
Building a Collision-Resistant Compression Function from
Non-Compressing Primitives

Thomas Shrimpton1 and Martijn Stam2

1 University of Lugano and Portland State University thomas.shrimpton@unisi.ch
2 EPFL martijn.stam@epfl.ch

Abstract. We consider how to build an efficient compression function from a small number of random, non-
compressing primitives (fixed-key blockciphers were our original motivation). Our main goal is to achieve a level
of collision resistance as close as possible to the optimal birthday bound. We present a 2n-to-n bit compression
function based on three independent n-to-n bit random functions, each called only once. We show that if the
three random functions are treated as black boxes (i.e., modelled as random oracles), finding collisions requires
Θ(2n/2/nc) queries for c ≈ 1. We also give a heuristic, backed by experimental results, suggesting that the
security loss is at most four bits for block sizes up to 256 bits.
We believe this is the best result to date on the matter of building a collision resistant compression function from
non-compressing functions. It also relates to an open question from Black et al. (Eurocrypt’05), who showed that
compression functions that invoke a single non-compressing random function cannot suffice.

Keywords. Hash Functions, Random Oracle Model, Compression Functions, Collision Resistance.

1 Introduction

Hash functions are a central cryptographic primitive, appearing in countless protocols and applications.
Dedicated hash functions such as MD5 and SHA1 have dominated practice, as these are relatively fast and,
until recently, they were believed to resist collision-finding attacks. But this belief has been shown to be
unfounded: successful attacks have been published against most members of the MD/SHA-family. This has
prompted a renewed interest in design methodologies for hash functions, with a particular emphasis on
providing formal guarantees of collision resistance (along with other properties).

The design of hash functions usually proceeds in two stages. First one designs a compression function
with fixed domain, typically bitstrings of some small length. One then applies a domain extension method,
such as the Merkle-Damgård transform [9, 21], to the compression function in order to construct a hash
function for messages of arbitrary length. The first part has our interest; in particular, the central problem
considered by this paper is the following one:

Given a (small) number of independent n-to-n bit random (one-way) functions, construct a 2n-to-n
bit compression function with provable collision resistance as close as possible to the optimal 2n/2

birthday bound.

We consider information-theoretic adversaries in order to make a strong statement about collision resistance.
That is, we measure the adversary’s complexity only by the number of queries it makes to its oracles for
the non-compressing primitives. Of course, in practice, time complexity or even time-space complexity
(the product of space and time) are arguably more relevant. But query complexity is the most conservative
resource measure: it yields a lower bound on the other two measures (and hence the actual costs of mounting
an attack). Moreover, finding lower bounds in the other two models, other than by query complexity, is
notoriously hard.

An earlier version[30] of this work was presented at the Ecrypt Workshop on Hash Functions (2007).



The underlying n-to-n bit primitives are modelled as random oracles. In particular, we only make avail-
able an oracle for the forward function evaluation and not for its inverse. Contrast this with a random two-
way permutation, such as a blockcipher with its key fixed, where oracles for both computing the function
and its inverse are available. To emphasize the difference we will explicitly distinguish between random
one-way function, one-way permutation or two-way permutation. Our random one-way functions are in fact
the same as Maurer and Tessaro’s public random functions [19]. We note that standard caveats apply when
instantiation the random functions in practice due to our use of random oracles.

Ideally we would like to make do with just one random function, and to invoke it once for each n-bit
block of message digested; such a compression function would be called rate-1. Unfortunately, Black et
al. [4] have given a negative result that all but rules this out. In particular, if one uses the MD-transform over
a 2n-to-n-bit compression function that makes only one call to a random n-to-n-bit function, then there
always exists an information-theoretic adversary that finds collisions efficiently (i.e., using just few calls to
the non-compressing primitive).3

OUR CONTRIBUTION. We give a strong positive result in this direction: we present a compression function
that calls random n-to-n bit functions f1, f2, f3, and that has almost optimal collision resistance (here n is a
parameter that can be chosen freely). The construction is as follows:

Hf1,f2,f3(V,M) = f3 (f1 (M)⊕ f2 (V ))⊕ f1 (M) .

A picture of the compression function is given in Figure 1.
When we consider the construction for increasing n, we show that any adversary making Θ(2n/2/nc)

total oracle queries, for c > 1, has a vanishing probability of finding a collision in H . On the other hand,
for c < 1 we provide compelling arguments that an adversary exists that will find a collision with high
probability. Thus it is fair to say that finding collisions takes around Θ(2n/2/n) queries.

We remark that our compression function can easily be transformed into a hash function with arbitrary
domain while preserving the collision resistance (e.g., using the Merkle-Damgård transform). Moreover,
although our proven bound on collision resistance falls somewhat short of the optimal Θ(2n/2), we believe
it is still sufficiently close to be useful in practice. Indeed, for n of cryptographic relevance we give estimates
of the exact collision resistance: it turns out that, for n up to 256 bits, the loss is at most 4 bits of collision
resistance.

As a note of warning, we do not claim any “beyond-birthday” properties one might hope for from a hash
function, such as resistance against multi-collisions and optimal preimage resistance. Indeed, preimages can
typically be found in O(22n/3) queries, rather than the desired Ω(2n).

RELATED WORK. Bellare and Micciancio [1] introduce incremental hash functions, which in principle
could be built upon a non-compressing primitive. Crucial differences with our work are that they build an
entire hash function, not just a compression function, and that the collision resistance of their schemes is not
based on query complexity (usually just n queries suffice for a collision), but on the presumed computational
hardness of combining the query answers into an actual collision.

Bernstein [3] bases his Rumba20 compression function on these ideas. He xor’s together the output
of four pseudorandom generators, components of the Salsa20 streamcipher. By modelling the underlying
primitives as (independent) random one-way functions, he shows an upper bound (and estimate) on the
full complexity for collision finding of O(2n/3), well below the birthday bound (and our lower bound).

3 Black et al. [4] phrase their results in terms of two-way random permutations, but their result holds for the random one-way
functions we consider as well.

2



V f2

M f1

⊕
f3

⊕
H(V,M)

n n

n

Fig. 1: The triple-function compression function. The functions f1, f2, f3 are random n-to-n bit functions.

Note that the query complexity for finding collisions is Θ(2n/8) (cf. Wagner [32]). The expanding nature of
Bernstein’s primitives somewhat complicates theoretical efficiency comparisons, but the rate of his scheme
is arguably 1/2, so more efficient than ours.

If one is willing to digest only one bit at a time (instead of n), then existing techniques already provide a
way to construct an optimally collision-resistant hash function out of two random functions f0, f1 : {0, 1}n →
{0, 1}n. Define a compression function g : {0, 1}n+1 → {0, 1}n by g(b ||V ) = fb(V ) that takes a single
bit b of message to select which function will process the chaining value V . One can show that g is a com-
pletely random function iff both f0 and f1 were, and by using g in the block-chaining hash function from
Damgård [9] one obtains a hash function that digests one bit per iteration.4

Maurer and Tessaro [19] consider the problem of constructing a function C : {0, 1}m(n) → {0, 1}l(n)

given a n-to-n bit random one-way function f . They cast security in the indifferentiability framework and
point out that the domain extension is actually far more challenging than a range extension. For all ε > 0 they
give a construction secure against adversaries making Θ(2n(1−ε)) queries. Setting m(n) = 2n and l(n) = n
gives rise to a 2n-to-n bit compression function, setting ε = 1/2 ensures optimal collision resistance. Thus
from a security perspective this method beats ours. However, for these parameters, one seems to need 99 f -
calls5, meaning it has rate 1/99. Our construction is considerably more efficient, but at the price of focussing
primarily on collision resistance.

