
Modeling Bounded Computation in Long-Lived Systems

Ran Canetti
IBM Research

Ling Cheung
Massachusetts Institute of Technology

Dilsun Kaynar
Carnegie Mellon University

Nancy Lynch
Massachusetts Institute of Technology

Olivier Pereira
Universit́e catholique de Louvain

February 28, 2008

Abstract

For many cryptographic protocols, security relies on the assumption that adversarial entities have limited com-
putational power. This type of security degrades progressively over the lifetime of the protocol. However, some
cryptographic services (e.g., time-stamping services or digital archives) are long-lived in nature; they are expected to
be secure and operational for a very long time (i.e., super-polynomial). In such cases, security cannot be guaranteed
in the traditional sense: even information theoretically secure protocols would fail if the attacker has sufficient run
time to mount a brute-force attack.

This work proposes a new paradigm for the analysis of long-lived security protocols. We allow entities to be active
for a potentially unbounded amount of real time, provided they perform only a polynomial amount of work per unit
real time. Moreover, the space used by these entities is allocated dynamically and must be polynomially bounded.
We propose a key notion of long-term implementation, which is an adaptation of computational indistinguishability
to the long-lived setting. We show that long-term implementation is preserved under polynomial parallel composi-
tion and exponential sequential composition. To illustrate the use of this new paradigm, we analyze the long-lived
timestamping protocol of Haber and Kamat.

1 Introduction

Nearly all the systems defined and analyzed in cryptographic protocol research areshort-lived. In these systems,
protocol parties can execute only a bounded number of steps, after which the protocol concludes. Depending on the
particular model, adversarial entities may perform certain pre- and/or post-computations. While the adversary may be
unbounded in these additional phases, it must be bounded during protocol execution. It is typical that security degrades
substantially (namely, polynomially) in the length of protocol execution.

In this paper, we turn our attention to the security oflong-livedcryptographic services. In a long-lived system,
protocol parties may be active for an unbounded amount of real time, subject to the condition that only a polynomial
amount of work can be done per unit real time. Here the adversary’s interaction with the system becomes unbounded,
and the adversary may perform an unbounded number of computation steps during protocol execution. This renders
traditional security notions insufficient: even information theoretically secure protocols would fail if the adversary has
unbounded run time.

Despite the seeming impossibility to defeat a long-lived adversary, there exist long-lived protocols that aim to
provide some meaningful form of security [1, 5]. Thus, we set out to formulate a new notion of security that captures
the intuitions behind such protocols.

As it turns out, the modeling of long-lived systems requires some non-trivial departures from standard crypto-
graphic modeling. First and foremost, unbounded entities cannot be modeled asprobabilistic polynomial time (PPT)
Turing machines. In search of a suitable alternative, we see the need to distinguish between two types of unbounded
computation: steps performed steadily over a long period of time, versus those performed rapidly in a short amount of
time. The former conforms with our understanding of boundedness, while the latter clearly does not. Guided by this
intuition, we introduce real time explicitly in the Task-PIOA model [3] and impose computational restrictions in terms
of rates, i.e., number of computation steps per unit real time.

Another interesting challenge is the restriction on space, which traditionally is a non-issue because PPT Turing
machines can only access a polynomially bounded amount of space. In the long-lived setting, space restriction warrants

1

new considerations. For instance, we would like to model dynamic allocation of space, as new entities are invoked
and old entities die off. This is achieved using the designation of variables. In particular, the state of every entity
is represented by a valuation of its variables, and all variables of a dormant entity (either not yet invoked or already
killed off) must be set to a special value⊥. A system is regarded as bounded only if, at any point in its execution,
only a bounded amount of space is needed to maintain all variables with non-⊥ values. For example, a sequential
composition (in the temporal sense) of an unbounded number of entities is bounded if each entity uses a bounded
amount of space.

Having appropriate restrictions on space and computation rates, we define a long-term implementation relation for
long-lived systems. This extends the familiar notion ofcomputational indistinguishability, where two systems (real
andideal) are deemed equivalent if their behaviors are indistinguishable from the point of view of a computationally
bounded environment. Notice that, in the long-lived setting, an environment with super-polynomial run time can
typically distinguish the two systems trivially, e.g., by launching brute force attacks. This holds even if the environment
has bounded computation rate. Therefore, our definition does not rule out significant degradation of security in the
overall lifetime of a system. Instead, we require that therate of degradation is small at any point in time; in other
words, the probability of a new successful attack remains bounded during the lifetime of the system.

To capture this intuition, we introduce a new type of ideal system; namely, we consider ideal systems with special
“failure” steps. Whenever a failure step is taken, an ideal system becomes vulnerable to attacks for a limited time.
After that, certain damage control mechanisms go into effect, and the ideal system returns to a “good” state and
continues to behave ideally. Our implementation relation requires that the real system approximates this type of self-
correcting behavior. More precisely, we quantify over all real time pointst and require that the real and ideal systems
are computationally indistinguishable in the interval[t, t + q] (whereq is polynomial in the security parameter), even
if no more failure steps are taken by the ideal system in that interval. Notice that we do allow failure steps before
time t. This expresses the idea that, despite any security breaches that may have occurred before timet, the success
probability of afreshattack in the interval[t, t + q] is small.

We show that our long-term implementation relation is transitive, and is preserved under the operations polynomial
parallel composition and exponential sequential composition. The last result highlights the power of our model: we
can formulate and prove properties of an exponential number of entities in a meaningful way.

Example: Digital Timestamping As a proof of concept, we present an analysis of the digital timestamping protocol
of Haber et al. [1, 4, 5], which was designed to address the problem of content integrity in long-term digital archives.
In a nutshell, a digital timestamping scheme takes as input a documentd at a specific timet0, and produces a certificate
c that can be used later to verify the existence ofd at timet0. The security requirement is that timestamp certificates
are difficult to forge. Haber et al. note that it is inadvisable to use a single digital signature scheme to generate all
timestamp certificates, even if signing keys are refreshed periodically. This is because, over time, any single signature
scheme may be weakened due to advances in algorithmic research and/or discovery of vulnerabilities. Haber et al.
propose a solution in which timestamps must be renewed periodically by generating a new certificate for the pair〈d, c〉
using a new signature scheme. Thus, even if the signature scheme used to generatec is broken in the future, the new
certificatec′ still provides evidence thatd existed at the timet0 stated in the original certificatec.

We model the protocol of Haber et al. as the composition of a dispatcher component and a sequence of signature
services. Each signature service “wakes up” at a certain time and is active for a specified amout of time before
becoming dormant again. This can be viewed as a regular update of the signature service, which may entail a simple
refresh of the signing key, or the adoption of a new signing algorithm. The dispatcher component accepts various
timestamp requests and forwards them to the appropriate signature service. We show that the composition of the
dispatcher and the signature services is indistinguishable from an ideal system, consisting of the same dispatcher
composed with ideal signature functionalities. Specifically, this guarantees that the probability of a new forgery is
small at any given point in time, regardless of any forgeries that may have happened in the past.

Related Work In the past decades, the cryptography and concurrency communities have developed rigorous frame-
works for modeling protocols, formulating security properties, and proving correctness (e.g., [7, 2, 11, 3, 6]). These
models, however, concentrate on short-lived systems where system lifetime is comparable to the computational com-
plexity of individual entities and to the level of security provided. In [10], Müller-Quade and Unruh studylong-term
securityof cryptographic protocols. They consider adversaries that try to derive information from the protocol tran-
scriptafterprotocol conclusion. This work differs from ours, in that it does not consider long-lived protocol execution.
In particular, the adversary of [10] has polynomially bounded interactions with the protocol parties.

2

2 Task-PIOAs

We review the basics of the task-PIOA framework [3], which has a partial-information scheduling mechanism based
on tasks. A task is a set of related actions (e.g., actions representing the same activity but with different parameters).
We view tasks as basic units of events, both for real time scheduling and for imposing computational bounds (cf.
Sections 3 and 4).

Notations Given a setS, letDisc(S) denote the set of discrete probability measures onS. Fors ∈ S, let δ(s) denote
theDirac measure ons, i.e.,δ(s)(s) = 1.

Let V be a set of variables. Eachv ∈ V is associated with a(static) typetype(v), which is the set of all possible
values ofv. We assume thattype(v) is countable and contains the special symbol⊥. A valuations for V is a function
mapping everyv ∈ V to a value intype(v). The set of all valuations forV is denotedval(V). GivenV ′ ⊆ V , a
valuations′ for V ′ is sometimes referred to as apartial valuation for V . Observe thats′ induces a (full) valuation
ιV (s′) for V , by assigning⊥ to everyv 6∈ V ′.

Finally, given any setS, we writeS⊥ := S ∪ {⊥}, assuming⊥ 6∈ S.

PIOA We define aprobabilistic input/output automaton (PIOA)to be a tupleA = 〈V, S, sinit, I, O, H,∆〉, where:
(i) V is a set ofstate variablesandS ⊆ val(V) is a set ofstates;

(ii) sinit ∈ S is theinitial state;
(iii) I, O andH are countable and pairwise disjoint sets of actions, referred to asinput, output and hidden actions,

respectively;
(iv) ∆ ⊆ S × (I ∪O ∪H)× Disc(S) is atransition relation.

The setAct := I ∪ O ∪ H is theaction alphabetof A. If I = ∅, thenA is said to beclosed. The set ofexternal
actions ofA is I ∪ O and the set oflocally controlledactions isO ∪H. Any sequence of external actions is called a
trace. We writes.v for the value of variablev in states. An actiona is enabledin a states if 〈s, a, µ〉 ∈ ∆ for some
µ. We require thatA satisfies the following conditions.
• Input Enabling: For everys ∈ S anda ∈ I, a is enabled ins.
• Transition Determinism: For everys ∈ S anda ∈ Act , there is at most oneµ ∈ Disc(S) with 〈s, a, µ〉 ∈ ∆.

We write∆(s, a) for suchµ, if it exists.
Parallel composition for PIOAs is based on synchronization of shared actions. PIOAsA1 andA2 are said to be

compatibleif Vi ∩ Vj = Act i ∩Hj = Oi ∩Oj = ∅ wheneveri 6= j. In that case, we define theircompositionA1‖A2

to be〈V1 ∪ V2, S1 × S2, 〈sinit
1 , sinit

2 〉, (I1 ∪ I2) \ (O1 ∪O2),
O1 ∪O2,H1 ∪H2,∆〉, where∆ is the set of triples〈〈s1, s2〉, a, µ1 × µ2〉 satisfying: (i)a is enabled in somesi, and
(ii) for every i, if a ∈ Act i, then〈si, a, µi〉 ∈ ∆i, otherwiseµi = δ(si). It is easy to check that input enabling and
transition determinism are preserved under composition. Moreover, the definition of composition can be generalized
to any finite number of components.

