Modeling Bounded Computation in Long-Lived Systems

Ran Canetti Ling Cheung Dilsun Kaynar
IBM Research Massachusetts Institute of Technology Carnegie Mellon University

Nancy Lynch Olivier Pereira
Massachusetts Institute of Technology Universi€ catholique de Louvain

February 28, 2008

Abstract

For many cryptographic protocols, security relies on the assumption that adversarial entities have limited com-
putational power. This type of security degrades progressively over the lifetime of the protocol. However, some
cryptographic services (e.g., time-stamping services or digital archives) are long-lived in nature; they are expected to
be secure and operational for a very long time (i.e., super-polynomial). In such cases, security cannot be guaranteed
in the traditional sense: even information theoretically secure protocols would fail if the attacker has sufficient run
time to mount a brute-force attack.

This work proposes a new paradigm for the analysis of long-lived security protocols. We allow entities to be active
for a potentially unbounded amount of real time, provided they perform only a polynomial amount of work per unit
real time. Moreover, the space used by these entities is allocated dynamically and must be polynomially bounded.
We propose a key notion of long-term implementation, which is an adaptation of computational indistinguishability
to the long-lived setting. We show that long-term implementation is preserved under polynomial parallel composi-
tion and exponential sequential composition. To illustrate the use of this new paradigm, we analyze the long-lived
timestamping protocol of Haber and Kamat.

1 Introduction

Nearly all the systems defined and analyzed in cryptographic protocol researshoardived In these systems,
protocol parties can execute only a bounded number of steps, after which the protocol concludes. Depending on the
particular model, adversarial entities may perform certain pre- and/or post-computations. While the adversary may be
unbounded in these additional phases, it must be bounded during protocol execution. Itis typical that security degrades
substantially (namely, polynomially) in the length of protocol execution.

In this paper, we turn our attention to the securityafg-lived cryptographic services. In a long-lived system,
protocol parties may be active for an unbounded amount of real time, subject to the condition that only a polynomial
amount of work can be done per unit real time. Here the adversary’s interaction with the system becomes unbounded,
and the adversary may perform an unbounded number of computation steps during protocol execution. This renders
traditional security notions insufficient: even information theoretically secure protocols would fail if the adversary has
unbounded run time.

Despite the seeming impossibility to defeat a long-lived adversary, there exist long-lived protocols that aim to
provide some meaningful form of security [1, 5]. Thus, we set out to formulate a new notion of security that captures
the intuitions behind such protocols.

As it turns out, the modeling of long-lived systems requires some non-trivial departures from standard crypto-
graphic modeling. First and foremost, unbounded entities cannot be modgleababilistic polynomial time (PPT)

Turing machines. In search of a suitable alternative, we see the need to distinguish between two types of unbounded
computation: steps performed steadily over a long period of time, versus those performed rapidly in a short amount of
time. The former conforms with our understanding of boundedness, while the latter clearly does not. Guided by this
intuition, we introduce real time explicitly in the Task-PIOA model [3] and impose computational restrictions in terms

of rates i.e., number of computation steps per unit real time.

Another interesting challenge is the restriction on space, which traditionally is a non-issue because PPT Turing
machines can only access a polynomially bounded amount of space. In the long-lived setting, space restriction warrants

new considerations. For instance, we would like to model dynamic allocation of space, as new entities are invoked
and old entities die off. This is achieved using the designation of variables. In particular, the state of every entity
is represented by a valuation of its variables, and all variables of a dormant entity (either not yet invoked or already
killed off) must be set to a special value A system is regarded as bounded only if, at any point in its execution,
only a bounded amount of space is needed to maintain all variables with. n@hdes. For example, a sequential
composition (in the temporal sense) of an unbounded number of entities is bounded if each entity uses a bounded
amount of space.

Having appropriate restrictions on space and computation rates, we define a long-term implementation relation for
long-lived systems. This extends the familiar notiorcomputational indistinguishabilitywhere two systemgéal
andideal) are deemed equivalent if their behaviors are indistinguishable from the point of view of a computationally
bounded environment. Notice that, in the long-lived setting, an environment with super-polynomial run time can
typically distinguish the two systems trivially, e.g., by launching brute force attacks. This holds even if the environment
has bounded computation rate. Therefore, our definition does not rule out significant degradation of security in the
overall lifetime of a system. Instead, we require that ridie of degradation is small at any point in time; in other
words, the probability of a new successful attack remains bounded during the lifetime of the system.

To capture this intuition, we introduce a new type of ideal system; namely, we consider ideal systems with special
“failure” steps. Whenever a failure step is taken, an ideal system becomes vulnerable to attacks for a limited time.
After that, certain damage control mechanisms go into effect, and the ideal system returns to a “good” state and
continues to behave ideally. Our implementation relation requires that the real system approximates this type of self-
correcting behavior. More precisely, we quantify over all real time pdiatsd require that the real and ideal systems
are computationally indistinguishable in the interjtat + ¢] (whereg is polynomial in the security parameter), even
if no more failure steps are taken by the ideal system in that interval. Notice that we do allow failure steps before
time ¢t. This expresses the idea that, despite any security breaches that may have occurred befptbdismecess
probability of afreshattack in the intervalt, t + ¢ is small.

We show that our long-term implementation relation is transitive, and is preserved under the operations polynomial
parallel composition and exponential sequential composition. The last result highlights the power of our model: we
can formulate and prove properties of an exponential number of entities in a meaningful way.

Example: Digital Timestamping As a proof of concept, we present an analysis of the digital timestamping protocol
of Haber et al. [1, 4, 5], which was designed to address the problem of content integrity in long-term digital archives.
In a nutshell, a digital timestamping scheme takes as input a docuhaéatspecific time,, and produces a certificate
c that can be used later to verify the existence af timet,. The security requirement is that timestamp certificates
are difficult to forge. Haber et al. note that it is inadvisable to use a single digital signature scheme to generate all
timestamp certificates, even if signing keys are refreshed periodically. This is because, over time, any single signature
scheme may be weakened due to advances in algorithmic research and/or discovery of vulnerabilities. Haber et al.
propose a solution in which timestamps must be renewed periodically by generating a new certificate folthe)pair
using a new signature scheme. Thus, even if the sighature scheme used to geisdyaiken in the future, the new
certificatec’ still provides evidence that existed at the time, stated in the original certificaie

We model the protocol of Haber et al. as the composition of a dispatcher component and a sequence of signature
services. Each signature service “wakes up” at a certain time and is active for a specified amout of time before
becoming dormant again. This can be viewed as a regular update of the signature service, which may entail a simple
refresh of the signing key, or the adoption of a new signing algorithm. The dispatcher component accepts various
timestamp requests and forwards them to the appropriate signature service. We show that the composition of the
dispatcher and the signature services is indistinguishable from an ideal system, consisting of the same dispatcher
composed with ideal signature functionalities. Specifically, this guarantees that the probability of a new forgery is
small at any given point in time, regardless of any forgeries that may have happened in the past.

Related Work In the past decades, the cryptography and concurrency communities have developed rigorous frame-
works for modeling protocols, formulating security properties, and proving correctness (e.g., [7, 2, 11, 3, 6]). These
models, however, concentrate on short-lived systems where system lifetime is comparable to the computational com-
plexity of individual entities and to the level of security provided. In [10]jIMr-Quade and Unruh studgng-term
securityof cryptographic protocols. They consider adversaries that try to derive information from the protocol tran-
scriptafter protocol conclusion. This work differs from ours, in that it does not consider long-lived protocol execution.

In particular, the adversary of [10] has polynomially bounded interactions with the protocol parties.

2 Task-PIOAs

We review the basics of the task-PIOA framework [3], which has a partial-information scheduling mechanism based
on tasks. A task is a set of related actions (e.g., actions representing the same activity but with different parameters).
We view tasks as basic units of events, both for real time scheduling and for imposing computational bounds (cf.
Sections 3 and 4).

Notations Given a sefS, let Disc(S) denote the set of discrete probability measure§ oRors € S, letd(s) denote
theDirac measure o, i.e.,d(s)(s) = 1.

Let V be a set of variables. Eaehe V is associated with éstatic) typetype(v), which is the set of all possible
values ofv. We assume thaype(v) is countable and contains the special symboA valuations for V' is a function
mapping everyw € V to a value intype(v). The set of all valuations fov" is denotedval(V'). GivenV’ C V, a
valuations’ for V' is sometimes referred to aspartial valuationfor V. Observe that’ induces a (full) valuation
vy (8") for V, by assigningl to everyv ¢ V.

Finally, given any sef, we write S, := S U {L}, assumingL ¢ S.

PIOA We define grobabilistic input/output automaton (PIOAJ be a tupled = (V, S, st 1,0, H, A), where:
(i) V is a set ofstate variableandS C val(V) is a set ofstates
(i) st € Sis theinitial state;
(i) I, O andH are countable and pairwise disjoint sets of actions, referred itgpas, output and hidden actions
respectively;
(iv) ACSx (IUOUBH) x Disc(S) is atransition relation
The setdct := I U O U H is theaction alphabebf A. If I = (), then A is said to beclosed The set ofexternal
actions ofA is I U O and the set ofocally controlledactions isO U H. Any sequence of external actions is called a
trace We writes.v for the value of variable in states. An actiona is enabledin a states if (s, a, u) € A for some
. We require thad satisfies the following conditions.
e Input Enabling: For everys € S anda € I, a is enabled irs.
e Transition Determinism: For everys € S anda € Act, there is at most ong € Disc(S) with (s,a,) € A.
We write A(s, a) for suchy, if it exists.
Parallel composition for PIOAs is based on synchronization of shared actions. PAQAsd 4, are said to be
compatibleif V; NV, = Act, NH; = O; N O; = whenever # j. In that case, we define the&ompositionA, || A,
to be<V1 UVs, S1 x So, <Si1nit, Si2nit>7 (Il @] .[2) \ (Ol U 02),
01U Os, H1 U Hy, A), whereA is the set of tripleg(sy, s2), a, 1 X pe) satisfying: (i)a is enabled in some;, and
(i) for everyi, if a € Act;, then(s;,a, p;) € A;, otherwiseu; = §(s;). Itis easy to check that input enabling and
transition determinism are preserved under composition. Moreover, the definition of composition can be generalized
to any finite number of components.

