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Abstract. The low weight polynomial multiple problem arises in the context of stream ciphers
cryptanalysis and of efficient finite field arithmetic, and is believed to be difficult. It can be for-
mulated as follows: given a polynomial f € F2[X] of degree d, and a bound n, the task is to find
a low weight multiple of f of degree at most n. The best algorithm known so far to solve this
problem is based on a time memory trade-off and runs in time O(n/“=Y/21) using O(n/(w=1/41)
of memory, where w is the estimated minimal weight. In this paper, we propose a new technique
to find low weight multiples using lattice basis reduction. Our algorithm runs in time O(n(n — d)°)
and uses O(nd) of memory. This improves the space needed and gives a better theoretical time
estimate when w > 12 or when the ezcess degree n — d is small, say, (n — d)® < n/(@=3/21 The
former situation is plausible when the bound n, which represents the available keystream, is small,
whereas the latter one occurs in efficient finite field arithmetic. We also propose bounds for the
minimal weight of such multiples, supplying in this sense the state-of-the art techniques with a
method to check whether their estimated minimal weight is in the correct range. This provides a
quantitative cryptographic quality criterion for such polynomials: the fewer low degree low weight
multiples a polynomial has, the harder becomes this type of cryptanalysis of the corresponding
stream cipher. As an example, the Bluetooth polynomial turns out to be of good quality in this
sense. Moreover, we introduce the corresponding number problem and apply a similar strategy to
find sparse multiples of a given number with respect to the Hamming weight of their 2-ary repre-
sentation. Finally, we run our experiments using the NTL library on some known polynomials in
cryptanalysis and we confirm our analysis.
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1 Introduction

Finding a low weight multiple of a polynomial over Fy is believed to be a difficult ! problem.
In fact, there exists no known polynomial time algorithm to solve it. Later in this document we
point out a reduction from this problem to the Syndrome Decoding problem which is known
to be NP-complete, however the other direction hasn’t been investigated to the best of the
authors’ knowledge. Anyway, the presumed difficulty of the problem has motivated Finiasz and
Vaudenay [9] to propose a public key cryptosystem whose security rests on the intractability of
this problem.

The problem can formulated as follows, given a polynomial f over a finite field, Fo for
instance, and a bound n, determine the set:

My(n,w) = {g € Fo[X]: f|g,deg(g) < n,weight(g) < w},

where w is the least possible weight: w = min{w;: M(n,w;) # 0}. It is often enough to compute

sufficiently many - but not all- elements from this set.

There exists also the other variant which consists of determining the set M(n,w) for a given

weight w and for n = min{n;: My(n;,w) # 0}. In this paper, we concentrate on the first variant.
The low weight polynomial multiple problem originated in cryptography from two distinct

areas: attacks on LFSR-based stream ciphers and efficient finite field arithmetic.

! Oppositely to its inverse problem which lies in finding factors of low weight polynomials, for instance trinomials,
and for which there exist efficient algorithms (Brent et al. [3]).



Application to stream ciphers cryptanalysis

Stream ciphers constitute an important class of secret-key encryption algorithms. In fact, LFSR-
based stream ciphers are widely used in many applications because of the advantages they present
compared to other encryption schemes, for instance, block ciphers: they are faster, require less
hardware circuitry and have fewer propagation errors. An example is Bluetooth encryption.
Stream ciphers consist of a seed, corresponding to the shared secret key, and a pseudorandom
generator, which consists of constituent LFSRs [17] and a nonlinear combination function. The
result is a pseudo-random binary sequence, called the keystream, which is, in the case of a binary
additive stream cipher, bitwise added to the plaintext in order to obtain the ciphertext. Hence,
attacks on stream ciphers have as ultimate goal the recovery of the initializations of the LFSRs.
Correlation attacks are considered to be the most important class of attacks against stream
ciphers. There exists also a category of attacks that simply aim at verifying whether a bitstream
is the encryption of some (unknown) message, the so-called distinguishing attacks. Both attacks
require finding low weight multiples of a constituent LFSR’s feedback polynomial.

