
How to Model Bounded Computation in
Long-Lived Systems

Ran Canetti1, Ling Cheung2, Dilsun Kaynar3,
Nancy Lynch2, and Olivier Pereira4?

1 IBM TJ Watson Research Center
2 Massachusetts Institute of Technology

3 Carnegie Mellon University
4 Université catholique de Louvain

Abstract. In most interesting cases, the security of cryptographic pro-
tocols relies on the assumption that adversarial entities have limited
computational power, and it is generally accepted that security degrades
progressively over time. However, some cryptographic services (e.g., time-
stamping services or digital archives) are long-lived in nature; that is,
their lifetime need not be bounded by a polynomial. In such cases, it
is impossible to guarantee security in the traditional sense: even infor-
mation theoretically secure protocols can fail if the attacker is given
sufficient run time.

This work proposes a new paradigm for long-lived computation, where
computational restrictions are stated in terms of space and processing
rates. In this setting, entities may live for an unbounded amount of real
time, subject to the condition that only a polynomial amount of work can
be done per unit real time. Moreover, the space used by these entities is
allocated dynamically and must be polynomially bounded. We propose
a key notion of approximate implementation, which is an adaptation
of computational indistinguishability to the long-lived setting. We show
that approximate implementation is preserved under polynomial par-
allel composition, and under exponential sequential composition. This
provides core foundations for an exciting new area, namely, the analysis
of long-lived cryptographic systems.

1 Introduction

Nearly all the systems defined and analyzed in cryptographic protocol research
are short-lived. In these systems, protocol parties can execute only a bounded
number of steps, after which the protocol concludes. Depending on the particular
model, adversarial entities may perform certain pre- and/or post-computations.
While the adversary may be unbounded in these additional phases, it must be
bounded during protocol execution. It is typical that security degrades substan-
tially (namely, polynomially) in the length of protocol execution.

? Contact author, olivier.pereira@uclouvain.be

2

In this paper, we address the problem of analyzing long-lived cryptographic
services. In a long-lived system, protocol parties may be active for an unbounded
amount of real time, subject to the condition that only a polynomial amount
of work can be done per unit real time. Here the adversary’s interaction with
the system becomes unbounded, and the adversary may perform an unbounded
number of computation steps during protocol execution. This renders traditional
security notions insufficient: long-lived systems are not likely to be secure in the
traditional sense, simply because the adversary has now unbounded run time.
For example, given sufficient time, the adversary can launch a brute force attack
on an encryption service by testing every key of the right length. Thus, we need
a new notion of security that is independent of (or only mildly dependent on)
the lifetime of the system.

As it turns out, the move to long-lived systems requires some non-trivial
departures from standard cryptographic modeling. First and foremost, entities
with unbounded run time cannot be modeled simply as probabilistic polynomial
time (PPT) Turing machines. We resolve this issue by introducing real time ex-
plicitly in the Task-PIOA model [1] and by imposing computational restrictions
in terms of rates (i.e., number of computation steps per unit real time).

Another interesting challenge is the restriction on space. In the traditional
setting, space restrictions are trivial because a polynomially bounded entity can
only access a polynomially bounded amount of space. In the long-lived setting,
the issue of space warrants new considerations. For instance, we would like to
model dynamic allocation of space, as new entities become invoked and old
entities are terminated. This is achieved using the designation of variables: all
variables of a dormant entity (either not yet invoked or already killed off) must be
set to a special null value. Together with restrictions on the number of variables
and the number of active entities, we are able to express the core idea of bounded
space, even for systems consisting of an unbounded number of entities.1

Having appropriate restrictions on space and computation rates, we define an
approximate implementation relation for long-lived systems. This can be thought
of as a version of the traditional notion of computational indistinguishability,
which is essential in almost all security definitions. Roughly speaking, two sys-
tems (real and ideal) are computationally indistinguishable if their behaviors
appear the same to a computationally bounded environment. This definition
is difficult to replicate in the long-lived setting, because an environment with
exponential run time can distinguish the two systems by launching brute force
attacks. Our solution is to weaken the environment, so that brute force attacks
can be tolerated to some degree.2 We do so by letting the environment begin
its observation from some arbitrary time t and restricting our attention to a
polynomial length execution starting from t. Quantifying over all possible t, we

1 An obvious example is a sequential composition (in the temporal sense) of an un-
bounded number of entities, each of which uses a bounded amount of space.

2 In Section 2, we will see a protocol that is designed to withstand complete failures
of old cryptographic services.

3

capture the intuition that two long-lived systems are equivalent if an observer
with bounded rate and space cannot make distinctions “fast enough”.

Finally, we show that approximate implementation is preserved under poly-
nomial parallel composition and under exponential sequential composition. The
latter highlights the power of our model: we can formulate and prove properties
of an exponential number of entities in a meaningful way.

Related Work In the past decades, the cryptography and concurrency commu-
nities have developed rigorous frameworks for modeling protocols, formulating
security properties, and proving correctness (e.g., [6, 2, 10, 1, 5]). These models,
however, concentrate on short-lived systems where system lifetime is compara-
ble to the computational complexity of individual entities and to the level of
security provided. In [9], Müller-Quade and Unruh study long-term security of
cryptographic protocols. They consider adversaries that try to derive information
from the protocol transcript after protocol conclusion. This work can be seen
as orthogonal to ours, because it does not consider long-lived protocol execu-
tion as we do here. In particular, the adversary of [9] has polynomially bounded
interactions with the protocol parties.

2 Digital Timestamping: A Motivating Example

A digital archive is an example of the type of long-lived systems we consider
in this paper. Documents are typically stored along with some metadata, such
as creation time and access logs. In such a system, it is desirable to preserve
the integrity of information even when cryptographic primitives used in the past
become vulnerable to newly-discovered attacks. In [3, 4], Haber and Kamat ad-
dress the problem of content integrity in long-term digital archives, and describe
a protocol based on extending the lifetime of existing timestamp certificates.

A digital timestamping scheme takes as input a document d at a specific
time t, and produces a certificate c that can be used later to verify the existence
of d at time t. The security requirement here is that timestamp certificates are
difficult to forge. If these certificates are generated using a single digital signature
scheme, one must expect the possibility that, at some point in the future, new
technology makes it feasible to forge signatures for that particular scheme. In
that case, the credibility of timestamps is lost. The protocol of Haber and Kamat
solves this problem by obtaining a new digital timestamp c′ for the pair (d, c)
using a new signature scheme. If the old signature scheme is broken after the
renewal of the certificate, then the new certificate c′ still provides evidence that
d existed at the time t stated in the original certificate c. Note that time is used
in an essential way in this protocol. An adequate model of this protocol would
need to take into consideration the lifetime of each cryptographic primitives. It
is also necessary to express timing constraints, such as the fact that a certificate
cannot be renewed if it has already expired.