Task-PIOAs To resolve nondeterminism, we make use of the notion of tasks introduced in [8, 3]. Formally, atask-
PIOA is a pair〈A,R〉 whereA is a PIOA andR is a partition of the locally-controlled actions ofA. The equivalence
classes inR are calledtasks. For notational simplicity, we often omitR and refer to the task-PIOAA. The following
axiom is assumed.
• Action Determinism: For every states and every taskT , at most one actiona ∈ T is enabled ins.

Unless otherwise stated, terminologies are inherited from the PIOA setting. For instance, if somea ∈ T is enabled in
a states, thenT is said to beenabledin s.

Example 1 (Clock automaton). Figure 1 describes a simple task-PIOAClock(T), which has atick(t) output action
for everyt in some discrete time domainT. For concreteness, we assumeT = N and simply writeClock. There is a
single tasktick, consisting of alltick(t) actions. These clock ticks are produced in order, fort = 1, 2, In Section 3,
we will define a mechanism that ensures eachtick(t) occurs exactly at real timet.

Operations Given compatible task-PIOAsA1 andA2, we define theircompositionto be〈A1‖A2,R1 ∪R2〉. Note
thatR1 ∪ R2 is an equivalence relation because compatibility requires disjoint sets of locally controlled actions.
Moreover, it is easy to check that action determinism is preserved under composition.

3

Clock(T)
Signature

Input:
none

Output:
tick(t : T), t > 0

Tasks

tick = {tick(∗)}

States

count ∈ T, initially 0

Transitions
tick(t)
Precondition:

count = t− 1
Effect:

count := t

Figure 1: Task-PIOA Code forClock(T)

We also define ahiding operator: givenA = 〈V, S, sinit, I, O, H,∆〉 andS ⊆ O, hide(A, S) is the task-PIOA
given by〈V, S, sinit, I, O′,H ′,∆〉, whereO′ = O\S andH ′ = H∪S. This prevents other PIOAs from synchronizing
with A via actions inS: any PIOA with an action inS in its signature is no longer compatible withA.

Executions and traces A task schedulefor a closed task-PIOA〈A,R〉 is a finite or infinite sequenceρ = T1, T2, . . .
of tasks inR. This induces a well-defined run ofA as follows.

(i) From the start statesinit, we apply the first taskT1: due to action- and transition-determinism,T1 specifies at
most one transition fromsinit; if such a transition exists, it is taken, otherwise nothing happens.

(ii) Repeat with remainingTi’s.
Such a run gives rise to a uniqueprobabilistic execution, which is a probability distribution over execution paths inA.
For finiteτ , let lstate(A, τ) denote the state distribution ofA after executing according toτ . A states is said to be
reachableunderτ if lstate(A, τ)(s) > 0. Moreover, the probabilistic execution induces a uniquetrace distribution
tdist(A, τ), which is a probability distribution over the set of traces ofA. We refer to [3] for more details on these
constructions.

3 Real Time Constraints

Recall that our goal is to model entities with unbounded lifetime but bounded processing rates. A natural approach
is to introduce real time, so that computational restrictions can be stated in terms of the number of steps performed
per unit real time. However, computationally bounded entities cannot maintain real time information to arbitrary
precision. Thus, we follow a two-pronged approach: system components maintain discrete approximations of time in
their logical state, while task schedules contain real time information.

A timed task scheduleτ for a closed task-PIOA〈A,R〉 is a finite or infinite sequence〈T1, t1〉, 〈T2, t2〉, . . . such
that:Ti ∈ R andti ∈ R≥0 for everyi, andt1, t2, . . . is non-decreasing.

Following [9], we associate lower and upper real time bounds to each task. Ifl andu are, respectively, the lower
bound and upper bound for a taskT , then the amount of time between consecutive occurrences ofT is at leastl and at
mostu. To limit computational power, we impose a rate bound on the number of occurrences ofT within an interval
I, based on the length ofI. A burst bound is also included for modeling flexibility. Formally, abound mapfor a task-
PIOA 〈A,R〉 is a tuple〈rate, burst, lb, ub〉 such that: (i)rate, burst, lb : R → R≥0, (ii) ub : R → R∞>0, and (iii) for
all T ∈ R, lb(T) ≤ ub(T). To ensure thatrate andub can be satisfied simultaneously, we requirerate(T) ≥ 1/ ub(T)
wheneverrate(T) 6= 0 andub(T) 6= ∞. From this point on, we assume that every task-PIOA is associated with a
particular bound map.

Given a timed scheduleτ and a taskT , let projT (τ) denote the result of removing all pairs〈Ti, ti〉 with Ti 6= T .
Let d denote a nonnegative real and letI be an interval of the form[0, tI] for sometI ∈ R≥0. We say thatτ is valid
for the intervalI (under a bound map〈rate, burst, lb, ub〉) if the following hold for every taskT .

(i) If the pair 〈T, t〉 appears inτ , thent ∈ I.

4

(ii) If lb(T) > 0, then: (a) if〈T, t〉 is the first element ofprojT (τ), thent ≥ lb(T); (b) for every intervalI ′ of length
d < lb(T), projT (τ) contains at most one element〈T, t〉 with t ∈ I ′.

(iii) If ub(T) 6=∞, then, for every intervalI ′ ⊆ I of lengthd > ub(T), projT (τ) contains at least one element〈T, t〉
with t ∈ I ′.

(iv) For any intervalI ′ of lengthd, projT (τ) contains at mostrate(T) · d + burst(T) elements〈T, t〉 with t ∈ I ′.
Note that every timed scheduleτ projects to an untimed scheduleρ by removing all real time informationti,

thereby inducing a trace distribution ofA. The set of trace distributions induced by all valid timed schedules forA
and〈rate, burst, lb, ub〉 is denotedTrDists(A, rate, burst, lb, ub). Since the bound map is typically fixed, we often
omit it and writeTrDists(A).

In a parallel compositionA1‖A2, the composite bound map is the union of component bound maps:

〈rate1 ∪ rate2, burst1 ∪ burst2, lb1 ∪ lb2, ub1 ∪ ub2〉.

This is well defined since the task partition ofA1‖A2 isR1 ∪R2.

Example 2 (Bound map forClock). We use upper and lower bounds to ensure thatClock’s internal counter evolves
at the same rate as real time. Namely, we setlb(tick) = ub(tick) = 1. The rate and burst bounds are also set to1.
It is not hard to see that, regardless of the system of automata with whichClock is composed, we always obtain the
unique sequence〈tick, 1〉, 〈tick, 2〉, . . . when we project a valid schedule to the tasktick.

4 Complexity Bounds

Intuitively, we envision a large collection of task-PIOAs that runs for an unbounded amount of real time. While the
number of task-PIOAs in this collection is large, only a bounded number of them will be active simultaneously at
any given point in time. Each task-PIOA has bounded memory and bounded computation rates, therefore the overall
collection should also satisfy these conditions.

We propose a notion of step bounds that captures these intuitions. Roughly speaking, step bounds limit the amount
of computation involved in executing a single action, as well as the amount of space that is allocated as a result of that
action. Combining the step bound with the rate and burst bounds of Section 3, we obtain a notion of bounded space
and bounded computation rates.

Step Bound We assume some standard bit string encoding for Turing machines and for the names of variables,
actions, and tasks. We also assume that variable valuations are encoded in the obvious way, as a list of name/value
pairs. LetA be a task-PIOA with variable setV . Given states, let ŝ denote the partial valuation obtained froms by
removing all pairs of the form〈v,⊥〉. We haveιV (ŝ) = s, therefore no information is lost by reducings to ŝ. This
key observation allows us to represent a “large” valuations with a “condensed” partial valuation̂s.

Let p ∈ N be given. We say that a states is p-bounded if the encoding of̂s is at mostp bits long. The task-PIOA
A is said to havestep boundp if the following hold.

(i) For every variablev ∈ V , type(v) ⊆ {0, 1}p.
(ii) The name of every action, task, and variable ofA has length at mostp.

(iii) The initial statesinit is p-bounded.
(iv) There exists a deterministic Turing machineMenable satisfying: for everyp-bounded states, Menable on inputŝ

outputs the list of tasks enabled ins.
(v) There exists a probabilistic Turing machineMR satisfying: for everyp-bounded states and taskT , MR on input
〈ŝ, T 〉 decides whetherT is enabled ins. If so,MR computes and outputs a new partial valuationŝ′, along with
the uniquea ∈ T that is enabled ins. The distribution onιV (ŝ′) coincides with∆(s, a).

(vi) There exists a probabilistic Turing machineMI satisfying: for everyp-bounded states and actiona, MI on input
〈ŝ, a〉 decides whethera is an input action ofA. If so,MI computes a new partial valuation̂s′. The distribution
on ιV (ŝ′) coincides with∆(s, a).

(vii) The encoding ofMenable is at mostp bits long, andMenable terminates after at mostp steps on every input. The
same hold forMR andMI .

Thus, step boundp limits the size of action names, which often represent protocol messages. It also limits the
number of tasks enabled from anyp-bounded state (Condition (iv)) and the complexity of individual transitions (Con-
ditions (v) and (vi)). Finally, Condition (vii) requires all of the Turing machines to have description bounded by
p.

5

Lemma 4.1 below guarantees that a task-PIOA with step boundp will never reach a state in which more thanp
variables have non-⊥ values. The proof is a simple inductive argument.

Lemma 4.1. Let A be a task-PIOA with step boundp. For every valid timed task scheduleτ and every states
reachable underτ , there are at mostp variablesv such thats.v 6= ⊥.

Proof. By the definition of step bounds, we havesinit is p-bounded. For a states′ reachable under scheduleτ ′, let s be
a state immediately precedings′ in the probabilistic execution induced byτ ′. Thuss is reachable under some prefix of
τ . If the transition froms to s′ is locally controlled, we use the fact thatMR always terminates after at mostp steps,
therefore every possible output, includingŝ′, has length at mostp. This impliesŝ′ is a partial valuation on at mostp
variables. If the transition froms to s′ is an input, we follow the same argument withMI .

Lemma 4.2 says that, when we compose task-PIOAs in parallel, the complexity of the composite is proportional
to the sum of the component complexities. The proof is similar to that of the full version of [3, Lemma 4.2]. We also
note that the hiding operator introduced in Section 2 preserves step bounds.

Lemma 4.2. Suppose{Ai|1 ≤ i ≤ b} is a compatible set of task-PIOAs, where eachAi has step boundpi ∈ N. The
composition‖bi=1Ai has step boundccomp ·

∑b
i=1 pi, whereccomp is a fixed constant.

Turing Machine Simulation Given a closed (i.e., no input actions) task-PIOAA with step boundp, one can define
a nondeterministic Turing machineMA that simulates the execution ofA. The amount of work tape needed byMA is
polynomial inp. As a convention, we writes for the current state ands′ for the next state after a transition. Recall that
ŝ denotes the partial valuation obtained froms by removing all pairs of the form〈v,⊥〉. MA maintains this partial
valuation on its work tape. The following procedure is repeated indefinitely byA.