Task-PIOAs To resolve nondeterminism, we make use of the notion of tasks introduced in [8, 3]. Fornadli; a
PIOAis a pair(A, R) whereA is a PIOA andR is a partition of the locally-controlled actions gf. The equivalence
classes iR are calledasks For notational simplicity, we often omR and refer to the task-PIOA. The following
axiom is assumed.

¢ Action Determinism: For every state and every tasi’, at most one action € 7' is enabled irs.
Unless otherwise stated, terminologies are inherited from the PIOA setting. For instance, if soiés enabled in
a states, thenT is said to beenabledin s.

Example 1 (Clock automaton). Figure 1 describes a simple task-PI@Aock(T), which has aick(¢) output action
for everyt in some discrete time domaih For concreteness, we assuffie= N and simply writeClock. There is a
single taskick, consisting of altick(¢) actions. These clock ticks are produced in ordertfer 1,2, In Section 3,
we will define a mechanism that ensures edck(t) occurs exactly at real time

Operations Given compatible task-PIOA4; and.A,, we define theicompositiorto be(A; || 43, R1 U R2). Note
that Ry U R is an equivalence relation because compatibility requires disjoint sets of locally controlled actions.
Moreover, it is easy to check that action determinism is preserved under composition.

Clock(T)

Signature Tasks
Input: tick = {tick(x)}
none States
Output: count € T, initially 0
tick(¢ : T),t >0
Transitions
tick(t)
Precondition:
count =t —1
Effect:
count 1=t

Figure 1: Task-PIOA Code fatlock(T)

We also define &iding operator: givend = (V,S,sMt 1.0, H,A) andS C O, hide(A, S) is the task-PIOA
givenby(V, S, s"t [O’ H', A), whereO’ = O\ S andH’' = HUS. This prevents other PIOAs from synchronizing
with A via actions inS: any PIOA with an action irb in its signature is no longer compatible with

Executions and traces A task scheduléor a closed task-PIOAA, R) is a finite or infinite sequenge= T3, T3, . ..
of tasks inR. This induces a well-defined run gf as follows.

(i) From the start state™', we apply the first task}: due to action- and transition-determinisif, specifies at

most one transition from"t; if such a transition exists, it is taken, otherwise nothing happens.

(i) Repeat with remaining’;’s.
Such a run gives rise to a unigpebabilistic executiopwhich is a probability distribution over execution paths4n
For finite 7, let Istate(.A, 7) denote the state distribution of after executing according to. A states is said to be
reachableunderr if Istate(.A, 7)(s) > 0. Moreover, the probabilistic execution induces a unitraee distribution
tdist(\4, 7), which is a probability distribution over the set of traces4f We refer to [3] for more details on these
constructions.

3 Real Time Constraints

Recall that our goal is to model entities with unbounded lifetime but bounded processing rates. A natural approach
is to introduce real time, so that computational restrictions can be stated in terms of the number of steps performed
per unit real time. However, computationally bounded entities cannot maintain real time information to arbitrary
precision. Thus, we follow a two-pronged approach: system components maintain discrete approximations of time in
their logical state, while task schedules contain real time information.

A timedtask schedule for a closed task-PIOAA, R) is a finite or infinite sequenc@?, t1), (Ts, t2), ... such
that: T; € R andt; € R for everyi, andty, 2, . . . iS non-decreasing.

Following [9], we associate lower and upper real time bounds to each tas&ndfu are, respectively, the lower
bound and upper bound for a tagkthen the amount of time between consecutive occurrencBsht least and at
mostu. To limit computational power, we impose a rate bound on the number of occurreri€asitfin an interval
1, based on the length @t A burst bound is also included for modeling flexibility. Formallyp@und magor a task-
PIOA (A, R) is a tuple(rate, burst, Ib, ub) such that: (i)ate, burst, b : R — Rx, (ii) ub : R — R, and (iii) for
allT € R, Ib(T) < ub(T'). To ensure thatate andub can be satisfied simultaneously, we requite(7') > 1/ ub(T')
whenevenate(T) # 0 andub(T") # oo. From this point on, we assume that every task-PIOA is associated with a
particular bound map.

Given a timed schedule and a taskl’, let proj-(7) denote the result of removing all pai{®;, ¢;) with T; £ T.
Let d denote a nonnegative real and Idbe an interval of the fornfD, ¢;] for somet; € R>(. We say that is valid
for the intervall (under a bound mafrate, burst, Ib, ub)) if the following hold for every task".

(i) If the pair (T, t) appears irr, thent € 1.

(i) If Ib(T) > 0, then: (a) if(T, t) is the first element ofroj,- (), thent > Ib(T); (b) for every intervall’ of length
d < Ib(T), projr(7) contains at most one elemgf, t) with ¢t € I’.

(i) If ub(T) # oo, then, for every interval’ C I of lengthd > ub(T'), proj-(7) contains at least one eleméfit, ¢)
with ¢ € I'.

(iv) For any intervall’ of lengthd, proj,(7) contains at mostate(T) - d + burst(T') elements T, ¢) with ¢ € I'.

Note that every timed schedufeprojects to an untimed schedueby removing all real time information;,
thereby inducing a trace distribution gf. The set of trace distributions induced by all valid timed schedulegifor
and (rate, burst, Ib, ub) is denotedTrDists(.A, rate, burst, Ib, ub). Since the bound map is typically fixed, we often
omit it and writeTrDists(A).

In a parallel compositiot, ||.42, the composite bound map is the union of component bound maps:

(rate1 U rateq, bUI’Stl @] bUI’StQ, |b1 @] |b2, Ub1 U Ub2>.
This is well defined since the task partition.df ||.4; is Ry U Ro.

Example 2 (Bound map forClock). We use upper and lower bounds to ensure tatk’s internal counter evolves
at the same rate as real time. Namely, welbétick) = ub(tick) = 1. The rate and burst bounds are also setto
It is not hard to see that, regardless of the system of automata with Wihiel is composed, we always obtain the
unique sequencttick, 1), (tick, 2), ... when we project a valid schedule to the tagk.

4 Complexity Bounds

Intuitively, we envision a large collection of task-PIOAs that runs for an unbounded amount of real time. While the
number of task-PIOAs in this collection is large, only a bounded number of them will be active simultaneously at
any given point in time. Each task-PIOA has bounded memory and bounded computation rates, therefore the overall
collection should also satisfy these conditions.

We propose a notion of step bounds that captures these intuitions. Roughly speaking, step bounds limit the amount
of computation involved in executing a single action, as well as the amount of space that is allocated as a result of that
action. Combining the step bound with the rate and burst bounds of Section 3, we obtain a notion of bounded space
and bounded computation rates.

Step Bound We assume some standard bit string encoding for Turing machines and for the names of variables,
actions, and tasks. We also assume that variable valuations are encoded in the obvious way, as a list of name/value
pairs. LetA be a task-PIOA with variable sét. Given states, let § denote the partial valuation obtained franby

removing all pairs of the fornfv, L). We havery ($) = s, therefore no information is lost by reducindo §. This

key observation allows us to represent a “large” valuatianith a “condensed” partial valuatioh

Letp € N be given. We say that a statés p-bounded if the encoding &fis at mostp bits long. The task-PIOA
A is said to havestep boung if the following hold.

(i) Forevery variable € V, type(v) C {0,1}7.

(i) The name of every action, task, and variable/ohas length at mogt.

(i) The initial states™" is p-bounded.

(iv) There exists a deterministic Turing machih,.pe Satisfying: for everyp-bounded state, Menapie ON iNpuUts
outputs the list of tasks enableddn

(v) There exists a probabilistic Turing machimg; satisfying: for everyp-bounded state and taskl’, Mz on input
(8, T) decides whethef is enabled irs. If so, Mz computes and outputs a new partial valuatibralong with
the uniquen € T that is enabled in. The distribution ony (§’) coincides withA(s, a).

(vi) There exists a probabilistic Turing machiné; satisfying: for everyp-bounded state and actioru, My on input
(8, a) decides whethet is an input action ofd. If so, M; computes a new partial valuatiéh The distribution
on.y (&) coincides withA(s, a).

(vii) The encoding ofM.pape iS at mostp bits long, andMe,.pe terminates after at mogtsteps on every input. The
same hold foiM/z and M.

Thus, step boung limits the size of action names, which often represent protocol messages. It also limits the
number of tasks enabled from ambounded state (Condition (iv)) and the complexity of individual transitions (Con-
ditions (v) and (vi)). Finally, Condition (vii) requires all of the Turing machines to have description bounded by
p.

Lemma 4.1 below guarantees that a task-PIOA with step beumill never reach a state in which more than
variables have not- values. The proof is a simple inductive argument.

Lemma 4.1. Let A be a task-PIOA with step bound For every valid timed task scheduteand every state
reachable under, there are at mosp variablesv such thats.v # L.

Proof. By the definition of step bounds, we hay&t is p-bounded. For a staté reachable under schedulg let s be

a state immediately precedirgin the probabilistic execution induced bY. Thuss is reachable under some prefix of
7. If the transition froms to s’ is locally controlled, we use the fact thafz always terminates after at mgssteps,
therefore every possible output, includiglg has length at mogt. This impliess’ is a partial valuation on at mogt
variables. If the transition from to s’ is an input, we follow the same argument witfy. O

Lemma 4.2 says that, when we compose task-PIOAs in parallel, the complexity of the composite is proportional
to the sum of the component complexities. The proof is similar to that of the full version of [3, Lemma 4.2]. We also
note that the hiding operator introduced in Section 2 preserves step bounds.

Lemma 4.2. Supposd.A;|1 < i < b} is a compatible set of task-PIOAs, where eahhas step boung; € N. The
composition|%_, A; has step bound.omp - Z?Zl pi, Wherec.omp is a fixed constant.

