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Abstract. In this paper, we introduce new hash function design princi-
ples with variable output lengths (multiple of n). It is based on a function
or a block cipher which has output size n. In the random oracle model
it has optimal collision resistance which requires Θ(2(t+1)n/2) queries to
find (t + 1)n-bit hash output collisions, where t is any positive integer.
Similarly, in the ideal cipher model, Θ(2(t+1)n/2) queries are required to
find (t + 1)n-bit hash output collisions.
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1 Introduction.

In 2004 and 2005, Wang et al. [17–20] introduced a new strategy to find a collision
of widely used hash functions such as MD5 [13], SHA-1 [7] and so on. Since fatal
weaknesses of MD5 and SHA-1 were revealed by Wang et al., many cryptogra-
phers have recognized the necessity of new hash functions as their replacements.
Upon this recognition, NIST announced to develop one or more additional hash
algorithms through a public competition like AES [1]. NIST also announced that
the algorithm must support 224, 256, 384, and 512-bit message digests, and a
maximum message length of at least 264 bits. Therefore, it is important to de-
velop a provably secure design principle to support variable length output. As
a method, for each output length we can design hash function independently
like SHA-family. We can also design steam cipher-style hash functions such as
RadioGatún [2] and RC4-Hash [5] which use a function repeatedly till we get
the size of hash output we want. As another method, we can design variable out-
put length-hash functions with a small output-length algorithm. Double block
length (DBL) hash functions by Nandi [11] and Hirose [8, 9] are such a case.
Nandi [11] proved that his construction has the optimal collision resistance in
the random oracle model. Based on his idea, Hirose [8, 9] proposed block cipher



based DBL hash functions and proved its optimality of the collision resistance.
However, since they considered only DBL hash functions, their constructions
have a limitation that they can not support variable sizes of hash outputs.

In this paper, through the generalization of Nandi’s result we show that we
can handle arbitrary hash output with a function. Also we prove the optimal
security of its collision resistance in the random oracle model. Furthermore, we
propose a new block cipher based hash function with variable output length and
we prove its optimal security from the viewpoint of collision resistance. Based
on the result of this paper, with a 128-bit RC-6, a 64-bit Blowfish and SHA-256
we can design a hash function to handle maximum 1920-bit, 384-bit and 512-bit
hash outputs, respectively.

2 Definitions and Known Results

In this section, we define the notations and symbols and describe the known
results.

Random Oracle. Let Func(m, n) denote the set of all functions from {0, 1}m

to {0, 1}n. In the random oracle model, a function f is chosen at random from
Func(m, n) and any adversary in the random oracle model can have access to the
function f as a black-box manner. It is easy to see that for any xi ∈ {0, 1}m, (it
can be any function of x1, · · · , xi−1 ∈ {0, 1}m and y1, · · · , yi−1 ∈ {0, 1}n) and
yi ∈ {0, 1}n such that xi 6= xj for all j < i we have

Pr[f(xi) = yi|f(x1) = y1, f(x2) = y2, · · · , f(xi−1) = yi−1] = 1/2n

Note that xi can be any random variable independent to the random oracle f .
Let Af be any adversary which has access of the random oracle f and suppose
xi is the i-th query and yi is i-th response of the random oracle. In this paper,
we assume that all queries are distinct, that is, xi 6= xj for all i 6= j. This is
obviously a reasonable assumption. Under this assumption, the condition prob-
ability distribution of i-th response is uniformly and independently distributed
on {0, 1}n.

Ideal Cipher. The ideal cipher E has an n-bit block size with a k-bit key size.
For any key a ∈ K Ea(·) is a random permutation. In other words, the ideal
cipher E is selected randomly from Block(k, n) which denotes the set of all block
ciphers with an n-bit block size and and a k-bit key size. For a key-plaintext query
(1, a, x) the ideal cipher outputs y = Ea(x). For a key-ciphertext query (−1, a, y)
the ideal cipher outputs x = E−1

a (y). We denote the j-th query-response pair by
(wj , aj , xj , yj) where wj = 1 means the encryption query, wj = −1 means the
decryption query, aj is a key and xj is a plaintext and yi is a ciphertext.

Padding Rule. A padding rule g has an input of arbitrary length and an output
of a multiple of d − s (d > s + 64) which are defined in MD

F
g in the next part.



There are many kinds of padding rules but here we fix g for any M ∈ {0, 1}∗ as
follows.

g(M) = M ||10t||bin64(|M |),

where t is the smallest non-negative integer such that g(x) is a multiple of d− s
and bini(x) means the i-bit binary representation of x.