The protocol of Haber and Kamat can be modeled quite naturally using
the framework presented in this paper. We consider signature services that are

4

updated on a regular basis; that is, we divide the time line into a sequence of
intervals and each interval is associated with a unique signature service. A dis-
patcher component accepts various timestamp requests (e.g., issue, validate, and
renew). Upon each timestamp request, the dispatcher sends signing/verification
request(s) to the appropriate active signature service. The result is then for-
warded to the source of the original timestamp request. The goal here is to show
that the composition of the dispatcher and the signature services is indistinguish-
able from an “ideal” system, which consists of the same dispatcher composed
with ideal signature functionalities.3 This is precisely the scenario we address in
our sequential composition theorem (cf. Section 7). The details of our modeling
are beyond the scope of the present paper.

3 Task-PIOAs

We review the basics of the task-PIOA framework [1], which has a partial-
information scheduling mechanism based on tasks. A task is a set of related
actions (e.g., actions representing the same activity but with different parame-
ters). We view tasks as basic units of events, both for real time scheduling and
for imposing computational bounds (cf. Sections 4 and 5).

Notations Given a set S, let Disc(S) denote the set of discrete probability mea-
sures on S. For s ∈ S, the Dirac measure on s is the discrete probability measure
that assigns probability 1 to s. It is denoted δ(s).

Let V be a set of variables. Each v ∈ V is associated with a (static) type
type(v), which is the set of all possible values of v. We assume that type(v) is
countable and contains the special symbol ⊥. A valuation s for V is a function
mapping every v ∈ V to a value in type(v). The set of all valuations for V is
denoted val(V). Given V ′ ⊆ V , a valuation s′ for V ′ is sometimes referred to as
a partial valuation for V . Observe that s′ induces a (full) valuation ιV (s′) for V ,
by assigning ⊥ to every v 6∈ V ′. Finally, we define an equivalence relation ≡V ′

on val(V): s1 ≡V ′ s2 if and only if s1.v = s2.v for all v ∈ V ′.

PIOA We define a probabilistic input/output automaton (PIOA) to be a tuple
A = 〈V, S, sinit, I, O,H,∆〉, where:

(i) V is a set of state variables and S ⊆ val(V) is a set of states;
(ii) sinit ∈ S is the initial state;

(iii) I, O and H are countable and pairwise disjoint sets of actions, referred to
as input, output and hidden actions, respectively;

(iv) ∆ ⊆ S × (I ∪O ∪H)× Disc(S) is a transition relation.
The set Act := I ∪O ∪H is the action alphabet of A. If I = ∅, then A is said to
be closed. The set of external actions of A is I∪O and the set of locally controlled
actions is O ∪ H. Any sequence of external actions is called a trace. We write

3 Unlike a real signature service, an ideal signature functionality does not allow any
forgeries.

5

s.v for the value of variable v in state s. An action a is enabled in a state s if
〈s, a, µ〉 ∈ ∆ for some µ. We require that A satisfies the following conditions.
– Input Enabling: For every s ∈ S and a ∈ I, a is enabled in s.
– Transition Determinism: For every s ∈ S and a ∈ A, there is at most one
µ ∈ Disc(S) such that 〈s, a, µ〉 ∈ ∆. We write ∆(s, a) for such µ, if it exists.

– Initialization: sinit.v = ⊥ for every v ∈ V .
Parallel composition for PIOAs is based on synchronization of shared actions.

PIOAs A1 and A2 are said to be compatible if Vi∩Vj = Act i ∩Hj = Oi∩Oj = ∅
whenever i 6= j. In that case, we define their composition A1‖A2 to be

〈V1 ∪ V2, S1 × S2, 〈sinit
1 , sinit

2 〉, (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, H1 ∪H2, ∆〉,

where ∆ is the set of triples 〈〈s1, s2〉, a, µ1 × µ2〉 satisfying: (i) a is enabled in
some si, and (ii) for every i, if a ∈ Ai, then 〈si, a, µi〉 ∈ ∆i, otherwise µi = δ(si).
It is easy to check that input enabling, transition determinism, and initialization
are preserved under composition. Moreover, the definition of composition can be
generalized to any finite number of components.

Task-PIOAs To resolve nondeterminism, we make use of the notion of tasks
introduced in [7, 1]. Formally, a task-PIOA is a pair 〈A,R〉 where

(i) A is a PIOA with state variables V ,
(ii) R is a partition of the locally-controlled actions of A,

The equivalence classes in R are called tasks. For notational simplicity, we often
omit R and refer to the task-PIOA A. The following axioms are assumed.
– Action Determinism: For every state s ∈ S and every task T ∈ R, there

is at most one action a ∈ T that is enabled in s.
– Output/Hidden Tasks: The task partition R respects the output/hidden

distinction. That is, no tasks contain both an output action and a hidden
action. In that case, we may speak of output and hidden tasks.

Unless otherwise stated, terminologies are inherited from the PIOA setting. For
instance, if some a ∈ T is enabled in a state s, then T is said to be enabled in s.

Given compatible task-PIOAs A1 and A2, we define their composition to
be 〈A1‖A2,R1 ∪ R2〉 Note that R1 ∪ R2 is an equivalence relation because
compatibility requires disjoint sets of locally controlled actions. Moreover, it is
easy to check that action determinism and output/hidden tasks are preserved
under composition.

A task schedule for a closed task-PIOA 〈A,R〉 is a finite or infinite sequence
ρ = T1, T2, T3, . . . of tasks in R. This induces a well-defined run of A as follows.

(i) From the start state sinit, we apply the first task T1: due to action- and
transition-determinism, T1 specifies at most one transition from sinit; if
such a transition exists, it is taken, otherwise nothing happens.

(ii) Repeat with remaining Ti’s.
Such a run gives rise to a unique probabilistic execution, which is a probability
distribution over execution paths in A. A state s is said to be reachable under τ
if a path ending in s has non-zero probability. Moreover, this induces a unique
trace distribution tdist(A, τ), which is a probability distribution over the set of
traces of A. We refer to [1] for more details on these constructions.

6

4 Real Time Constraints

Recall that our goal is to model entities with unbounded life time but bounded
processing rates. A natural approach is to introduce real time, so that compu-
tational restrictions can be stated in terms of the number of steps performed
per unit real time. However, we must make sure that real time information does
not appear as part of the logical state, because bounded entities cannot access
real time to arbitrary precision. Fortunately, it is sufficient to include real time
information in task schedules only. For components that make decision based on
time, discrete approximations are used.