Turing Machine Simulation Given a closed (i.e., no input actions) task-PI@Avith step boung, one can define

a nondeterministic Turing machird 4 that simulates the execution @f The amount of work tape needed hbj,4 is

polynomial inp. As a convention, we write for the current state and for the next state after a transition. Recall that

§ denotes the partial valuation obtained frerby removing all pairs of the fornfv, 1). M 4 maintains this partial

valuation on its work tape. The following procedure is repeated indefinitelst.by
(i) From states, M 4 gives toM.napie the partial valuatiors currently stored on the work tape.

(i) The run stops ifMe,ape OUtpUts nothing. Otherwise, a tagkis chosen nondeterministically from the output of
Menable @and (3, T') is given toMr.

(i) Mg returns(§’, a). M 4 checks every variable appearing iré’: if v appears ir$, then the value of is updated
on the work tape; otherwis@{ 4 allocates enough space to store the nameaofd the valug’(v). Finally, M 4
checks for variables appearingdrbut nots’. The storage for those variables is freed.

Since the name and type of every variable are also boundex g can infer from Lemma 4.1 that the space
needed to represent a reachable state is polynomia(imfact, on the order op?). Moreover, the amount of work
tape needed by/...,.e and Mz, is on the order op, because these Turing machines execute at jstps at each
activation! Therefore, the total amount of work tape needed\by is polynomial inp.

Overall Bound We now put together real time bounds and step bounds. To do so, we represent global time using
the clock automato@lock (Figure 1). Letp € N be given and let4 be a task-PIOA compatible witGlock. We say
that A is p-boundedf the following hold.

(i) A has step boungl.

(i) For every taskr™ of A, rate(T') andburst(T) are both at mosp.
(i) For everyt € N, let S; denote the set of statef A||Clock such thats is reachable under some valid schedule

T ands.count = t. There are at mogttasksI’ such thafl’ is enabled in some € S;.
Conditions (i) and (ii) are self-explanatory. Condition (iii) ensures that the enabling of tasks does not change too

rapidly. Without this restrictionA would be able to cycle through a large number of tasks between two clock ticks,
without violating the rate bound of any individual task.

Task-PIOA Families We now extend our definitions to task-PIOA families, indexed tseaurity parametek.
More precisely, dask-PIOA familyA is an indexed sef.A }1en of task-PIOAs. Giverp : N — N, we say thatd
is p-boundedjust in case: for alk, A, is p(k)-bounded. Ifp is a polynomial, then we say that is polynomially
bounded The notions of compatibility and parallel composition for task-PIOA families are defined pointwise.

We remark that our notion of closed (i.e., no input actions), polynomially bounded families is reminiscent of the
traditional notion of PSPACE (which is equivalent to nondeterministic PSPACE). Our setting is slightly richer, because
we also talk about rates of computation with respect to real time. Thus, we can distinguish machines that compute in
large bursts from those that compute at a steady rate.

INote that we are not concerned witli; here, becausd is closed.

Example: Signature Service We now present an example of a polynomially bounded family of task-PIOAs.

A signature schemgig consists of three algorithm&eyGen, Sign andVerify. KeyGen is a probabilistic algorithm
that outputs a signing-verification key pai#, vk). Sign is a probabilistic algorithm that produces a signatufeom
a messagen and the keysk. Finally, Verify is a deterministic algorithm that mags:, o, vk) to a boolean. The
signaturer is said to bevalid for m and vk if Verify(m, o, vk) = 1.

Let SID be a domain of service identifiers. For egck SID, we build a signature service as a family of task-
PIOAs indexed by security parameter Specifically, we define three task-PIOAssyGen(k, j), Signer(k, j), and
Verifier(k, j) for every pair(k, j). We assume a functiagiive : T — 25/ such that, for every, alive(t) is the set of
services alive at time The lifetime of each servicgis then given byliveTimes(;) := {t € T|j € alive(t)}, which
is assumed to be a finite set of consecutive numbers.

For every security parametkeywe assume the following finite domainB7D,, (request identifiers)}/; (messages
to be signed) an&;, (signatures). The representations of elements in these domains are boundéd, igr some
polynomialp. Similarly, the domairil;, consists of natural numbers representable us{itg bits. When combined
with the automatolock (Figure 1), the inputick(¢) actions allow the components to record discrete time information
in the state variablelock.

KeyGen KeyGen(k, j) chooses a signing keyySK and a corresponding verification keyy VK. This is done
exactly once, at any time when servigés alive. The two keys are output separately, via actidgisKey(sk); and
verKey(uvk);. The signing key goes tbigner(k,), while the verification key may go to several other components.

The code folKeyGen(k, j) is given in Figure 2. As we mentioned before, thek(¢) action brings in the current
time. If j is alive at timet, thenclock is set to the current time Also, if j has just become alive, as evidenced by the
fact that theawake flag is currentlyL, the awake flag is set tarue. On the other hand, if is no longer alive at time
t, all variables are set to.

ThechooseKeys action usekeyGen ; to choose the key pair, and is enabled only whénawake and the keys are
currently L. Note that théeyGen algorithm is indexed by, because different services may use different algorithms.
The same applies tBign; in Signer(k, j) and Verify; in Verifier(k, j). ThesignKey andverKey actions output the
keys, and they are enabled only wheis awake and the keys have been chosen.

Signer Signer(k, j) receives the signing key from another component, EgyGen(k, 5). It then responds to signing
requests by running thgign,; algorithm on the given messageand the received signing key:. Figure 3 presents
the code foSigner(k,), which is fairly self-explanatory.

The data typeyue,, represents queues with maximum length), wherep is a polynomial. The enqueue operation
automatically discards the new entry if the queue is already of les(@th This models the fact th&tigner(k, j) has
a bounded amount of memory. For concreteness, we assumeithtite constant functiom for the queuegoSign
andsigned.

Verifier Verifier(k, j) accepts verification requests and simply runs\thefy; algorithm. The code appears in Fig-
ure 4. Again, all queues have maximum length

Assuming the algorithmk&eyGen;, Sign; andVerify; are polynomial time, it not hard to check that the composite
KeyGen(k, j)||Signer(k, j)||Verifier(k, j) has step boungl(k) for some polynomiap. If rate(T") andburst(T") are at
mostp(k) for everyT', then the composite jg k)-bounded. The familyKeyGen(k, j)||Signer(k, 7)|| Verifier(k, j) } ken
is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistinguishability. For instance, an encryption
algorithm is (chosen-plaintext) secure if the ciphertexts of two distinct but equal-length messages are indistinguish-
able from each other, even if the plaintexts are generated by the distinguisher itself. The key assumption is that the
distinguisher is computationally bounded, so that it cannot launch a brute force attack. In this section, we adapt this
notion of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and acceptance probabilitiédelaet
closed task-PIOA with output acticscc and task{acc}. Let T be a timed task schedule fot. The acceptance
probability of A underr is: P,.(A, 7) := Pr[5 containsacc : 8 «r tdist(A, 7)]; that is, the probability that a trace

KeyGen(k : N,j : SID)
Signature Tasks

Input: verKey; = {verKey(*);}
np&:"k £ T signKey; = {signKey(x);}
ick(t : Ty,) chooseKeys; = {chooseKeys; }

Output:
signKey(sk : Qk)j States
verKey(vk : 2¥); awake : {true} | , init L
Internal: clock : (Tg) L, init L
chooseKeys; mySK : (2%) 1, init L
myVK : (2F) 1, init L
Transitions
tick(t) signKey(sk);
Effect: Precondition:
if 7 € alive(t) then awake = true
clock :=t sk =mySK # L
if awake = 1 then Effect:
awake = true none
else
awake, clock, mySK , verKey(vk)
myVK = L Precondition:
awake = true
chooseKeys; vk =myVK # L
Precondition: Effect:
awake = true none
mySK = myVK = L
Effect:

(mySK, myVK)
— KeyGenj(lk)

Figure 2: Task-PIOA Code fdfeyGen(k, j)

drawn from the distributiondist(.4, 7) contains the actioacc. If A is not necessarily closed, we include a closing
environment. A task-PIO&nv is anenvironmenfor A if it is compatible with.A and A||Env is closed. From here
on, we assume that every environment has output astian

In the short-lived setting, we say that a systetn implements another system, if every run of A; can be
“matched” by a run ofd, such that no probabilistic polynomial time environment can distinguish the two runs. As
we discussed in the introduction, this type of definition is too strong for the long-lived setting, because we must allow
environments with unbounded total run time (as long as they have bounded rate and space).

For example, consider the timestamping protocol of [5, 4] described in Section 1. After running for a long period
of real time, a distinguisher environment may be able to forge signatures from a much earlier time period. As a result,
it can distinguish the real system from the ideal one in the traditional sense. However, the essence of the protocol
is that such failures can in fact be tolerated, because the environment cannoteftegesignatures, after a new,
uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of indistinguishability that “ignores” a large part
of the execution history. That is, even when an attacker succeeds in breaking old cryptographic services, the system
remains secure as long as the attacker cannot break the services used in recent history. Our new implementation
relation aims to capture this intuition.

First we state a comparability condition on task-PIOA: and.A; are said to beomparabléf they have the same
external interface, that ig; = I, andO; = O-. In this case, every environmehstfor .4, is also an environment for
As, providedE is compatible withA4,.