There has also been extensive research into the construction hash functions based on blockciphers.
Davies-Meyer [20], Matyas-Meyer-Oseas [18], and Miyaguchi-Preneel [23, 28] are all well-known 2n-to-n
bit compression functions based on a single call to a blockcipher with n-bit key operating on n-bit blocks.
These type of rate-1 constructions were later systematically studied by Preneel et al. [28] and Black et al. [5],
who identified twelve distinct constructions that provide optimal collision resistance when the blockcipher
is modelled as an ideal cipher.6

Most of the work related to blockcipher-based compression functions allows per-round rekeying [5, 14,
25, 28]. As such, the primitive already compress in the sense that they take more input (key and plaintext
data) than that they provide output. This significantly eases design and proof. Rekeying also has the draw-
back of entailing a significant computational cost.7 Thus a lower rate fixed-key solution might actually be
more efficient. Fixing the key would make use of the blockcipher in a more natural way, namely setting up

4 Note that the same hash function emerges by using Damgård’s construction based on a pair of claw free permutations[8], but
using the functions f0 and f1 instead.

5 If we charge a single call to a n-to-12n f̃ for 12 calls to f using domain separation and subsequent concatenation.
6 Black et al. [5] showed that an additional eight constructions do not yield collission resistant compression functions, yet still

lead to collision resistant hash functions when properly MD-iterated.
7 Gladman’s implementation survey [13] shows that AES key scheduling would account for nearly 50% of the overall runtime.

3



a key once and then processing relatively large amounts of data with it (the way that blockciphers are used
for encryption). A fixed-key blockcipher would be modelled as a random two-way permutation.

Black et al. [4] explicitly consider fixed-key blockciphers and show an impossiblity result for rate-
1 schemes, but they do not consider compression functions that call out to more than one primitive per
message block (and thus have a rate less than one).

Preneel et al. [27] propose a family of fixed-key constructions, but no formal security proof is given. The
rate of their scheme is always strictly smaller then 1/2 and typically between 1/4 and 1/8.

The emphasis on blockcipher based hashing can be understood both historically and practically. Block-
ciphers have long been the central primitive in symmetric key cryptography, and there exists some measure
of confidence in blockcipher designs. From a practical perspective, one might like to reuse optimized code
or hardware implementations of blockciphers that are already implemented for encryption and message au-
thentication within certain applications. That said, there seems to be no intrinsic theoretical reason to restrict
designs to using blockciphers, hence our focus on simple random one-way functions (cf. [3, 19]).

The work on constructing double-length hash functions [14, 25] could be used as an alternative means to
turn a number of non-compressing random functions into a compressing one, as explained in Appendix A.
Although it is not the focus of this paper, one can conversely use our method to get a rate-1/3 4n-to-2n bit
double-length compression function with close to optimal collision resistance (in the output size) based on
a set of 2n-to-n bit random functions.

2 Preliminaries

GENERAL NOTATION. For a positive integer n, we write {0, 1}n for the set of all bitstrings of length
n. When X and Y are strings we write X ||Y to mean their concatenation and X ⊕ Y to mean their
bitwise exclusive-or (xor). Unless specified otherwise, we will consider bitstrings as elements in the group
({0, 1}n,⊕).

For positive integers m and n, we let Func(m,n) denote the set of all functions mapping {0, 1}m into
{0, 1}n. We write f

$← Func(m,n) to denote random sampling from the set Func(m,n) and assignment
to f . Unless otherwise specified, all finite sets are equipped with a uniform distribution.

DISTRIBUTIONS AND TENSORS. With ({0, 1}n)q we denote the set of q-element vectors, or q-vectors,
in which each element is an n-bit string. When a ∈ ({0, 1}n)q and b ∈ ({0, 1}n)q, we will write a =
(a1, . . . , aq) and b = (b1, . . . , bq) when we wish to stress its components.

Fix a value q, and let Q = q2. We define a ⊗ b ∈ ({0, 1}n)Q as the tensor product under exclusive-or,
where we identify ({0, 1}n)q×q with ({0, 1}n)q·q = ({0, 1}n)Q. More concretely (a⊗ b)i,j = ai ⊕ bj for i
and j in [1, . . . , q]. (Whenever possible we will try to use dummy i to refer to elements of a and dummy j
to refer to those of b.) If A and B are both distributions over ({0, 1}n)q, this tensor operation induces a
distribution over ({0, 1}n)Q, which we will denote by the symbol A⊕B. Unless otherwise specified, we will
assume throughout that A and B are two distributions induced by sampling from ({0, 1}n)q without replace-
ment. We will use U to denote the uniform distribution over ({0, 1}n)Q (where n and Q will often follow
from the context). Thus U corresponds to sampling Q strings from {0, 1}n uniformly and independently
with replacement.

If in a random sample some value appears exactly k times, we say there is a k-way collision in that
sample. Let MU (k) be the random variable describing the number of k-way collisions when the samples
are drawn according to the distribution U . Similarly, let MA⊕B(k) be the random variable describing the
number of k-way collisions when the samples are drawn according to the distribution A⊕B.

4



COMPRESSION FUNCTION SECURITY. When algorithms are provided with oracles, we write them as su-
perscripts. A collision-finding adversary is an algorithm with access to one or more oracles, whose goal
it is to find collisions in some specified hash function. All adversaries in this paper are computationally
unbounded (information theoretic). Without loss of generality, we assume that adversaries do not repeat
queries to oracles, and that they do not query an oracle outside of its specified domain.

A compression function is a mapping from {0, 1}m × {0, 1}` to {0, 1}n for some m, `, n > 0 where
m + ` ≥ n. For us, a compression function H must be given by a program that, given (V,M), computes
H ···(V,M) via access to a finite number of specified oracles.

Definition 1 Let n > 0 be an integer parameter, and fix an integer k > 0. Let H : {0, 1}n × {0, 1}n →
{0, 1}n be a compression function taking k oracles. LetA be a collision-finding adversary for H that takes k
oracles. The collision-finding advantage of A is defined to be

Advcoll
H(n)(A) = Pr

[
f1, . . . , fk

$← Func(n, n), (V,M), (V ′,M ′)← Af1(·),...,fk(·) :

(V,M) 6= (V ′,M ′) and Hf1,...fk(V,M) = Hf1,...,fk(V ′,M ′)
]

We will require that the compression function H is in fact defined for arbitrary positive integers n, thus
enabling asymptotic statements about collision resistance. In this case, we can meaningfully consider the
non-uniform adversaries, regarding the functions f1, f2, and f3 as length-preserving random oracles. The
goal is then to limit the advantage against adversaries whose query-complexity falls within a certain class.