A timed task schedule τ for a closed task-PIOA 〈A,R〉 is a finite or infinite
sequence 〈T1, t1〉, 〈T2, t2〉, . . . such that: Ti ∈ R and ti ∈ R≥0 for every i, and
t1, t2, . . . is non-decreasing. The limit time, denoted ltime(τ), is defined as follows.
– If τ is empty, then ltime(τ) := 0.
– If t1, t2, . . . is bounded, then ltime(τ) := limi→∞ ti, otherwise ltime(τ) :=∞.

Moreover, given an interval I ⊆ R≥0, we say that τ is a timed task schedule for
I if ti ∈ I for every index i.

Following [8], we associate lower and upper real time bounds to each task.
In addition, we impose a rate bound that limits the number of times a task
may occur within an interval of time. A burst bound is also included to give
more modeling flexibility. Formally, a bound map for a task-PIOA 〈A,R〉 is a
tuple 〈rate, burst, lb, ub〉 such that: (i) rate, burst : R → R≥0, (ii) lb : R → R≥0,
(iii) ub : R → R∞>0, and (iv) for all T ∈ R, lb(T) ≤ ub(T). To ensure that rate
and ub can be satisfied simultaneously, we require rate(T) ≥ 1/ ub(T) whenever
rate(T) 6= 0 and ub(T) 6= ∞. From this point on, we assume that every task-
PIOA is associated with a particular bound map.

Given a timed schedule τ and a task T , let projT (τ) denote the result of
removing all pairs 〈Ti, ti〉 with Ti 6= T . We say that τ is valid for a bound map
〈rate, burst, lb, ub〉 if the following hold for every task T .

(i) If lb(T) > 0, then consecutive appearances of T must be at least lb(T)
apart. Formally: (a) if 〈T, t〉 is the first element of projT (τ), then t ≥ lb(T);
(b) for every interval I of length d < lb(T), projT (τ) contains at most one
element 〈T, t〉 with t ∈ I.

(ii) If ub(T) 6= ∞, then consecutive appearances of T must be at most ub(T)
apart. Formally: for every interval I ⊆ [0, ltime(τ)] of length d > ub(T),
projT (τ) contains at least one element 〈T, t〉 with t ∈ I.

(iii) For any interval I of length d, projT (τ) contains at most rate(T)·d+burst(T)
elements 〈T, t〉 with t ∈ I.

Note that every timed schedule τ projects to an untimed schedule ρ by re-
moving all real time information ti, thereby inducing a trace distribution of A.
The set of trace distributions induced by all valid timed schedules for A and
〈rate, burst, lb, ub〉 is denoted TrDists(A, rate, burst, lb, ub). Since the bound map
is typically fixed, we often omit it and write TrDists(A).

The new bound map for A1‖A2is obtained by taking the union of compo-
nent bound maps: 〈rate1 ∪ rate2, burst1 ∪ burst2, lb1 ∪ lb2, ub1 ∪ ub2〉. This is well
defined since the task partition of A1‖A2 is R1 ∪R2.

7

5 Complexity Bounds

Intuitively, we envision a large collection of task-PIOAs that runs for an un-
bounded amount of real time. While the number of task-PIOAs in this col-
lection is large, only a bounded (maybe even constant) number of them will
be active simultaneously at any given point in time. This holds for systems in
which some task-PIOAs may run for a bounded amount of time and then die off,
while some others are yet to be invoked. Each task-PIOA has bounded memory
and bounded computation rates, therefore the overall collection of task-PIOAs
should also satisfy these conditions.

We propose a notion of step bounds that captures these intuitions. Roughly
speaking, step bounds limit the amount computation involved in executing a
single action, as well as the amount of space that is allocated as a result of that
action. Paired with the rate and burst bounds of Section 4, we obtain a notion
of bounded space and bounded computation rates.

Step Bound We assume some standard bit string encoding for Turing machines
and for the names of variables, actions, and tasks. We also assume that variable
valuations are encoded in the obvious way, as a list of name/value pairs. Let A be
a task-PIOA with variable set V . Given state s, let ŝ denote the partial valuation
obtained from s by removing all pairs of the form 〈v,⊥〉. We have ιV (ŝ) = s,
therefore no information is lost by reducing s to ŝ. This key observation allows
us to represent a “large” valuation s with a “condensed” partial valuation ŝ.

Let p ∈ N be given. We say that A has step bound p if the following hold.
(i) For every variable v ∈ V , type(v) ⊆ {0, 1}p.
(ii) The name of every action, task, and variable of A has length at most p.

(iii) There exists a deterministic Turing machine Menable satisfying: for every
reachable state s, Menable on input ŝ outputs the list of tasks enabled in s.

(iv) There exists a probabilistic Turing machine MR satisfying: for every reach-
able state s and task T , MR on input 〈ŝ, T 〉 decides whether T is enabled
in s. If so, MR computes and outputs a new partial valuation ŝ′, along with
the unique a ∈ T that is enabled in s. The distribution on ιV (ŝ′) coincides
with ∆(s, a).

(v) There exists a probabilistic Turing machine MI satisfying: for every reach-
able state s and action a, MI on input 〈ŝ, a〉 decides whether a is an input
action of A. If so, MI computes a new partial valuation ŝ′. The distribution
on ιV (ŝ′) coincides with ∆(s, a).

(vi) The encoding of Menable is at most p bits long, and Menable terminates after
at most p steps on every input. The same hold for MR and MI .

Thus, step bound p limits the size of action names, which often represent
protocol messages. It also limits the number of tasks enabled from any reach-
able state (Condition (iii)) and the complexity of individual transitions (Condi-
tions (iv) and (v)). However, p does not limit how quickly transitions take place.
That will be restricted by the rate and burst bounds of Section 4.

Lemma 1 below guarantees that a task-PIOA with step bound p will never
reach a state in which more than p variables have non-⊥ values. The proof follows

8

a simple inductive argument. Lemma 2 says that, when we compose task-PIOAs
in parallel, the complexity of the composite is proportional to the sum of the
component complexities. The proof is similar to that of [1, Lemma 4.2].

Lemma 1. Let A be a task-PIOA with step bound p. For every valid timed task
schedule τ and every state s reachable under τ , there are at most p variables v
such that s.v 6= ⊥.

Proof. By the definition of task-PIOAs, we have sinit.v = ⊥ for every v. For
every other reachable state s′, let s be the state immediately preceding s′ on an
execution path leading to s′. Thus s is reachable. If the transition from s to s′

is locally controlled, we use the fact that MR always terminates after at most p
steps, therefore every possible output, including ŝ′, has length at most p. This
implies ŝ′ is a partial valuation on at most p variables. If the transition from s
to s′ is an input, we follow the same argument with MI . ut

Lemma 2. Suppose we have a compatible set {Ai|1 ≤ i ≤ b} of task-PIOAs,
where each Ai has step bound pi ∈ N. The composition ‖bi=1Ai has step bound
ccomp ·

∑b
i=1 pi, where ccomp is a fixed constant.