Let 4; and.A; be comparable task-PIOAs, and ebe a set of tasks ofl;. Givent € R>(and an environment
Env for both .4; and A5, we set up two experiments. In the first experimdiy interacts with.4; according to
some valid task schedutg of A4, ||[Env. In the second experimeriipv interacts with4, according to some valid task
scheduler, of As||Env, wherer, does not contain any tasks framfrom timet¢ onwards. Intuitively, the tasks iR
corresponds to certain protocol vulnerabilities. Before titnd, may be vulnerable to certain attacks, matching any
failures that may have occurred 4y . (An example of a failure is a forgery in the case of signatures.) At tianed

Signer(k : N, j : SID)
Signature

Input:
tiCk(t : Tk)
signKey(sk : 2F);
reqSign(rid : RIDy,
m : Mk)J
Output:
respSign(rid : RIDy,
g Ek)j
Internal:

sign(rid : RIDy, m : My);

Transitions
tick(t)
Effect:
if 7 € alive(¢) then
clock .=t

if awake = L then
awake = true
toSign, signed
= empty
else
awake, clock, mySK,
toSign, signed := L

Tasks

respSignj = {respSign(*,*);}
sign; = {sign(, *);

States

awake : {true} |, init L
clock : (Tg) L, init L

mySK : (2F) 1, init L

toSign : que(RIDy X M),
init L

signed : que(RIDg X 3g) 1,
init L

sign(rid, m);

localo :

Precondition:
awake = true
head(toSign) = (rid, m)
mySK # L

Effect:
toSign := deq(toSign)
o « Sign;(m, mySK)
stgned =

enq(signed, (rid, o))

signKey(sk); respSign(rid, o) ;
Effect: Precondition:
if awake = true awake = true
AmySK = 1 head(signed) = (rid, o)
thenmySK := sk Effect:

signed := deq(signed)
reqSign(rid, m);
Effect:
if awake = true
A= full(toSign)
thentoSign :=
enq(toSign, (rid, m))

Figure 3: Task-PIOA Code fdigner(k, 5)

afterwards,A, closes the vulnerabilities.

We require that, for any valid;, there exists a valid, as above such that the two executions are identical up to
time t from the point of view of the environment. That is, the acceptance probabilities in these experiments are the
same up to time t anBnv has the same state distribution immediately before tinlMdoreover, the two executions are
overallcomputationally indistinguishabl@amely, the difference in acceptance probabilities in these two experiments
is negligible as long aBnv is computationally bounded.

Given atask schedute= (Ti,t1), (I»,t2), . . ., lettruncs,(7) denote the result of removing all pai{;, ;) with
t; > t. If 7 is a schedule afi|| B, then we defin@roj,;(7) to be the result of removing &}, t;) whereT; is nota task
of B. Moreover, letstates(A|| B, 7) denote the end state distributionBfafter executing with4 under the schedule
7 (assumingr is finite).

Definition 5.1. Let.A; and.A; be comparable task-PIOAs that are both compatible Witick. Let F' be a set of tasks
of A;, and letp, ¢ € Nande € R>(be given. We say thad, S,ﬁq,e A if: for everyt € R, every environment
Env of the formEnv’ || Clock with Env’ beingp-bounded, and every valid timed schedtiléor A, ||[Env for the interval
[0,t + g], there exists valid timed scheduigfor A, || Env for the interval]0, ¢ + ¢] such that:

(i) Pacc(A1|lEnv,trunc>¢(71)) = Pacc(Az||Env, truncs(72));

(i) Istategny (A1]|Env, trunc>¢(71)) = Istategn, (Asz||Env, truncs,(72));
(”I) projEnv(Tl) = projEnv(TQ);

(iv) 72 does not contain any pairs of the forfh;, ¢;) whereT; € F andt; > ¢;

Verifier(k : N, j : SID)
Signature

Input:
tiCk(t : Tk)
verKey (vk : 2%);
reqVer(rid : RIDy,
m : Mk, (22 Ek)J
Output:
respVer(rid : RIDy,
b: Bool);
Internal:
verify(rid : RIDy,
m: My,0:3g);

Transitions
tick(t)
Effect:
if j € alive(¢) then
clock :=t
if awake = L then
awake = true
toVer,verified
= empty
else
awake, clock, myVK,
toVer,verified := 1

verKey(vk) ;
Effect:
if awake = true
AmyVK = L

thenmy VK := vk

reqVer(rid, m, o)
Effect:
if awake = true
A= full(to Ver)
thento Ver :=
enq(toVer, (rid, m, o))

Figure 4: Task-PIOA

(V) | Pacc(A1]|Env, 71) — Pacc(A2||Env, 12)| < e.

Tasks
respVer; = {respVer(x,);}
verify; = {verify(x, *, x); }

States

awake : {true} |, init L
clock : (Tg) L, init L

my VK : (2F) 1, init L
toVer : que(RIDy x My
XZk)L: init 1

verified : que(RIDy x My
XEk)L: init 1

verify(rid, m, o)
localb : Bool
Precondition:
awake = true
AmyVK # L
head(toVer) = (rid, m, o)
Effect:
toVer := deq(toVer)
b := Verify ;(m, o, myVK)
verified :=
enq(verified, (rid, b))

respVer(rid, b)
Precondition:

awake = true

head(verified) = (rid, b)
Effect:

verified := deq(verified)

Code foverifier(k, j)

The following lemma says thai_tf,q,6 (Definition 5.1) is transitive up to additive errors.

Lemmab5.2. Let Ay, Az, and. A3 be comparable task-PIOAs, and It be a set of tasks od, and F; be a set of tasks

of As. Letp, ¢ € Nande € R>(be given. Assume that;

<P

F3
—Db,q,€1 <

F3
—P;q,¢€2 <

Ay and A, As. ThenA; Spig.eites As.

Proof. Lett € R, ap-bounded environmertinv of the formEnv’||Clock, and a valid timed schedute for A, ||Env

for the interval0, t+¢] be given. Choose, for A,||Env according to the assumptiofy

<Is

73 for Az||Env according to the assumptiof, <;*

Clearly, we have

As.

e P..(Ai||Env,truncs¢(m))
= Pacc(Az||Env, truncs(72))
= Pacc(As||Env, truncs(73));

o Istategny (A ||Env, truncs,(m1))
= Istategny (A2 ||Env, truncs,(72))
= Istategny (As||Env, truncs,(73));

10

<k

<pZ.e, A2. Usingrs, choose

b projEnv(Tl) = prOjEnv(TQ) = pro.jEnv(T3)'

It is also immediate that; does not contain any pairs of the foiffy;, ¢;) whereT; € F3 andt; > t. Finally,

| Pacc(A1]|Env, 71) — Pacc(As||Env, 73))|
< | Pacc(A1]|Env, 71) — Pocc(Az||Env,)|

+ | Pacc (A2 ||Env, 72) — Pacc(As||Env, 73)]
<€+ €.

O

The relation<”', _ can be extended to task-PIOA families as follows. L&t = {(A;)x}ren and Ay =
{(A2)1}ren be pointwise comparable task-PIOA families. LEtbe a family of sets such that eadh), is a

set of tasks of). Lete : N — R>o andp,q : N — N be given. We say thatl; < _pq . A justin case

(A1) _p(k) (k) (k) (Az)y, for everyk.
Restrlctmg our attentlon to negligible error and polynomial time bounds, we obtain the long-term implementation
relation<Z Formally, a functiore : N — R is said to benegligibleif, for every constant € N, there exists

—neg,pt*"
ko € Nsuch that(k) < 2 forall k > kq. (That is,e diminishes more quickly than the reciprocal of any polynom|al)
Given task-PIOA famllles41 and.A, and task set family' of A,, we say thad; < _neg ot A if Vp, g Je A; < p 0. As,

wherep, ¢ are polynomials aneis a negligible function.

Lemma 5.3 (Transitivity of < 7neg pt) Let A;, Ay, and A5 be comparable task-PIOA families. LE} be a task set
family of A, and letF; be a task set family ofl;. Supposed; < _neg ot Az and A, <neg ot As. ThenA; < neg ot As.

Proof. Given polynomialg andgq, choose negligible functions ande, according to the assumptions. Thant ¢,
is negligible. By Lemma 5.2, we havé, <F3 As. O

P,q,€1+€2

6 ldeal Signature Functionality

In this section, we specify aideal signature functionalitpigFunc, and show that it is implemented, in the sense of
our <§;g o+ definition, by the real signature service of Section 4.

As with KeyGen, Signer, andVerifier, each instance @igFunc is parameterized with a security parametemd
an identifierj. The code foiSigFunc(k, j) appears in Figure 5. It is very similar to the compositiorbigher (&, 5)
and Verifier(k, 7). The important difference is th&igFunc(k, j) maintains an additional variablestory, which
records the set of signed messages. In addiigkunc(k, j) has an internal actiofail;, which sets a boolean flag
failed. If failed = false, thenSigFunc(k, j) useshistory to answer verification requests: a signature is rejected if the
submitted message is nothmstory, even ifVerify,; returnsl. If failed = true, thenSigFunc(k, j) bypasses the check
on history, So that its answers are identical to those from the real signature service.

Recall that, for every task' of the real signature serviceste(7") andburst(T") are bounded by(k) for some
polynomialp. We assume that the same bound applieSigbunc(k, j). SincealiveTimes(j) is a finite set of con-
secutive numbers, it represents essentially an interval whose length is constant in the security pardretefore,
p(k) gives rise to a boung’ (k) on the maximum number of signatures generate8igkunc(k, j), wherep’ is also
polynomial. We set the maximum length of the quéugory to p’ (k). All other queues have maximum length

We claim that the real signature service implements the ideal signature functionality. The proof relies on a re-
duction to standard properties of a signature scheme, namely, completeness and existential unforgeability, as defined
below.

Definition 6.1. A signature schem8ig = (KeyGen, Sign, Verify) is completeif Verify(m,o,vk) = 1 whenever

(sk,vk) «— KeyGen(1¥) ando « Sign(sk,m). We say thaBig is existentially unforgeablender adaptive chosen

message attacks (or EUF-CMA secure) if no probabilistic polynomial-time forger has non-negligible success proba-

bility in the following game.

Setup The challenger run&eyGen to obtain(sk, vk) and gives the forgevk.

Query The forger submits message. The challenger responds with signature< Sign(m, sk). This may be
repeated adaptively.

