r in which case the adversary will be able to find x1, x2 such that
ANDI1,I2(x1, x1) 6= 1 yet p′′(x1, x2) = 0. Since, however, we consider the “selective” notion of security (where the
adversary must commit to x1, x2 at the outset of the experiment), this is not a problem in our setting.
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A Security Definition for Inner-Product Encryption

Here, we re-state Definition 2.2 in the particular setting of our main construction. Our main
construction is a predicate-only scheme (we show how to extend it to a full-fledged predicate
encryption scheme in Appendix C) where the set of attributes4 is Σ = Zn

N and the class of predicates
is F = {f~x | ~x ∈ Zn

N} such that
f~x(~y) = 1⇔ 〈~x, ~y〉 = 0.

where Σ = Zn
N and F = {f~v | ~v ∈ Zn

N} with f~v(v′) = 1 iff 〈~v,~v′〉 = 0:

Definition A.1. A predicate-only encryption scheme for Σ,F as above is attribute-hiding if for
all ppt adversaries A, the advantage of A in the following experiment is negligible in the security
parameter n:

1. Setup(1n) is run to generate keys PK, SK. This defines a value N which is given to A.

2. A outputs ~x, ~y ∈ Zn
N , and is then given PK.

3. A may adaptively request keys corresponding to the vectors ~v1, . . . , ~v` ∈ Zn
N , subject to the

restriction that, for all i, 〈~vi, ~x〉 = 0 if and only if 〈~vi, ~y〉 = 0. In response, A is given the
corresponding keys SK~vi

← GenKeySK(f~vi
).

4. A random bit b is chosen. If b = 0 then A is given C ← EncPK(~x), and if b = 1 then A is
given C ← EncPK(~y).

5. The adversary may continue to request keys for additional vectors, subject to the same
restriction as before.

6. A outputs a bit b′, and succeeds if b′ = b.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

B Proof of Security

This section is devoted to a proof of the following theorem:
4Technically speaking, both Σ and F depend on the public parameters (since N is generated as part of PK),

but we ignore this technicality. We remark also that we consider vectors of length n, the security parameter, for
convenience only.
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Theorem B.1. If G satisfies Assumption 1 then the scheme described in Section 4 is an attribute-
hiding, predicate-only encryption scheme.

Throughout, we will refer to the experiment as described in Definition A.1. We establish the
theorem using a sequence of games, defined as follows:

Game1: The challenge ciphertext is generated as a proper encryption using ~x. (Recall from
Definition A.1 that we let ~x, ~y denote the two vectors output by the adversary.) That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i

}n

i=1

)
.

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}n

i=1

)
.

Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

Game4 and Game5: These games are defined symmetrically to Game2 and Game3: In Game4 the
{Ci,1} components are generated using ~0. That is, we choose random s, α, β ∈ ZN and random
{R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,i R3,i, C2,i = Hs

2,iQ
βyiR4,i

}n

i=1

)
.

In Game5, the {Ci,1} components are generated using ~y. I.e., we choose random s, α, β ∈ ZN

and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C1 = gs

p,
{

C1,i = Hs
1,iQ

αyiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

In Game5 the challenge ciphertext is a proper encryption with respect to the vector ~y. So, the
proof of the theorem is concluded once we show that the adversary cannot distinguish between
Gamei and Gamei+1 for each i.

As discussed in Section 4.2, it is difficult to proceed directly from a game in which the challenge
ciphertext is generated as a proper encryption using ~x, to a game in which the challenge ciphertext
is generated as a proper encryption using ~y. (Indeed, this is the reason our construction uses two
“sub-systems” to begin with.) That is why our proof proceeds via the intermediate Game3 where
half of the challenge ciphertext corresponds to an encryption using ~x and the other half corresponds
to an encryption using ~y. Intermediate games Game2 and Game4 are used to simplify the proof;
informally speaking, it helps when part of the ciphertext corresponds to an encryption using ~0 since
this vector is orthogonal to everything.
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The main difficulty in our proofs will be to answer queries for decryption keys. In considering
the indistinguishability of Game1 and Game2 (and, symmetrically, Game4 and Game5), we will
actually be able to construct all decryption keys (i.e., even keys that would allow the adversary
to distinguish an encryption relative to ~x from an encryption relative to ~y). In essence, we will be
showing that even such keys cannot be used to distinguish a well-formed encryption of ~x (or ~y)
from a badly-formed one.