MD
F
g Construction. MD

F
g : {0, 1}∗ → {0, 1}s is the design principle proposed

by Merkle and Damg̊ard. It is the method to design a hash function from a
compression function F : {0, 1}d → {0, 1}s with the padding rule g [6, 10]. They
proved that if F is collision resistant then MD

F
g is also collision resistant. MD

F
g

is defined as follows.

MD
F
g (M) = MD

F (g(M)) = F (· · ·F (F (F (IV, m0), m1), m2) · · · , mt)

where g(M) = (m0||m1|| · · · ||mt) and IV is the s-bit initial value and each mi

is d− s bits.

Non-adaptive and Adaptive Models. When the adversary is permitted to
make q queries to a given oracle, in the non-adaptive model he can ask only
maximum q queries simultaneously and then he can get all responses. And in
the adaptive model he can ask the i-th query after he gets i−1 query-responses.
In this paper, we consider the adaptive model and it is the strongest model in
security point of view. Moreover, adaptive adversary is a reasonable consider-
ation as we consider public compression function or a public block cipher as a
random oracle model. Adversary can compute the outputs of these adaptively.

We assume that the adversary A can make q queries at most. And we assume
that he is deterministic and computationally unbounded. It is easy to prove that
if a scheme is secure against all deterministic and computationally unbounded
adversaries then it is secure against all probabilistic adversaries. Let the i-th
query be xi and yi be the oracle response O(xi). We define the view VO

A (i) =
((x1, y1), (x2, y2), · · · , (xi, yi)) which is all information he has. Here, since he is
adaptive and deterministic, his i-th query is uniquely determined from the view
VO

A (i− 1). In other words,

AO((x1, y1), (x2, y2), · · · , (xi−1, yi−1)) = xi.

In the ideal cipher model, it can be defined similarly.

Collision Resistance. We only focus on the security against collision resistance.
Informally, collision resistance means the difficulty to find two different inputs
X and X ′ such that their hash outputs are same. Firstly, we define the collision
resistant measurement of compression function F and hash function MD

F
g in the

random oracle model and from the ideal cipher model. We assume that F is
constructed from the random oracle f or the ideal cipher E. We assume that the
adversary A is deterministic and computationally unbounded and he can make



maximum q queries. Then, we can define the collision resistant measurement of
compression function F against the adversary A in the random oracle model.

Adv
coll
F (A(q)) = Pr[f ←R Func(m, n); X, Y ← Af (q) : (X 6= Y )∧(F (X) = F (Y ))].

Similarly, we can define the collision resistant measurement of compression func-
tion F against the adversary A in the ideal cipher model as follows.

Adv
coll
F (A(q)) = Pr[E ←R Block(k, n); X, Y ← AE,E−1

(q) : (X 6= Y )∧(F (X) = F (Y ))].

The collision resistant measurement of MD
F
g is defined similarly as follows.

Adv
coll
MDF

g
(A(q)) = Pr[f ←R Func(m, n); M, M ′ ← Af (q) :

(M 6= M ′) ∧ (MD
F
g (M) = MD

F
g (M ′))].

Adv
coll
MDF

g
(A(q)) = Pr[E ←R Block(k, n); M, M ′ ← AE,E−1

(q) :

(M 6= M ′) ∧ (MD
F
g (M) = MD

F
g (M ′))].

We also define their maximum advantages over all adversaries as follows.

Adv
coll
F (q) = MaxA[Adv

coll
F (A(q))]

Adv
coll
MDF

g
(q) = MaxA[Adv

coll
MDF

g
(A(q))]

We say that F (or MD
F
g ) is collision resistant (or has collision resistance)

if the maximum advantage is negligible. Especially, we say that F (or MD
F
g ) is

optimally collision resistant (or has optimal collision resistance) if Θ(2s/2) queries
are required to make the maximum advantage ‘1’ where the output length is a
s-bit. We know the followings by [6, 10].

Adv
coll
MDF

g
(q) 6 Adv

coll
F (q)

.
The above relation means that if F is collision resistant (optimally collision

resistant) then MD
F
g is also collision resistant (optimally collision resistant). So

we focus on showing that the upper bound of Adv
coll
F (q) is negligible.