11

SigFunc(k : N, j : SID)

Signature Tasks
Input: RSigner U Rverifier U {{failj}}
Tverifier U ISigner States
Output: All variables ofSigner
OVerifier U OSigner andVerifier
Internal:) history : que(My) L, init L
Hyerifier U Hsigner U {fail; } failed : {true,false}, , init L
Transitions
Same aSigner andVerifier, sign(rid, m);
except the following: localo : &
Precondition:
tick(t) awake = true
Effect: AmySK # L
if j € alive(t) then head(toSign) = (rid, m)
clock :=t Effect:
if awake = L then toSign := deq(toSign)
awake := true o = Sign;(m, mySK)
toSign,toVer, stgned =
signed, verified enq(signed, (rid, o))
= empty history :=
history := 0 enq(history, m)
failed := false
else verify(rid, m, o) ;
awake, clock, mySK, Localb : Bool
my VK, toSign, toVer, Precondition:
signed, history, verified, awake = true
failed := L AmyVK # 1
head(toVer) = (rid, m, o)
fail; y Effect:
Precondition: toVer := deq(to Ver)
awake = true b := (Verify(m, o, myVK)
Effect: A(m € history V failed))
failed := true verified :=

enq(verified, (rid, b))
Figure 5: Code fobigFunc(k, j)

Output The forger outputs a paifm™*, o*) and he wins ifn* is not among the messages submitted during the query
phase and/erify(m*,o*, vk) = 1.

Forallk € Nandj € SID, we defineRealSig(j)x to behide(KeyGen(k, j)||Signer(k, j)||Verifier(k, j), signKey ;)
andldealSig(j) to behide(KeyGen(k, j)||SigFunc(k, j), signKey;).

These automata are gathered into families in the obvious ReyfSig(j) := {RealSig(j)x } ren andldealSig(j) :=
{ldealSig(j) }ren- Note that the hiding operation prevents the environment from learning the signing key.

Theorem 6.2. Let j € SID be given. Suppose thaKeyGen, Sign;, Verify ;) is a complete and EUF-CMA secure
signature scheme. Th&ealSig(j) <./ TdealSig(;).

—neg,pt

To prove Theorem 6.2, we show that, for every time pejtihe environment cannot distinguiBlealSig(j), from
IdealSig(j)x with high probability between timeandt¢ + ¢(k), whereq is a polynomial. This holds even when the
task{ fail;} is not scheduled in the intervitl ¢ + ¢]. The interesting case is wheris awakenedfter time ¢. That
implies thefailed flag is never set anfligFunc(k, j) useshistory to reject forgeries.

We use the the EUF-CMA assumption to obtain a bound on the distinguishing probability of any environment.
Essentially, we build a forger that emulates the execution of our various task-PIOAs under some valid schedule. When
the environment interacts with tfggner andVerifier automata, this forger uses the signature oracle and verification
algorithm in the EUF-CMA game. Moreover, the success probability of this forger is maximized over all environments
satisfying a particular polynomial bound. (Note that, given polynomiahd security parametés, there are only a

12

finite number ofp(k)-bounded environments.) Applying the definition of EUF-CMA security, we obtain the desired
negligible bound on distinguishing probability.

Proof of Theorem 6.2Unwinding the definition ofgr{,fg'fgg, we need to show the following: for every polynomials

p andg, there is a negligible function such that, for everyt € N, ¢ € R>, p(k)-bounded environmerinv for
RealSig(j)x, and valid schedule; for RealSig(j)||Env for the interval(0, t + ¢(k)], there is a valid schedule for
IdealSig(j)k, ||Env such that

(i) P.cc(RealSig(j)k||[Env, trunc>.(71)) is the same aP,..(IdealSig(j) || Env, trunc>¢(72));
(i) Istategny (RealSig(j)x||[Env, truncs.(71)) is the same alstateg,, (IdealSig(j)x ||[Env, trunc>(72));
(iii) projen, (71) = projen, (72);
(iv) 7> does not contain any pairs of the forfail;, ¢;) wheret; > ¢;
(V) Pacc(RealSig(j)x||Env, 1) is at most(k) away fromP .. (IdealSig(j)x||Env, 72).

Let polynomialp andq be given. We need to obtain a negligikldoound that makes all the conditions above
satisfied for every:, ¢, p(k)-boundecEnv, valid 71, and some corresponding.

Fix ¢, andt, to be time points such thd;, ¢,] = {t € T|j € alive(¢)}. So, we know that botRealSig(j);, and
IdealSig(j)x are dormant outside the intervaj, ¢,.].

First consider the cases in whigh< t. We obtainr, by inserting({fail; }, ¢;) immediately afte(tick, ¢;). This sets
the failed flag inSigFunc(k, 7) to true immediately aftemwake becomesrue. Notice that, iffailed = true, the verify
transition bypasses the cheeke history (Figure 5). In other wordSsigFunc(k, j) answers verify requests in exactly
the same way aSerifier(k, j), using theVerify algorithm only. Furthermore, it is easy to check tfiafed remains
true as long asSigFunc(k, j) is alive. ThereforeldealSig(j); has exactly the same visible behaviorReaISig(j)x
and Conditions (i) through (v) above are satisfied if we che¢se = 0, for everyk, p(k)-boundecEnv and validr,.

Now, consider the cases in whi¢h< t;. Setr, := 71. Since bothRealSig(j); andldealSig(j); are dormant
during [0, t], Conditions (i) and (ii) must hold. Condition (iii) is immediate and Condition (iv) holds becéilge
is not a task oRealSig(j)x. It remains to argue that there exists a negligible functi@uch that Condition (v) is
satisfied.

To this purpose, we rely on the EUF-CMA securitySig. We however do not need to bound the success proba-
bility of one specific forger, as in the EUF-CMA definition, but the success probability of all forgers that satisfy fixed
polynomialp andgq bounds, for every timéand schedule; .

For everyk € N, we define atimét,...)r < t;, ap(k)-bounded environmetiEnv,,,..). for RealSig,,, and a valid
schedul€ 7,4) for RealSigy || (Envi,az)i for the time interval0, (.42) + g(k)], with the following property: for
every timet < ¢;, everyp(k)-bounded environmertinv for RealSig,,, and every valid schedutg for RealSig,, | Env
for the interval[0, t 4 ¢(k)], we have:

| Pacc(RealSig(j)k||Env, 1) — Pacc(IdealSig(f)x || Env, 71)]
S | Pacc(Rea|Sig(j)k”(Envmar)kv (Tlmaz)k) - Pacc(ldea|5ig(j)k”(Envmaa:)ka (Tlmar)k)‘~

To see that such @ ax)k, (EnVines)k and (T1maz)k €XiSt, it is enough to observe that there are only a finite
number of times, environments and schedules respecting, thig) andq (k) bounds (up to isomorphism).
This means that is enough to show the existence of a negligible funcsioch that, for every € N, we have:

| Pacc(ReaISig(j)k||(Envmaw)k‘7 (Tlmax)k) - Pacc(ldea|5ig(j)k'H(Env'rnaw)ka (Tlmaw)k‘” S G(k)

SinceSig is complete, we observe that, for every valugpthe difference of acceptance probabilities of the two
automata compared in Condition (v) can only be non-zeriiv,,..) succeeds in producing a forged signature
(thatis, a valid signature for a message that was not signed Bygher SigFunc automata before) and in having this
signature rejected when therify andrespVer actions ofSigFunc execute.

We now use eactEnv,,,..)r and (11,42) t0 define a probabilistic polynomial-time (non-uniform) forgeér=
{G} }ren for Sig, in such a way thaf?, essentially emulates an execution of the automatesiSig(j)x || (EnVinaz)k
with schedul€ 7,42 k-

More precisely(} successively reads all the tasks in the sche@ulg..)x, and uses them to internally emulate
an execution ofdealSig(j) || (Enviaz)k, Up to the following exceptions:

13

1. when the{verKey(x)} task has to be emulate@;, replaces the verification algorithm obtained when emulating
the {chooseKeys} task with the one provided kjig in the EUF-CMA game, and
2. when the{sign(x, %)} task has to be emulated,, obtains signatures by using the signing oracle available in the
EUF-CMA game.
Furthermore(, stores a list of all messages that the emuléked,,, ...), asked to sign, and checks whetfEnv,,, ...)
ever asks for the verification of a message with a valid signature that is not in the list. If such a signature is produced,
G, outputs it as a forgery.
We observe that this emulation process is polynomial time-bounded because all transitions of the emulated systems
are polynomial time-bounded, the total running time of the system is boundgdtxy(k), and Condition (iii) on the
overall bound of automata guarantees that no more than a polynomial number of transitions are performed per time
unit.
We also observe that the two proposed exceptions in the emulation of the executieal®% ()|l (Envimaz)k
do not change the distribution of the messages tBav,,...). Sees, since the verification algorithm used®y is
generated in the same waylésyGen generates it, and since the message signatures are also produced in a valid way.
Therefore, it is with the same probability that the environment distinguishes the two systems it is interacting with (that
is, by producing a forgery early enough) in a real execution of the different automata and in the version emulated by
G.
Now, the assumption th&ig is EUF-CMA secure guarantees that there exists a negligible funcionnding the
success probability aff. Selecting this functiom completes our proof. O

7 Composition Theorems

In practice, cryptographic services are seldom used in isolation. Most likely, different types of services operate in
conjunction, interacting with each other and with multiple protocol participants. For example, a participant may
submit a document to an encryption service to obtain a ciphertext, which is later submitted to a timestamping service.
In such situations, it is important that the services are provably secure even in the context of composition.

In this section, we consider two types of composition. The firatallel compositionis a combination of services
that are active at the same time and may interact with each other. Given a polynomially bounded collection of real
services such that each real service implement some ideal service, the parallel composition of the real services is
guaranteed to implement that of the ideal services.

The second typesequential compositigiis a combination of services that are active in succession. The interaction
between two distinct services is much more limited in this setting, because the earlier one must have finished execution
before the later one comes online. An example of such a collection is the signature services in the timestamping
protocol of [5, 4], where each service is replaced by the next at regular intervals.

As in the parallel case, we prove that the sequential composition of real services implements the sequential com-
position of ideal services. We are able to relax the restriction on the number of components from polynomial to
exponential This highlights a unique aspect of our implementation relation: essentially, we walk down the real time
line and, at every point, we focus on a polynomial length interval starting from

Parallel Composition Using a standard hybrid argument, we show that the rela;tiﬁla€ (cf. Definition 5.1) is
preserved under polynomial parallel composition, with some appropriate adjustment to the environment complexity
bound and to the error in acceptance probability.