Turing Machine Simulation Given a closed (i.e., no input actions) task-PIOA A
with step bound p, one can define a nondeterministic Turing machine MA that
simulates the execution of A. The amount of work tape needed by MA is poly-
nomial in p. As a convention, we write s for the current state and s′ for the next
state after a transition. Recall that ŝ denotes the partial valuation obtained from
s by removing all pairs of the form 〈v,⊥〉. MA maintains this partial valuation
on its work tape. The following procedure is repeated indefinitely by A.

(i) From state s, MA gives to Menable the partial valuation ŝ currently stored
on the work tape. At the initial state sinit, all variables have the default
value ⊥, thus ŝ is the empty valuation. This corresponds to an initially
empty work tape.

(ii) The run stops if Menable outputs nothing. Otherwise, a task T is chosen
nondeterministically from the output of Menable and 〈ŝ, T 〉 is given to MR.

(iii) MR returns 〈ŝ′, a〉. MA checks every variable v appearing in ŝ′: if v appears
in ŝ, then the value of v is updated on the work tape; otherwise, MA
allocates enough space to store the name of v and the value ŝ′(v). Finally,
MA checks for all variables v appear in ŝ but not ŝ′. The storage for those
variables is freed.

Since the name and type of every variable are also bounded by p, we can infer
from Lemma 1 that the space needed to represent a reachable state is polynomial
in p (in fact, on the order of p2). Moreover, the amount of work tape needed
by Menable and MR is on the order of p, because these Turing machines execute
at most p steps at each activation.4 Therefore, the total amount of work tape
needed by MA is polynomial in p.

4 Note that we are not concerned with MI here, because A is assumed to be closed.

9

Overall Bound Putting the various bounds together, we have: for p ∈ N, A is
said to be p-bounded if (i) A has step bound p, (ii) and each of rate(T) and
burst(t) is at most p for every task T .

Task-PIOA Families We now extend our definitions to task-PIOA families, in-
dexed by a security parameter k. More precisely, a task-PIOA family Ā is an
indexed set {Ak}k∈N of task-PIOAs. Given p : N → N, we say that Ā is p-
bounded just in case: for all k, Ak is p(k)-bounded. If p is a polynomial, then
we say that Ā is polynomially bounded. Finally, the notions of compatibility and
parallel composition for task-PIOA families are defined pointwise.

We remark that our notion of closed, polynomially bounded families is remi-
niscent of the traditional notion of PSPACE (which is equivalent to nondetermin-
istic PSPACE). Our setting is slightly richer, because we also talk about rates of
computation with respect to real time. Thus, we can distinguish machines that
compute in large bursts from those that compute at a steady rate.

6 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistin-
guishability. For instance, an encryption algorithm is (chosen-plaintext) secure
if the ciphertexts of two distinct but equal-length messages are indistinguishable
from each other, even if the plaintexts are generated by the distinguisher itself.
The key assumption is that the distinguisher is computationally bounded, so
that it cannot launch a brute force attack. In this section, we adapt this notion
of indistinguishability to the long-lived setting.

As in [1], we define an implementation relation based on closing environments
and acceptance probabilities. LetA be a closed task-PIOA with output action acc
and task {acc}. Let τ be a timed task schedule for A. The acceptance probability
of A under τ is: Pacc(A, τ) := Pr[β contains acc : β ←R tdist(A, τ)]; that is,
the probability that a trace drawn from the distribution tdist(A, τ) contains the
action acc. For A that is not necessarily closed, we include a closing environment.
A task-PIOA Env is an environment for A if it is compatible with A and A‖Env
is closed. Throughout this paper, we assume that every environment has output
action acc. In this way, we may speak of acceptance probabilities of A‖Env.

In the short-lived setting, we say that a system A1 implements another sys-
tem A2 if every run of A1 can be “matched” by a run of A2 such that no
probabilistic polynomial time environment can distinguish the two runs. As we
discussed in the introduction, this type of definition is too strong for the long-
lived setting, because we must allow environments with unbounded total run
time (as long as they have bounded rate and space). For example, consider the
timestamping protocol of [4, 3] (cf. Section 2). After running for a long period
of real time, a distinguisher environment may be able to forge signatures from a
much earlier time period. As a result, it can distinguish the real system from the
ideal one in the traditional sense. However, the essence of the protocol is that
such failures can in fact be tolerated, because the environment still cannot forge
recent signatures.

10

This timestamping example suggests that we need a new notion of indistin-
guishability that “ignores” a large part of the execution history. That is, even
when an attacker succeeds in breaking old cryptographic services, the system
remains secure as long as the attacker cannot break the services used in recent
history. Our new implementation relation aims to capture this intuition.

First we give some informal explanations. Let Env be an environment for both
A1 and A2 and let t ∈ R≥0 be given. We set up two experiments as follows. In the
first experiment, Env interacts with A1 according to some task schedule τ1. In
the second experiment, Env interacts with A1 according to τ1 during the interval
[0, t]. At time t, A1 is replaced by A2 and τ1 is replaced by some task schedule
τ2 for Env‖A2. Our implementation relation requires that, for every switching
time t, the difference in acceptance probability in these two experiments must be
small. In other words, the environment cannot tell whether A1 has been replaced
by A2, regardless of the system history.

To make sure that such a substitution is well defined, we need to impose a
number of comparability conditions on task-PIOAs A1 and A2.

(i) A1 and A2 must have the same external interface: I1 = I2 and O1 = O2.
In this case, every environment E for A1 is also and environment for A2,
provided E is compatible with A2.

(ii) There must be a switch function f : SA1 → SA2 that preserves initial state
and reachability. When we replace A1 with A2 in the second experiment,
we shall initialize A2 to the state f(s1), where s1 is the final state of A1

at time t. Intuitively, f initializes A2 with enough information about the
computation history between A1 and Env.

(iii) A1 and A2 have the same set of output tasks and the bound maps coincide
on every output task.

(iv) Every hidden task of A1 either coincides with a hidden task of A2, or is
disjoint from every hidden task of A2. In the first case, the bound maps
must coincide.

Given t ∈ R>0 and comparable A1 and A2, we define sub(A1,A2, f, t) to be
the automaton obtained by replacing A1 with A2 at time t, using the switch
function f to transform states of A1 into states of A2. The precise definition of
sub(A1,A2, f, t) is as follows.
– The variable space is {flag} ∪ VA1 ∪ VA2 , where flag is a fresh variable of

type {⊥,>} and all other types are inherited from VA1 and VA2 .
– The state space is (〈flag ,⊥〉 × SA1 × sinit

2) ∪ (〈flag ,>〉 × sinit
1 × SA2).

– The action alphabet is ActA1 ∪ActA2 ∪{switch}, where switch is a fresh hid-
den action and the input/output/hidden classifications remain the same for
ActA1 and ActA2 .