(i) From states, MA gives toMenable the partial valuation̂s currently stored on the work tape.
(ii) The run stops ifMenable outputs nothing. Otherwise, a taskT is chosen nondeterministically from the output of

Menable and〈ŝ, T 〉 is given toMR.
(iii) MR returns〈ŝ′, a〉. MA checks every variablev appearing in̂s′: if v appears in̂s, then the value ofv is updated

on the work tape; otherwise,MA allocates enough space to store the name ofv and the valuês′(v). Finally,MA
checks for variables appearing inŝ but notŝ′. The storage for those variables is freed.

Since the name and type of every variable are also bounded byp, we can infer from Lemma 4.1 that the space
needed to represent a reachable state is polynomial inp (in fact, on the order ofp2). Moreover, the amount of work
tape needed byMenable andMR is on the order ofp, because these Turing machines execute at mostp steps at each
activation.1 Therefore, the total amount of work tape needed byMA is polynomial inp.

Overall Bound We now put together real time bounds and step bounds. To do so, we represent global time using
the clock automatonClock (Figure 1). Letp ∈ N be given and letA be a task-PIOA compatible withClock. We say
thatA is p-boundedif the following hold.

(i) A has step boundp.
(ii) For every taskT of A, rate(T) andburst(T) are both at mostp.

(iii) For everyt ∈ N, let St denote the set of statess of A‖Clock such thats is reachable under some valid schedule
τ ands.count = t. There are at mostp tasksT such thatT is enabled in somes ∈ St.

Conditions (i) and (ii) are self-explanatory. Condition (iii) ensures that the enabling of tasks does not change too
rapidly. Without this restriction,A would be able to cycle through a large number of tasks between two clock ticks,
without violating the rate bound of any individual task.

Task-PIOA Families We now extend our definitions to task-PIOA families, indexed by asecurity parameterk.
More precisely, atask-PIOA familyĀ is an indexed set{Ak}k∈N of task-PIOAs. Givenp : N → N, we say thatĀ
is p-boundedjust in case: for allk, Ak is p(k)-bounded. Ifp is a polynomial, then we say that̄A is polynomially
bounded. The notions of compatibility and parallel composition for task-PIOA families are defined pointwise.

We remark that our notion of closed (i.e., no input actions), polynomially bounded families is reminiscent of the
traditional notion of PSPACE (which is equivalent to nondeterministic PSPACE). Our setting is slightly richer, because
we also talk about rates of computation with respect to real time. Thus, we can distinguish machines that compute in
large bursts from those that compute at a steady rate.

1Note that we are not concerned withMI here, becauseA is closed.

6

Example: Signature Service We now present an example of a polynomially bounded family of task-PIOAs.
A signature schemeSig consists of three algorithms:KeyGen, Sign andVerify. KeyGen is a probabilistic algorithm

that outputs a signing-verification key pair〈sk , vk〉. Sign is a probabilistic algorithm that produces a signatureσ from
a messagem and the keysk . Finally, Verify is a deterministic algorithm that maps〈m,σ, vk〉 to a boolean. The
signatureσ is said to bevalid for m andvk if Verify(m,σ, vk) = 1.

Let SID be a domain of service identifiers. For eachj ∈ SID , we build a signature service as a family of task-
PIOAs indexed by security parameterk. Specifically, we define three task-PIOAs,KeyGen(k, j), Signer(k, j), and
Verifier(k, j) for every pair〈k, j〉. We assume a functionalive : T→ 2SID such that, for everyt, alive(t) is the set of
services alive at timet. The lifetime of each servicej is then given byaliveTimes(j) := {t ∈ T|j ∈ alive(t)}, which
is assumed to be a finite set of consecutive numbers.

For every security parameterk, we assume the following finite domains:RIDk (request identifiers),Mk (messages
to be signed) andΣk (signatures). The representations of elements in these domains are bounded byp(k), for some
polynomialp. Similarly, the domainTk consists of natural numbers representable usingp(k) bits. When combined
with the automatonClock (Figure 1), the inputtick(t) actions allow the components to record discrete time information
in the state variableclock .

KeyGen KeyGen(k, j) chooses a signing keymySK and a corresponding verification keymyVK . This is done
exactly once, at any time when servicej is alive. The two keys are output separately, via actionssignKey(sk)j and
verKey(vk)j . The signing key goes toSigner(k, j), while the verification key may go to several other components.

The code forKeyGen(k, j) is given in Figure 2. As we mentioned before, thetick(t) action brings in the current
time. If j is alive at timet, thenclock is set to the current timet. Also, if j has just become alive, as evidenced by the
fact that theawake flag is currently⊥, theawake flag is set totrue. On the other hand, ifj is no longer alive at time
t, all variables are set to⊥.

ThechooseKeys action usesKeyGenj to choose the key pair, and is enabled only whenj is awake and the keys are
currently⊥. Note that theKeyGen algorithm is indexed byj, because different services may use different algorithms.
The same applies toSignj in Signer(k, j) andVerifyj in Verifier(k, j). The signKey andverKey actions output the
keys, and they are enabled only whenj is awake and the keys have been chosen.

Signer Signer(k, j) receives the signing key from another component, e.g.,KeyGen(k, j). It then responds to signing
requests by running theSignj algorithm on the given messagem and the received signing keysk . Figure 3 presents
the code forSigner(k, j), which is fairly self-explanatory.

The data typequek represents queues with maximum lengthp(k), wherep is a polynomial. The enqueue operation
automatically discards the new entry if the queue is already of lengthp(k). This models the fact thatSigner(k, j) has
a bounded amount of memory. For concreteness, we assume thatp is the constant function1 for the queuestoSign
andsigned .

Verifier Verifier(k, j) accepts verification requests and simply runs theVerifyj algorithm. The code appears in Fig-
ure 4. Again, all queues have maximum length1.

Assuming the algorithmsKeyGenj , Signj andVerifyj are polynomial time, it not hard to check that the composite
KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j) has step boundp(k) for some polynomialp. If rate(T) andburst(T) are at
mostp(k) for everyT , then the composite isp(k)-bounded. The family{KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j)}k∈N
is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistinguishability. For instance, an encryption
algorithm is (chosen-plaintext) secure if the ciphertexts of two distinct but equal-length messages are indistinguish-
able from each other, even if the plaintexts are generated by the distinguisher itself. The key assumption is that the
distinguisher is computationally bounded, so that it cannot launch a brute force attack. In this section, we adapt this
notion of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and acceptance probabilities. LetA be a
closed task-PIOA with output actionacc and task{acc}. Let τ be a timed task schedule forA. The acceptance
probability of A underτ is: Pacc(A, τ) := Pr[β containsacc : β ←R tdist(A, τ)]; that is, the probability that a trace

7

KeyGen(k : N, j : SID)
Signature

Input:
tick(t : Tk)

Output:
signKey(sk : 2k)j

verKey(vk : 2k)j

Internal:
chooseKeysj

Tasks

verKeyj = {verKey(∗)j}
signKeyj = {signKey(∗)j}
chooseKeysj = {chooseKeysj}

States

awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
mySK : (2k)⊥, init ⊥
myVK : (2k)⊥, init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
else

awake, clock ,mySK ,
myVK := ⊥

chooseKeysj

Precondition:
awake = true
mySK = myVK = ⊥

Effect:
〈mySK ,myVK 〉
← KeyGenj(1

k)

signKey(sk)j

Precondition:
awake = true
sk = mySK 6= ⊥

Effect:
none

verKey(vk)j

Precondition:
awake = true
vk = myVK 6= ⊥

Effect:
none

Figure 2: Task-PIOA Code forKeyGen(k, j)

drawn from the distributiontdist(A, τ) contains the actionacc. If A is not necessarily closed, we include a closing
environment. A task-PIOAEnv is anenvironmentfor A if it is compatible withA andA‖Env is closed. From here
on, we assume that every environment has output actionacc.

In the short-lived setting, we say that a systemA1 implements another systemA2 if every run ofA1 can be
“matched” by a run ofA2 such that no probabilistic polynomial time environment can distinguish the two runs. As
we discussed in the introduction, this type of definition is too strong for the long-lived setting, because we must allow
environments with unbounded total run time (as long as they have bounded rate and space).

For example, consider the timestamping protocol of [5, 4] described in Section 1. After running for a long period
of real time, a distinguisher environment may be able to forge signatures from a much earlier time period. As a result,
it can distinguish the real system from the ideal one in the traditional sense. However, the essence of the protocol
is that such failures can in fact be tolerated, because the environment cannot forgerecentsignatures, after a new,
uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of indistinguishability that “ignores” a large part
of the execution history. That is, even when an attacker succeeds in breaking old cryptographic services, the system
remains secure as long as the attacker cannot break the services used in recent history. Our new implementation
relation aims to capture this intuition.

First we state a comparability condition on task-PIOA:A1 andA2 are said to becomparableif they have the same
external interface, that is,I1 = I2 andO1 = O2. In this case, every environmentE for A1 is also an environment for
A2, providedE is compatible withA2.

LetA1 andA2 be comparable task-PIOAs, and letF be a set of tasks ofA2. Givent ∈ R≥0 and an environment
Env for bothA1 andA2, we set up two experiments. In the first experiment,Env interacts withA1 according to
some valid task scheduleτ1 ofA1‖Env. In the second experiment,Env interacts withA2 according to some valid task
scheduleτ2 of A2‖Env, whereτ2 does not contain any tasks fromF from timet onwards. Intuitively, the tasks inF
corresponds to certain protocol vulnerabilities. Before timet, A2 may be vulnerable to certain attacks, matching any
failures that may have occurred inA1. (An example of a failure is a forgery in the case of signatures.) At timet and

8

Signer(k : N, j : SID)
Signature

Input:
tick(t : Tk)
signKey(sk : 2k)j

reqSign(rid : RIDk,
m : Mk)j

Output:
respSign(rid : RIDk,

σ : Σk)j

Internal:
sign(rid : RIDk, m : Mk)j

Tasks

respSignj = {respSign(∗, ∗)j}
signj = {sign(∗, ∗)j

States

awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
mySK : (2k)⊥, init ⊥
toSign : que(RIDk ×Mk)⊥,
init ⊥
signed : que(RIDk × Σk)⊥,
init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toSign, signed

:= empty
else

awake, clock ,mySK ,
toSign, signed := ⊥

signKey(sk)j

Effect:
if awake = true
∧mySK = ⊥

thenmySK := sk

reqSign(rid , m)j

Effect:
if awake = true
∧¬ full(toSign)

thentoSign :=
enq(toSign, 〈rid , m〉)

sign(rid , m)j

localσ : Σ
Precondition:

awake = true
head(toSign) = 〈rid , m〉
mySK 6= ⊥

Effect:
toSign := deq(toSign)
σ ← Signj(m,mySK)
signed :=

enq(signed , 〈rid , σ〉)

respSign(rid , σ)j

Precondition:
awake = true
head(signed) = 〈rid , σ〉

Effect:
signed := deq(signed)

Figure 3: Task-PIOA Code forSigner(k, j)

afterwards,A2 closes the vulnerabilities.
We require that, for any validτ1, there exists a validτ2 as above such that the two executions are identical up to

time t from the point of view of the environment. That is, the acceptance probabilities in these experiments are the
same up to time t andEnv has the same state distribution immediately before timet. Moreover, the two executions are
overallcomputationally indistinguishable, namely, the difference in acceptance probabilities in these two experiments
is negligible as long asEnv is computationally bounded.