Theorem 7.1. Letb € N be given and, for each < i < b, let A} and.A? be comparable task-PIOAs and |Ef be a
set of tasks ofd?. LetF denoteUf:1 F;. Suppose there exists a non-decreasing funatioN — N such that, for all
i, both A} and.A? arer(i)-bounded. Suppose further thdf*, ..., A" are pairwise compatible for any combination
ofa; € {1, 2}
Letp,p’, ¢ € Nande, ¢ € R be given, and assume the following.
(1) p = ccomp - (b-7(b) + p'), Whereccomp is the constant factor for composing task-PIOAs in parallel.
2 € =b-e
(3) Foralli, A} < A2

1 —D,4q,¢€

2|n our model, it is not meaningful to exceed an exponential number of components, because the length of the description of each component is
polynomially bounded.

14

Thenwe havél_, A} < |, A7

Proof. Lett € R>q be given. LetEnv = Env'||Clock be ap’-bounded environment and lef be a valid timed task
schedule fot|?_,.A}||Env for the interval[0, ¢ + ¢].
For each) < i < b, let H; denoteA?||...[|.A?||.AL||...[lA}. In particular,Hy = ||’_, A} andH, = ||?_,.A2.
Similarly, let
Env; := A2 AP AL] LA | Env

for eachl < ¢ < b. Note that evenEnv; is p-bounded and is an environment f,dr% andAf. In fact, we have
H,;_1||Env = A}||Env; and H; | Env = A?| Env;.

SinceA} <! A} andr is a valid schedule fari ||[Envi, we may choose a valid schedulefor A7 ||Env, for

the interval0, t + ¢| such that
(1) Pacc(A}||Envy, truncs4(70)) = Pacc(A3||Envy, truncs,(11));
(i) Istategny, (A}[|Envy, truncs (7)) = Istategny, (A?||Envy, truncs,(71));
(iit) projgny, (70) = Projeny, (71);
(iv) 7 does not contain any pairs of the forffi, ¢;) whereT; € F; andt; > ¢;
(V) |Pacc(AL||Envy, 70) — Pacc(A2]|Envy, 71)| < e.

Repeating this argument, we choose valid schedules . , 7, for Hy||Env, ..., Hy||Env, respectively, all satisfy-
ing the appropriate five conditions. By Condition (i), we have

Pacc(Hol|Env, truncs¢(710)) = Pacc(H1||Env, truncs¢(71)) = ... = Pacc(Hp||Env, truncs:(1)).
Also, sinceEnv is part of everyEnv,;, Condition (ii) guarantees that
Istategny (Ho||Env, trunc> (7)) = Istategn, (Hp||Env, truncs(7)).

Similarly, Condition (jii) guarantees thatojg,, (70) = projg,, (7).
Using both Conditions (iii) and (iv), we can infer that does not contain any pairs of the for{#;, ¢;) where
T, € F =J)_, Fy andt; > t. Finally,

| Pace(l=1 AL [Env, 70) — Pace([[7— A7 [|Env, 7)|
< | Pacc(Hpl|Env, 79) — Pacc(Hr||Env, 1) + - ..
+ | Pacc(H; ||Env, 73) — Pacc(Hip1||Env, 7i41)] + - ..
+ | Pacc(Hp—1||Env, Tp—1) — Pacc(Hp||Env, 73)]
<b-e=¢.

Using Theorem 7.1, it is not hard to prove th_afe is preserved under polynomial composition.

g,pt

Theorem 7.2 (Parallel Composition Theorem forgfeg,pt). Let two sequences of task-PIOA familiés A3, . .. and
A2, A3, ... be given, withA! comparable to4? for all i. Assume thatl?", 432, . .. are pairwise compatible for any
combination ofy; € {1,2}. For eachi, let F; be a family of sets such thék;);, is a set of tasks ofA?);. for everyk.
Suppose there exist polynomialss : N — N such that, for alli, k, both (A}), and (A?); are bounded by
s(k) - r(¢). Assume that is non-decreasing and
Vp,q e Vi AL <P A2, 1)
wherep, ¢ are polynomials and is a negligible function. (This is a strengthening of the statehﬁéni% gf;g,pt ﬁ?.)
Letb be any polynomial. For each, let (A!), denote(Al).| ... [[(Apry)& Similarly for (A2)),. Also, let(F),

denote J*) (F;);.. Then we havel! <f = A2

—neg,pt

15

Proof. By the definition of?neg ot» We need to prove the followingp’, ¢ 3¢’ Al <F o A2, wherep’, ¢ are poly-
nomials and’ is a negligible function. Let polynomiajs andq be given and defmp = Ceomp - (b- (rod) + '),
whereccomp is the constant factor for composing task-PIOAs in parallel. Now cheasigp, ¢, and Assumption (1).
Definee’ :=b - e.

. -~ (F) -~ .
Letk € N be given. We need to provel'), <,).« () (A)x- Thatis,

) 5])
(Al (A U FO (Al (A2 gy e

For everyi, we know that(A}), and (A?), are bounded bys(k) - 7)(i). Also, by the choice o% we have

<(Fi)i T . -+ Ur% (Fow
(Ah), < <p(k) a(k).c(ry (AP Tor all <. Therefore, we may apply Theorem 7.1 to conclude (b, < (k;)q(Per (k)
(AQ) . This completes the proof. O

Sequential Composition We now treat the more interesting case, namely, exponential sequential composition. The
first challenge is to formalize the notion of sequentiality. On a syntactic level, all components in the collection are
combined using the parallel composition operator. To capture the idea of successive invocation, we introduce some
auxiliary notions. Intuitively, we distinguish betweaativeanddormantentities. Active entities may perform actions

and store information in memory. Dormant entities have no available memory and do not enable locally controlled
actions® In Definition 7.3, we formalize the idea that an entdymay be invoked and terminated by some other entity

B. Then we introduce sequentiality in Definition 7.5.

Definition 7.3. Let.A and B be pairwise compatible task-PIOAs and let reals< t, be given. We say thad is
restricted to the intervat,, t2] by B if:
e for anyt < t;, environmentnv for A||B of the formEnv’||Clock, valid schedule- for A||B||Env for [0,], and
states reachable under, no locally controlled actions ofl are enabled irs, ands.v = L for every variable
v of A.
e the same for alt > 5.

Lemma 7.4 below states the intuitive fact that no environment can distinguish two entities during an interval in
which both entities are dormant.

Lemma 7.4. Supposed; and.A, are comparable task-PIOAs that are both restricted to the intetyats] by B. Let
Env be an environment for boti; || B and A;||B and of the formEnv’||Clock. Lett € R>o andg € N be given.
Suppose we have valid scheduj€for A, ||5||Env for the interval[0,¢ + ¢] and valid schedule; for As||5||Env for
the interval(0, ¢ + ¢], satisfying:

o P...(A1||B||Env, truncs¢(71)) = Pacc(Asz|| BJ|Env, truncs,(72));
o Istateg|gny (A1 B|[Env, truncs (1)) = Istateg|gny (A2 || B||Env, truncs(2));

L4 projBHEnv(Tl) = projBHEnv(TQ)'
Assume further that eitheés < ¢ or t; > t + q. ThenP (A1 || B||Env, 71) = Pacc(Az||BJ|Env, 72)).

Proof. First we consider the case < ¢. Since.4; and.A; are restricted by to the intervallt, t2], neither of them
enables any output actions during the intefval + ¢]. By assumptionr; andr, agree on the tasks &f||Env and the
state distributions oB||Env just before time are identical in the two experiments. Therefore, the probabilityEhat
outputsacc during [t, t + ¢] must be identical in the two experiments. We also have the assumptioBnthattputs
acc with the same probability durinf, ¢), therefore the acceptance probabilities are the same for the entire interval
[0, ¢].

Similarly, if t; > t + ¢, then neithetd; nor .4, enables any output actions during the intefval + ¢]. Then we
follow the same argument as above. O

Definition 7.5 (Sequentiality). Let B, A1, As, ... be pairwise compatible task-PIOAs. We say tHat A,, ... are
sequential undeB if there exist real$) < t; < to < ... such that: for alli, A; is restricted to[¢;, t;,1.1] by B.

3For technical reasons, dormant entities must synchronize on input actions. Some inputs cause dormant entities to become active, while all
others are trivial loops on the null state.

16

Note that each4; may overlap with4,; ., at the boundary time; ;. Now we are ready to state the sequential
composition theorems.

Theorem 7.6. Let A1, AL, ... and A%, A3, ... be two sequences of task-PIOAs such thaand.A? are comparable
for everyi. Assume thatl{*, A3, ... are pairwise compatible for any combination®f e {1,2}. Also, letL,p € N
be given and le3 be a task-PIOA such that bot|(||L_,.A4}) and B||(||~_,.A2) are p-bounded. Assume that both
Al ... AL and A2, ..., A2 are sequential undeB for the same sequence of reafs< ... < t1.1.

Letp,q € Nande € R be given. Suppose there are sets of taBksl < i < L, such thatd; <i _ A?

for all i. Let F' denotel J/, F;. Letb denote the largest number such thatonsecutive,’s fall into a single
closed interval of lengtly. (Suchb must exist and is betwednand L). Letp’ € N ande € R be given, with
€ > (b+2)-eandp > ccomp - (P + p’) (Whereceomp is the constant factor for parallel composition). Then we have

BIl(li21 A7) <p g BI(IFZ1AD).-

—=p’,q,€

In the statement of Theorem 7.6, the error in acceptance probability increases by a facto?,oivhereb is the
largest number of components that may be active in a closed time interval of lerfgth example, if the life time of
each component i$, thenb is 5.# This is the key difference between parallel composition and sequential composition:
for the former, error increases with the total number of components (naf)ebnd hence no more than a polynomial
number of components can be tolerated. In the sequential Las@y be exponential, as long agsemains small.
The proof of Theorem 7.6 involves a standard hybrid argument for active components, while dormant components are
replaced without affecting the difference in acceptance probabilities.