On the other hand, in considering the indistinguishability of Game2 and Game3 (and, symmet-
rically, Game3 and Game4) we will not be able to construct all decryption keys. Instead, we will
deal separately with the problems of (1) providing keys for vectors ~v with 〈~v, ~x〉 = 0 = 〈~v, ~y〉 and
(2) providing keys for vectors ~v with 〈~v, ~x〉 6= 0 6= 〈~v, ~y〉.

B.1 Indistinguishability of Game1 and Game2

Fix an adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along with the
elements gp, gr, gqR1, hp = gb

p, kp = gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2, and an element T =

gb2s
p gβ

q gR3
r where β is either 0 or uniform in Zq (cf. Assumption 1).

Before describing the simulation in detail, we observe that the simulator can sample a random
element R ∈ Gr by choosing random δ ∈ ZN and setting R = gδ

r . Although there does not appear
to be any way for the simulator to sample a random element of Gq (since gq is not provided to

the simulator), it is possible for the simulator to choose a random element QR ∈ Gqr
def= Gq × Gr:

this can be done by choosing random δ1, δ2 ∈ ZN and setting QR = (gqR1)δ1 · gδ2
r . Henceforth, we

simply describe the simulator as sampling uniformly from Gr and Gqr with the understanding that
such sampling is done in this way.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the remaining values as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i, H2,i = (kp)xig

w2,i
p R2,i

})
.

By doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kxi

p g
w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. We now describe how the simulator prepares the secret key corresponding to the
vector ~v = (v1, . . . , vn). We stress that although Definition A.1 restricts the vectors ~v for which the
adversary is allowed to request secret keys, we do not rely on this restriction here. This is because
the purpose of this hybrid proof is to show that the adversary cannot distinguish between properly
formed encryptions of ~x and improperly formed encryptions (a combination of an encryption of ~x
and ~0).

We begin with some intuition: We must construct the K1,i and K2,i components of the key.
Note that we do not have access to gq, but we do have gqg

a
p . We will make use of this element from

the assumption here. This will give rise to terms containing a in the exponent of gp. Note, however,
that we will later have to construct the K component of the key, whose purpose is to cancel out
terms in the Gp subgroup. If 〈~v, ~x〉 6= 0, then additional terms involving ab and ab2 will have to
appear in K. However, we do not have access to gab2

p ; indeed if we did, the assumption would be
false and we could easily distinguish between Game1 and Game2. We deal with this problem by
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adding a term (using the gab
p gd

q term given in the assumption) to the K1,i components that will
allow us to cancel out the ab2 terms that will appear in K due to the K2,i components.

The simulator begins by choosing random f ′
1, f

′
2, {r′1,i}, {r′2,i} ∈ ZN . In constructing the key,

the simulator will be implicitly setting:

r1,i = r′1,i + vi · (af ′
1 − abf ′

2) (1)
r2,i = r′2,i + a f ′

2 vi, (2)

as well as f1 = f ′
1 − d f ′

2 and f2 = f ′
2, where we set d = loggq

Q1. Note that these values are
each independently and uniformly distributed in ZN , just as they would be in actual secret key
components.

Next, for all i it computes:

K1,i =
(
ga
pgq

)f ′
1vi ·

(
gab
p Q1

)−f ′
2vi

· g
r′
1,i

p

= g
(af ′

1−abf ′
2)·vi+r′

1,i
p · g(f ′

1−df ′
2)·vi

q

and

K2,i =
(
ga
pgq

)f ′
2vi · g

r′
2,i

p

= g
af ′

2vi+r′
2,i

p · gf ′
2vi

q .