– The task partition is RA1 ∪RA2 ∪ {{switch}}.
– The rate bound is rateA1 ∪ rateA2 ∪{〈{switch}, 1

t 〉}.
– The burst bound is burstA1 ∪ burstA2 ∪{〈{switch}, 0〉}.
– The lower bound is lbA1 ∪ lbA2 ∪{〈{switch}, t〉}.
– The upper bound is ubA1 ∪ ubA2 ∪{〈{switch}, t〉}.
– The transition relation is ∆′A1

∪∆′A2
∪∆′3, where

11

• ∆′A1
is induced by ∆A1 and the injection SA1 → (〈flag ,⊥〉×SA1 ×sinit

2);
• similarly for ∆′A2

;
• ∆′3 = {〈〈flag ,⊥〉 × s1 × sinit

2 〉, switch, δ(〈〈flag ,>〉 × sinit
1 × f(s1)〉)|s1 ∈

SA1}.
Note that the bound map is well defined due to Assumptions (iii) and (iv) above.
Moreover, even though the task {switch} is scheduled more than once, the action
switch occurs at most once, namely, at time t.

We are now ready to define our implementation relation formally.

Definition 1. Let A1 and A2 be comparable task-PIOAs. Let p, q ∈ N and ε ∈
R≥0 be given. We say that A1 ≤p,q,ε A2 if there exists a switch function f :
SA1 → SA2 such that the following holds for every t ∈ R>0: given a p-bounded
environment Env and a valid timed schedule τ1 for A1‖Env for the interval [0, t+
q], there exists valid timed schedule τ2 for sub(A1,A2, f, t)‖Env for the interval
[0, t+ q] such that |Pacc(A1‖Env, τ1)−Pacc(sub(A1,A2, f, t)‖Env, τ2)| ≤ ε.

The relation ≤p,q,ε can be extended to task-PIOA families as follows. Let
Ā1 = {(A1)k}k∈N and Ā2 = {(A2)k}k∈N be (pointwise) comparable task-PIOA
families. Given ε : N → R≥0 and p, q : N → N, we say that Ā1 ≤p,q,ε Ā2 just in
case (A1)k ≤p(k),q(k),ε(k) (A2)k for every k.

Restricting our attention to negligible error and polynomial time bounds, we
obtain the implementation relation ≤neg,pt. Formally, a function ε : N → R≥0

is said to be negligible if, for every constant c ∈ N, there exists k0 ∈ N such
that ε(k) < 1

kc for all k ≥ k0. (That is, ε diminishes more quickly than the
reciprocal of any polynomial.) Given task-PIOA families Ā1 and Ā2, we say
that Ā1 ≤neg,pt Ā2 if ∀p, q ∃ε Ā1 ≤p,q,ε Ā2, where p, q are polynomials and ε is
a negligible function.

7 Composition Theorems

In practice, cryptographic services are seldom used in isolation. More typically,
different types of services operate in conjunction, interacting with each other
and with multiple protocol participants. For example, a participant may submit
a document to an encryption service to obtain a ciphertext, which is later sub-
mitted to a timestamping service. In such situations, it is important that the
services are provably secure even in the context of composition.

In this section, we prove two types of composition theorems. The first con-
cerns parallel composition, which is a combination of services that are active at
the same time and may interact with each other. Given a polynomially bounded
collection of real services such that each real service implement some ideal ser-
vice, the parallel composition of the real services is guaranteed to implement the
parallel composition of the ideal services.

Our second main theorem deals with sequential composition, that is, a com-
bination of services that are active in succession. The interaction between two
distinct services is much more limited in this setting, because one of them must
have finished execution before the other one comes online. An example of such a

12

collection is the signature services in the timestamping algorithm of [4, 3], where
each service is replaced by the next one at regular intervals.

As in the parallel case, we prove that the sequential composition of real ser-
vices implements the sequential composition of ideal services. Surprisingly, we
can relax the polynomial restriction on the size of the composition to exponen-
tial.5 This highlights a unique feature of our implementation relation: essentially,
we walk down the real time line and, at any time point t, we consider a polyno-
mial length interval around t.

Parallel Composition First, we show that the relation ≤p,q,ε (cf. Definition 1) is
preserved under polynomial composition, with some appropriate adjustment to
the environment complexity bound and to the error in acceptance probability.

Theorem 1. Let b ∈ N be given and, for each 1 ≤ i ≤ b, let A1
i and A2

i be
comparable task-PIOAs. Suppose there exists a non-decreasing function r : N→
N such that, for all i, both A1

i and A2
i are r(i)-bounded. Suppose further that

Aα1
1 , . . . ,Aαb

b are pairwise compatible for any combination of αi ∈ {1, 2}.
Let p, p′, q ∈ N and ε, ε′ ∈ R≥0 be given, and assume the following.

(1) p = ccomp · (b · r(b) + p′), where ccomp is the constant factor for composing
task-PIOAs in parallel.

(2) ε′ = b · ε.
(3) For all i, A1

i ≤p,q,ε A2
i .

Then we have ‖bi=1A1
i ≤p′,q,ε′ ‖bi=1A2

i .

Proof. For each i, choose a function fi : SA1
i
→ SA2

i
according to the assumption

that A1
i ≤p,q,ε A2

i . Let f denote f1 × . . .× fb :
∏b
i=1 SA1

i
→

∏b
i=1 SA2

i
.

Let t ∈ R≥0 be given. Let Env be a p′-bounded environment and let τ0 be
a valid timed task schedule for ‖bi=1A1

i ‖Env for the interval [0, t + q]. Let Env1

denote ‖bi=2A1
i ‖Env, which is an environment for A1

1 and A2
1. Note that Env1 is

p-bounded. By assumption, we may choose a valid timed task schedule τ1 for
sub(A1

1,A2
1, f1, t)‖Env1 for the interval [0, t+ q] such that

|Pacc(A1
1‖Env1, τ0)−Pacc(sub(A1

1,A2
1, f1, t)‖Env1, τ1)| ≤ ε.

Now let Env2 := sub(A1
1,A2

1, f1, t)‖A1
3‖ . . . ‖A1

b‖Env and note that Env2 is
also p-bounded. Since A1

2 ≤p,q,ε A2
2. we may choose a valid timed task schedule

τ2 for sub(A1
2,A2

2, f2, t)‖Env2 for the interval [0, t+ q] such that

|Pacc(A1
2‖Env2, τ1)−Pacc(sub(A1

2,A2
2, f2, t)‖Env2, τ2)| ≤ ε.