Given a task scheduleτ = 〈T1, t1〉, 〈T2, t2〉, . . ., let trunc≥t(τ) denote the result of removing all pairs〈Ti, ti〉 with
ti ≥ t. If τ is a schedule ofA‖B, then we defineprojB(τ) to be the result of removing all〈Ti, ti〉 whereTi is nota task
of B. Moreover, letlstateB(A‖B, τ) denote the end state distribution ofB after executing withA under the schedule
τ (assumingτ is finite).

Definition 5.1. LetA1 andA2 be comparable task-PIOAs that are both compatible withClock. LetF be a set of tasks
ofA2, and letp, q ∈ N andε ∈ R≥0 be given. We say thatA1 ≤F

p,q,ε A2 if: for every t ∈ R≥0, every environment
Env of the formEnv′‖Clock with Env′ beingp-bounded, and every valid timed scheduleτ1 forA1‖Env for the interval
[0, t + q], there exists valid timed scheduleτ2 for A2‖Env for the interval[0, t + q] such that:

(i) Pacc(A1‖Env, trunc≥t(τ1)) = Pacc(A2‖Env, trunc≥t(τ2));
(ii) lstateEnv(A1‖Env, trunc≥t(τ1)) = lstateEnv(A2‖Env, trunc≥t(τ2));

(iii) projEnv(τ1) = projEnv(τ2);
(iv) τ2 does not contain any pairs of the form〈Ti, ti〉 whereTi ∈ F andti ≥ t;

9

Verifier(k : N, j : SID)
Signature

Input:
tick(t : Tk)
verKey(vk : 2k)j

reqVer(rid : RIDk,
m : Mk, σ : Σk)j

Output:
respVer(rid : RIDk,

b : Bool)j

Internal:
verify(rid : RIDk,

m : Mk, σ : Σk)j

Tasks

respVerj = {respVer(∗, ∗)j}
verifyj = {verify(∗, ∗, ∗)j}

States

awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
myVK : (2k)⊥, init ⊥
toVer : que(RIDk ×Mk

×Σk)⊥, init ⊥
verified : que(RIDk ×Mk

×Σk)⊥, init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toV er, verified

:= empty
else

awake, clock ,myVK ,
toV er, verified := ⊥

verKey(vk)j

Effect:
if awake = true
∧myVK = ⊥

thenmyVK := vk

reqVer(rid , m, σ)j

Effect:
if awake = true
∧¬ full(toVer)

thentoVer :=
enq(toVer , 〈rid , m, σ〉)

verify(rid , m, σ)j

local b : Bool
Precondition:

awake = true
∧myVK 6= ⊥

head(toVer) = 〈rid , m, σ〉
Effect:

toVer := deq(toVer)
b := Verifyj(m, σ,myVK)
verified :=

enq(verified , 〈rid , b〉)

respVer(rid , b)j

Precondition:
awake = true
head(verified) = 〈rid , b〉

Effect:
verified := deq(verified)

Figure 4: Task-PIOA Code forVerifier(k, j)

(v) |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)| ≤ ε.

The following lemma says that≤F
p,q,ε (Definition 5.1) is transitive up to additive errors.

Lemma 5.2. LetA1,A2, andA3 be comparable task-PIOAs, and letF2 be a set of tasks ofA2 andF3 be a set of tasks
ofA3. Letp, q ∈ N andε ∈ R≥0 be given. Assume thatA1 ≤F2

p,q,ε1 A2 andA2 ≤F3
p,q,ε2 A3. ThenA1 ≤F3

p,q,ε1+ε2 A3.

Proof. Let t ∈ R≥0, ap-bounded environmentEnv of the formEnv′‖Clock, and a valid timed scheduleτ1 forA1‖Env
for the interval[0, t+q] be given. Chooseτ2 forA2‖Env according to the assumptionA1 ≤F2

p,q,ε1 A2. Usingτ2, choose
τ3 for A3‖Env according to the assumptionA2 ≤F3

p,q,ε2 A3.
Clearly, we have

• Pacc(A1‖Env, trunc≥t(τ1))
= Pacc(A2‖Env, trunc≥t(τ2))
= Pacc(A3‖Env, trunc≥t(τ3));

• lstateEnv(A1‖Env, trunc≥t(τ1))
= lstateEnv(A2‖Env, trunc≥t(τ2))
= lstateEnv(A3‖Env, trunc≥t(τ3));

10

• projEnv(τ1) = projEnv(τ2) = projEnv(τ3).

It is also immediate thatτ3 does not contain any pairs of the form〈Ti, ti〉 whereTi ∈ F3 andti ≥ t. Finally,

|Pacc(A1‖Env, τ1)−Pacc(A3‖Env, τ3)|
≤ |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)|

+ |Pacc(A2‖Env, τ2)−Pacc(A3‖Env, τ3)|
≤ ε1 + ε2.

The relation≤F
p,q,ε can be extended to task-PIOA families as follows. LetĀ1 = {(Ā1)k}k∈N and Ā2 =

{(Ā2)k}k∈N be pointwise comparable task-PIOA families. LetF̄ be a family of sets such that each(F̄)k is a
set of tasks of(Ā2)k. Let ε : N → R≥0 andp, q : N → N be given. We say that̄A1 ≤F̄

p,q,ε Ā2 just in case

(Ā1)k ≤(F̄)k

p(k),q(k),ε(k) (Ā2)k for everyk.
Restricting our attention to negligible error and polynomial time bounds, we obtain the long-term implementation

relation≤F̄
neg,pt. Formally, a functionε : N → R≥0 is said to benegligibleif, for every constantc ∈ N, there exists

k0 ∈ N such thatε(k) < 1
kc for all k ≥ k0. (That is,ε diminishes more quickly than the reciprocal of any polynomial.)

Given task-PIOA familiesĀ1 andĀ2 and task set familȳF of Ā2, we say thatĀ1 ≤F̄
neg,pt Ā2 if ∀p, q ∃ε Ā1 ≤F̄

p,q,ε Ā2,
wherep, q are polynomials andε is a negligible function.

Lemma 5.3 (Transitivity of ≤F̄
neg,pt). Let Ā1, Ā2, andĀ3 be comparable task-PIOA families. LetF̄2 be a task set

family ofĀ2 and letF̄3 be a task set family of̄A3. SupposeĀ1 ≤F̄2
neg,pt Ā2 andĀ2 ≤F̄3

neg,pt Ā3. ThenĀ1 ≤F̄3
neg,pt Ā3.

Proof. Given polynomialsp andq, choose negligible functionsε1 andε2 according to the assumptions. Thenε1 + ε2
is negligible. By Lemma 5.2, we havēA1 ≤F̄3

p,q,ε1+ε2 Ā3.

6 Ideal Signature Functionality

In this section, we specify anideal signature functionalitySigFunc, and show that it is implemented, in the sense of
our≤F̄

neg,pt definition, by the real signature service of Section 4.
As with KeyGen, Signer, andVerifier, each instance ofSigFunc is parameterized with a security parameterk and

an identifierj. The code forSigFunc(k, j) appears in Figure 5. It is very similar to the composition ofSigner(k, j)
andVerifier(k, j). The important difference is thatSigFunc(k, j) maintains an additional variablehistory , which
records the set of signed messages. In addition,SigFunc(k, j) has an internal actionfailj , which sets a boolean flag
failed . If failed = false, thenSigFunc(k, j) useshistory to answer verification requests: a signature is rejected if the
submitted message is not inhistory , even ifVerifyj returns1. If failed = true, thenSigFunc(k, j) bypasses the check
onhistory , so that its answers are identical to those from the real signature service.

Recall that, for every taskT of the real signature service,rate(T) andburst(T) are bounded byp(k) for some
polynomialp. We assume that the same bound applies toSigFunc(k, j). SincealiveTimes(j) is a finite set of con-
secutive numbers, it represents essentially an interval whose length is constant in the security parameterk. Therefore,
p(k) gives rise to a boundp′(k) on the maximum number of signatures generated bySigFunc(k, j), wherep′ is also
polynomial. We set the maximum length of the queuehistory to p′(k). All other queues have maximum length1.

We claim that the real signature service implements the ideal signature functionality. The proof relies on a re-
duction to standard properties of a signature scheme, namely, completeness and existential unforgeability, as defined
below.

Definition 6.1. A signature schemeSig = 〈KeyGen,Sign,Verify〉 is completeif Verify(m,σ, vk) = 1 whenever
〈sk , vk〉 ← KeyGen(1k) andσ ← Sign(sk ,m). We say thatSig is existentially unforgeableunder adaptive chosen
message attacks (or EUF-CMA secure) if no probabilistic polynomial-time forger has non-negligible success proba-
bility in the following game.
Setup The challenger runsKeyGen to obtain〈sk , vk〉 and gives the forgervk .
Query The forger submits messagem. The challenger responds with signatureσ ← Sign(m, sk). This may be

repeated adaptively.

11

SigFunc(k : N, j : SID)
Signature

Input:
IVerifier ∪ ISigner

Output:
OVerifier ∪OSigner

Internal:
HVerifier ∪HSigner ∪ {failj}

Tasks

RSigner ∪RVerifier ∪ {{failj}}

States

All variables ofSigner
andVerifier
history : que(Mk)⊥, init ⊥
failed : {true, false}⊥, init ⊥

Transitions
Same asSigner andVerifier,
except the following:

tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toSign, toV er,
signed , verified

:= empty
history := ∅
failed := false

else
awake, clock ,mySK ,
myVK , toSign, toVer ,
signed , history, verified ,
failed := ⊥

failj
Precondition:

awake = true
Effect:

failed := true

sign(rid , m)j

localσ : Σ
Precondition:

awake = true
∧mySK 6= ⊥

head(toSign) = 〈rid , m〉
Effect:

toSign := deq(toSign)
σ := Signj(m,mySK)
signed :=

enq(signed , 〈rid , σ〉)
history :=

enq(history, m)

verify(rid , m, σ)j

Localb : Bool
Precondition:

awake = true
∧myVK 6= ⊥

head(toVer) = 〈rid , m, σ〉
Effect:

toVer := deq(toVer)
b := (Verify(m, σ,myVK)
∧(m ∈ history ∨ failed))

verified :=
enq(verified , 〈rid , b〉)

Figure 5: Code forSigFunc(k, j)

Output The forger outputs a pair〈m∗, σ∗〉 and he wins ifm∗ is not among the messages submitted during the query
phase andVerify(m∗, σ∗, vk) = 1.

For allk ∈ N andj ∈ SID , we defineRealSig(j)k to behide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj)
andIdealSig(j)k to behide(KeyGen(k, j)‖SigFunc(k, j), signKeyj).