Now, to construct the K element for the decryption key. Recall that h1,i = (gp)bxig
w1,i
p . There-

fore, the exponents in K will contain a term of the form
∑

i r1,ibxi. But because of how we chose
r1,i, we have that

∑
i r1,ibxi = k(abf ′

1 − ab2f2) +
∑

i r
′
1,ixi where k = 〈~v, ~x〉. A similar equation

holds for the terms arising out of the h2,i parts of K, and allows us to cancel out all the ab2 terms
that arise in K. Thus, we can compute K as follows:

Let k = 〈~v, ~x〉. Finally, the simulator chooses random QR ∈ Gqr and computes

K = QR ·
(
gab
p Q1

)−k·f ′
1

·
∏

i

(
ga
pgq

)−f ′
1viw1,i−f ′

2viw2,i ·
(
gab
p Q1

)f ′
2viw1,i

· g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−xi·r′
2,i

p .

The simulator then hands the adversary SK~v = (K, {K1,i,K2,i}ni=1) as the key.
To see formally that the K component has the correct distribution, let Kp,Kq, and Kr denote the

projections of K in Gp, Gq, and Gr, respectively. It is easy to see that Kq and Kr are independently
and uniformly distributed, as required. Furthermore,

Kp = g
−abkf ′

1
p ·

∏
i

g
−af ′

1viw1,i−af ′
2viw2,i

p g
abf ′

2viw1,i
p g

−w1,ir
′
1,i−w2,ir

′
2,i

p h
−xir

′
1,i

p k
−xir

′
2,i

p

= h
−akf ′

1
p

∏
i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′

2vi
p

)
=

∏
i

h
−axivif

′
1

p ·
(

h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(
h

abxivif
′
2

p · h−abxivif
′
2

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′

2vi
p

)
,
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using the fact that k = 〈~x,~v〉 =
∑

i xi, vi. Using simple (but tedious) algebra, we obtain

Kp

=
∏

i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p h
−xivi·(af ′

1−abf ′
2)

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p k
−xiaf ′

2vi
p g

−w2,iaf ′
2vi

p

)
=

∏
i

(
hxi

p g
w1,i
p

)−r1,i
(
kxi

p g
w2,i
p

)−r2,i =
∏

i

h
−r1,i

1,i h
−r2,i

2,i

(using Eqs. (1) and (2)), and thus Kp has the correct distribution.

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way, as
follows. The simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C1 equal to gs

p, and computes:

C1,i =
(
gbs
p Q2R2

)xi

· (gs
p)

w1,i ·R7,i

= hxis
p g

w1,is
p Qxi

2 R′
7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T xi · (gs
p)

w2,i ·R8,i

= (h2,i)s
(
gβ
q

)xi

R′
8,i,

where {R′
7,i, R

′
8,i} refer to elements of Gr whose exact values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when β is random the challenge ciphertext is distributed
exactly as in Game1, whereas if β = 0 the challenge ciphertext is distributed exactly as in Game2.
We conclude that, under Assumption 1, these two games are indistinguishable.

B.2 Indistinguishability of Game2 and Game3

Fix again some adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along
with the elements gp, gr, gqR1, hp = gb

p, kp = gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2, and an element

T = gb2s
p gβ

q gR3
r where β is either 0 or uniform in Zq. Recall that sampling uniform elements from

Gr or Gqr can be done efficiently. The simulator interacts with A as we now describe.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the public parameters as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i H2,i = (kp)yig

w2,i
p R2,i

})
.

By doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kyi

p g
w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors,
and we now describe how the simulator prepares the secret key corresponding to the vector ~v =
(v1, . . . , vn). Here, the simulator will only be able to produce the appropriate secret key when the
vector ~v satisfies the restriction imposed by Definition A.1. We distinguish two cases, depending
on whether 〈~v, ~x〉 and 〈~v, ~y〉 are both 0 or whether they are both non-zero.
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Case 1. We first consider the case where 〈~v, ~x〉 = 0 = 〈~v, ~y〉. The simulator begins by choosing
random f1, f2, {r′1,1}, {r′2,1} ∈ ZN . Then for all i it computes:

K1,i =
(
ga
pgq

)f1vi · (gp)r′
1,i

= g
af1vi+r′

1,i
p · gf1vi

q

K2,i =
(
ga
pgq

)f2vi · (gp)r′
2,i

= g
af2vi+r′

2,i
p · gf2vi

q .