Remark 1. We assume that the adversary does not make a same query repeat-
edly. In the random oracle model, all queries xi’s are different. In the ideal cipher
model, once he gets (a, x, y) such that Ea(x) = y (or E−1

a (y) = x), he does not
make a decryption query (a, y) (or an encryption query (a, x)). Secondly, we
assume that the adversary’s final outputs which are expected to collide should
be able to be constructed from his final view. As described in [16], if there is no
second assumption, the adversary can output two very long messages (which is
not related to his view) to collide with a high probability.

Remark 2. Our goal is to show the maximum advantage of our design principle
is negligible in the random oracle model and ideal cipher model. According to



the definition of the advantage from the viewpoint of the collision resistance,
the advantage is from the probability that final outputs of the adversary collide.
Recall that, according to the second assumption in the Remark 1, if the adver-
sary find collisions, the collisions should be constructed from the final view. In
other words, without considering final outputs of the adversary, we can directly
get the upper bound of the advantage from the final view. So, we focus on the
probability that there exists collisions constructed from the final view.

Nandi [11]. Nandi proposed the following compression function F from a func-
tion f of small output size n. Since the output size of F is double of that of f ,
we call F a double block length (DBL) compression function.

F (X) = f(X)||f(P (X))

where f : {0, 1}m → {0, 1}n (m > 2n) and P is a permutation with no fixed
point and P 2 is the identity permutation. Also he proved that F is optimally
collision resistant in the random oracle model, where f is a random oracle. The
hash function MD

F
g based on the DBL compression function F is called DBL

hash function.

Hirose [8, 9]. Hirose constructed f with a block cipher as follows [8].

f(h||g||m) = Eh||m(g)⊕ g

where |h| = |g| = |m| = n and the block cipher E has a 2n-bit key size and an
n-bit block size. He proved that if f is applied to the Nandi’s construction, MD

F
g

is optimally collision resistant in the ideal cipher model. He also proposed five
other constructions [9] and proved their optimal collision resistance. These six
constructions belong to DBL hash functions.

Hash Rate Hash Rate is used to indicate the efficiency of the hash function. A
rate is defined as follows :

Rate =
size of message used in comp. func.

(♯ of atomic function used in comp. func.)× (output size of atomic func.)

For example, the rate of Nandi’s construction (the atomic function is f) is m−2n
2n .

In the case of the Hirose’s construction (the atomic function is E), the rate be-
comes 1/2.

3 Hash Function with Variable Output Size in the

Random Oracle Model

In this section, we explain the Nandi’s construction [11] and rewrite its proof for
easy generalization.



3.1 Nandi’s Construction and Its Security [11]

As mentioned before, Nandi proposed a DBL compression construction F (X) =
f(X)||f(P (X)) from f of a small output size, where f : {0, 1}m → {0, 1}n

(m > 2n) and P is a permutation with no fixed point and P 2 is the identity
permutation. He proved that F is optimally collision resistant in the random
oracle model.

Theorem 1. In the random oracle model, an upper bound of the maximum ad-

vantage from the viewpoint of the collision resistance of F is described as follows:

Adv
coll
F (q) 6

q − 1

2n
+

q2 − 1

22n+1

Proof. We prove the theorem in four steps. Let A be any deterministic and
computationally unbounded adversary. We assume that A asks q queries to the
oracle.

1. For any final view Vf
A(q) = ((x1, y1), (x2, y2), · · · , (xq , yq)) generated from

the random oracle f , at most q input-output pairs of F can be constructed.
For an even q, there exists an adversary to construct q input-output pairs of
F from q input-output pairs of f .

Proof) We assume that q input-output pairs of F are given. In other words,
we have {(Xi, Yi)}16i6q where F (Xi) = Yi and Xi 6= Xj for all i and j
(i 6= j). Since F (X) = f(X)||f(P (X)), we have to ask at least q queries
Xi (1 6 i 6 q) to the random oracle f to get q input-output pairs of F .
Therefore, at most q input-output pairs of F can be constructed from q
input-output pairs of f . Next, we want to construct an adversary to con-
struct q input-output pairs of F from q input-output pairs of f . This is
simple. In order to get F (X) = f(X)||f(P (X)), we need to ask two queries
X and P (X) to the random oracle f . Once we get F (X) = f(X)||f(P (X)),
we can know F (P (X)) = f(P (X))||f(X) without any additional queries.
Therefore, we can get two input-output pairs of F from two input-output
pairs of f . Likewise, when q is even, we can get q input-output pairs of F
from q input-output pairs of f .