3 Some Background on Collision Probabilities

COLLISIONS IN UNIFORM SAMPLES. The susceptibility of hash functions to collisions has been heavily
studied. The generic case can be termed in the language of occupancy urn models, a well-known tool from
discrete probability theory. (Johnson and Kotz [15] and Feller [10] are the standard references, Girault et
al. [12] and Preneel [26, Appendix B] are cryptographically oriented.) We give a brief overview of the main
results that are relevant to our present cause.

One central concern for collision-finding attacks is to determine how many k-way collisions are ex-
pected for some fixed k, typically k = 2. If the hash function is modelled as a random oracle with range
{0, 1}n, and Q domain points are hashed, then the number of k-way collisions is MU (k) with expected
value E [MU (k)] = N

(
Q
k

) (
1
N

)k (
1− 1

N

)Q−k, where N = 2n. Thus, E[MU (k)] follows a (scaled) binomial
distribution with parameters 1/N and Q. If we let Q and N grow such that Q/N < 1, the binomial distri-
bution can be approximated by a Poisson distribution with parameter λ = Q

N . This well known “urns and
balls” result is captured in the following theorem, which also gives a more general result on the distribution
of k-way collisions.

Theorem 2 Let Q and N be positive integers, and let λ = Q
N . Then for k ≥ 2 the random variable MU (k)

follows asymptotically a Poisson distribution with parameter λk, where

Pr[MU (k) = t] = e−λk
λt

k

t!
and λk = Ne−λ λk

k!

when Q,N tend to infinity such that λ→ 0.

5



The expected number of k-way collisions is therefore λk (since the parameter of a Poisson distribution
equals its expected value). Furthermore, the λk themselves are also distributed according to a scaled Poisson
distribution with parameter λ, as expected. The probability of finding any sort of collision is approximately
Q2

2N .
Sometimes one is more interested in the expected waiting time before the first k-way collision occurs.

If the probability for finding a collision after q queries is at most ε, then the expected waiting time is at least
(1 − ε)q. Thus upper bounding collision probabilities simultaneously lower bounds the expected waiting
time, which is why we restrict our attention to the former.

In bounding the probability of finding a collision in our compression function, we will also need the
distribution of k-way collisions when the samples from {0, 1}n are distributed according to A⊕B. It seems
that occupancy is very similar to that of a fully uniform distribution, as formalized in Conjecture 3.

Conjecture 3 For some positive integers q, n, let Q = q2 and N = 2n, and let λ = Q/N . Let q-vectors
a and b have elements drawn according to A and B, respectively (i.e., uniformly from {0, 1}n without
replacement). Then for k > 1, MA⊕B(k) follows asymptotically a Poisson distribution with parameter λk,
where

Pr[MA⊕B(k) = t] = e−λk
λt

k

t!
and λk = Ne−λ λk

k!
,

when q, n tend to infinity such that λ→ 0.

Although we could not find a proof for the conjecture in full, proofs for the parts of it used in the sequel
(to bound the collision finding probability either upwards or downwards) will be shown, so our results
do not depend on the validity of the conjecture. In particular, we will upper bound Pr[MA⊕B(k) > 0]
and—also serving as partial justification of the conjecture—we show in Appendix B that asymptotically
E(MA⊕B(k)) = λk.

4 A Construction Based on Three Length-Preserving Random Functions

Let f1, f2, f3 ∈ Func(n, n) be three n-to-n bit functions, for some n > 0. We define the following 2n-to-n
bit compression function (again, see Figure 1):

Hf1,f2,f3(V,M) = f3 (f1 (M)⊕ f2 (V ))⊕ f1 (M) .

We want to show that H is collision-resistant, so that it can be iterated to create a collision-resistant hash
function [2, 9, 11, 21]. In the sequel, we will model f1, f2, and f3 as three independent, uniform elements
of Func(n, n). We will then bound the probability that a computationally unbounded adversary can find a
collision as a function of the number of its oracle queries. We will also provide a matching lower bound by
exhibiting an attack.

For a classical birthday attack, an attacker would need to evaluate the compression function H on
roughly 2n/2 inputs to succeed. Clearly, one can obtain this many evaluations by querying each of the
f1, f2, f3 oracles on this many points. However, the structure of the compression function may make things
easier for the adversary. In particular, asking q queries to each of the oracles can provide more than q eval-
uations of H , due to internal xor-collisions at the input to f3. In the next section we will introduce the yield
of a query set, and use it to measure the number of H evaluations an adversary can make given q queries to
each of the oracles.

6



But before beginning any proofs, let us attempt to build some intuition about the compression function
and the necessary requirements on f1, f2, f3 when instantiated in practice.

PRACTICAL CONSIDERATIONS. Firstly, a collision in either f1 or f2 easily leads to a collision on the full
compression function. A collision in f3 does not appear to be useful, since to make a collision in H one
needs to control the output of f1 as well.

Secondly, if either f1 or f2 are invertible, an adversary can find collisions in H by making O(2n/4) oracle
queries. Say that f2 is invertible. Then the adversary makes 2n/4 queries to both f1 and f3. With reasonable
probability this will result in an internal xor-collision f1(M)⊕ f3(Z) = f1(M ′)⊕ f3(Z ′). Inverting f2 on
Z ⊕ f1(M), resp. Z ′ ⊕ f1(M ′) will give a collision for H . Similarly if f1 is invertible, call f2 and f3 each
2n/4 times to find an internal xor-collision f2(V )⊕ f3(Z)⊕ Z = f2(V ′)⊕ f3(Z ′)⊕ Z ′. Now inverting f1

on Z ⊕ f2(V ) and Z ′ ⊕ f2(V ′) will complete the collision. (Clearly, if both f1 and f2 are invertible, only
two calls to f3 are needed to find a collision.) Invertibility of f3 does not appear to be useful for attacking H .

Thus we will need (at least) for f1 and f2 to be collision-resistant and one-way. In particular, this rules
out the straightforward blockcipher implementation fi(M) = EKi(M) for fixed (distinct) keys Ki, i ∈
{1, 2, 3}, as this violates the one-way requirement. One could consider instantiating the functions f1, f2 and
f3 with a simple blockcipher-based function, for example as fi(X) = EKi(X) ⊕X , (i ∈ {1, 2, 3}, where
Ki is a fixed and publicly known key). These are optimally inversion and collision-resistant in the ideal ci-
pher model [5]. They are not, however, indifferentiable from a random oracle, even when the blockcipher E
is modelled as an ideal cipher [7].8 As such it would be interesting to see whether our construction can
be proven secure (with similar collision resistance), in the ideal cipher model with the fi replaced with a
blockcipher-based instantiation. We note that there is no need to restrict oneself blockcipher-based imple-
mentations of functions f1, f2, f3. Faster alternatives might be available by using for instance streamcipher-
based components (cf. [3]).

VARIANTS. Several variants to this construction are possible. From the proof, it will be clear that our
construction would work if the random functions were replaced by random one-way permutations as well.
Equally clear is that V and M can be interchanged (or more generally any bijection can be applied to the
inputs, and similarly any bijection can be applied to the output). More interesting is the case when two of
the three functions are identical, in particular if f1 = f2. We have reasons to believe that this only results in
a marginally decreased security (the proof carries through, apart from the bounding of a k-way collision).