Proof of Theorem 7.6Lett € R, be given. LetEnv = Env'||Clock be ap’-bounded environment and let be a

valid timed task schedule fds||(||~_,.A})||Env for the interval[0,¢ + ¢]. We need to find, for B| (||~,.42)||Env
such that

() Pacc(|lf21 A BIEnv, truncs(70)) = Pacc([l {21 A7 || BI|Env, truncs(11));
(i) Istategny (|21 AL|| B||Env, truncs;(70)) = Istategny (|2 A2|| B||Env, truncs¢(71.));
(i) projeny (70) = Projeny (71.);
(iv) 7 does not contain any pairs of the forf;, ;) whereT; € Fandt; > t;
(V) | Pace(ll2 AL | BI[Env, 10) — Pacel| -y A2| BI|Env, 1) < €.

Without loss of generality, assume there is an indexich thatlt;, t,11] intersects witht, ¢ + ¢]. Let! be the
smallest such index. Recall from the assumptions that at brmstsecutive,’s fall into a closed interval of lengti.
Therefore, we know that_; < ¢t andt;, >t + q.

The rest of the proof proceeds as in the proof of Theorem 7.1. Namely, we define

Envi == ARl A7y [AL - (14 1Bl Env

for eachl < ¢ < L. Note thatEnv; is p-bounded, therefore we may choosg; usingr; and the assumption
that A} Squ,g A?. SinceEnv is part of Env; for everyi, Conditions (i) through (iii) are clearly satisfied at every
replacement step. Condition (iv) is satisfied because the following hold at every step

e The new task schedute; does not contain tasks froi ;.
e Condition (iii) guarantees that, ; does not contain tasks frobj;=1 Fj.

Finally, we consider Condition (v). There are two cases.:i &k [— 1 or¢ > [+ b, then we can apply
Lemma 7.4 to conclude th&,..(A}|Env;, 7;) in fact equalsP .. (A?||Env;, Ti11). Otherwise Pac(A}||Env;, 7i)
and P, (A?||Env;, 7:41) differ by at moste. Summing over all indices, we have| P,..(||£ , A}| B|Env, 7o) —
Pocc([lf21 A7 || BI|Env, 7))
<(b+2)-e=¢. O

Using Theorem 7.6, it is straightforward to prove the sequential composition theoreg;igq;t.

4Recall that two components may be active simultaneously at the boundary time.

17

Theorem 7.7 (Sequential Composition Theorem fongf;g,pt). Let two sequences of task-PIOA familiés, A3, . ..
and. A3, A3, ... be given, withA! comparable ta4? for all i. Assume thatl{", 452, . .. are pairwise compatible for
any combination ofy; € {1,2}. For eachi, let F; be a family of sets such théf;), is a set of tasks ofA?) for

everyk. LetL : N — N be an exponential function and, for eaehiet (A);, denote(AL),]| .. AICAL (1))&~ Similarly
for (A2). Also, let(F");, denote J=*) (F;)

Let p be a polynomial and lef be a task-PIOA family such that botfj|.A* and BJ|.A are p-bounded. Sup-
pose there exist a sequence of positive réals< ¢, < ... such that, for eactk, both (A7), .. ., (AlL(k));C and

(A, ..., (A2 k))k are sequential undeB;, for the sequence; < ... < ty;)41. Assume there is a constant real
numbere such that consecutivg’s are at leastc apart.
Suppose that, for every pair of polynomids q), there exists negligible functiansuch that4}! <

i. Then we havé|| A < B|.A2.

A2 for all

Pqﬁ

neg pt

Proof. Let polynomialgy’, ¢ be given and defing := ccomp - (5+p'), Whereceom, is the constant factor for composing

task- PIOAs in parallel. Choosefrom p, ¢ according to the assumption of the theorem. For éadkt b(k) be the

ceiling of 2% 4 1. (The choice ob(k) ensures that at mo&tk) consecutive;’s fall within any interval of length at

mostq(k). Th|s is necessary in order to apply Theorem 7.6.) Siniseconstant) is a polynomial. Define’ := b - ¢.
For everyk € N, we apply Theorem 7.6 to conclude that

Bl AL <0 o Bl Al (A o i

That is, (B||.AY), <pF()1f) o(k) (k) (B||A2),,. This completes the proof. O

8 Application: Digital Timestamping

In this section, we present a formal model of the digital timestamping protocol of Haber et al. (cf. Section 1). Recall the
real and ideal signature services from Section 6. The timestamping protocol consists of a dispatcher component and
a collection of real signature services. Similarly, the ideal protocol consists of the same dispatcher with a collection
of ideal signature services. Using the sequential composition theorem (Theorem 7.7), we prove that the real protocol
implements the ideal protocol with respect to the long-term implementation releﬂ%t.
Let SID, the domain of service names, Ne In addition toalive andaliveTimes (cf. Section 4), we assume the
following.
e pref : T — SID. For everyt € T, the serviceref(¢) is the designated signer for timgi.e., any signing request
sent by the dispatcher at timgoes to serviceref(t).
e usable : T — 257, For everyt € T, usable(t) specifies the set of services that are accepting new verification
requests.
Assume, for every € T, pref(t) € usable(t) C alive(t). If a service is preferred, it accepts both signing and
verification requests. If itis alive but not usable, no new verification requests are accepted, but those already submitted
will still be processed.

Dispatcher We defineDispatcher,, for each security parametér If the environment sends a first-time certificate re-
questreqCert(rid, z), Dispatcher;, requests a signature from servijce- pref(t) via the actiorreqSign(rid, (z,t, L));,
wheret is the clock reading at the time eqSign. In this communication, we instantiate the message spacas
X x Ty x (Zx) 1, whereX, is the domain of documents to which timestamps are associated. After sgreicens
with actionrespSign(rid, o), Dispatcher,, issues a new certificate viaspCert(rid, o, j).
If a renew requesteqCert(rid, z,t, 01, 02, j) cOmes inDispatcher,, first checks to see if is still usable. If not,
it responds wittrespCert(rid, false). Otherwise, it sendseqVer(rid, (x,t,01), 02); to servicej. If servicej answers
affirmatively, Dispatcher; sends a signature reques{Sign(rid, (r,t, 02));/, wherej’ is the current preferred service.
When servicg’ returns with actiomespSign , (rid, 03), Dispatcher,, issues a new certificate viespCert(rid, o3, j').
The code foDispatcher appears in The task-PIOA code for the compori&ispatcher appears in Figure 6. As a
convention, we use;, o2 ando to denote previous, current, and new signatures, respectively.

18

Concrete Time Scheme Letd be a positive natural number. Each servidégalive from time(j —1)-dto (j+2) - d.
Thus, at any given point in time, there can be at most three services that are concurrently alive. Moreovey; iservice
preferred for signing fromtiméj — 1) - dto j - d, and is usable fromtimg — 1) - dto (j + 1) - d. Betweenj+1)-d
and(j + 2) - d, servicesj continues to process requests already submitted, without receiving new requests.

Protocol Correctness For every security parameterlet SID; C SID denote the set gf(k)-bit numbers, for some
polynomialp. Recall from Section 6 thaRealSig(j)r = hide(KeyGen(k, j)||Signer(k, j) | Verifier(k, j), signKey;)
andldealSig(j)r = hide(KeyGen(k, j)||SigFunc(k, j), signKey,). Here we define

RealSigSys,, := Dispatcher,||(||csip, RealSig(j)x) and ldealSigSys,, := Dispatcher,||(|| e sip, dealSig(j))-
Next, defineRealSigSys := {RealSigSys,, } ,eny andldealSigSys := {ldealSigSys;, }ren. Our goal is to show that

RealSigSys giw IdealSigSys,
whereF}, := Ujesm, {{fail;}} for everyk (Theorem 8.4).
First we make a key observation.

Lemma 8.1. Suppose we havee N, j € SIDy, andB compatible wittRealSig(j),. ThenRealSig(j) is restricted
to[(j —1)-d,(j+2) - d] by B. Similarly forldealSig(;)s.

Proof. Suppose we have< (j — 1) - d, environmen€nv for RealSig () || B of the formEnv’||Clock, valid schedule
7 for RealSig(j)x||B]|Env for [0,], and states reachable under. Recall from Section 3 that, for evety € T, the
actiontick(#') must take place at timé. Therefore; does not trigger aick(t') action witht’ € [(j—1)-d, (j+2)-d).
On the other hand, all variablesRéalSig(j), remainsL unless such &ck(t') action takes place, so we can conclude
thats.v = L for every variabley of RealSig(j)x.

Fort > (5 + 2) - d, we know thatr must have triggered the actiaitk((j + 2) - d), which sets all variables of
RealSig(j); to L. Moreover, every subsequetitk (') hast’ > ¢, therefore the variables remain

Finally, by inspection of the code fdtealSig(j)x, we know that no locally controlled actions are enabled if all
variables arel.

The proof forldealSig(j) is similar. O

For eachi € {0, 1,2}, defineReal, ;, to be the parallel composition of a&ealSig(j)s with (j — 1) mod 3 = 3.
Let Real; be {Real; 1 }xen. By Lemma 8.1, we know thaealSig(i)y., RealSig(i + 3)y, . . . are sequential undéd for
any B. Thus, we have partitioned the collection of real signature services into three clRssgsReal;, andReals,
such that the services within eaRhal; are sequential. For instance, the first class consists of sefyides ., which
are alive in interval$0, 3d], [3d, 6d], . . . respectively.

Defineldeal, ,, andldeal; similarly. We make the following observations.

Lemma 8.2. The following families are polynomially bounded.
1. Dispatcher||Realy||Real; ||Reals.
2. Dispatcher||Idealy||Real; ||Reals.
3. Dispatcher||ldealy||Ideal; ||Reals.
4. Dispatcher||ldealp]|Idealy ||Ideals.

Lemma 8.3. The following hold for every.
1. RealSig(1), RealSig(4)g, ... in Realy and IdealSig(1), IdealSig(4), ... in Ideal, are sequential under the
automatorDispatcher||Real; ||Reals for the sequence < 3d < 6d < ...
2. RealSig(2), RealSig(5)k, . .. in Real; and IdealSig(j), IdealSig(5), ... in Ideal; are sequential under the
automatorDispatcher||ldeal||Real, for the sequenceé < 4d < . ..
3. RealSig(3), RealSig(6), . . . in Realy and IdealSig(3), |dealSig(6)y, ... in ldeal, are sequential under the
automatorDispatcher||Ideal ||Ideal, for the sequencgd < 5d < ...