These automata are gathered into families in the obvious way:RealSig(j) := {RealSig(j)k}k∈N andIdealSig(j) :=
{IdealSig(j)k}k∈N. Note that the hiding operation prevents the environment from learning the signing key.

Theorem 6.2. Let j ∈ SID be given. Suppose that〈KeyGenj ,Signj ,Verifyj〉 is a complete and EUF-CMA secure

signature scheme. ThenRealSig(j) ≤{failj}neg,pt IdealSig(j).

To prove Theorem 6.2, we show that, for every time pointt, the environment cannot distinguishRealSig(j)k from
IdealSig(j)k with high probability between timet andt + q(k), whereq is a polynomial. This holds even when the
task{failj} is not scheduled in the interval[t, t + q]. The interesting case is whenj is awakenedafter time t. That
implies thefailed flag is never set andSigFunc(k, j) useshistory to reject forgeries.

We use the the EUF-CMA assumption to obtain a bound on the distinguishing probability of any environment.
Essentially, we build a forger that emulates the execution of our various task-PIOAs under some valid schedule. When
the environment interacts with theSigner andVerifier automata, this forger uses the signature oracle and verification
algorithm in the EUF-CMA game. Moreover, the success probability of this forger is maximized over all environments
satisfying a particular polynomial bound. (Note that, given polynomialp and security parameterk, there are only a

12

finite number ofp(k)-bounded environments.) Applying the definition of EUF-CMA security, we obtain the desired
negligible bound on distinguishing probability.

Proof of Theorem 6.2.Unwinding the definition of≤{failj}neg,pt , we need to show the following: for every polynomials
p andq, there is a negligible functionε such that, for everyk ∈ N, t ∈ R≥0, p(k)-bounded environmentEnv for
RealSig(j)k, and valid scheduleτ1 for RealSig(j)k‖Env for the interval[0, t + q(k)], there is a valid scheduleτ2 for
IdealSig(j)k, ‖Env such that

(i) Pacc(RealSig(j)k‖Env, trunc≥t(τ1)) is the same asPacc(IdealSig(j)k‖Env, trunc≥t(τ2));

(ii) lstateEnv(RealSig(j)k‖Env, trunc≥t(τ1)) is the same aslstateEnv(IdealSig(j)k‖Env, trunc≥t(τ2));

(iii) projEnv(τ1) = projEnv(τ2);

(iv) τ2 does not contain any pairs of the form〈failj , ti〉 whereti ≥ t;

(v) Pacc(RealSig(j)k‖Env, τ1) is at mostε(k) away fromPacc(IdealSig(j)k‖Env, τ2).

Let polynomialp andq be given. We need to obtain a negligibleε bound that makes all the conditions above
satisfied for everyk, t, p(k)-boundedEnv, valid τ1, and some correspondingτ2.

Fix tl andtr to be time points such that[tl, tr] = {t ∈ T|j ∈ alive(t)}. So, we know that bothRealSig(j)k and
IdealSig(j)k are dormant outside the interval[tl, tr].

First consider the cases in whichtl < t. We obtainτ2 by inserting〈{failj}, tl〉 immediately after〈tick, tl〉. This sets
thefailed flag inSigFunc(k, j) to true immediately afterawake becomestrue. Notice that, iffailed = true, the verify
transition bypasses the checkm ∈ history (Figure 5). In other words,SigFunc(k, j) answers verify requests in exactly
the same way asVerifier(k, j), using theVerify algorithm only. Furthermore, it is easy to check thatfailed remains
true as long asSigFunc(k, j) is alive. Therefore,IdealSig(j)k has exactly the same visible behavior asRealSig(j)k

and Conditions (i) through (v) above are satisfied if we chooseε(k) = 0, for everyk, p(k)-boundedEnv and validτ1.
Now, consider the cases in whicht ≤ tl. Setτ2 := τ1. Since bothRealSig(j)k and IdealSig(j)k are dormant

during [0, t], Conditions (i) and (ii) must hold. Condition (iii) is immediate and Condition (iv) holds becausefailj
is not a task ofRealSig(j)k. It remains to argue that there exists a negligible functionε such that Condition (v) is
satisfied.

To this purpose, we rely on the EUF-CMA security ofSig. We however do not need to bound the success proba-
bility of one specific forger, as in the EUF-CMA definition, but the success probability of all forgers that satisfy fixed
polynomialp andq bounds, for every timet and scheduleτ1.

For everyk ∈ N, we define a time(tmax)k ≤ tl, ap(k)-bounded environment(Envmax)k for RealSigk, and a valid
schedule(τ1max)k for RealSigk‖(Envmax)k for the time interval[0, (tmax)k + q(k)], with the following property: for
every timet ≤ tl, everyp(k)-bounded environmentEnv for RealSigk, and every valid scheduleτ1 for RealSigk‖Env
for the interval[0, t + q(k)], we have:

|Pacc(RealSig(j)k‖Env, τ1)−Pacc(IdealSig(j)k‖Env, τ1)|
≤ |Pacc(RealSig(j)k‖(Envmax)k, (τ1max)k)−Pacc(IdealSig(j)k‖(Envmax)k, (τ1max)k)|.

To see that such a(tmax)k, (Envmax)k and (τ1max)k exist, it is enough to observe that there are only a finite
number of times, environments and schedules respecting thetl, p(k) andq(k) bounds (up to isomorphism).

This means that is enough to show the existence of a negligible functionε such that, for everyk ∈ N, we have:

|Pacc(RealSig(j)k‖(Envmax)k, (τ1max)k)−Pacc(IdealSig(j)k‖(Envmax)k, (τ1max)k)| ≤ ε(k).

SinceSig is complete, we observe that, for every value ofk, the difference of acceptance probabilities of the two
automata compared in Condition (v) can only be non-zero if(Envmax)k succeeds in producing a forged signature
(that is, a valid signature for a message that was not signed by theSign or SigFunc automata before) and in having this
signature rejected when theverify andrespVer actions ofSigFunc execute.

We now use each(Envmax)k and(τ1max)k to define a probabilistic polynomial-time (non-uniform) forgerG =
{Gk}k∈N for Sig, in such a way thatGk essentially emulates an execution of the automatonIdealSig(j)k‖(Envmax)k

with schedule(τ1max)k.
More precisely,Gk successively reads all the tasks in the schedule(τ1max)k, and uses them to internally emulate

an execution ofIdealSig(j)k‖(Envmax)k, up to the following exceptions:

13

1. when the{verKey(∗)} task has to be emulated,Gk replaces the verification algorithm obtained when emulating
the{chooseKeys} task with the one provided bySig in the EUF-CMA game, and

2. when the{sign(∗, ∗)} task has to be emulated,Gk obtains signatures by using the signing oracle available in the
EUF-CMA game.

Furthermore,Gk stores a list of all messages that the emulated(Envmax)k asked to sign, and checks whether(Envmax)k

ever asks for the verification of a message with a valid signature that is not in the list. If such a signature is produced,
Gk outputs it as a forgery.

We observe that this emulation process is polynomial time-bounded because all transitions of the emulated systems
are polynomial time-bounded, the total running time of the system is bounded bytl + q(k), and Condition (iii) on the
overall bound of automata guarantees that no more than a polynomial number of transitions are performed per time
unit.

We also observe that the two proposed exceptions in the emulation of the execution ofIdealSig(j)k‖(Envmax)k

do not change the distribution of the messages that(Envmax)k sees, since the verification algorithm used byGk is
generated in the same way asKeyGen generates it, and since the message signatures are also produced in a valid way.
Therefore, it is with the same probability that the environment distinguishes the two systems it is interacting with (that
is, by producing a forgery early enough) in a real execution of the different automata and in the version emulated by
G.

Now, the assumption thatSig is EUF-CMA secure guarantees that there exists a negligible functionε bounding the
success probability ofG. Selecting this functionε completes our proof.

7 Composition Theorems

In practice, cryptographic services are seldom used in isolation. Most likely, different types of services operate in
conjunction, interacting with each other and with multiple protocol participants. For example, a participant may
submit a document to an encryption service to obtain a ciphertext, which is later submitted to a timestamping service.
In such situations, it is important that the services are provably secure even in the context of composition.

In this section, we consider two types of composition. The first,parallel composition, is a combination of services
that are active at the same time and may interact with each other. Given a polynomially bounded collection of real
services such that each real service implement some ideal service, the parallel composition of the real services is
guaranteed to implement that of the ideal services.

The second type,sequential composition, is a combination of services that are active in succession. The interaction
between two distinct services is much more limited in this setting, because the earlier one must have finished execution
before the later one comes online. An example of such a collection is the signature services in the timestamping
protocol of [5, 4], where each service is replaced by the next at regular intervals.

As in the parallel case, we prove that the sequential composition of real services implements the sequential com-
position of ideal services. We are able to relax the restriction on the number of components from polynomial to
exponential.2 This highlights a unique aspect of our implementation relation: essentially, we walk down the real time
line and, at every pointt, we focus on a polynomial length interval starting fromt.

Parallel Composition Using a standard hybrid argument, we show that the relation≤F
p,q,ε (cf. Definition 5.1) is

preserved under polynomial parallel composition, with some appropriate adjustment to the environment complexity
bound and to the error in acceptance probability.

Theorem 7.1. Let b ∈ N be given and, for each1 ≤ i ≤ b, letA1
i andA2

i be comparable task-PIOAs and letFi be a
set of tasks ofA2

i . Let F̂ denote
⋃b

i=1 Fi. Suppose there exists a non-decreasing functionr : N→ N such that, for all
i, bothA1

i andA2
i arer(i)-bounded. Suppose further thatAα1

1 , . . . ,Aαb

b are pairwise compatible for any combination
of αi ∈ {1, 2}.

Letp, p′, q ∈ N andε, ε′ ∈ R≥0 be given, and assume the following.
(1) p = ccomp · (b · r(b) + p′), whereccomp is the constant factor for composing task-PIOAs in parallel.
(2) ε′ = b · ε.
(3) For all i,A1

i ≤Fi
p,q,ε A2

i .

2In our model, it is not meaningful to exceed an exponential number of components, because the length of the description of each component is
polynomially bounded.

14

Then we have‖bi=1A1
i ≤F̂

p′,q,ε′ ‖bi=1A2
i .

Proof. Let t ∈ R≥0 be given. LetEnv = Env′‖Clock be ap′-bounded environment and letτ0 be a valid timed task
schedule for‖bi=1A1

i ‖Env for the interval[0, t + q].
For each0 ≤ i ≤ b, let Hi denoteA2

1‖ . . . ‖A2
i ‖A1

i+1‖ . . . ‖A1
b . In particular,H0 = ‖bi=1A1

i andHb = ‖bi=1A2
i .

Similarly, let
Envi := A2

1‖ . . . ‖A2
i−1‖A1

i+1‖ . . . ‖A1
b‖Env

for each1 ≤ i ≤ b. Note that everyEnvi is p-bounded and is an environment forA1
i andA2

i . In fact, we have
Hi−1‖Env = A1

i ‖Envi andHi‖Env = A2
i ‖Envi.