We have already mentioned that a collision in f1 or f2 yields a collision in the full compression function.
In fact, it is even worse, since a single colliding pair M,M ′ for f1 can be used for any chaining value V . That
is, if f1(M) = f1(M ′), then for all V it holds that H(V,M) = H(V,M ′). The precise ramifications of such
an attack are unclear, although it for instance allows finding k-way collisions in a standard (strengthened)
MD-iterate in query complexity Θ(2n/2), which is an improvement over Joux’ [16] Θ(2n/2 log k). We will
not delve into this in great detail; actual attacks based on this property will also crucially rely on the iteration
method used (and if multicollisions are an issue one should not rely on the standard MD-transform). We do
note that one could change f2’s input to V ⊕M (without losing any of the ordinary collision resistance).
This way a single collision in f1 still leads to many collisions in H , but in contrast with the previous version
they will be of the form H(V,M) = H(V ′,M ′) with V 6= V ′. This might hinder chaining the collisions
when iterated.

Efforts to design a provably collision-resistant 2n-to-n bit compression function of rate-1/2 (i.e., using
only two calls to length-preserving random functions) and simple non-cryptographic operations (like xor

8 The recent results of Chang et al. [6] extend this to all of the 20 provably collision-resistant constructions from [5].

7



and addition modulo-2n, cf. [28]) all failed. Specifically, none achieved collision resistance anywhere near
the optimal Θ(2n/2); all fell to attacks requiring at most O(2n/4) queries.9 That said, our work does not rule
out the possibility of such constructions. We leave open this question.

5 Proof of Collision-Resistance

In this section we will show two things. On the one hand, for any c > 1, any adversary making at most
O(2n/nc) queries has a vanishing advantage, that is, Advcoll

H(n)(A) = o(1). On the other hand, for any
c < 1 we exhibit an adversary that asks Θ(2n/nc) queries and whose advantage can be bounded away from
0, that is Advcoll

H(n)(A) = Ω(1). This provides a fairly complete asymptotic characterization of the newly
proposed construction.

SETTING UP THE PROOF. We will distinguish between three ways for an adversary to find a collision in H .
It can try to find a collision in f1 or f2, since either would lead to a collision in H , as already shown above.
Failing that, it can try to find a collision in the final output. This leads to the following upper bound

Advcoll
H(n)(A) ≤Pr[A finds collision in f1] + Pr[A finds collision in f2]

+ Pr[A finds collision in H|no collisions in f1 or f2]

and the corresponding lower bound

max

 Pr[A finds collision in f1],
Pr[A finds collision in f2],

Pr[A finds collision in H| no collisions in f1 or f2]

 ≤ Advcoll
H(n)(A) .

The probabilities of finding a collision in f1 or f2 are ordinary collision-finding problems and hence
well understood. For q ≤

√
N these probabilities roughly sum up to q2

N . In particular, for q = O(2n/2/nc)
with c > 0 the probability will tend to zero for random functions f1 and f2. Needless to say, if f1 and f2 are
(random) permutations, no collisions exist and both probabilities are always zero.

In any case, we can concentrate on the probability of A finding a collision in H when f1 and f2 are
collision free. First, some assumptions. We assume that the adversary makes exactly q queries to each of
the three random oracles, f1, f2, f3. We do so without any loss of generality, since given any adversary that
makes qi queries to fi there is an adversary that makes q = max(q1, q2, q3) queries to each of the oracles
with identical success probability. Finally, still without loss of generality, we will assume that adversaries
actually compute Hf1,f2,f3(V,M) and Hf1,f2,f3(V ′,M ′) before outputing their candidate collisions. (In
particular, this means that all necessary queries to f1, f2 and f3 are made before halting.)

REMOVING THE ADVERSARY. Normally we would imagine that the adversary makes queries to all three
oracles in some adaptive, probabilistic manner. But here we cannot only argue away the adversary’s adaptiv-
ity, but we can remove the adversary altogether. Recall that f1, f2, f3 are independent random oracles, and
let us focus for a moment on the adversary’s queries to f1, f2.

Knowing that A makes q queries to each, we can imagine preparing the answers in advance. That is,
before the adversary starts querying the oracles, we make two lists, each of q random elements, and when
the adversary makes a query to one of the two oracles f1 or f2, we supply it with the next element of the
respective list. Moreover, since the actual correspondence between query and response is irrelevant (we can

9 Moreover, finding collisions in f1(M)⊕ f2(V ) requires Θ(2n/4) queries, cf. [32].

8



arbitrarily permute the unused elements of a list without altering the observed behaviour of the f1 and f2

oracles) we might as well have provided the two lists to the adversary before any queries to f1 or f2. (Of
course, we charge the adversary for the 2q queries). In fact, since f3 is independent of f1 and f2, we can give
these lists to the adversary at the very beginning of the collision-finding game, in advance of any f3 queries.

DEFINING THE YIELD. In the proof, we will find it useful to define a quantity called the yield. Formally,
given a vector c = (c1, . . . , cQ) ∈ ({0, 1}n)Q, define

yield(c) = max
G⊆{0,1}n

|G|=q

∑
g∈G

Q∑
i=1

[ci = g]

where [true] = 1 and [false] = 0. Thus the yield counts the total number of occurences of the q most
frequent elements in a vector. We also define the yield over the tensor of two q-vectors. Given vectors
a = (a1, . . . , aq) and b = (b1, . . . , bq) in ({0, 1}n)q, we will define the yield of tensor a⊗ b to be

yield(a⊗ b) = max
G⊆{0,1}n

|G|=q

∑
g∈G

q∑
i=1

q∑
j=1

[ai ⊕ bj = g] .

Let us give some intution for this latter definition, in particular. Recall that we will give the response lists
of f1 and f2, call these a = (a1, . . . , aq) and b = (b1, . . . , bq) (resp.), to the adversary prior to its making
any f3 queries. These q queries to f3 can be made according to any strategy. One such strategy, already
mentioned in the previous section, is to query the f3 oracle on those values for which it knows the greatest
total number of xor-preimages. In this case, the yield of a ⊗ b gives an upper bound on the number of
compression function outputs that the adversary can evaluate by asking q queries to f3.

CONNECTING THE PIECES. We will now show how the yield relates to the collision-finding probability of
the adversary. Let dr, for r = 1, . . . , q, denote the number of pairs (i, j) such that ai ⊕ bj equals the input
of the r-th query to f3. Suppose that after r − 1 queries to f3, the adversary still has not found a collision.
Then it will be able to output preimages for

∑r−1
s=1 ds hash values (or, equivalently, it will be able to output

the hash value for that many preimages). With its rth call to f3 it will be able to evaluate dr new hash
values, and the probability that one collides with one of the older values is therefore upper bounded10 by
dr

∑r−1
s=1 ds/2n. Summing over all queries to f3 leads us to the following upper bound

Pr[A finds collision in H| no collisions in f1 or f2] ≤
q∑

r=1

r−1∑
s=1

drds/2n .