Fast correlation attacks. They were originally introduced by Siegenthaler [27] and later improved
by Meier and Staffelbach [16]. Since then, a series of proposals sprang up, either very general
or adapted to a specific scheme, to name but a few [12,11,13,4,5|. The principle of this type
of attacks is as follows: we try to reconstruct the initialization of the constituent LFSR, say
the ¢-th one, from the output keystream by viewing the latter as the transmission of the former
one through a noisy channel. In fact, we assume that the adversary knows both the plaintext
and the ciphertext (a known plaintext attack). The errors resulting from this transmission are
due to the other registers. Let s and s’ denote the output of the keystream generator and the
i-th LFSR R; respectively. The more the sequences s and s’, are correlated, the smaller is the
attack’s error probability. More precisely, let s¢ = (86, . ,Sév_l) be the initial N-bit sequence
generated by the constituent LFSR R; whose connection polynomial is f with linear complexity
L, and s = (sg,...,sn—1) be the initial N-bit keystream. Let further p = Prob(si = sj) be
the correlation probability between s and s’, where the probability is taken over the possible
initializations of the constituent LFSRs. Then s can be viewed as the result of the transmission
of s* through a binary symmetric channel with error probability 1 — p. Moreover, the sequence
s’ satisfies the linear recurrence defined by the polynomial f. Thus the word s’ = (36, e 75§V—1)
belongs to the linear error correcting code of length N and of dimension L defined by f. We
can then recover it using the iterative decoding process due to Gallager [10] which exploits the
existence of parity check equations.

Fast correlation attacks can then be mounted into two phases: the first one determines low weight
parity check equations or equivalently low weight multiples of an LFSR’s connection polynomial,
whereas the second phase decodes the sequence s to recover s*. R; could then be recovered as
soon as N > L.

Distinguishing attacks. A distinguishing attack as previously stated can be used to verify or
falsify whether a bitstream is the encryption of some message. This is of significant importance
if the set of possible messages or possible keys is small. In fact, a small message set gives few
possibilities for the keystream, this could be obtained by bitwise adding the given ciphertext to
the possible messages. Then, one can simply check the correct keystream by encrypting some
known bitstreams using the possible keystreams and feeding the resulting ciphertexts to the
distinguisher, the correct keystream is the one providing a ciphertext that is identified by the
distinguisher as yes instance. In case the key size is small such that an exhaustive search is
plausible, distinguishing attacks are then equivalent to key-recovery attacks and thus could be



employed to decrypt the ciphertexts.

Low weight multiple polynomials are also required in such attacks, in fact, following the
framework described in the above paragraph, namely, an LFSR-based stream cipher given by
constituent LFSRs and a pseudo-random generator. We assume that the output keystream s
is written as the sum of a binary biased sequence b, i.e., a sequence such that Prob(b; = 0) =
1/2 4+ v, v > 0%, and an LFSR’s output [ (could be the equivalent LFSR of a subset of the
constituent LESRs combined via a nonlinear function). Let M = Y_" | X% be a multiple of the
LFSR’s connection polynomial of degree n and weight w, where 0 = ¢ < q2 < ... < @ = n.
Then, by standard cryptanalytic techniques, the output keystream is biased with bias %vw, since
@ 1liyg, = 0 holds for all ¢ and @} ;s14q; = B (Lrqi + birgq) = B biyg, - It follows that
one needs 7y~2% samples to distinguish the output keystream from a truly random sequence.
Notice, that the smaller w, the higher the bias will be and thus the fewer samples are needed
to build the distinguisher. For examples of such attacks, see [15] on EO, and [8] on SOBER-t16
and SOBER-t32.

Application to efficient finite field arithmetic

It is often attractive to use finite fields Fon in cryptography, in particular for hardware appli-
cations. There are several ways of representing small fields. One representation is by a sparse
irreducible polynomial g € Fo[X] of degree n, as Forn = F3[X]/(g). In [28], this was found to be
the most efficient representation if exponentiation is a core operation. Ideally, one would like to
use the minimal possible weight, that is, trinomials of weight 3. However, these do not always
exist. Brent and Zimmermann [2| proposed an interesting solution: take an irreducible polyno-
mial f € Fo[X] of degree n, but possibly large weight, a multiple g of f with small weight, say
g a trinomial, and work in the ring R = F3[X]/(g) most of the time, going back to the field via
R — TFan only when necessary. This is particularly useful if the ezcess degree deg(g) — deg(f)
is small. They actually describe efficient algorithms for finding trinomials with large irreducible
(and possibly primitive) factors and give examples of such trinomials. A systematic illustration
of this method is in preparation.