SinceA1
1 ≤F1

p,q,ε A2
1 andτ0 is a valid schedule forA1

1‖Env1, we may choose a valid scheduleτ1 for A2
1‖Env1 for

the interval[0, t + q] such that

(i) Pacc(A1
1‖Env1, trunc≥t(τ0)) = Pacc(A2

1‖Env1, trunc≥t(τ1));

(ii) lstateEnv1(A1
1‖Env1, trunc≥t(τ0)) = lstateEnv1(A2

1‖Env1, trunc≥t(τ1));

(iii) projEnv1(τ0) = projEnv1(τ1);

(iv) τ1 does not contain any pairs of the form〈Ti, ti〉 whereTi ∈ F1 andti ≥ t;

(v) |Pacc(A1
1‖Env1, τ0)−Pacc(A2

1‖Env1, τ1)| ≤ ε.

Repeating this argument, we choose valid schedulesτ2, . . . , τb for H2‖Env, . . ., Hb‖Env, respectively, all satisfy-
ing the appropriate five conditions. By Condition (i), we have

Pacc(H0‖Env, trunc≥t(τ0)) = Pacc(H1‖Env, trunc≥t(τ1)) = . . . = Pacc(Hb‖Env, trunc≥t(τb)).

Also, sinceEnv is part of everyEnvi, Condition (ii) guarantees that

lstateEnv(H0‖Env, trunc≥t(τ0)) = lstateEnv(Hb‖Env, trunc≥t(τb)).

Similarly, Condition (iii) guarantees thatprojEnv(τ0) = projEnv(τb).
Using both Conditions (iii) and (iv), we can infer thatτb does not contain any pairs of the form〈Ti, ti〉 where

Ti ∈ F̂ =
⋃b

i=1 Fi andti ≥ t. Finally,

|Pacc(‖bi=1A1
i ‖Env, τ0)−Pacc(‖bi=1A2

i ‖Env, τb)|
≤ |Pacc(H0‖Env, τ0)−Pacc(H1‖Env, τ1)|+ . . .

+ |Pacc(Hi‖Env, τi)−Pacc(Hi+1‖Env, τi+1)|+ . . .

+ |Pacc(Hb−1‖Env, τb−1)−Pacc(Hb‖Env, τb)|
≤ b · ε = ε′.

Using Theorem 7.1, it is not hard to prove that≤F̄
neg,pt is preserved under polynomial composition.

Theorem 7.2 (Parallel Composition Theorem for≤F̄
neg,pt). Let two sequences of task-PIOA familiesĀ1

1, Ā1
2, . . . and

Ā2
1, Ā2

2, . . . be given, withĀ1
i comparable toĀ2

i for all i. Assume that̄Aα1
1 , Āα2

2 , . . . are pairwise compatible for any
combination ofαi ∈ {1, 2}. For eachi, let F̄i be a family of sets such that(F̄i)k is a set of tasks of(Ā2

i)k for everyk.
Suppose there exist polynomialsr, s : N → N such that, for alli, k, both (Ā1

i)k and (Ā2
i)k are bounded by

s(k) · r(i). Assume thatr is non-decreasing and

∀p, q ∃ε ∀i Ā1
i ≤F̄i

p,q,ε Ā2
i , (1)

wherep, q are polynomials andε is a negligible function. (This is a strengthening of the statement∀i Ā1
i ≤

F̄i
neg,pt Ā2

i .)

Let b be any polynomial. For eachk, let (Â1)k denote(Ā1
1)k‖ . . . ‖(Ā1

b(k))k. Similarly for (Â2)k. Also, let(F̂)k

denote
⋃b(k)

i=1 (F̄i)k. Then we havêA1 ≤F̂
neg,pt Â2.

15

Proof. By the definition of≤F̂
neg,pt, we need to prove the following:∀p′, q ∃ε′ Â1 ≤F̂

p′,q,ε′ Â2, wherep′, q are poly-
nomials andε′ is a negligible function. Let polynomialsp′ andq be given and definep := ccomp · (b · (r ◦ b) + p′),
whereccomp is the constant factor for composing task-PIOAs in parallel. Now chooseε usingp, q, and Assumption (1).
Defineε′ := b · ε.

Let k ∈ N be given. We need to prove(Â1)k ≤(F̂)k

p′(k),q(k),ε′(k) (Â2)k. That is,

(Ā1
1)k‖ . . . ‖(Ā1

b(k))k ≤
Sb(k)

i=1 (F̄i)k

p′(k),q(k),ε′(k) (Ā2
1)k‖ . . . ‖(Ā2

b(k))k.

For everyi, we know that(Ā1
i)k and (Ā2

i)k are bounded by(s(k) · r)(i). Also, by the choice ofε, we have

(Ā1
i)k ≤(F̄i)k

p(k),q(k),ε(k) (Ā2
i)k for all i. Therefore, we may apply Theorem 7.1 to conclude that(Â1)k ≤

Sb(k)
i=1 (F̄i)k

p′(k),q(k),ε′(k)

(Â2)k. This completes the proof.

Sequential Composition We now treat the more interesting case, namely, exponential sequential composition. The
first challenge is to formalize the notion of sequentiality. On a syntactic level, all components in the collection are
combined using the parallel composition operator. To capture the idea of successive invocation, we introduce some
auxiliary notions. Intuitively, we distinguish betweenactiveanddormantentities. Active entities may perform actions
and store information in memory. Dormant entities have no available memory and do not enable locally controlled
actions.3 In Definition 7.3, we formalize the idea that an entityAmay be invoked and terminated by some other entity
B. Then we introduce sequentiality in Definition 7.5.

Definition 7.3. LetA andB be pairwise compatible task-PIOAs and let realst1 ≤ t2 be given. We say thatA is
restricted to the interval[t1, t2] byB if:
• for anyt < t1, environmentEnv for A‖B of the formEnv′‖Clock, valid scheduleτ for A‖B‖Env for [0, t], and

states reachable underτ , no locally controlled actions ofA are enabled ins, ands.v = ⊥ for every variable
v ofA.
• the same for allt > t2.

Lemma 7.4 below states the intuitive fact that no environment can distinguish two entities during an interval in
which both entities are dormant.

Lemma 7.4. SupposeA1 andA2 are comparable task-PIOAs that are both restricted to the interval[t1, t2] byB. Let
Env be an environment for bothA1‖B andA2‖B and of the formEnv′‖Clock. Let t ∈ R≥0 and q ∈ N be given.
Suppose we have valid scheduleτ1 for A1‖B‖Env for the interval[0, t + q] and valid scheduleτ2 for A2‖B‖Env for
the interval[0, t + q], satisfying:

• Pacc(A1‖B‖Env, trunc≥t(τ1)) = Pacc(A2‖B‖Env, trunc≥t(τ2));

• lstateB‖Env(A1‖B‖Env, trunc≥t(τ1)) = lstateB‖Env(A2‖B‖Env, trunc≥t(τ2));

• projB‖Env(τ1) = projB‖Env(τ2).

Assume further that eithert2 < t or t1 > t + q. ThenPacc(A1‖B‖Env, τ1) = Pacc(A2‖B‖Env, τ2)).

Proof. First we consider the caset2 < t. SinceA1 andA2 are restricted byB to the interval[t1, t2], neither of them
enables any output actions during the interval[t, t + q]. By assumption,τ1 andτ2 agree on the tasks ofB‖Env and the
state distributions ofB‖Env just before timet are identical in the two experiments. Therefore, the probability thatEnv
outputsacc during [t, t + q] must be identical in the two experiments. We also have the assumption thatEnv outputs
acc with the same probability during[0, t), therefore the acceptance probabilities are the same for the entire interval
[0, t].

Similarly, if t1 > t + q, then neitherA1 norA2 enables any output actions during the interval[t, t + q]. Then we
follow the same argument as above.

Definition 7.5 (Sequentiality). Let B,A1,A2, . . . be pairwise compatible task-PIOAs. We say thatA1,A2, . . . are
sequential underB if there exist reals0 ≤ t1 < t2 < . . . such that: for alli,Ai is restricted to[ti, ti+1] byB.

3For technical reasons, dormant entities must synchronize on input actions. Some inputs cause dormant entities to become active, while all
others are trivial loops on the null state.

16

Note that eachAi may overlap withAi+1 at the boundary timeti+1. Now we are ready to state the sequential
composition theorems.

Theorem 7.6. LetA1
1,A1

2, . . . andA2
1,A2

2, . . . be two sequences of task-PIOAs such thatA1
i andA2

i are comparable
for everyi. Assume thatAα1

1 ,Aα2
2 , . . . are pairwise compatible for any combination ofαi ∈ {1, 2}. Also, letL, p̂ ∈ N

be given and letB be a task-PIOA such that bothB‖(‖Li=1A1
i) andB‖(‖Li=1A2

i) are p̂-bounded. Assume that both
A1

1, . . . ,A1
L andA2

1, . . . ,A2
L are sequential underB for the same sequence of realst1 < . . . < tL+1.

Let p, q ∈ N and ε ∈ R≥0 be given. Suppose there are sets of tasksFi, 1 ≤ i ≤ L, such thatA1
i ≤Fi

p,q,ε A2
i

for all i. Let F̂ denote
⋃L

i=1 Fi. Let b denote the largest number such thatb consecutiveti’s fall into a single
closed interval of lengthq. (Suchb must exist and is between1 and L). Let p′ ∈ N and ε′ ∈ R≥0 be given, with
ε′ ≥ (b + 2) · ε andp ≥ ccomp · (p̂ + p′) (whereccomp is the constant factor for parallel composition). Then we have

B‖(‖Li=1A1
i) ≤F̂

p′,q,ε′ B‖(‖Li=1A2
i).

In the statement of Theorem 7.6, the error in acceptance probability increases by a factor ofb + 2, whereb is the
largest number of components that may be active in a closed time interval of lengthq. For example, if the life time of
each component isq3 , thenb is 5.4 This is the key difference between parallel composition and sequential composition:
for the former, error increases with the total number of components (namely,L), and hence no more than a polynomial
number of components can be tolerated. In the sequential case,L may be exponential, as long asb remains small.
The proof of Theorem 7.6 involves a standard hybrid argument for active components, while dormant components are
replaced without affecting the difference in acceptance probabilities.

Proof of Theorem 7.6.Let t ∈ R≥0 be given. LetEnv = Env′‖Clock be ap′-bounded environment and letτ0 be a
valid timed task schedule forB‖(‖Li=1A1

i)‖Env for the interval[0, t + q]. We need to findτL for B‖(‖Li=1A2
i)‖Env

such that

(i) Pacc(‖Li=1A1
i ‖B‖Env, trunc≥t(τ0)) = Pacc(‖Li=1A2

i ‖B‖Env, trunc≥t(τL));

(ii) lstateEnv(‖Li=1A1
i ‖B‖Env, trunc≥t(τ0)) = lstateEnv(‖Li=1A2

i ‖B‖Env, trunc≥t(τL));

(iii) projEnv(τ0) = projEnv(τL);

(iv) τL does not contain any pairs of the form〈Ti, ti〉 whereTi ∈ F̂ andti ≥ t;

(v) |Pacc(‖Li=1A1
i ‖B‖Env, τ0)−Pacc(‖Li=1A2

i ‖B‖Env, τL)| ≤ ε′.