What can we say about this value? Firstly, the possible values of dr are determined by a and b and the
maximum

∑r
s=1 ds = yield(a ⊗ b). Suppose we allow the adversary to partition yield(a ⊗ b) arbitrarily

in q (real) parts dr. The optimal way, in the sense of maximizing the sum above, is then to choose dr =
yield(a ⊗ b)/q for all r = 1, . . . , q (optimality of this choice can be shown by induction). In that case we

10 The upper bound is not always tight. Consequently, picking the elements corresponding to the maximal yield is sometimes not
the optimal strategy for finding a collision; picking elements that are slightly less common might actually increase the chances
of finding a collision, though the same upper bound will apply.

9



have

Pr[A finds collision in H| no collisions in f1 or f2] ≤
q∑

r=1

r−1∑
s=1

drds/2n

≤
q∑

r=1

r−1∑
s=1

(yield(a⊗ b)/q)2/2n

≈ yield(a⊗ b)2/2n+1 .

Our task is to put bounds on the expected value of yield(a ⊗ b), or even better its square, where the
elements in a and b are chosen independently, uniformly at random from {0, 1}n (without replacement).

UPPER BOUNDING THE YIELD. We now upper bound the yield, and hence the above collision-finding
probability. We recall that the yield is the sum of the frequencies of the q most frequent elements in a⊗ b.
As such, the trivial upper bound on the yield is the cardinality of a ⊗ b, that is Q = q2. Moreover, if all
collisions in a⊗ b are less than k-way, then the yield is (strictly) smaller than kq.

Let p be an upper bound on the probability that at least one collision that is at least k-way occurs in
a⊗ b. Then conditioning on this event and employing the above observations yields that

Pr[A finds collision in H| no collisions in f1 or f2] ≤ (kq)2/2n + p .

Thus, if we show that for a particular choice of k and q we have that both terms in the sum are vanishing,
we are done. It turns out that k = nd and q = 2n/2/nc suffice for suitably chosen constants c, d; let’s work
it out.

Substitution in the first term, gives n2(d−c) which tends to zero iff c > d.

For the second term, we need to upper bound p, the probability of a k-way collision in a⊗b when a and
b are drawn independent of each other and both uniformly at random from {0, 1}n without replacement.
Now suppose that we have a k-way collision, then we can look at the positions in the matrix a ⊗ b that
contribute to this collision. Suppose both (i, j) and (i′, j′) are involved, so ai⊕ bj = ai′⊕ bj′ . We claim that
if i = i′ (or j = j′), then also (i, j) = (i′, j′). Clearly, if i = i′ then also ai = ai′ and, because both pair of
indices xor to the same value, bj = bj′ . But b does not contain any collisions, thus j = j′.

This allows us to bound the probability on a k-way collision. Firstly, we need to choose the k indices
(i, j) that lead to the collision. For the indices i and j there are

(
q
k

)
possibilities each, moreover given k

indices i and k indices j, there are k! ways of hooking them up. Given the locations of the collision, we have
2n different values the collision can take. Then the values of ai are still unrestricted, but the values of bj are
now determined. Without restrictions, there would have been N !/(N − q)! ways to choose b, but this now
reduces to (N − k)!/(N − q)!. This leads us to:

p ≤
(

q

k

)2

k!2n (2n − k)!
(2n)!

=
(q!)22n(2n − k)!
((q − k)!)2k!(2n)!

.

10



Now we need that this quantity tends to zero. Taking logarithms, using Stirling’s approximation for-
mula,11 and filling in q = 2n/2/nc and k = nd leads to

ln p ≤ (2q + 1) ln q − 2q + n ln 2 + (2n − k +
1
2
) ln(2n − k)− (2n − k)

− (2(q − k) + 1) ln(q − k) + 2(q − k)− (2n +
1
2
) ln 2n + 2n − k ln k + k + o(1)

≤ 2k ln qk − k ln k + n ln 2− kn ln 2 + o(1)

≤ 2k(
n

2
ln 2− c lnn)− k ln k + n ln 2− kn ln 2 + o(1)

≤ −(2c + d)nd lnn + n ln 2 + o(1) .

Hence for d ≥ 1 this logarithm tends to minus infinity, and thus the probability of a k-way collision occuring,
and with it the advantage of the adversary in finding a collision in H , tends to zero.

LOWER BOUNDING THE YIELD. For given n and q, let yieldA⊕B
n (q) be the expected value of yield(a ⊗

b), for appropriately defined a and b. Using the results from Appendix B we can lower bound the yield,
specifically showing that for any c < 1, q = Ω(2n/2/nc) is sufficient for yieldA⊕B

n q to be Ω(2n/2). Thus,
one can reasonably expect that this number of queries suffices to find collisions in H .

Let c < 1 be given. Pick c < d < 1 and set q = 2n/2/nc and k = nd. If the expected number of distinct
k-way collisions is larger than q, we know that the yield is at least kq = 2n/2nd−c, which is Ω(2n/2).

By Conjecture 3, the expected number of k-way collisions is given by λk. We will show that λk/q tends
to infinity for increasing n. Now, since

λk/q =
2n/2( 1

n2c )nd
nc

(nd)!

we can take logarithms, use Stirling’s formula to approximate the factorial, and ignore smaller order terms,
thus arriving at

ln(λk/q) ≈ ln 2
2

n− (2c + d)nd lnn .

Since d < 1 the term ln 2
2 n will eventually dominate, showing that the expected number of k-way collisions

asymptotically exceeds q as required.

A NOTE ON PREIMAGE RESISTANCE. Although our goal is to demonstrate a construction that yields
a compression function with good collision-resistance, other useful properties should also be mentioned.
Ideally, finding a preimage takes expected time 2n for an n-bit primitive. To get an idea of the preimage
resistance of the current proposal, we can look at the value of q for which the yield is around 2n. If q > 2n/2,
a lower bound (and reasonable estimate) for the yield is q3/2n. Since q3/2n ≈ 2n for q ≈ 2

2
3
n it follows

that our construction is not as preimage resistant as one might wish for.

6 Poisson Heuristic to Approximate the Yield

In this section, we will derive an alternative characterization of yield(a ⊗ b). We then combine it with the
conjectured distribution of k-way collisions in A⊕B in order to recast the problem of finding the expected

11 For a positive integer k: k! ≈
√

2πk( k
e
)k, where k! is the usual factorial.

11



value yieldA⊕B
n (q) into that of determining a certain property of the tail of a Poisson distribution. The

latter problem can be tackled much more easily numerically for larger values of n. Indeed, we provide
experimental results to both validate our reformulation, as well as determining concrete estimates of the
collision resistance of our proposal in practice.

THEORETICAL BACKGROUND. Let c ∈ ({0, 1}n)Q be given (we can ignore for the moment from which
distribution c has arisen). Recall that yield(c) is the sum of the frequencies of the most frequent elements in
c. Thus, to determine yield(c), it suffices to know how many k-way collisions there are, for all k. Recalling
that Mc(k) denotes the number of k-way collisions in c, then we have:

yield(c) = max
w∈[0,...,Q]Q+1

wk≤Mc(k),
PQ

k=0 wk=q

Q∑
k=0

kwk .