Our contributions

The main result of the present paper dwells in a new algorithm to compute sparse multiples, with
degrees at most a certain n, for a given polynomial f, over Fy, of degree d < n. Our algorithm
is a lattice-based solution, i.e., consists of the basis reduction of an (n — d)-dimensional lattice
in Z". Hence, it runs in O(n(n — d)°) in case the LLL reduction is applied. This gives a better
time estimate compared to the standard techniques which run in O(n[(w_l)/z]) in case w is big,
say bigger than 12, or in case the excess degree n — d is small, namely, (n — d)° < nlw=3)/2]
Furthermore, our solution presents a huge improvement in the space complexity, that is O(n - d)
versus O(n!(w=1/41),

In contrast to our algorithm, the standard techniques estimate first the minimal weight, using a
heuristic method, then try to find multiples with weight smaller than the expected weight. This
heuristic method is independent of the polynomial, in fact, the parameters that come into play
are just the degree of the given polynomial and the bound on the multiple’s degree. The heuristic
works well for random polynomials. But there exist polynomials for which the method predicts
a weight that actually doesn’t exist. This leads to run unproductively the algorithm to find the
sparse multiples. In fact, it is a goal of the cryptosystems designers to come up with such “hard”

2 The probability is again taken over the possible initializations of the constituent LFSRs.



polynomials which thwart this type of attacks. This leads to a quantitative quality criterion for
such polynomials: the higher the degree of multiples with a given weight, the more resistant
they are to such attacks. To overcome this problem, at least partially, we propose theoretical
bounds for the “real” weight using known results from lattices. In this way, these techniques will
proceed to find the sparse multiples only if the estimated weight is in the correct range. Besides,
this result can be parsed from stream ciphers designers in the following way: given a polynomial
f (feedback polynomial of a constituent LFSR), they insure that an adversary cannot find a
multiple with weight smaller than a given bound given access to a certain amount of keystream.
Finally, we introduce the corresponding number problem which consists of finding sparse mul-
tiples, with regard to the Hamming weight of the 2-ary representation, of a given number. We
apply almost the same strategy based on lattices and confirm our analysis by running the algo-
rithm on some problem instances.

The rest of the paper is organized as follows; first, we give some preliminaries about lattices,
for instance we recall the definition of the orthogonal lattice which plays a central role in our
algorithm. Second, we present our solution to find sparse multiples for a given polynomial; after
giving the approach, we provide experiments as well as comparisons with the state-of-the art
techniques in order to confirm our analysis. In section 4, we give bounds for the target weight us-
ing some results on lattices. In section 5, we present our algorithm to find sparse binary multiples
of a given integer. Finally, we conclude with general thoughts and prospectives.

2 Preliminaries

In this section we give some preliminaries about lattices and their algorithmic problems. The
book [18] constitutes a good introduction to this topic.
Let R™ be the n-dimensional Euclidean space. A lattice L is the set

d
L(b,...,ba) = {>_abi:z; € Z},
=1

of all integral combinations of d linearly independent vectors (over R™) by,...,bs. Then, d and
B = (by,...,by) are called the rank and basis of L, respectively.

A lattice L can be generated by more that one basis. These bases, referred to as equivalent
bases share the same number of elements, called rank or dimension of the lattice as well as
the same Gram determinant A(L) = A(by,...,bq) = det(G), where G is the Gram matrix:
G = (< bi,bj >)1<ij<q and < -,- > denotes the usual inner product. The determinant or
volume of the lattice, denoted as det(L), is by definition /A(L).

Definition 1. (Successive Minima) Let L be a d-dimensional lattice and let By(0,7) = {x €
Re: ||z|| < r} be the d-dimensional open ball of radius r centered in 0. The successive minima of
L, are constants A1 (L), ..., \q(L) verifying the following: \; = inf{r : dim(span(LNB,(0,7))) >
i}. We clearly have Ay < Ay < ... < \g. We call gap of the lattice the ratio between the first and
second minima. Finally, the first minimum A1 is called also norm of the lattice and corresponds
to the norm of the shortest vector in the lattice.

Theorem 1. Let B be a d-dimensional lattice basis, and let B* be the corresponding Gram-
Schmidt orthogonalization. Then, the first minimum Ay of the lattice (in the o-norm) satisfies:
min [|b7 ]| < A1 < /g det(L)/?, where ~q is the Hermite’s constant.