Finally, the simulator chooses random QR ∈ Gqr and computes

K = QR ·
∏

i

(
ga
pgq

)−f1viw1,i−f2viw2,i · g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−yi·r′
2,i

p .

The simulator then hands the adversary SK~v = (K, {K1,i,K2,i}) as the key.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the values f1, f2 are random; furthermore, the simulator implicity sets

r1,i = r′1,i + af1vi

r2,i = r′2,i + af2vi,

which are uniformly distributed as well. Looking at Kp, the projection of K in Gp (as in the proof
in the previous section), we see that

Kp =
∏

i

g
−af1viw1,i−af2viw2,i
p · g

−w1,i·r′
1,i−w2,i·r′

2,i
p · h

−xi·r′
1,i

p · k
−yi·r′

2,i
p

=
∏

i

h−af1xivi
p · k−af2yivi

p · g−af1viw1,i−af2viw2,i
p · g

−w1,i·r′
1,i−w2,i·r′

2,i
p · h

−xi·r′
1,i

p · k
−yi·r′

2,i
p ,

using the fact that
∏

i h
−af1xivi
p = h

−af1·
P

i xivi
p = 1 =

∏
i k

−af2yivi
p (because 〈~v, ~x〉 = 0 = 〈~v, ~y〉).

Algebraic manipulation as in the previous section shows that Kp has the correct distribution.

Case 2. Here, we consider the case where 〈~v, ~x〉 = cx 6= 0 and 〈~v, ~y〉 = cy 6= 0. The simulator
begins by choosing random f ′

1, f
′
2, {r′1,1}, {r′2,1} ∈ ZN . Next, for all i it computes

K1,i =
(
ga
pgq

)f ′
1vi
(
gab
p Q1

)−cy ·f ′
2vi

· (gp)r′
1,i

= g
(af ′

1−abcyf ′
2)·vi+r′

1,i
p · g(f ′

1−cydf ′
2)·vi

q

K2,i =
(
ga
pgq

)cx·f ′
2vi · (gp)r′

2,i

= g
acxf ′

2vi+r′
2,i

p · gcx·f ′
2vi

q ,

where we set d = loggq
Q1 as in the previous proof. Finally, the simulator chooses random QR ∈ Gqr

and computes

K = QR · (gab
p Q1)−cxf ′

1

·
∏

i

(
ga
pgq

)−f ′
1viw1,i−f ′

2cxviw2,i · (gab
p Q1)f ′

2cyviw1,i · g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−yi·r′
2,i

p .
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The simulator then hands the key SK~v = (K, {K1,i,K2,i}) to the adversary.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the simulator implicity sets

r1,i = r′1,i + (af ′
1 − cyabf ′

2) · vi

r2,i = r′2,i + acxf ′
2vi,

as well as f1 = f ′
1− cy · df ′

2 and f2 = cx · f ′
2. It is clear that f1 and the {r1,i, r2,i} are independently

and uniformly distributed in ZN . The value f2 is also uniformly distributed in ZN as long as
gcd(cx, N) = 1. (If gcd(cx, N) 6= 1, then the adversary has found a non-trivial factor of N . This
occurs with negligible probability under Assumption 1.)