To approximate yieldA⊕B
n (q), we can look what happens if we look at yield(c) for an (imaginary)

sample c whose number of k-way collisions exactly equals the expectation of MA⊕B(k) (for all k).12 We
refer Appendix B for the expectation of MA⊕B(k). (If c were drawn uniformly at random, rather than from
A⊕B, we could use Theorem 2, leading to the same approximation.) Let yieldP

n (q) be the yield based on the
Poisson heuristic corresponding to a sample size of Q = q2 elements of {0, 1}n. Then we pose the following
approximation, where λ = Q/N :

yieldA⊕B
n (q) ≈ yieldP

n (q) = max
w∈[0,...,Q]Q+1

wk≤Nλk

k!eλ ,
PQ

k=0 wk=q

Q∑
k=0

kwk .

Note that we make two types or error in this approximation. The distribution of E(MA⊕B(k)) is not exactly
a scaled Poisson distribution; moreover, the maximum of an expected vector is not the same as the expected
maximum of a vector (it is a lower bound though).

In Appendix C we provide experimental results, supporting our claim on the behaviour of expected
number of k-way collisions for the distribution A⊕B and suggesting that yieldP

n (q) is a very good estimator
for the actual yieldA⊕B

n (q). Since yieldP
n (q) can be easily computed, this gives us a handle to estimate how

secure our construction is for particular values of n (of cryptographic relevance).

ESTIMATED COLLISION-RESISTANCE. We are now ready to estimate the actual level of collision-resistance
our construction offers. For each value of n, we have determined the smallest q for which the resulting av-
erage yield exceeds 2n/2. (Note that this is not exactly equivalent to having probability half of finding
collisions, but we are confident it gives a faithful indication.)

In Table 1a we have tabulated log2 q for small values of n. Included are three versions. First we give
the value of q that, when simulating the experiment of picking A and B and computing yieldA⊕B , gives an
average yield exceeding 2n/2. Second up is the corresponding result for the experiment of picking U directly
uniformly at random. Finally we also give the value of log2 q that follows from the Poisson estimation. For
the latter we also provide the value of c such that q = 2n/2/n−c, that is c = logn

2n/2

q .
In Table 1b we have only given the values corresponding to the Poisson estimation, for n of crypto-

graphic relevance. Note the very small loss of actual security. Even for a 512-bit primitive the loss is less
than five bits. The table also shows the very slow increase in c.
12 In fact such an ideal c might not exist, since the expected value of MA⊕B(k) could be fractional.

12



As a consequence of log2 q being fairly close to n
2 , one might want to take the probability of finding a

collision in either f1 or f2 into account as well. Assuming f1 and f2 are random functions, the probability
of finding a collision in either is about 2−6 for n = 160, decreasing even further to 2−7 for n = 256, where
q is chosen according to Table 1. (Again, if f1 and f2 are random permutations, this issue is moot.)

n q (log2 q) c
A⊕B U Poisson

8 9 (3.17) 12 (3.58) 9 (3.16993) 0.28
10 16 (4.00) 17 (4.09) 16 (4.00000) 0.30
12 30 (4.91) 31 (4.95) 30 (4.90689) 0.30
14 56 (5.81) 60 (5.91) 56 (5.80735) 0.31
16 105 (6.71) 114 (6.83) 105 (6.71425) 0.32
18 195 (7.61) 210 (7.71) 195 (7.60733) 0.33
20 360 (8.49) 363 (8.50) 360 (8.49185) 0.35
22 676 (9.40) 676 (9.40) 676 (9.40088) 0.36
24 1338 (10.39) 1343 (10.39) 1338 (10.3859) 0.35

(a) Small n

n log2 q c

32 14.2148 0.36
64 29.6518 0.39
96 45.2324 0.42

128 60.9975 0.43
160 76.8034 0.44
192 92.5954 0.45
224 108.415 0.46
256 124.3 0.46
384 187.907 0.48
512 251.601 0.49

(b) Large n

Table 1: The relative bit-security provided against collision resistance based on n-bit primitives.

7 Conclusion

In this paper we have proposed a rate-1/3 2n-to-n bit compression function based on three random n-to-n
bit functions. If the three underlying functions are modelled as random oracles, finding collisions requires
roughly 2n/2/n queries. Preimage resistance is loosely estimated to be around 22n/3. Since the attacks based
on optimizing the yield are inherently time and space consuming, it is unclear whether in practice algorithms
can be found with a time complexity matching these query complexities (meaning our scheme will be harder
to break).

8 Acknowledgement

We would like to thank David Wagner and Thomas Ristenpart for clarifying discussions.

References

1. BELLARE, M., AND MICCIANCIO, D. A new paradigm for collision-free hashing: incrementality at reduced cost. In Advances
in Cryptology – EUROCRYPT’97 (1997), vol. 1233 of Lecture Notes in Computer Science, Springer-Verlag, pp. 163–192.

2. BELLARE, M., AND RISTENPART, T. Multi-property-preserving hash domain extension and the emd transform. In Advances
in Cryptology – ASIACRYPT’06 (2006), vol. 4284 of Lecture Notes in Computer Science, Springer-Verlag, pp. 299–314.

3. BERNSTEIN, D. The Rumba20 compression function. http://cr.yp.to/rumba20.html, 2007.
4. BLACK, J., COCHRAN, M., AND SHRIMPTON, T. On the impossibility of highly efficient blockcipher-based hash functions.

In Advances in Cryptology – EUROCRYPT ’05 (2005), vol. 3494 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 526–541.

13



5. BLACK, J., ROGAWAY, P., AND SHRIMPTON, T. Black-box analysis of the block-cipher-based hash-function constructions
from PGV. In Advances in Cryptology – CRYPTO ’02 (2002), vol. 2442 of Lecture Notes in Computer Science, Springer-
Verlag.

6. CHANG, D., LEE, S., NANDI, M., AND YUNG, M. Indifferentiable security analysis of popular hash functions with prefix-
free padding. In Advances in Cryptology – ASIACRYPT’06 (2006), vol. 4284 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 283–289.

7. CORON, J.-S., DODIS, Y., MALINAUD, C., AND PUNIYA, P. Merkle-damgard revisited: How to construct a hash function. In
Advances in Cryptology – CRYPTO ’05 (2005), vol. 3621 of Lecture Notes in Computer Science, Springer-Verlag, pp. 430–448.

8. DAMGÅRD, I. Collision free hash functions and public key signature schemes. In Advances in Cryptology – EUROCRYPT ’87
(1988), D. Chaum and W. L. Price, Eds., vol. 304 of Lecture Notes in Computer Science, Springer-Verlag, pp. 203–216.

9. DAMGÅRD, I. A design principle for hash functions. In Advances in Cryptology – CRYPTO ’89 (1990), G. Brassard, Ed.,
vol. 435 of Lecture Notes in Computer Science, Springer-Verlag.

10. FELLER, W. An Introduction to Probability Theory and its Applications, vol. 1. John Wiley and Sons, Inc., 1968.
11. GAURAVARAM, P., MILLAN, W., DAWSON, E., AND VISWANATHAN, K. Constructing secure hash functions by enhancing

merkle-damgrd construction. In Information Security and Privacy (2006), vol. 4058 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 407–420.