J

Proof. The lower bound is proved in |18, Basics/Lattices/Succesive minima/Theorem 1.1] whereas
the upper bound follows from a classical result of Minkowski which states that for any d-
dimensional lattice L and for any r < d: [[/_; (L) < /7] det(L)"/4.
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We get now to the orthogonal lattice, a notion which was first introduced in a cryptanalytic

context by Nguyen and Stern in 1997 [21]. It has proved very important and was used to attack
many public key cryptosystems [21-23].

Definition 2. (Orthogonal Lattice) Let L be a lattice in 2", and let span(L) be the vector
space (over R) generated by L. The orthogonal lattice is defined as follows:

Lt =span(L)t NZ" = {z € Z" : Yy € L, < x,y >= 0}.

The biorthogonal (L+)+ contains L but generally it is not equal to it. We define the completed
lattice L as being (L) It can be viewed as the intersection of Z" and span(L). The determinant
of L and L are related by the following theorem.

Theorem 2. Let L be a d-dimensional lattice in Z", given by a basis (by,...,by) and b; =
(bL,...,bP). Then: det(L) = det(L) - [T, ged(bl, ..., b7).

This theorem is quite intuitive and probably already known. Since we have not been able to
locate appropriate references, we provide its proof in appendix A.
Moreover, we have the following result [19, Chapter 2/Lemma 2.7 and Theorem 2.8|

Theorem 3. If L is a lattice in Z", then dim(L) + dim(L*) = n and det(L*) = det(L).
O

Finally, computing the orthogonal lattice amounts to determining the kernel of a matrix (as a
Z-module); see [6, Algorithm 2.4.10]

Theorem 4. Given a basis of a lattice L in Z™, one can compute a basis of the orthogonal lattice
Lt in time polynomial in n, d and the bit-size of the basis.
g

3 Finding Low Weight Polynomial Multiples Using Lattices

The idea underlying our approach is simple and based on the remark that a low weight polyno-
mial multiple of degree less than n is a low weight linear combination with integer coefficients
of the monomials X? 0 < i < n, that evaluates to zero modulo the given polynomial. The
algorithm follows then in a straightforward way.

Input: a polynomial f of degree d and a bound n > d.
Output: (n — d) multiples of f of degree less than n.

1. Compute h; = X* mod f for all 0 < i < n and build the d x n matrix M,, whose columns
are the coefficients of the h;’s ;

2. Consider the lattice L, in R™ generated by the rows of the matrix M, ;

. Compute a basis of the orthogonal lattice Lﬂ; and reduce it ;

4. The (n — d) basis vectors constitute the (n — d) polynomial multiples. For instance, if

w

v = (vg,...,vn—1) is a basis vector, then m = Z (v; mod 2) X" is a multiple of f
0<i<n

Algorithm 1: Computing low weight multiples of a given polynomial

The hope is that the multiples computed above are sparse; this is discussed below.



3.1 Analysis

The first two steps can be clearly performed in O(d(n — d)) arithmetic operations. In fact, to
compute h; = X* mod f, 0 < i < n, we compute h; = X’ for 0 < i < d, and for the remaining
indices we use the fact that X* = Xh;_; is either Xh;_y (if deg(h;_1) < d —1) or Xh;_1 + f
if ( deg(hi—1) = d —1). The computation and reduction of the orthogonal lattice basis can be
performed in one step as in [21], or in two steps; first compute the integer kernel (as a free
Z-module and not as a vector space) of the matrix M,,’s transpose using algorithms from [6],
then reduce it. In this problem, we can compute the orthogonal lattice L~ in almost linear time
in (n — d) using a simple remark from elementary linear algebra.

Computation of the orthogonal lattice. The lattice L,, C R", has dimension d since the
first d components of its generators form a unit matrix, and thus the generators are linearly
independent. The orthogonal lattice L:- then has dimension n — d according to Theorem 3 .
Moreover, we can construct this orthogonal lattice incrementally, i.e., from L;-, one can easily
derive L ;. Indeed, let £ = (I1,...,l,—q) be a basis of L. It is clear that (I;,0) € L.
Let now m; ;, where 0 <7 < d—1and 0 < j < n, be the entries of the matrix M, . The
first d columns of M, correspond to the columns of the identity matrix I; € R%*?. By def-

inition, the other columns X7 mod f, d < j < n, of M, are linear combinations of the the
first d columns with coefficients m; ;, for instance: X" = Z mmXi mod f. It follows that