2. Let F [Vf
A(q)] be the set of input-output pairs of F to be generated from the

final view VO
A (q). According to the result of step 1, we write F [Vf

A(q)] =
{(X1, Y1), (X2, Y2), · · · , (Xp, Yp)} where p 6 q and Xi 6= Xj for all i and j
(i 6= j). Here, we want to compute the probability that F (Xi) = F (Xj) for
any i and j (i 6= j). The following holds for any i and j where j < i 6 p.

(a) When Xi = P (Xj) : Pr[F (Xi) = F (Xj)] = Pr[f(P (Xj)) = f(Xj)] =
1/2n.

(b) When Xi 6= P (Xj) : Since {Xi, Xj} ∩ {P (Xi), P (Xj)} = ∅,
Pr[F (Xi) = F (Xj)] = Pr[f(Xi) = f(Xj) ∧ f(P (Xi)) = f(P (Xj))]



= Pr[f(Xi) = f(Xj)|f(P (Xi)) = f(P (Xj))]× Pr[f(P (Xi)) = f(P (Xj))]
=Pr[f(Xi) = f(Xj)]× Pr[f(P (Xi)) = f(P (Xj))] = 1

2n ×
1
2n = 1

22n .

3. Let the event Ci be the event that there exists j (j < i) such that F (Xi) =
F (Xj). Then, Pr[C2] 6 1

2n and for i > 2, Pr[Ci] 6 1
2n + i−1

22n .

Proof) Based on the result of step 2-(a) and (b), Pr[C2] = Pr[F (X2) =
F (X1)] 6 Max( 1

2n , 1
22n ). For i > 2, the case of step 2-(a) occurs one time

at most and the case of step 2-(b) occurs i − 1 times at most. Therefore,
Pr[Ci] 6 1

2n + i−1
22n .

4. From the above results, we can compute the upper bound of the advantage
of collision resistance of F .

Adv
coll
F (q) = MaxA[Adv

coll
F (A(q))] = MaxA[PrA[C2 ∨ C3 · · · ∨Cq]]

6 MaxA[PrA[C2] +
∑q

i=3 PrA[Ci]]

6 MaxA[ 1
2n +

∑q
i=3(

1
2n + i−1

22n )] 6
q−1
2n + q2−1

22n+1 . �

3.2 Generalization

In this subsection, we generalize the result by Nandi. Firstly we propose the
generalized construction and then we prove its optimal collision resistance.

Generalized Construction. We want to construct F from a function f which
has a m-bit input and an n-bit output such that m > (t + 1)n.

F (X) = f(P0(X))||f(P1(X))||f(P2(X))|| · · · ||f(Pt(X))

where P0 is the identity permutation and Pi is a permutation with no fixed
point and P 2

i is the identity permutation. For any i and j (i 6= j), PiPj = PjPi.
And for all (i1, i2, · · · , it) ∈ {0, 1}t \ {0}t, P i1

1 P i2
2 · · ·P

it

t has no fixed point. For
example, in the case of t 6 n, we can define Pi(x) = x ⊕ (1000 · · ·0)≪i where
(1000 · · ·0) has all zero-bit except that the left most bit is one. Then we can
prove the following theorem for t > 2.

Theorem 2. In the random oracle model, an upper bound of the maximum ad-

vantage in the viewpoint of the collision resistance of F is described as follows:

Adv
coll
F (q) 6

t(t + 3)(q − 1)

2tn+1
+

q2 − 1

2(t+1)n+1
where t > 2.

Proof. Its proof is similar to that of theorem 1. Here, A is any deterministic and
computationally unbounded adversary. We assume that A asks q queries to the
oracle.



1. For any final view Vf
A(q) = ((x1, y1), (x2, y2), · · · , (xq , yq)) generated from

the random oracle f , at most q input-output pairs of F can be constructed.

Proof) We assume that q input-output pairs of F are given. In other words,
we have {(Xi, Yi)}16i6q where F (Xi) = Yi and Xi 6= Xj for all i and j
(i 6= j). Since F (X) = f(X)||f(P1(X))|| · · · ||f(Pt(X)), we have to ask at
least q queries Xi (1 6 i 6 q) to the random oracle to get q input-output
pairs of F . Therefore, at most q input-output pairs of F can be constructed
from q input-output pairs of f .

2. Let F [Vf
A(q)] be the set of input-output pairs of F to be generated from

final view VO
A (q). According to the result of step 1, we write F [Vf

A(q)] =
{(X1, Y1), (X2, Y2), · · · , (Xp, Yp)} where p 6 q and Xi 6= Xj for all i and j
(i 6= j). Here, we want to compute the probability that F (Xi) = F (Xj) for
any i and j (i 6= j). The following holds for any i and j where j < i 6 p.