12. GIRAULT, M., COHEN, R., AND CAMPANA, M. A generalized birthday attack. In Advances in Cryptology – EUROCRYPT ’88
(1988), C. G. Guenther, Ed., vol. 330 of Lecture Notes in Computer Science, Springer-Verlag, pp. 129–156.

13. GLADMAN, B. Implementation experience with aes candidate algorithms. In Second AES Conference (1999).
14. HIROSE, S. Provably secure double-block-length hash functions in a black-box model. In Information Security and Cryptol-

ogy – ICISC ’04 (2005), Lecture Notes in Computer Science, Springer-Verlag, pp. 330–342.
15. JOHNSON, N. L., AND KOTZ, S. Urn Models and Their Applications. John Wiley and Sons, Inc., 1977.
16. JOUX, A. Multicollisions in iterated hash functions. application to cascaded constructions. In Advances in Cryptology –

CRYPTO ’04 (2004), M. K. Franklin, Ed., vol. 3621 of Lecture Notes in Computer Science, Springer-Verlag, pp. 306–316.
17. KNUDSEN, L., AND MULLER, F. Some attacks against a double length hash proposal. In Advances in Cryptology – ASI-

ACRYPT’06 (2006), vol. 4284 of Lecture Notes in Computer Science, Springer-Verlag, pp. 462–473.
18. MATYAS, S., MEYER, C., AND OSEAS, J. Generating strong one-way functions with cryptographic algorithms. IBM Techni-

cal Disclosure Bulletin 27, 10a (1985), 5658–5659.
19. MAURER, U., AND TESSARO, S. Domain extension of public random functions: Beyond the birthday barrier. In Advances in

Cryptology – CRYPTO ’07 (2007), Lecture Notes in Computer Science, Springer-Verlag, pp. 187–204.
20. MENEZES, A., VAN OORSCHOT, P., AND VANSTONE, S. Handbook of Applied Cryptography. CRC Press, 1996.
21. MERKLE, R. One way hash functions and DES. In Advances in Cryptology – CRYPTO ’89 (1990), G. Brassard, Ed., vol. 435

of Lecture Notes in Computer Science, Springer-Verlag.
22. MIRONOV, I., AND NARAYANAN, A. Domain extension for random oracles: Beyond the birthday-paradox bound. Tech. rep.,

ECRYPT Hash Workshop 2007, Proceedings, 2007.
23. MIYAGUCHI, S., IWATA, M., AND OHTA, K. New 128-bit hash function. In Proceedings 4th International Joint Workshop

on Computer Communications (1989), pp. 279–288.
24. NANDI, M., LEE, W., SAKURAI, K., AND LEE, S. Security analysis of a 2/3-rate double length compression function in

black-box model. In Fast Software Encryption – FSE’05 (2005), vol. 3557 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 243–254.

25. PEYRIN, T., GILBERT, H., MULLER, F., AND ROBSHAW, M. Combining compression functions and block cipher-based hash
functions. In Advances in Cryptology – ASIACRYPT’06 (2006), vol. 4284 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 315–331.

26. PRENEEL, B. Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Universiteit Leuven, 1993.
27. PRENEEL, B., GOVAERTS, R., AND VANDEWALLE, J. On the power of memory in the design of collision resistant hash

functions. In Advances in Cryptology – Auscrypt ’92 (1992), Lecture Notes in Computer Science, Springer-Verlag.
28. PRENEEL, B., GOVAERTS, R., AND VANDEWALLE, J. Hash functions based on block ciphers: A synthetic approach. In

Advances in Cryptology – CRYPTO ’93 (1994), Lecture Notes in Computer Science, Springer-Verlag, pp. 368–378.
29. SEURIN, Y., AND PEYRIN, T. Security analysis of constructions combining FIL random oracles. In Fast Software Encryption

(FSE’07) (2007), vol. 4593 of Lecture Notes in Computer Science, Springer-Verlag, pp. 119–136.
30. SHRIMPTON, T., AND STAM, M. Efficient collision-resistant hashing from fixed-length random oracles. ECRYPT Hash

Workshop 2007, May 24–25, Barcelona, 2007.
31. STEINBERGER, J. The collision intractability of MDC-2 in the ideal-cipher model. In Advances in Cryptology – EURO-

CRYPT’07 (2007), vol. 4515 of Lecture Notes in Computer Science, Springer-Verlag, pp. 34–51.
32. WAGNER, D. A generalized birthday problem. In Advances in Cryptology – CRYPTO ’02 (2002), M. Yung, Ed., Lecture

Notes in Computer Science, Springer-Verlag, pp. 288–303.

14



A The Dual Relationship with Double-Length Constructions (or Range Extenders)

In the main body we have considered the problem of extending the domain of a cryptographic primitive.
One could consider range extension as the dual problem to domain extension. A relevant example instance
of this problem is:

Given a 2n-to-n bit compression function create a 4n-to-2n bit compression function with collision
resistance close to the optimal 2n.

Perhaps a more common approach is to take as the starting primitive a blockcipher operating on n-bit
blocks and having keysize (some multiple of) n; see, for example, Peyrin et al. [25]. (This has the practical
advantage that one can use blockciphers of 128-bit blocks, which would not be advisable if a square root
attack running in time 264 were possible.)

When hash functions are expected to behave as random oracles, Maurer and Tessaro [19] make the point
that domain extension is much harder than range extension. There is an easy counting argument underlying
this claim (extending the domain increases the number of possible functions far more than a comparable
extension of the range). However, in the context of collision-resistant hashing some other issues come to
the fore. The difficulty in range extension is that the new construction should satisfy considerably stronger
collision-resistance bound than the underlying primitive. Said another way, why bother with range extension
if the longer hash value does not provide comensurately better security against generic (in casu birthday)
attacks? As a result, satisfactory bounds on the collision resistance of double-length hash functions have
been elusive. For example, Steinberger [31] showed that the collision-resistance of the standardized MDC-
2 construction is at least Ω(23n/5) in the ideal cipher model, when iterated; still considerably shy of the
desired Θ(2n).13

Somewhat paradoxically, range extenders can also be used to solve the problem of building a com-
pressing function out of non-compressing primitives, and vice versa. As such, they can truly be regarded
as dual problems. The resulting constructions are not necessarily very elegant, however, as our two trans-
formations below will show. Nonetheless, our construction (see Figure 2) can be used to produce a rate-1/3
double-length compression function14 with collision resistance around 2n/2n. This compares favourably
with Nandi et al.’s construction of rate 1/3 and collision-resistance at most Θ(22n/3) [17, 24] or Peyrin et
al.’s construction of rate 1/5 and collision-resistance Θ(22n/3) [25, 29].