0<i<d—1
Z —mmXi—{— Z 0-X°+ X" =0 mod f,or Z —mi,nhi+ Z 0-h'+h" =0,
0<i<d—1 ‘ d<i<n—1 0<i<d—1 d<i<n—1
where h; = X' mod f. Hence, the vector u = (—mq,...,—Mg—1,,0,...,0,1) is also in L#H

and linearly independent of the vectors (I;,0). Since dim(L;L ;) = dim(L) + 1, we suggest the
following: if £ = (I1,...,l,_q) is a basis of L} then K = (ki1,...,kny1_q) is a basis of L#H
where k; = (1;,0) for 1 <i <n —d and ky41_q = u. We derive then the following algorithm to
compute L;-:
Input: The lattice L,, or equivalently the matrix M, = (m; ), where 0 < i < d and
0<j<n.
Output: The orthogonal lattice L.
Create the matrix K, = (k; ), 0 <i <n —d and 0 < j < n, where the entries k; ; are
initially set to O ;
for ¢ from 0 ton—d—1do
for j from 0 to d — 1 do
kij— —mjiyq;
Je=J+1;
end
Kiiva — 1;
t—1+1;
end

The rows of K,, constitute the basis vectors of L;-.
Algorithm 2: Computing the orthogonal lattice L,

The (n —d) x n matrix representing the orthogonal lattice L;- (the lattice basis vectors form
the rows of the matrix) will have the following shape:
—mod ... —Md-1,d 100 ...0
—mo,d+1 --- —Md—1,d+1 010 ...0

—Mon—1... —Md—1,n-1 00...01
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Lemma 1. Algorithm 2 computes a basis of the orthogonal lattice L;- with running time O((n —

d)d) .

Proof. 1t is clear that Algorithm 2 runs in time O((n —d)d). It remains to prove that it actually
computes a basis of the orthogonal lattice L. Since the matrix K, has (n — d) rows and the
lattice L# has dimension n — d according to Theorem 3, it suffices to prove that the rows of K,
form a generating family of L;-. Let v = (vg,...,v,_1) € L. Then by definition of the orthogonal
lattice, < v,u >= 0,Yu € L,, for instance < v,u; >= 0 for all the lattice L basis vectors u;
(rows of the matrix M,). It follows that Z m; jv; = 0 and thus v; = — Z m; jv; for
0<j<n—1 d<j<n-—1
0 <i<d—1. Consequently,

v=(vgy...,0p)
= (- E MO U,y — E MG—1,Vj, Uds - - - s Vp—1)
d<j<n—1 d<j<n—1
= E vj(—m07j,...,—md_l,j,O,...,l,O,...,0).
d<j<n—1

v can then be written as a linear combination of the rows of K, with coefficients v;, d < j <
Un—1, which concludes the proof.
O

Finding the low weight polynomial multiples. This is the most expensive part of Al-
gorithm 1 since it corresponds to the basis reduction of the orthogonal lattice L;-. The LLL
reduction can be performed in O(n(n — d)®)3. This means that the higher the dimension, the
more infeasible the attack gets.

Theorem 5. Algorithm 1, in case the reduction applied is LLL, runs in O(n(n — d)5) arith-
metic operations, and computes (n — d) multiples of the polynomial f of weight w;: w; <
2" A=\ (LH)2,1 < i < n —d, where \;(L;t) denote the successive minima of the lattice L:-, for
instance \1(L;.) is the shortest nonzero vector in the lattice which corresponds also to the lowest
weight of f’s multiples of degree at most n — 1.

Proof. We first show that Algorithm 1 computes multiples of f. Let v = (vg,...,Up—1) €
L-. Then > i—ovymi; = 0,0 < i < d— 1 It follows that 3 7, v; (X7 mod f) = 0, thus,
> =0 v;(X7 mod f) = 0mod 2 or equivalently F1375—o(vj mod 2)X7. To prove the running
time as well as the bound on the weights of the resulting multiples, we just refer to the famous
LLL paper [14] where the the authors prove the approximation factors of the reduced basis
vectors with regard to the successive minima when the LLL reduction is applied.

g

Remark 1. In order to improve on the quality of the obtained basis, we could use, instead
of the LLL reduction, Schnorr’s reduction algorithm [24] or the recently improved algorithm
[1]. We will obtain then approximation factors that are slightly sub-exponential , namely -
20((n—d)(log log(n—d))?/log(n—=d)) zpq 20((n—d)loglog(n—d)/log(n—d)) respectively. Note that an exact
solution of the lowest weight multiple (or even an approximation to within polynomial factors
in the excess degree (n — d)), can be achieved in exponential running time.