Repeating the same argument, we obtain a valid timed task schedule τb for
(‖bi=1sub(A1

i ,A2
i , fi, t))‖Env for the interval [0, t+ q] such that

|Pacc((‖b−1
i=1 sub(A1

i ,A2
i , fi, t))‖A1

b‖Env, τb−1)

−Pacc((‖bi=1sub(A1
i ,A2

i , fi, t))‖Env, τb)| ≤ ε.
5 In our formulation, it is not meaningful to exceed an exponential number of com-

ponents, because the length of component descriptions is limited by the security
parameter.

13

Now Hi denote sub(A1
1,A2

1, f1, t)‖ . . . ‖sub(A1
i ,A2

i , fi, t)‖A1
i+1‖ . . . ‖A1

b for i ∈
{1, . . . , b}. We have:

|Pacc(‖bi=1A1
i ‖Env, τ0)−Pacc(sub(‖bi=1A1

i , ‖bi=1A2
i , f, t)‖Env, τb)|

≤ |Pacc(‖bi=1A1
i ‖Env, τ0)−Pacc(H1‖Env, τ1)|+ . . .

+ |Pacc(Hi‖Env, τi)−Pacc(Hi+1‖Env, τi+1)|+ . . .

+ |Pacc(Hb−1‖Env, τb−1)−Pacc(Hb‖Env, τb)|
≤ b · ε = ε′.

Finally, we obtain from τb a valid schedule τ ′b for sub(‖bi=1A1
i , ‖bi=1A2

i , f, t)‖Env
for the interval [0, t+ q], by removing all {switchi} tasks and inserting {switch}
tasks as dictated by the bound map. It is easy to see that

Pacc((‖bi=1sub(A1
i ,A2

i , fi, t))‖Env, τb) = Pacc(sub(‖bi=1A1
i , ‖bi=1A2

i , f, t)‖Env, τ ′b).

This completes the proof that ‖bi=1A1
i ≤p′,q,ε′ ‖bi=1A2

i . ut

Using Theorem 1, it is not hard to prove that ≤neg,pt (cf. Section 6) is also
preserved under polynomial composition. (Recall from Section 6 that ≤neg,pt is
a relation on task-PIOA families based on ≤p,q,ε.)

Theorem 2 (Parallel Composition Theorem for ≤neg,pt). Let two sequences
of task-PIOA families Ā1

1, Ā1
2, . . . and Ā2

1, Ā2
2, . . . be given, with Ā1

i comparable
to Ā2

i for all i. Assume that Āα1
1 , Āα2

2 , . . . are pairwise compatible for any com-
bination of αi ∈ {1, 2}.

Suppose there exist polynomials r, s : N→ N such that, for all i, k, both (Ā1
i)k

and (Ā2
i)k are bounded by s(k) · r(i). Assume that r is non-decreasing and

∀p, q ∃ε ∀i Ā1
i ≤p,q,ε Ā2

i , (1)

where p, q are polynomials and ε is a negligible function. (This is a strengthening
of the statement ∀i Ā1

i ≤neg,pt Ā2
i .) Let b be any polynomial. For each k, let (Â1)k

denote (Ā1
1)k‖ . . . ‖(Ā1

b(k))k. Similarly for (Â2)k. Then we have Â1 ≤neg,pt Â2.

Proof. By the definition of≤neg,pt, we need to prove the following: ∀p′, q ∃ε′ Â1 ≤p′,q,ε′

Â2, where p′, q are polynomials and ε′ is a negligible function. Let polynomials
p′ and q be given and define p := ccomp · (b · (r ◦ b) + p′), where ccomp is the
constant factor for composing task-PIOAs in parallel. Now choose ε using p, q,
and Assumption (1). Define ε′ := b · ε.

Let k ∈ N be given. We need to prove (Â1)k ≤p′(k),q(k),ε′(k) (Â2)k. That is,

(Ā1
1)k‖ . . . ‖(Ā1

b(k))k ≤p′(k),q(k),ε′(k) (Ā2
1)k‖ . . . ‖(Ā2

b(k))k.

For every i, we know that (Ā1
i)k and (Ā2

i)k are bounded by (s(k)·r)(i). Moreover,
by the choice of ε, we have (Ā1

i)k ≤p(k),q(k),ε(k) (Ā2
i)k for all i. Therefore, we may

apply Theorem 1 to conclude that (Â1)k ≤p′(k),q(k),ε′(k) (Â2)k. This completes
the proof. ut

14

Sequential Composition We now treat the more interesting case, namely, un-
bounded sequential composition. The first challenge is to formalize the notion
of sequentiality. On a syntactic level, all components in the collection are com-
bined using the parallel composition operator. To capture the idea of successive
invocation, we introduce some auxiliary notions.

Intuitively, we make a distinction between active and dormant entities. Ac-
tive entities may perform actions and store information in memory. Dormant
entities have no available memory and do not enable locally controlled actions.6

A dormant entity behaves exactly like a “trivial” automaton, as in Definition 2
below. In Definition 3, we formalize the idea that an entity A may be invoked
and terminated by some other entity B. Then we show in Lemma 3 that A
can be replaced by trivial(A) outside its active interval. Finally, we introduce
sequentiality in Definition 4.

Definition 2. Let A a task-PIOA. We define task-PIOA trivial(A) as follows:
trivial(A) has the same action signature, task partition, and bound map as A;
trivial(A) has only one state, which does not enable any locally controlled actions.

Definition 3. Let A and B be pairwise compatible task-PIOAs and let reals
t1 ≤ t2 be given. We say that A is restricted to the interval [t1, t2) by B if:
– for any t < t1, environment Env for A‖B, valid schedule τ for A‖B‖Env

for [0, t], and state s reachable under τ , no locally controlled actions of A is
enabled in s, and s.v = ⊥ for every variable v of A.

– the same for all t ≥ t2.

Lemma 3. Suppose that A is restricted to the interval [t1, t2) by B. Let t < t1,
environment Env of A‖B, and valid task schedule τ for A‖B‖Env for the interval
[0, t] be given. Note that τ is also a valid task schedule for trivial(A)‖B‖Env.
Then Pacc(A‖B‖Env, τ) = Pacc(trivial(A)‖B‖Env, τ).

Proof. By Definition 3, the behavior of A before time t1 is exactly the same as
trivial(A). ut

Definition 4 (Sequentiality). Let B,A1,A2, . . . be pairwise compatible task-
PIOAs. We say that A1,A2, . . . are sequential under B if there exist reals 0 ≤
t1 < t2 < . . . such that: for all i, Ai is restricted to [ti, ti+1) by B.