As for element K of the secret key, it is once again easy to see that the projection of K in Gqr

is uniformly distributed. Looking at Kp, the projection of K in Gp (as in the previous section), we
see that

Kp = g
−abcxf ′

1
p ·

∏
i

g
−af ′

1viw1,i−af ′
2cxviw2,i

p · gabf ′
2cyviw1,i

p · g
−w1,i·r′

1,i−w2,i·r′
2,i

p · h
−xi·r′

1,i
p · k

−yi·r′
2,i

p

=
∏

i

h
−axivif

′
1

p · g−af ′
1viw1,i−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)r′

1,i(h2,i)r′
2,i

= h
cxcyabf ′

2
p · h−cxcyabf ′

2
p

∏
i

g
−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)−r′

1,i−avif
′
1(h2,i)−r′

2,i

=
∏

i

h
xivicyabf ′

2
p · k−cxyiviaf ′

2
p · g−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)−r′

1,i−avif
′
1(h2,i)−r′

2,i

=
∏

i

(h1,i)−r′
1,i−avif

′
1+abf ′

2cyvi(h2,i)−r′
2,i−acxvif

′
2 =

∏
i

(h1,i)−r1,i(h2,i)−r2,i ,

and so Kp has the right distribution.

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way. The
simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C1 = gs

p, and computes:

C1,i =
(
gbs
p Q2R2

)xi

· (gs
p)

w1,i ·R7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T yi(gs
p)

w2,iR8,i

= (h2,i)s
(
gβ
q

)yi

R′
8,i,

where {R′
7,i, R

′
8,i} again refer to elements of Gr whose values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when β is random the challenge ciphertext is distributed
exactly as in Game3, whereas if β = 0 the challenge ciphertext is distributed exactly as in Game2.
We conclude that, under Assumption 1, these two games are indistinguishable.

B.3 Completing the Proof

Our scheme is symmetric with respect to the roles of h1,i and h2,i. Thus, as mentioned earlier, the
proof that Game3 and Game4 are indistinguishable exactly parallels the proof (given in the previous
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section) that Game2 and Game3 are indistinguishable, while the proof that Game4 and Game5 are
indistinguishable exactly parallels the proof (given in Section B.1) that Game1 and Game2 are
indistinguishable. This concludes the proof of our theorem.

C A Full-Fledged Predicate Encryption Scheme

In Section 4, we showed a construction of a predicate-only scheme. Here, we extend the previous
scheme to obtain a full-fledged predicate encryption scheme in the sense of Definition 2.1. The
construction follows.

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with G = Gp×Gq×Gr.
Next, it computes gp, gq, and gr as generators of Gp, Gq, and Gr, respectively. It then chooses
R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈ Gr uniformly
at random. It also chooses random γ ∈ Zp and h ∈ Gp. The public parameters include (N =
pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, P = ê(gp, h)γ , {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1

)
.

The master secret key SK is
(
p, q, r, gq, h

−γ , {h1,i, h2,i}ni=1

)
.

EncPK(~x,M) View M as an element of GT , and let ~x = (x1, . . . , xn) with xi ∈ ZN . This algorithm
chooses random s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n. It outputs the ciphertext

C =
(
C ′ = M · P s, C1 = gs

p,
{

C1,i = Hs
1,i ·Qα·xi ·R3,i, C2,i = Hs

2,i ·Qβ·xi ·R4,i

}n

i=1

)
.

GenKeySK(~v) Let ~v = (v1, . . . , vn). This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1 to n,
random f1, f2 ∈ Zq, random R5 ∈ Gr, and random Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 · h−γ ·

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

)
.

DecSK~v
(C) Let C and SK~v be as above. The decryption algorithm outputs

C ′ · ê(C1,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i).

As we have described it, decryption never returns an error (i.e., even when 〈~v, ~x〉 6= 0). We will
show below that when 〈~v, ~x〉 6= 0 then the output is essentially a random element in the order-q
subgroup of GT . By restricting the message space to some efficiently-recognizable set of negligible
density in this subgroup, we recover the desired semantics by returning an error if the recovered
message does not lie in this space.
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Correctness. Let C and SK~v be as above. Then

C ′ · ê(C1,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)

= M · P s · ê

(
gs
p, R5Q6h

−γ
n∏

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê
(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)
= M · P s · ê

(
gs
p, h−γ

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·

n∏
i=1

ê
(
hs

1,i g
α·xi
q , g

r1,i
p gf1·vi

q

)
· ê
(
hs

2,i g
β·xi
q , g

r2,i
p gf2·vi

q

)
= M · P s · ê(gp, h)−γs ·

n∏
i=1

ê(gq, gq)(αf1+βf2)xivi = M · ê(gq, gq)(αf1+βf2)〈~x,~v〉.