(a) When Xi = Pu(Xj) (for a u, 1 6 u 6 t): Firstly we compute the
number of elements of Tu = {{PrPu(Xj), Pr(Xj)}}06r6t. r = 0 indi-
cates the element {Pu(Xj), Xj} of Tu and r = u indicates the element
{Xj , Pu(Xj)} of Tu. I.e., r = 0 and r = u correspond to the same
element. And by the relations among Pi’s, |Tu| = t and for any l, k
(l 6= k,{l, k} 6= {0, u}), {PlPu(Xj), Pl(Xj)} ∩ {PkPu(Xj), Pk(Xj)} = ∅.
Therefore, Pr[F (Xi) = F (Xj)] = ( 1

2n )t = 1
2tn .

(b) When Xi = PvPu(Xj) (for some v and u, 1 6 v < u 6 t): Firstly we com-
pute the number of elements of Tv,u = {{PrPvPu(Xj), Pr(Xj)}}06r6t.
r = v indicates the element {Pu(Xj), Pv(Xj)} of Tu and r = u indicates
the element {Pv(Xj), Pu(Xj)} of Tu. That is, r = 0 and r = u corre-
spond to same element. And by the relations among Pi’s, |Tu| = t and
for any l, k (l 6= k), {PlPvPu(Xj), Pl(Xj)}∩{PkPvPu(Xj), Pk(Xj)} = ∅.
Therefore, Pr[F (Xi) = F (Xj)] = ( 1

2n )t = 1
2tn .

(c) When Xi 6= PvPu(Xj) (for all v and u, 0 6 v < u 6 t): When
T = {{Pr(Xi), Pr(Xj)}}06r6t, by the relations among Pi’s, |T | = t + 1
and the intersection of any two elements of T is the empty set. Therefore,
Pr[F (Xi) = F (Xj)] = ( 1

2n )t+1 = 1
2(t+1)n .

3. Let Ci be the event that there exists j (j < i) such that F (Xi) = F (Xj).

Then, Pr[C2] 6 1
2tn and for i > 2, Pr[Ci] 6

t(t+3)
2tn+1 + i−1

2(t+1)n .

Proof) Based on the result of step 2-(a), (b) and (c), Pr[C2] = Pr[F (X2) =
F (X1)] 6 Max( 1

2tn , 1
2(t+1)n ). Step 2-(a) contains t cases at most. Step 2-(b)

contains t(t+1)
2 cases at most. Step 2-(c) constains i−1 cases at most. There-

fore, Pr[Ci] 6 t
2tn + t(t+1)

2tn+1 + i−1
2(t+1)n 6

t(t+3)
2tn+1 + i−1

2(t+1)n .



4. From the above results, we can compute the upper bound of the advantage
of collision resistance of F .

Adv
coll
F (q) = MaxA[Adv

coll
F (A(q))] = MaxA[PrA[C2 ∨ C3 · · · ∨Cq]]

6 MaxA[PrA[C2] +
∑q

i=3 PrA[Ci]]

6 MaxA[ 1
2tn +

∑q
i=3(

t(t+3)
2tn+1 + i−1

2(t+1)n )] = t(t+3)(q−1)
2tn+1 + q2−1

2(t+1)n . �

4 Hash Function with Variable Output Size in the Ideal

Cipher Model

Limitation of Proofs in Known Results When only One Block Cipher
is Used. There are several papers which proved the security of hash functions
based on a block cipher. For example, Black et al. [4] proved the optimal colli-
sion resistance of 20 PGV schemes in the ideal cipher model. The securities of
MDC-2 [16] and Hirose’s constructions [8, 9] were also proved in the ideal cipher
model [16]. In all their proofs, there is something in common; the upper bound
of the number of queries :‘q < 2n’. This is because for a fixed key the block
cipher is a random permutation. For example, for a key a, we assume that we
have query-response pairs (a, xi, yi) (1 6 i 6 t) such that the block size is an
n-bit and Ea(xi)⊕ xi = yi. Then, if we ask a new encryption query (a, xt+1) to
the ideal cipher, we know that yt+1 will be selected randomly from unknown set
of size 2n − t. I.e., when q < 2n, we can consider a block cipher-based function
as a random function in the set of size 2n − q at least. This trick helps us to
prove the security of the hash functions based on the block cipher. The restric-
tion q < 2n is meaningful in double block length hash functions, because with a
high probability the adversary can find a collision with q (near to 2n) queries.
However, in the case of the hash functions of three block output size (3n-bit)
at least, q < 2n is not enough. This is because we can guarantee only that
the security of hash function with a 3n-bit output is a 2n-bit security at least.
In fact, the optimal security should be a 3n-bit security. So, how can we over-
come this barrier to prove the security of hash function with triple block output
size at least? In this paper, we give an answer. In our construction, q is any value.