For Lemma 4 and Theorem 3 below, let A1
1,A1

2, . . . and A2
1,A2

2, . . . be two
sequences of task-PIOAs such thatA1

i andA2
i are comparable for every i. Assume

that Aα1
1 ,Aα2

2 , . . . are pairwise compatible for any combination of αi ∈ {1, 2}.
Also, let L, p̂ ∈ N be given and let B be a task-PIOA such that both B‖(‖Li=1A1

i)
and B‖(‖Li=1A2

i) are p̂-bounded. Assume that both A1
1, . . . ,A1

L and A2
1, . . . ,A2

L

are sequential under B for the same sequence of reals t1 < . . . < tL+1.
Suppose there exist p, q, ε such that A1

i ≤p,q,ε A2
i for all i. Let fi : SA1

i
→ SA2

i

denote the function guaranteed by comparability, and define f as f1× . . .× fL :∏L
i=1 SA1

i
→

∏L
i=1 SA2

i
. Let idB denote the identity function on SB.

6 For technical reasons, dormant entities must synchronize on input actions. However,
since they must remain in a null state, all inputs are trivial loops.

15

Our goal is to prove that B‖(‖Li=1A1
i) implements B‖(‖Li=1A2

i). To do so, we
must consider a switch from B‖(‖Li=1A1

i) to B‖(‖Li=1A2
i) at an arbitrary time t

(cf. Section 6). Intuitively, since B invokes the Ai’s sequentially, the substitution
operator affects at most one index i. That is, the switching time t falls into at
most one interval [ti, ti+1). This idea is expressed in Lemma 4 below.

Lemma 4. Let t ∈ R≥0 be given and let Env be an environment for S :=
sub(B‖(‖Li=1A1

i),B‖(‖Li=1A2
i), idB × f, t). We have three cases.

(i) t < t1. Given any valid schedule τ for B‖(‖Li=1A2
i)‖Env, there exists valid

schedule τ ′ for S‖Env with the same acceptance probability.
(ii) t ≥ tL+1. Given any valid schedule τ for B‖(‖Li=1A1

i)‖Env, there exists valid
schedule τ ′ for S‖Env with the same acceptance probability.

(iii) There is a unique i such that t ∈ [ti, ti+1). Given any valid schedule τ for
B‖(‖i−1

i=1A1
i)‖sub(A1

i ,A2
i , fi, t)‖(‖Li=i+1A2

i)‖Env, there exists valid schedule
τ ′ for S‖Env with the same acceptance probability.

Proof. First we consider Case (i), where S is the result of switching before any of
theAi components becomes active. Let τ be a valid schedule for B‖(‖Li=1A2

i)‖Env.
By comparability, it holds for all i that A1

i and A2
i have the same set of output

tasks and the bound maps coincide on output tasks. Therefore, we can obtain
from τ a valid schedule for S‖Env by inserting {switch} tasks and hidden tasks of
(‖Li=1A1

i). Let τ ′ denote the result of inserting a minimal number of such tasks.
By Definition 4, all of the Ai components are dormant (i.e., no locally con-

trolled tasks are enabled and inputs are trivial loops) before time t. Therefore,
S behaves exactly like B‖(‖Li=1A2

i). Moreover, since all fi’s preserve initial state,
all variables of (‖Li=1A2

i) have value ⊥ immediately after the first occurrence of
{switch}, at time t. Hence the behavior of S under τ ′ is the same as the be-
havior of B‖(‖Li=1A2

i) under τ . Note that no actions actually take place when
subsequent {switch} tasks are scheduled, because switch is never again enabled.
Similarly for the additional hidden tasks of (‖Li=1A1

i).
For Case (ii), we build τ ′ as in Case (i). Notice that the transition structure of

S is completely isomorphic to that of B‖(‖Li=1A1
i) before the switch action. More-

over, by the sequentiality assumption, we know that all variables of (‖Li=1A1
i)

have value ⊥ immediately before the switch. Since all fi’s preserve initial state,
all variables of (‖Li=1A2

i) must also have value ⊥ immediately after the switch.
Again by the sequentiality assumption, these variables must remain ⊥ forever.

For Case (iii), we apply Cases (i) and (ii) repeatedly to obtain τ ′′ such that

Pacc(B‖(‖i−1
i=1A

1
i)‖sub(A1

i ,A2
i , fi, t)‖(‖Li=i+1A2

i)‖Env, τ)

= Pacc(B‖(‖Li=1sub(A1
i ,A2

i , fi, t))‖Env, τ ′′).

Then we obtain from τ ′′ a valid schedule τ ′ for S‖Env by replacing each sequence
of switch tasks (one for each index i) occurring at the same time with a single
{switch} task. Clearly, this preserves the acceptance probability.

ut

16

Now we are ready to show that B‖(‖Li=1A1
i) implements B‖(‖Li=1A2

i) (Theo-
rem 3). Notice that the error in acceptance probability increases by a factor of
b, where b is the largest number of components that may be active in a time
interval of length q. For example, if the life time of each component is q

2 , then
b is 3. This is the key difference between parallel and sequential composition:
in the parallel case, the error increases with the total number of components
(namely, L), and hence no more than a polynomial number of components can
be handled. Here, L may be exponential, as long as b remains small. The proof
of Theorem 3 involves a standard hybrid argument for active components, while
dormant components are replaced by their trivial counterparts (cf. Definition 2).

Theorem 3. Let q ∈ N be given and let b denote the largest number such that
b consecutive ti’s fall into an interval of length q. (Such b must exist and is
between 1 and L). Let p′ ∈ N and ε′ ∈ R≥0 be given. Assume that ε′ ≥ b · ε and
p ≥ ccomp·(p̂+p′), where ccomp is the constant factor for parallel composition and p̂
is the bound for B‖(‖Li=1A1

i) and B‖(‖Li=1A2
i). Then we have B‖(‖Li=1A1

i) ≤p′,q,ε′

B‖(‖Li=1A2
i).

Proof. Let t ∈ R≥0 be given. As in Lemma 4, we have three cases. We treat only
the most interesting case: there is unique index i such that t ∈ [ti, ti+1).

Let Env be a p′-bounded environment and let τ1 be a valid timed task
schedule for B‖(‖Li=1A1

i)‖Env for the interval [0, t + q]. We need to find τ ′2 for
sub(B‖(‖Li=1A1

i),B‖(‖Li=1A2
i), idB × f, t)‖Env such that

|Pacc(B‖(‖Li=1A1
i)‖Env, τ1)

−Pacc(sub(B‖(‖Li=1A1
i),B‖(‖Li=1A2

i), idB × f, t)‖Env, τ ′2)| ≤ ε.

By Lemma 4, it suffices to find τ2 for

B‖(‖i−1
i=1A

1
i)‖sub(A1

i ,A2
i , fi, t)‖(‖Li=i+1A2

i)‖Env

with the same acceptance probability. Let Env1 denote B‖(‖ii=1A1
i)‖Env.

By the choice of b and the fact that t < ti+1, we know that t + q < ti+b+1.
Applying Lemma 3 repeatedly, we have

Pacc(B‖(‖Li=1A1
i)‖Env, τ1) = Pacc((‖Li=iA1

i)‖Env1, τ1)

= Pacc((‖i+bi=iA
1
i)‖trivial(‖Li=i+b+1A1

i)‖Env1, τ1).