Without loss of generality, assume there is an indexi such that[ti, ti+1] intersects with[t, t + q]. Let l be the
smallest such index. Recall from the assumptions that at mostb consecutiveti’s fall into a closed interval of lengthq.
Therefore, we know thattl−1 < t andtl+b > t + q.

The rest of the proof proceeds as in the proof of Theorem 7.1. Namely, we define

Envi := A2
1‖ . . . ‖A2

i−1‖A1
i+1‖ . . . ‖A1

b‖B‖Env

for each1 ≤ i ≤ L. Note thatEnvi is p-bounded, therefore we may chooseτi+1 using τi and the assumption
thatA1

i ≤Fi
p,q,ε A2

i . SinceEnv is part ofEnvi for every i, Conditions (i) through (iii) are clearly satisfied at every
replacement step. Condition (iv) is satisfied because the following hold at every stepi.

• The new task scheduleτi+1 does not contain tasks fromFi+1.

• Condition (iii) guarantees thatτi+1 does not contain tasks from
⋃i

j=1 Fj .

Finally, we consider Condition (v). There are two cases. Ifi < l − 1 or i ≥ l + b, then we can apply
Lemma 7.4 to conclude thatPacc(A1

i ‖Envi, τi) in fact equalsPacc(A2
i ‖Envi, τi+1). Otherwise,Pacc(A1

i ‖Envi, τi)
andPacc(A2

i ‖Envi, τi+1) differ by at mostε. Summing over all indicesi, we have|Pacc(‖Li=1A1
i ‖B‖Env, τ0) −

Pacc(‖Li=1A2
i ‖B‖Env, τL)|

≤ (b + 2) · ε = ε′.

Using Theorem 7.6, it is straightforward to prove the sequential composition theorem for≤F̄
neg,pt.

4Recall that two components may be active simultaneously at the boundary time.

17

Theorem 7.7 (Sequential Composition Theorem for≤F̄
neg,pt). Let two sequences of task-PIOA familiesĀ1

1, Ā1
2, . . .

andĀ2
1, Ā2

2, . . . be given, withĀ1
i comparable toĀ2

i for all i. Assume that̄Aα1
1 , Āα2

2 , . . . are pairwise compatible for
any combination ofαi ∈ {1, 2}. For eachi, let F̄i be a family of sets such that(F̄i)k is a set of tasks of(Ā2

i)k for
everyk. LetL : N→ N be an exponential function and, for eachk, let (Â1)k denote(Ā1

1)k‖ . . . ‖(Ā1
L(k))k. Similarly

for (Â2)k. Also, let(F̂)k denote
⋃L(k)

i=1 (F̄i)k.
Let p̂ be a polynomial and let̄B be a task-PIOA family such that both̄B‖Â1 and B̄‖Â2 are p̂-bounded. Sup-

pose there exist a sequence of positive realst1 < t2 < . . . such that, for eachk, both (Ā1
1)k, . . . , (Ā1

L(k))k and

(Ā2
1)k, . . . , (Ā2

L(k))k are sequential underBk for the sequencet1 < . . . < tL(k)+1. Assume there is a constant real
numberc such that consecutiveti’s are at leastc apart.

Suppose that, for every pair of polynomials〈p, q〉, there exists negligible functionε such thatĀ1
i ≤F̄i

p,q,ε Ā2
i for all

i. Then we havēB‖Â1 ≤F̂
neg,pt B̄‖Â2.

Proof. Let polynomialsp′, q be given and definep := ccomp ·(p̂+p′), whereccomp is the constant factor for composing
task-PIOAs in parallel. Chooseε from p, q according to the assumption of the theorem. For eachk, let b(k) be the
ceiling of q(k)

c + 1. (The choice ofb(k) ensures that at mostb(k) consecutiveti’s fall within any interval of length at
mostq(k). This is necessary in order to apply Theorem 7.6.) Sincec is constant,b is a polynomial. Defineε′ := b · ε.

For everyk ∈ N, we apply Theorem 7.6 to conclude that

B̄k‖(Ā1
1)k‖ . . . ‖(Ā1

L(k))k ≤(F̂)k

p′(k),q(k),ε′(k) B̄k‖(Ā2
1)k‖ . . . ‖(Ā2

L(k))k.

That is,(B̄‖Â1)k ≤(F̂)k

p′(k),q(k),ε′(k) (B̄‖Â2)k. This completes the proof.

8 Application: Digital Timestamping

In this section, we present a formal model of the digital timestamping protocol of Haber et al. (cf. Section 1). Recall the
real and ideal signature services from Section 6. The timestamping protocol consists of a dispatcher component and
a collection of real signature services. Similarly, the ideal protocol consists of the same dispatcher with a collection
of ideal signature services. Using the sequential composition theorem (Theorem 7.7), we prove that the real protocol
implements the ideal protocol with respect to the long-term implementation relation≤F̄

neg,pt.
Let SID , the domain of service names, beN. In addition toalive andaliveTimes (cf. Section 4), we assume the

following.
• pref : T→ SID . For everyt ∈ T, the servicepref(t) is the designated signer for timet, i.e., any signing request

sent by the dispatcher at timet goes to servicepref(t).
• usable : T → 2SID . For everyt ∈ T, usable(t) specifies the set of services that are accepting new verification

requests.
Assume, for everyt ∈ T, pref(t) ∈ usable(t) ⊆ alive(t). If a service is preferred, it accepts both signing and

verification requests. If it is alive but not usable, no new verification requests are accepted, but those already submitted
will still be processed.

Dispatcher We defineDispatcherk for each security parameterk. If the environment sends a first-time certificate re-
questreqCert(rid , x), Dispatcherk requests a signature from servicej = pref(t) via the actionreqSign(rid , 〈x, t,⊥〉)j ,
wheret is the clock reading at the time ofreqSign. In this communication, we instantiate the message spaceMk as
Xk ×Tk × (Σk)⊥, whereXk is the domain of documents to which timestamps are associated. After servicej returns
with actionrespSign(rid , σ)j , Dispatcherk issues a new certificate viarespCert(rid , σ, j).

If a renew requestreqCert(rid , x, t, σ1, σ2, j) comes in,Dispatcherk first checks to see ifj is still usable. If not,
it responds withrespCert(rid , false). Otherwise, it sendsreqVer(rid , 〈x, t, σ1〉, σ2)j to servicej. If servicej answers
affirmatively,Dispatcherj sends a signature requestreqSign(rid , 〈x, t, σ2〉)j′ , wherej′ is the current preferred service.
When servicej′ returns with actionrespSignj′(rid , σ3), Dispatcherk issues a new certificate viarespCert(rid , σ3, j

′).
The code forDispatcher appears in The task-PIOA code for the componentDispatcher appears in Figure 6. As a

convention, we useσ1, σ2 andσ3 to denote previous, current, and new signatures, respectively.

18

Concrete Time Scheme Let d be a positive natural number. Each servicej is alive from time(j−1) ·d to (j +2) ·d.
Thus, at any given point in time, there can be at most three services that are concurrently alive. Moreover, servicej is
preferred for signing from time(j− 1) · d to j · d, and is usable from time(j− 1) · d to (j +1) · d. Between(j +1) · d
and(j + 2) · d, servicesj continues to process requests already submitted, without receiving new requests.

Protocol Correctness For every security parameterk, letSIDk ⊆ SID denote the set ofp(k)-bit numbers, for some
polynomialp. Recall from Section 6 thatRealSig(j)k = hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj)
andIdealSig(j)k = hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj). Here we define

RealSigSysk := Dispatcherk‖(‖j∈SIDk
RealSig(j)k) and IdealSigSysk := Dispatcherk‖(‖j∈SIDk

IdealSig(j)k).

Next, defineRealSigSys := {RealSigSysk}k∈N andIdealSigSys := {IdealSigSysk}k∈N. Our goal is to show that

RealSigSys ≤F̄
neg,pt IdealSigSys,

whereF̄k :=
⋃

j∈SIDk
{{failj}} for everyk (Theorem 8.4).

First we make a key observation.

Lemma 8.1. Suppose we havek ∈ N, j ∈ SIDk, andB compatible withRealSig(j)k. ThenRealSig(j)k is restricted
to [(j − 1) · d, (j + 2) · d] byB. Similarly for IdealSig(j)k.

Proof. Suppose we havet < (j − 1) · d, environmentEnv for RealSig(j)k‖B of the formEnv′‖Clock, valid schedule
τ for RealSig(j)k‖B‖Env for [0, t], and states reachable underτ . Recall from Section 3 that, for everyt′ ∈ T, the
actiontick(t′) must take place at timet′. Therefore,τ does not trigger atick(t′) action witht′ ∈ [(j−1) ·d, (j+2) ·d].
On the other hand, all variables ofRealSig(j)k remains⊥ unless such atick(t′) action takes place, so we can conclude
thats.v = ⊥ for every variablev of RealSig(j)k.

For t > (j + 2) · d, we know thatτ must have triggered the actiontick((j + 2) · d), which sets all variables of
RealSig(j)k to⊥. Moreover, every subsequenttick(t′) hast′ > t, therefore the variables remain⊥.

Finally, by inspection of the code forRealSig(j)k, we know that no locally controlled actions are enabled if all
variables are⊥.

The proof forIdealSig(j)k is similar.

For eachi ∈ {0, 1, 2}, defineReali,k to be the parallel composition of allRealSig(j)k with (j − 1) mod 3 = i.
Let Reali be{Reali,k}k∈N. By Lemma 8.1, we know thatRealSig(i)k,RealSig(i + 3)k, . . . are sequential underB for
anyB. Thus, we have partitioned the collection of real signature services into three classes,Real0, Real1, andReal2,
such that the services within eachReali are sequential. For instance, the first class consists of services0, 3, . . ., which
are alive in intervals[0, 3d], [3d, 6d], . . . respectively.

DefineIdeali,k andIdeali similarly. We make the following observations.

Lemma 8.2. The following families are polynomially bounded.
1. Dispatcher‖Real0‖Real1‖Real2.
2. Dispatcher‖Ideal0‖Real1‖Real2.
3. Dispatcher‖Ideal0‖Ideal1‖Real2.
4. Dispatcher‖Ideal0‖Ideal1‖Ideal2.

Lemma 8.3. The following hold for everyk.
1. RealSig(1)k,RealSig(4)k, . . . in Real0 and IdealSig(1)k, IdealSig(4)k, . . . in Ideal0 are sequential under the

automatonDispatcher‖Real1‖Real2 for the sequence0 < 3d < 6d < . . .
2. RealSig(2)k,RealSig(5)k, . . . in Real1 and IdealSig(j)k, IdealSig(5)k, . . . in Ideal1 are sequential under the

automatonDispatcher‖Ideal0‖Real2 for the sequenced < 4d < . . .
3. RealSig(3)k,RealSig(6)k, . . . in Real2 and IdealSig(3)k, IdealSig(6)k, . . . in Ideal2 are sequential under the

automatonDispatcher‖Ideal0‖Ideal2 for the sequence2d < 5d < . . .