New DBL Compression Function based on a Block Cipher. We consider
the following function f based on a block cipher E,

f(X) = EX(IV ) and F (X) = f(X)||f(P (X))

where X is a m-bit and IV is an n-bit initial value, m > 2n and F is the Nandi’s
construction explained in section 3.1. Then, based on Lemma 1, we can prove
Theorem 3.

The goal of the collision finding adversary is to find X and X ′, where
F (X) = F (X ′) and X 6= X ′. In the ideal cipher model, the attacker can ask
queries to both oracles E and E−1. In our construction, the query-response



pair whose plaintext is not IV can not be used to construct X and X ′ where
F (X) = F (X ′) and X 6= X ′, because in our construction the plaintext is always
the fixed IV as f(X) = EX(IV ). Therefore, we prove the following equality
(Lemma 1).

Lemma 1. For any A who can have query-response pairs such that plaintext is

not IV , there exists B such that

Adv
coll
F (A(q)) = Adv

coll
F (B(q)),

where B is any adversary who can make only the encryption queries whose plain-

text is always IV .

Proof. Let A be a collision-finding adversary access to both oracles E and E−1.
We can define an adversary BE which makes only encryption query with plain-
text IV.

Adversary B = (B1, B2).

B = (B1, B2) first runs A and it responses A’s query as follows.

– When the A’s i-th query is the encryption query (1, x, y) to B1 where x is
a key and y is a plaintext, B keeps z∗ which is the response of the oracle E
for the query (1, x, IV ) and then

• If y = IV , B forwards z∗ to A.
• If y 6= IV , B chooses an element z randomly from the set {0, 1}n\{z∗}∪

{z′|(w′, x, y′, z′) ∈ VB1,B2

A (i− 1)}. Then, B forwards z to A.

– When the A’s i-th query is the decryption query (−1, x, z) to B2 where x is
a key and z is a ciphertext, B keeps z∗ which is the response of the oracle
E for the query (1, x, IV ) and then

• If z = z∗, B forwards IV to A.

• If z 6= z∗, B chooses an element y randomly from the set {0, 1}n\{IV }∪

{y′|(w′, x, y′, z′) ∈ VB1,B2

A (i− 1)}. Then, B forwards y to A.

– B’s final output is that of A.

In the adversary B, whenever A finds a collision, B can also get a collision.
Moreover, B perfectly simulates ideal block cipher for A. Thus, the following is
true.

Adv
coll
F (A(q)) = Adv

coll
F (B(q)). �

Based on Lemma 1, we want to compute the upper bound of Adv
coll
F (B(q)) for

any adversary B defined in Lemma 1. Since the queries are different, the key of
the block cipher should be different in our construction. Therefore, the response
of the query is random in the ideal cipher model. Therefore, we can prove the
following theorem in the similar way used in section 3.



Theorem 3. In the ideal cipher model, an upper bound of the maximum advan-

tage in the viewpoint of the collision resistance of F is described as follows:

Adv
coll
F (q) 6

q − 1

2n
+

q2 − 1

22n+1

We can also generalize the above result as follows.

Generalized Construction based on a Block Cipher. We consider the
following function f based on a block cipher E.

f(X) = EX(IV ) and F (X) = f(P0(X))||f(P1(X))||f(P2(X))|| · · · ||f(Pt(X)),

where X is a m-bit and IV is an n-bit initial value, m > (t + 1)n and F is the
general construction explained in section 3.2. Then for t > 2 we can prove the
following theorem.

Theorem 4. In the ideal cipher model, an upper bound of the maximum advan-

tage in the viewpoint of the collision resistance of F is described as follows:

Adv
coll
F (q) 6

t(t + 3)(q − 1)

2tn+1
+

q2 − 1

2(t+1)n+1
where t > 2.

5 Conclusion

In this paper, we investigated how to design hash functions with variable lengths
from an atomic function of a fixed output length. Our results are meaningful
because we can make hash functions with variable output sizes with only one
function. Recently, several constructions have been suggested where some inde-
pendent and uniform random functions are used [12, 14, 15]. We hope that our
results can be applied to reduce the number of random functions required to
guarantee the optimal collision resistance of constructions in [12, 14, 15].
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