Let H ... : {0, 1}2n → {0, 1}n be some construction to build an optimally collision resistant compression
function out of non-compressing primitives f1, . . . , fk : {0, 1}n → {0, 1}n, for arbitrary n. For example,
our triple function construction is such an H for k = 3. Now, let g1, . . . , g2k : {0, 1}2m → {0, 1}m be
some given (single length) compression functions; we desire to use these 2k functions to build a double
length compressing function G... : {0, 1}4m → {0, 1}2m. We do so as follows. Set n = 2m and define
fi = gi||g2k+1−i for i ∈ {1, . . . , k}. If we model the gi as 2m-tom bit, independent random oracles then
the fi are 2m-to-2m bit (ie., non-compressing) random oracles. Now we apply H to these fi to obtain a
4m-to-2m bit compression function, ultimately based on the gi, whose collision resistance is 2m, as desired.

Conversely (and for even k and n), let G... : {0, 1}4m → {0, 1}2m be an optimally collision resistant
double length combiner for primitives g1, . . . , gk : {0, 1}2m → {0, 1}m. Let f1, . . . , fk/2 : {0, 1}n →
{0, 1}n be given. Again, let n = 2m and define the gi such that fi = gi||gk+1−i for i ∈ {1, . . . , k/2}. Run
the range extender G with components gi, yielding a hash function G : {0, 1}2n → {0, 1}n with collision

13 Mironov and Narayanan [22] recently claimed that if the MMO constructions in MDC-2 are replaced with random 2n-to-n bit
compression functions, the double length construction does have collision resistance Θ(2n).

14 The rate is still 1/3, and not 1/6, since two blocks of n-bits (of message) are processed simultaneously.

15



V2
g4

n

V1

g3n

M2
g2

n

M1

g1n

⊕
⊕

⊕
⊕

g6

g5

H2

H1

n

n

Fig. 2: The rate-1/3 double-length hash function. The functions g1, g2, g3, g4, g5, g6 are random 2n-to-n bit
functions.

resistance 2n/2. (Note that in this construction one should expect to throw half of f ’s output away all the
time.)

B Partial Justification of Conjecture 3

Conjecture 3 states that the number of k-way collisions in the distribution MA⊕B(k) asymptotically be-
haves as a Poisson distribution with parameter λk = Ne−λ λk

k! . Here A and B are (independent) uniform
distributions of q elements each over {0, 1}n (without replacement), Q = q2, N = 2n, λ = Q/N and the
asymptotic statement assumes q and n tending to infinity such that λ → 0. What we will show here is that
asymptotically E(MA⊕B(k)) = λk, thus the first moment of MA⊕B(k) is in accordance with the stated
Poisson distribution.

Proof: Define Fx,k as the binary random variable taking on 1 iff the value x ∈ {0, 1}n occurs exactly k
times (when sampling from A⊕B). This variable is related to the variable Gx denoting how often x occurs,
indeed E(Fx,k) = Pr(Gx = k). Let us try to determine Pr(Gx = k). This probability is the same for all
x, so we can concentrate on Pr(G0 = k). Since we also have that MA⊕B(k) =

∑
x Fx,k and linearity of

expectancy (even over dependent variables), we get

E(MA⊕B(k)) =
∑

x

E(Fx,k) = N Pr[G0 = k] .

A collision occurs iff ai⊕bj = 0n, where ai is an element in the vector a and bj in the vector b; equivalently,
ai = bj . This problem has been studied, for example in the context of meet-in-the-middle attacks [12], and
it turns out that the probability of a k-way collision follows a hypergeometric distribution, thus Pr(G0 =
k) =

(
q
k

)(
N−q
q−k

)
/
(
N
q

)
. Asymptotically this means that E(MA⊕B(k)) behaves as a scaled Poisson distribution

with parameter Q/N , as claimed. Q.E.D.

16



C Experimental Justification of the Poisson Approximation

In this Appendix we provide experimental results to support our claim on the behaviour of expected number
of k-way collisions for the distribution A⊕B. It also suggests that yieldP

n (q) is a very good estimator for the
actual yieldA⊕B

n (q).
In order to get accurate estimates, we performed the experiment of picking from A and B a large number

of times per pair (n, q). (Anywhere from 103 to 106 runs per pair.) Given that each run takes time 2n with
similar space requirements, we only have the data for n up to 22.

In Table 2 the data is given for query complexity q = 2n/2. Since N = 2n and Q = q2 this means
that λ = 1. The first column gives the values of n, from which the other parameters (q, Q, and N ) can
be deduced. We then give three columns with the average yield (or rather the logarithms thereof). The first
is the result of experiments based on the distribution A⊕B, the second of experiments based on a uniform
distribution U and the final is the Poisson estimation. The remaining five columns give the average numbers
MA⊕B(k), normalized by N . These are the numbers we conjecture are distributed according to a Poisson
distribution with parameter Q/N . So, in the final row we give the Poisson distribution with λ = 1 for
reference.

Table 3 gives the analogous results, but for q = 2n/2−1, corresponding to λ = 1
4 .

n log2 yield Average nr. of k-way collisions / N
A⊕B U Poisson MA⊕B(1) MA⊕B(2) MA⊕B(3) MA⊕B(4) MA⊕B(5)

4 3.21 3.20 3.15 0.366 0.206 0.054 0.012 0.0016
6 4.47 4.49 4.45 0.367 0.189 0.060 0.014 0.0027
8 5.74 5.75 5.74 0.368 0.185 0.061 0.015 0.0030

10 6.90 6.90 6.90 0.368 0.184 0.061 0.015 0.0030
12 8.09 8.10 8.10 0.368 0.184 0.061 0.015 0.0031
14 9.19 9.19 9.19 0.368 0.184 0.061 0.015 0.0031
16 10.35096 10.35301 10.35384 0.3678 0.1839 0.0613 0.0153 0.00307
18 11.42019 11.42016 11.42020 0.3679 0.1839 0.0613 0.0153 0.00307
20 12.51232 12.51221 12.51233 0.3679 0.1839 0.0613 0.0153 0.00306
22 13.63089 13.63084 13.63085 0.3679 0.1839 0.0613 0.0153 0.00307

Poisson, λ = 1 0.3679 0.1839 0.0613 0.0153 0.00307
Table 2: Comparison of experimental yield and its Poisson estimate for q = 2

n
2 samples.

17



n log2 yield Average nr. of k-way collisions / N
A⊕B U Poisson MA⊕B(1) MA⊕B(2) MA⊕B(3) MA⊕B(4) MA⊕B(5)

6 2.52 2.53 2.54 0.787 0.0968 0.00543 0.000636 0.0000313
8 3.85 3.90 3.93 0.781 0.0975 0.00736 0.000517 0.0000302

10 5.10 5.10 5.10 0.780 0.0972 0.00791 0.000501 0.0000283
12 6.20 6.20 6.20 0.779 0.0974 0.00805 0.000505 0.0000261
14 7.37 7.37 7.37 0.779 0.0974 0.00810 0.000506 0.0000259
16 8.613 8.617 8.619 0.779 0.0974 0.00810 0.000507 0.0000254
18 9.653 9.652 9.652 0.779 0.0973 0.00811 0.000507 0.0000254

Poisson, λ = 1
4 0.779 0.0974 0.00811 0.000507 0.0000254

Table 3: Comparison of experimental yield and its Poisson estimate for q = 2
n
2
−1 samples.

18