Proof. Follows directly from Lemma 8.1. O

Since each ideal servigehas the same lifetime as the real serviceve can apply Theorem 7.7 to replaReal;
with Ideal;. This is the core step in the proof of the following correctness theorem.

19

Theorem 8.4. Assume the concrete time scheme described above and that every signature scheme used in the times-

tamping protocol is complete and existentially unforgeable. By Theorem 6.2, this ifRgdiSss(5) <§,§;"p§ IdealSig()

for everyj € SID. Assume further that, for every pair of polynomidis q), there exists a negligible function

such thatRealSig(j) < ,{,f‘;}'g} IdealSig(j) for everyj € SID. ThenRealSigSys < IdealSigSys, whereFj, :=
Ujesmk{{failj}}for everyk.

Proof. We apply Theorem 7.7 three times:
1. Instantiate’? with Dispatcher||Real; ||Real and.A with Realp.
2. InstantiateB with Dispatcher||Idealy||Real; and.A with Real;, and
3. InstantiateB with Dispatcher||Idealy ||Ideal; and.A with Reals.
Step 1:Itis easy to see that for each an& SID, RealSig; € Realy is comparable tddealSig; € Idealy. Observe
also that compatibility conditions are also satisfied. The number of componétsiin, is bounded by the cardinality
of the setSID;,. SinceSIDy, is the set ofp(k)-bit numbers for some polynomial the size ofSID, is bounded by
some exponential ik. We use this exponential for the bound in Theorem 7.7. By Lemma 8.2 Parts 1 and 2, we
know that conditions on the complexity bounds are met. By Lemma 8.3 Part 1, we exhibit the needed sequence of

positive reals for sequentiality. By Theorem 6.2, we have for every pair polynoméaldq, there exists a negligible

function such thaRealSig; <[(il)} IdealSig;.

By the result of Step 1, we géDispatcher||Realy||Real; ||Reals) gfgg ot (Dispatcher||ldealy||Real;[|Reals), where
(Fo)r = {{failo}, {fails}, ...} for everyk.
Step 2: Similar to Step 1, using Part 2 and 3 of Lemma 8.2 and Part 2 of Lemma 8.3. By the result of step 2, we
getDispatcher|[Idealy||Real; ||Real, implementDispatcher||ldealy|/Ideal; ||Real,, where, for everyk, (Fy)y is the set
{{fai|0}7 {fai|1}7 {fa”g}, {fai|4}, .. }
Step 3: Similar to Step 2, using Part 3 and 4 of Lemma 8.2 and Part 3 of Lemma 8.3. By the result of step 3, we
getDispatcher||ldealy ||Ideal; ||Real, implementDispatcher|[ldealy ||Ideal; || Ideals, where, for everyk, (F); is the set

{{failo}, {fail, }, {failo},...}.

Finally, we combine these three using transitivity (Lemma 5.3).

—neg pt

O

9 Conclusion

We augment the Task-PIOA model with real time information on task schedules. This allows us to express compu-
tational restrictions in terms of processing rates with respect to real time. As demonstrated by the Turing machine
simulation of Section 4, this new complexity model is similar to the standard PSPACE model.

The long-term implementation relatiof..g o iS largely inspired by the timestamping service example of Sec-
tion 8. We capture the idea that, while an unbounded environment will eventually succeed in guessing a secret key, we
could control the rate at which these successes occur. By virtue of the sequential composition theorem, it is sufficient
to analyze each signature service in isolation, checking that the adversary cannot break the service too quickly.

In the future, we plan to study general security definitions based on long-term implementation, and to conduct
formal analysis of practical long-lived protocols. In addition, we plan to generalize our framework to allow the
computational power of the various system components to increase with time.

References

[1] D. Bayer, S. Haber, and S. W. Stornetta. Improving the efficiency and reliability of digital time-stamping. In
R. M. Capocalli, A. De Santis, , and U. Vaccaro, edit@sguences II: Methods in Communication, Security, and
Computer Scieng@ages 329-334. Springer-Verlag, 1993. (Proceedings of the Sequences Workshop, 1991).

[2] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Moni Naor,
editor, Proceedings of the 42nd Annual Symposium on Foundations of Computer Spmyme 136-145. IEEE
Computer Society, 2001. Full version availabletdtp://eprint.iacr.org/2000/067

[3] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala.
Analyzing security protocols using time-bounded Task-PlOBsscrete Event Dynamic Systemi$(1), 2008.
49 p., to appear. (Full version available lotp://eprint.iacr.org/2005/452).

20

[4] S. Haber. Long-lived digital integrity using short-lived hash functions. Technical report, HP Laboratories, May
2006.

[5] S. Haber and P. Kamat. A content integrity service for long-term digital archiveBrdceedings of the IS&T
Archiving Conference2006. Also published as Technical Memo HPL-2006-54, Trusted Systems Laboratory,
HP Laboratories, Princeton.

[6] R. Kusters. Simulation-Based Security with Inexhaustible Interactive Turing Machind2toteedings of the
19th IEEE Computer Security Foundations Workshop (CSFW-19 2086&s 309-320. IEEE Computer Society,
2006.

[7] P.D. Lincoln, J.C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol
analysis. InProceedings of ACM CCS-3998.

[8] N.A.Lynchand M.R. Tuttle. Anintroduction to input/output automag&Vl Quarterly 2(3):219-246, September
1989.

[9] M. Merritt, F. Modugno, and M.R. Tuttle. Time constrained automat#&rbteedings of CONCUR 199olume
527 of LNCS pages 408-423, 1991.

[10] J. Muller-Quade and D. Unruh. Long-term security and universal composabilitfhéory of Cryptography,
Proceedings of TCC 200volume 4392 o NCS pages 41-60. Springer-Verlag, March 2007. Preprint on IACR
ePrint 2006/422.

[11] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message
transmission. INEEE Symposium on Security and Privagages 184-200, Oakland, CA, May 2001. IEEE
Computer Society.

21

Dispatcher(k : N)
Signature

Input:
tiCk(t : Tk)
reqCert(rid : RIDy,x : Xi)
reqCert(rid : RIDy,x : Xg,t: Ty,
o1: (Zk)L,02: By, 5 : SID)
reqCheck(rid : RIDy,xz : X, t : Ty,
o1:(Zk)1,02: Xk, 7 : SID)
respSign(rid : RIDy,0 : X);,j € SID
respVer(rid : RIDy,b: Bool);, j € SID
Output:
reqSign(rid : RIDy, m : My);,j € SID
reqVer(rid : RIDy,m : My,o : Xy);,j € SID
respCert(rid : RIDy,0 : Xk, j : SID)
respCert(rid : RIDy, false)
respCheck(rid : RIDy,b : Bool)
Internal:
denyVer(rid : RIDy,op : {'cert’,/ check'},
m: My,0: 3, j: SID)

Transitions
tick(t)
Effect:
clock ==t

reqCert(rid, x)
Effect:
if currCt < bthen
toSign := enq(toSign, (rid, (z, clock, L)))
currCt := currCt + 1

reqCert(rid, x,t,01,02,7)
Effect:
if currCt < bthen
toVer := enq(toVer, (rid,’ cert’,(z,t,01),02,7))
currCt := currCt + 1

reqCheck(rid, z,t,01,02,7)
Effect:
if currCt < bthen
toVer := enq(toVer, (rid,’ check’,{(z,t,o1),02,7))
currCt := currCt + 1

reqSign(rid, m);
Precondition:
head(toSign) = (rid, m)
j = pref(clock)
—pendingSign
Effect:
pendingSign = true

respSign(rid, 03);
Effect:

if pendingSign A (3m)(head(toSign) = (rid, m, j)) then

choosem wherehead(toSign) = (rid, m, j)
toSign := deq(toSign)

pendingSign := false

chooser, t where(3o2)(m = (z,t,02))
certified := enq(certified, (rid, 03, 7))

denyVer(rid, op, m, 02, j)
Precondition:
head(toVer) = (rid, op, m, o2,7)
j ¢ usable(clock)
Effect:
toVer := deq(to Ver)
if op =’ cert’ then
certified := enq(certified, (rid, false))
elsechecked := enq(checked, (rid, false))

Tasks

reqSign = {reqSign(x, %)« }

reqVer = {reqVer(x*, x, %) }

respCert = {respCert(x, *, x)} U {respCert(x, false)}
respCheck = {respCheck(x, *)}

denyVer = {denyVer(x, x, %, *, %)}

States

clock : Ty, init 0

toSign : que(RIDy, x M), init empty
toVer : que(RIDy, x {'cert’, check’}
XM x ¥ x SID), init empty

pending Ver, pendingSign : Bool, init false
certified : que((RIDy, x ¥ x SID)
U(RIDy, x {false})), init empty

checked : que(RIDj, x Bool), init empty
currCt : N, init 0

reqVer(rid, m, 02);
Precondition:
(op) (head(toVer) = (rid, op,m, o2, j)
j € usable(clock)
—pendingV er
Effect:
pending Ver := true

respVer(rid, b)
Effect:
if pendingVer

A(Jop, m, o2)(head(toVer) = (rid, op, m, o2, 7)) then
chooseop, m, o2 wherehead(to Ver) = (rid, op, m, o2, j)

toVer := deq(to Ver)
pending Ver := false
if op =’ cert’ A —bthen
certified := enq(certified, (rid, false))
if op =’ cert’ A bthen
chooser, t where(3o1)(m = (z,t,01))
toSign := enq(toSign, (rid, (z,t,02)))
if op =’ check’ then
checked := enq(checked, (rid, b))

respCert(rid, false)
Precondition:

head(certified) = (rid, false)
Effect:

certified := deq(certified)

currCt := currCt — 1

respCert(rid, o3, j)
Precondition:

head(certified) = (rid, o3, j)
Effect:

certified := deq(certified)

currCt := currCt — 1

respCheck(rid, b)
Precondition:

head(checked) = (rid, b)
Effect:

checked := deq(checked)

currCt := currCt — 1

22

Figure 6: Task-PIOA Code fdbispatcher(k : N)