If 〈~x,~v〉 = 0 mod N , then the above evaluates to M . If 〈~x,~v〉 6= 0 mod N there are two cases: if
〈~x,~v〉 6= 0 mod q then the above evaluates to an element whose distribution is statistically close to
uniform in the order-q subgroup of GT . (Recall that α, β are chosen at random.) It is possible that
〈~x,~v〉 = 0 mod q, in which case the above always evaluates to M ; however, this reveals a non-trivial
factor of N and so an adversary can cause this condition to occur with only negligible probability.

C.1 Proof of Security

Theorem C.1. If G satisfies Assumptions 1 and 2 then the scheme described in the previous section
is an attribute-hiding predicate encryption scheme.

We prove that the scheme described in the previous section satisfies Definition 2.2. In proving
this, we distinguish two cases: when M0 = M1 and when M0 6= M1. We show that the adversary’s
probability of success conditioned on the occurrence of each case is negligibly-close to 1/2.

A proof for the case M0 = M1 follows mutatis mutandis from the proof given in Section 4.
Specifically, if M0 = M1 = M then the adversary gets no advantage from the extra term M · P s

included in the challenge ciphertext and so the only point to verify is that, throughout the proofs
in Sections B.1 and B.2, the simulator can compute the value P s (so that it can construct the
additional element C ′ = M · P s). This is easy to do if the simulator computes P exactly as in the
Setup algorithm, and stores h−γ . We omit the straightforward details.

Given the above, we concentrate here on proving security under the assumption that M0 6= M1.
Since we are considering only this case, we will assume the adversary is restricted to requesting keys
corresponding to vectors ~v for which 〈~v, ~x〉 6= 0 and 〈~v, ~y〉 6= 0, where ~x, ~y are the vectors output by
the adversary at the outset of the experiment (cf. Definition A.1). We establish the result in this
case using a sequence of games, defined as follows.

Game0: The challenge ciphertext is generated as a proper encryption of M0 using ~x. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr, and compute the ciphertext as

C =
(
C ′ = M0 · P s, C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i

}n

i=1

)
.

22



Game1: We now generate the challenge ciphertext as a proper encryption of a random element
of GT , but still using ~x. I.e., the ciphertext is formed as above except that C ′ is chosen
uniformly from GT .

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute
the ciphertext as

C =
(
C ′, C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}n

i=1

)
.

Note that this exactly parallels Game2 in the proof of Theorem B.1.

Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute the ciphertext as

C =
(
C ′, C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

Note that this exactly parallels Game3 in the proof of Theorem B.1.

Game4 and Game5: These games are defined symmetrically to Game2 and Game3, as in the proof
of Theorem B.1. We continue to let C ′ be a random element of GT . Note that Game5

corresponds to a proper encryption of a random element of GT using ~y.

Game6: The challenge ciphertext is generated as a proper encryption of M1 using ~y.

In the next section we prove that, under Assumption 2, Game0 and Game1 are indistinguishable.
Indistinguishability of Game1 and Game5 follows, as mentioned earlier, mutatis mutandis from the
proofs in Sections B.1 and B.2. The proof that Game5 and Game6 are indistinguishable is symmetric
to the proof that Game0 and Game1 are indistinguishable, and is therefore omitted.

C.1.1 Indistinguishability of Game0 and Game1

Fix an adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along with the
elements gp, gq, gr, h, gs

p, hsQ1, gγ
pQ2, ê(gp, h)γ , and an element T which is either equal to

ê(gp, h)γs or is uniformly distributed in GT . Note that the simulator is now able to sample uniformly
from Gq and Gr using gq and gr, respectively. In particular, the simulator can sample uniformly
from Gqr = Gq ×Gr. The simulator interacts with A as we now describe.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The sim-
ulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i}, R0 ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the remainder of the parameters as follows:

PK =
(
gp, gr, Q = gqR0, P = ê(gp, h)γ ,

{
H1,i = hxig

w1,i
p R1,i, H2,i = hxig

w2,i
p R2,i

}n

i=1

)
.