By comparability, trivial(‖Li=i+b+1A1
i) and trivial(‖Li=i+b+1A2

i) have the same
external signature. Let τ ′1 denote the result of removing all internal tasks of
‖Li=i+b+1A1

i from τ1. Then

Pacc(B‖(‖Li=1A1
i)‖Env, τ1) = Pacc((‖i+bi=iA

1
i)‖trivial(‖Li=i+b+1A2

i)‖Env1, τ
′
1).

Let Env2 denote trivial(‖Li=i+b+1A2
i)‖Env1. Using a standard hybrid argument

(cf. the proof of Theorem 1), we find valid schedule τb for

sub((‖i+bi=iA
1
i), (‖

i+b
i=iA

2
i), fi × . . .× fi+b, t)‖Env2

17

with the same acceptance probability. Using an argument similar to the proof of
Lemma 4, we can find valid schedule τ2 for sub(A1

i ,A2
i , fi, t)‖(‖

i+b
i=i+1A2

i)‖Env2

with the same acceptance probability. Expanding the definitions of Env1 and
Env2 and applying Lemma 3 repeatedly, we have

Pacc(sub(A1
i ,A2

i , fi, t)‖(‖
i+b
i=i+1A

2
i)‖Env2, τ2)

= Pacc(sub(A1
i ,A2

i , fi, t)‖(‖
i+b
i=i+1A

2
i)‖trivial(‖Li=i+b+1A2

i)‖Env1, τ2)

= Pacc(sub(A1
i ,A2

i , fi, t)‖(‖Li=i+1A2
i)‖Env1, τ2)

= Pacc(B‖(‖i−1
i=1A

1
i)‖sub(A1

i ,A2
i , fi, t)‖(‖Li=i+1A2

i)‖Env, τ2).

This completes the proof. ut

Finally, we use Theorem 3 to obtain a sequential composition theorem for
≤neg,pt.

Theorem 4 (Sequential Composition Theorem for ≤neg,pt). Let two se-
quences of task-PIOA families Ā1

1, Ā1
2, . . . and Ā2

1, Ā2
2, . . . be given, with Ā1

i com-
parable to Ā2

i for all i. Assume that Āα1
1 , Āα2

2 , . . . are pairwise compatible for any
combination of αi ∈ {1, 2}. Let L : N → N be an exponential function and, for
each k, let (Â1)k denote (Ā1

1)k‖ . . . ‖(Ā1
L(k))k. Similarly for (Â2)k.

Let p̂ be a polynomial and let B̄ be a task-PIOA families such that both B‖Â1

and B‖Â2 are p̂-bounded. Suppose there exist a sequence of positive reals t1 <
t2 < . . . such that, for each k, both (Ā1

1)k, . . . , (Ā1
L(k))k and (Ā2

1)k, . . . , (Ā2
L(k))k

are sequential under Bk for the sequence t1 < . . . < tL(k)+1. Assume there is a
constant real number c such that consecutive ti’s are at least c apart.

Suppose that, for all polynomials p, q, there exists negligible function ε such
that Ā1

i ≤p,q,ε Ā2
i for all i. Then we have B‖Â1 ≤neg,pt B‖Â2.

Proof. Let polynomials p′, q′ be given and define p := ccomp · (p̂+p′), where ccomp

is the constant factor for composing task-PIOAs in parallel. Choose ε according
to the assumption of the theorem. For each k, let b(k) be the ceiling of q

′(k)
c + 1.

Since c is constant, b is a polynomial. Define ε′ := b · ε.
Let k ∈ N be given. Let fi : S(Ā1

i)k
→ S(Ā2

i)k
denote the function guaranteed

by comparability, and define f as f1 × . . . × fL. Let idBk
denote the identity

function on SBk
. Now we can apply Theorem 3 to conclude that

Bk‖(Ā1
1)k‖ . . . ‖(Ā1

b(k))k ≤p′(k),q(k),ε′(k) Bk‖(Ā2
1)k‖ . . . ‖(Ā2

b(k))k.

That is (B‖Â1)k ≤p′(k),q(k),ε′(k) (B‖Â2)k. This completes the proof. ut

8 Conclusion

This paper takes some important first steps towards a foundation for the anal-
ysis of long-lived cryptographic services. We augment the Task-PIOA model

18

with real time information on task schedules. This allows us to express compu-
tational restrictions in terms of processing rates with respect to real time. As
demonstrated by the Turing machine simulation of Section 5, this new complex-
ity model is similar to the standard PSPACE model.

The long-term implementation relation ≤neg,pt is largely inspired by the
timestamping service example of Section 2. We capture the idea that, while
an unbounded environment will eventually succeed in guessing a signing key, it
may suffice to control the rate at which these successes occur. By virtue of the
sequential composition theorem, it is sufficient to analyze each signature service
in isolation, checking that the adversary cannot break the service too quickly.

In the future, we plan to study general security definitions based on long-term
implementation, and to conduct formal analysis of practical long-lived protocols.

References

1. R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and R. Segala.
Using task-structured probabilistic I/O automata to analyze an oblivious transfer
protocol. Cryptology ePrint Archive, Report 2005/452, 2005. Available at http:

//eprint.iacr.org/2005/452/.
2. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Moni Naor, editor, Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, pages 136–145. IEEE Computer Society, 2001.
Full version available on http://eprint.iacr.org/2000/067.

3. S. Haber. Long-lived digital integrity using short-lived hash functions. Technical
report, HP Laboratories, May 2006.

4. S. Haber and P. Kamat. A content integrity service for long-term digital archives.
In Proceedings of the IS&T Archiving Conference, 2006. Also published as Technical
Memo HPL-2006-54, Trusted Systems Laboratory, HP Laboratories, Princeton.

5. R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Ma-
chines. In Proceedings of the 19th IEEE Computer Security Foundations Workshop
(CSFW-19 2006), pages 309–320. IEEE Computer Society, 2006.

6. P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time
framework for protocol analysis. In Proceedings of ACM CCS-5, 1998.

7. N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI
Quarterly, 2(3):219–246, September 1989.

8. M. Merritt, F. Modugno, and M.R. Tuttle. Time constrained automata. In Pro-
ceedings of CONCUR 1991, volume 527 of LNCS, pages 408–423, 1991.

9. J. Müller-Quade and D. Unruh. Long-term security and universal composability.
In Theory of Cryptography, Proceedings of TCC 2007, volume 4392 of LNCS, pages
41–60. Springer-Verlag, March 2007. Preprint on IACR ePrint 2006/422.

10. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In IEEE Symposium on Security and
Privacy, pages 184–200, Oakland, CA, May 2001. IEEE Computer Society.