Proof. Follows directly from Lemma 8.1.

Since each ideal servicej has the same lifetime as the real servicej, we can apply Theorem 7.7 to replaceReali
with Ideali. This is the core step in the proof of the following correctness theorem.

19

Theorem 8.4. Assume the concrete time scheme described above and that every signature scheme used in the times-
tamping protocol is complete and existentially unforgeable. By Theorem 6.2, this impliesRealSig(j) ≤{failj}neg,pt IdealSig(j)
for everyj ∈ SID . Assume further that, for every pair of polynomials〈p, q〉, there exists a negligible functionε

such thatRealSig(j) ≤{failj}p,q,ε IdealSig(j) for everyj ∈ SID . ThenRealSigSys ≤F̄
neg,pt IdealSigSys, whereF̄k :=⋃

j∈SIDk
{{failj}} for everyk.

Proof. We apply Theorem 7.7 three times:
1. InstantiateB̄ with Dispatcher‖Real1‖Real2 andA with Real0.
2. InstantiateB̄ with Dispatcher‖Ideal0‖Real2 andA with Real1, and
3. InstantiateB̄ with Dispatcher‖Ideal0‖Ideal1 andA with Real2.

Step 1: It is easy to see that for each andj ∈ SID, RealSigj ∈ Real0 is comparable toIdealSigj ∈ Ideal0. Observe
also that compatibility conditions are also satisfied. The number of components inReal0,k is bounded by the cardinality
of the setSIDk. SinceSIDk is the set ofp(k)-bit numbers for some polynomialp, the size ofSIDk is bounded by
some exponential ink. We use this exponential for theL bound in Theorem 7.7. By Lemma 8.2 Parts 1 and 2, we
know that conditions on the complexity bounds are met. By Lemma 8.3 Part 1, we exhibit the needed sequence of
positive reals for sequentiality. By Theorem 6.2, we have for every pair polynomialsp andq, there exists a negligible
function such thatRealSigj ≤

{{failj}}
p,q,ε IdealSigj .

By the result of Step 1, we get(Dispatcher‖Real0‖Real1‖Real2) ≤F̄0
neg,pt (Dispatcher‖Ideal0‖Real1‖Real2), where

(F̄0)k = {{fail0}, {fail3}, . . .} for everyk.
Step 2: Similar to Step 1, using Part 2 and 3 of Lemma 8.2 and Part 2 of Lemma 8.3. By the result of step 2, we
getDispatcher‖Ideal0‖Real1‖Real2 implementsDispatcher‖Ideal0‖Ideal1‖Real2, where, for everyk, (F̄1)k is the set
{{fail0}, {fail1}, {fail3}, {fail4}, . . .}.
Step 3: Similar to Step 2, using Part 3 and 4 of Lemma 8.2 and Part 3 of Lemma 8.3. By the result of step 3, we
getDispatcher‖Ideal0‖Ideal1‖Real2 implementsDispatcher‖Ideal0‖Ideal1‖Ideal2, where, for everyk, (F̄)k is the set
{{fail0}, {fail1}, {fail2}, . . .}.

Finally, we combine these three using transitivity (Lemma 5.3).

9 Conclusion

We augment the Task-PIOA model with real time information on task schedules. This allows us to express compu-
tational restrictions in terms of processing rates with respect to real time. As demonstrated by the Turing machine
simulation of Section 4, this new complexity model is similar to the standard PSPACE model.

The long-term implementation relation≤neg,pt is largely inspired by the timestamping service example of Sec-
tion 8. We capture the idea that, while an unbounded environment will eventually succeed in guessing a secret key, we
could control the rate at which these successes occur. By virtue of the sequential composition theorem, it is sufficient
to analyze each signature service in isolation, checking that the adversary cannot break the service too quickly.

In the future, we plan to study general security definitions based on long-term implementation, and to conduct
formal analysis of practical long-lived protocols. In addition, we plan to generalize our framework to allow the
computational power of the various system components to increase with time.

References

[1] D. Bayer, S. Haber, and S. W. Stornetta. Improving the efficiency and reliability of digital time-stamping. In
R. M. Capocalli, A. De Santis, , and U. Vaccaro, editors,Sequences II: Methods in Communication, Security, and
Computer Science, pages 329–334. Springer-Verlag, 1993. (Proceedings of the Sequences Workshop, 1991).

[2] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Moni Naor,
editor,Proceedings of the 42nd Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE
Computer Society, 2001. Full version available onhttp://eprint.iacr.org/2000/067 .

[3] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala.
Analyzing security protocols using time-bounded Task-PIOAs.Discrete Event Dynamic Systems, 18(1), 2008.
49 p., to appear. (Full version available onhttp://eprint.iacr.org/2005/452).

20

[4] S. Haber. Long-lived digital integrity using short-lived hash functions. Technical report, HP Laboratories, May
2006.

[5] S. Haber and P. Kamat. A content integrity service for long-term digital archives. InProceedings of the IS&T
Archiving Conference, 2006. Also published as Technical Memo HPL-2006-54, Trusted Systems Laboratory,
HP Laboratories, Princeton.

[6] R. Küsters. Simulation-Based Security with Inexhaustible Interactive Turing Machines. InProceedings of the
19th IEEE Computer Security Foundations Workshop (CSFW-19 2006), pages 309–320. IEEE Computer Society,
2006.

[7] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol
analysis. InProceedings of ACM CCS-5, 1998.

[8] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.CWI Quarterly, 2(3):219–246, September
1989.

[9] M. Merritt, F. Modugno, and M.R. Tuttle. Time constrained automata. InProceedings of CONCUR 1991, volume
527 ofLNCS, pages 408–423, 1991.

[10] J. Müller-Quade and D. Unruh. Long-term security and universal composability. InTheory of Cryptography,
Proceedings of TCC 2007, volume 4392 ofLNCS, pages 41–60. Springer-Verlag, March 2007. Preprint on IACR
ePrint 2006/422.

[11] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message
transmission. InIEEE Symposium on Security and Privacy, pages 184–200, Oakland, CA, May 2001. IEEE
Computer Society.

21

Dispatcher(k : N)
Signature

Input:
tick(t : Tk)
reqCert(rid : RIDk, x : Xk)
reqCert(rid : RIDk, x : Xk, t : Tk,

σ1 : (Σk)⊥, σ2 : Σk, j : SID)
reqCheck(rid : RIDk, x : Xk, t : Tk,

σ1 : (Σk)⊥, σ2 : Σk, j : SID)
respSign(rid : RIDk, σ : Σk)j , j ∈ SID
respVer(rid : RIDk, b : Bool)j , j ∈ SID

Output:
reqSign(rid : RIDk, m : Mk)j , j ∈ SID
reqVer(rid : RIDk, m : Mk, σ : Σk)j , j ∈ SID
respCert(rid : RIDk, σ : Σk, j : SID)
respCert(rid : RIDk, false)
respCheck(rid : RIDk, b : Bool)

Internal:
denyVer(rid : RIDk, op : {′cert′,′ check′},

m : Mk, σ : Σk, j : SID)

Tasks

reqSign = {reqSign(∗, ∗)∗}
reqVer = {reqVer(∗, ∗, ∗)∗}
respCert = {respCert(∗, ∗, ∗)} ∪ {respCert(∗, false)}
respCheck = {respCheck(∗, ∗)}
denyVer = {denyVer(∗, ∗, ∗, ∗, ∗)}

States

clock : Tk, init 0
toSign : que(RIDk ×M), init empty
toVer : que(RIDk × {′cert′,′ check′}
×M × Σ× SID), init empty
pendingVer , pendingSign : Bool , init false
certified : que((RIDk × Σ× SID)
∪(RIDk × {false})), init empty
checked : que(RIDk × Bool), init empty
currCt : N, init 0

Transitions
tick(t)
Effect:

clock := t

reqCert(rid , x)
Effect:

if currCt < b then
toSign := enq(toSign, 〈rid , 〈x, clock ,⊥〉〉)
currCt := currCt + 1

reqCert(rid , x, t, σ1, σ2, j)
Effect:

if currCt < b then
toVer := enq(toVer , 〈rid ,′ cert′, 〈x, t, σ1〉, σ2, j〉)
currCt := currCt + 1

reqCheck(rid , x, t, σ1, σ2, j)
Effect:

if currCt < b then
toVer := enq(toVer , 〈rid ,′ check′, 〈x, t, σ1〉, σ2, j〉)
currCt := currCt + 1

reqSign(rid , m)j

Precondition:
head(toSign) = 〈rid , m〉
j = pref(clock)
¬pendingSign

Effect:
pendingSign := true

respSign(rid , σ3)j

Effect:
if pendingSign ∧ (∃m)(head(toSign) = 〈rid , m, j〉) then

choosem wherehead(toSign) = 〈rid , m, j〉
toSign := deq(toSign)
pendingSign := false
choosex, t where(∃σ2)(m = 〈x, t, σ2〉)
certified := enq(certified , 〈rid , σ3, j〉)

denyVer(rid , op, m, σ2, j)
Precondition:

head(toVer) = 〈rid , op, m, σ2, j〉
j /∈ usable(clock)

Effect:
toVer := deq(toVer)
if op =′ cert′ then

certified := enq(certified , 〈rid , false〉)
elsechecked := enq(checked , 〈rid , false〉)

reqVer(rid , m, σ2)j

Precondition:
(∃op)(head(toVer) = 〈rid , op, m, σ2, j〉
j ∈ usable(clock)
¬pendingV er

Effect:
pendingVer := true

respVer(rid , b)j

Effect:
if pendingVer
∧(∃op, m, σ2)(head(toVer) = 〈rid , op, m, σ2, j〉) then
chooseop, m, σ2 wherehead(toVer) = 〈rid , op, m, σ2, j〉
toVer := deq(toVer)
pendingVer := false
if op =′ cert′ ∧ ¬b then

certified := enq(certified , 〈rid , false〉)
if op =′ cert′ ∧ b then

choosex, t where(∃σ1)(m = 〈x, t, σ1〉)
toSign := enq(toSign, 〈rid , 〈x, t, σ2〉〉)

if op =′ check′ then
checked := enq(checked , 〈rid , b〉)

respCert(rid , false)
Precondition:

head(certified) = 〈rid , false〉
Effect:

certified := deq(certified)
currCt := currCt − 1

respCert(rid , σ3, j)
Precondition:

head(certified) = 〈rid , σ3, j〉
Effect:

certified := deq(certified)
currCt := currCt − 1

respCheck(rid , b)
Precondition:

head(checked) = 〈rid , b〉
Effect:

checked := deq(checked)
currCt := currCt − 1

Figure 6: Task-PIOA Code forDispatcher(k : N)

22