The simulator is implicitly setting h1,i = hxig
w1,i
p and h2,i = hxig

w2,i
p . Note that PK has the

appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors ~v, as
long as 〈~v, ~x〉 6= 0 (we do not use the fact that 〈~v, ~y〉 6= 0 here). We now describe how the simulator
prepares the secret key corresponding to any such vector.
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Say the adversary requests the secret key for vector ~v, and let k = 1/2 · 〈~x,~v〉 mod N . (If
gcd(〈~x,~v〉 , N) 6= 1) then the adversary has factored N ; this occurs with negligible probability.)
The simulator first chooses random f ′

1, f
′
2, {r′1,i, r

′
2,i} ∈ ZN . Next, for all i it computes:

K1,i =
(
gγ
pQ2

)−kvi · gf ′
1vi

q · g
r′
1,i

p

= g
−kviγ+r′

1,i
p · g(f ′

1−kc)·vi
q

(where we set c = loggq
Q2), and

K2,i =
(
gγ
pQ2

)−kvi · gf ′
2vi

q · g
r′
2,i

p

= g
−kviγ+r′

2,i
p · g(f ′

2−kc)·vi
q .

The simulator then chooses random QR ∈ Gqr and computes:

K = QR ·
n∏

i=1

((
g

w1,i
p hxi

)−r′
1,i ·

(
gγ
pQ2

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′
2,i ·

(
gγ
pQ2

)kviw2,i
)

.

Finally, the simulator hands the adversary SK~v = (K, {K1,i,K2,i}ni=1) as the key.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the simulator is implicitly setting f1 = f ′
1 − kc and, for all i, r1,i = −kγvi + r′1,i (and analogously

for f2 and the {r2,i}). These values are all uniformly and independently distributed in ZN . Next,
note that

n∏
i=1

(
g

w1,i
p hxi

)−r′
1,i ·

(
gγ
p

)kviw1,i =
n∏

i=1

g
−w1,ir

′
1,i+kγviw1,i

p · h−xir
′
1,i

=
n∏

i=1

g
−w1,i·(r1,i+kγvi)+kγviw1,i
p · h−xi·(r1,i+kγvi)

=
n∏

i=1

(
hxig

w1,i
p

)−r1,i · h−γkvixi = h−γ/2 ·
n∏

i=1

h
−r1,i

1,i ,

using the fact that 〈~v, ~x〉 = 1/2k mod N . Thus, looking at Kp (the projection of K in Gp) we see
that

Kp =
n∏

i=1

((
g

w1,i
p hxi

)−r′
1,i ·

(
gγ
p

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′
2,i ·

(
gγ
p

)kviw2,i
)

= h−γ ·
n∏

i=1

h
−r1,i

1,i · h−r2,i

2,i ,

and so Kp (and hence K) is distributed appropriately.

The challenge ciphertext. The challenge ciphertext is generated as follows. The simulator
chooses random {R7,i, R8,i} ∈ Gr and Q′

1 ∈ Gq, sets C ′ = M0 · T , sets C1 = gs
p, and computes:

C1,i =
(
gs
p

)w1,i · (hsQ1)
xi ·R7,i

=
(
hxig

w1,i
p

)s ·Qxi
1 ·R7,i

C2,i =
(
gs
p

)w2,i · (hsQ1)
xi · (Q′

1)
xi ·R8,i

=
(
hxig

w2,i
p

)s · (Q1Q
′
1)

xi ·R8,i .
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Analysis. By examining the projections of the components of the challenge ciphertext in the
groups Gp, Gq, and Gr, it can be verified that when T = ê(gp, h)γs the challenge ciphertext is
distributed exactly as in Game0, whereas if T is chosen uniformly from GT the challenge ciphertext
is distributed exactly as in Game1. We conclude that, under Assumption 2, these two games are
indistinguishable.
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