3 Actually LLL runs in (’)(d5n)BS, where d and n represent the lattice and vector space dimensions resp. and
B is an upper bound on the coefficients’size of the inupt basis vectors. In our case these have values in {0, 1},
thus B = 1.



Remark 2. There exists also a heuristic that estimates the vectors lengths in a reduced basis
output by the algorithm 1 by the product of the square root of the dimension n — d and the
(n—d)-th root of the lattice determinant. This gives us multiples of weights with approximation
factors polynomial in (n — d) to the actual minimal weight.

On the practical side, the LLL algorithm, despite its pessimistic theoretical bounds, achieves a
basis with moderately short vectors. For instance, all the resulting vectors in the reduced basis
of L+ have entries in {0,#+1} and if the dimension is small enough, then we find multiples with
the lowest possible weight.

In order to relate the shortness of the obtained reduced basis vectors and the sparseness
of the resulting polynomials, we make the following assumption which is actually an empirical
result, run over several instances of the problem, that we could not prove theoretically

Assumption 1 Algorithm 2 outputs a basis for the orthogonal lattice with vectors having entries

in {0, +1}

In this way, the weight of the resulting polynomials will be nothing but the square of the basis
vectors’ fo-norm.

3.2 Previous work

The strategy used so far to solve this problem consists of first estimating the minimal weight
w of multiples of the given polynomial f with degree at most n — 1, then finding multiples of

weight at most w. To estimate the minimal weight, one solves for wy the following inequality; w

. . -1 . .

is the smallest solution: 279 (nw > 1. In fact, if multiples were random then one expects
d

that the above inequality holds. It is worth mentioning that the number of such multiples could

be approximated by Ny = 27¢ (:} : i)

The techniques used to find sparse multiples of weight at most w are:

— Exhaustive search. When the bound n is just above d, an exhaustive search turns out to
be faster. The cost of such an attack is O(Poly(d) - 27~41).

— Syndrome decoding. We compute the matrix H whose columns are defined by H; =
X’mod f,1<i<mn—1, then find a low weight word in the preimages of 1 of this matrix.
The cost of this method is O(Poly(n—1)(22)“~1) N, where Poly is a polynomial of degree
2 or 3.

— The birthday Paradox [16]. Set w = ¢1 + g2 + 1, ¢1 < g2, and build two lists; the
first one contains all possible linear combinations of X?mod f, 0 < i < n of weight ¢
whereas the second list contains all possible linear combinations of X*mod f, 0 < i < n
of weight ¢. Then look for pairs that sum to 1. Clearly, this method runs in O(n%) (if we
implement the first list by an efficient hash-table), and uses O(n%) of memory. The usual
time-memory trade-off is to use ¢ = [“52]| and g2 = [“52] in order to balance the cost
of the two phases. Note that the running time depends on the parity of w since we do not
have to compute anything if ¢ = go. There exist many improvements of this method, for
example Chose et al. [5] use the match-and-sort alternative that consists of splitting the huge
task of finding collisions among n" combinations into smaller tasks: finding less restrictive
collisions on smaller subsets, sort the results and then aggregate these intermediate results to
solve the complete task. This leads to a considerable improvement of the space complexity,
namely (’)(n“"_l/‘ﬂ ). Didier and Laigle-Chapuy 7| consider a new approach that uses discrete
logarithms instead of the direct representation of the involved polynomials. They achieve
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a time/space complexity of O(nLL(w_l)/zj), where L is the cost of computing a discrete
logarithm in Fyq, and O(nl(=2/2]) respectively.

— Wagner’s generalized birthday paradox. When the bound n on the multiples’degree
increases, then Wagner’s generalized birthday paradox [29] becomes more efficient. In fact,
n—1

(w—1)/22
in ©(2%2¢(@+1))_ For instance, if n > 24/(+og2(w=1)) "ysing this method, one can find a
multiple within almost linear time in n, namely, O((w — 1)n).

if there exists a > 2 such that ( > Zd/(“+1), then one can find a solution

We summarize the costs (time and complexity) of the different methods in the following
table:

Method Exhaustive Search Syndrome Decoding Birthday Paradox Generalized BP Our method

Time cost ||O(Poly(d) - 2"~ 4~ 1)|O(Poly(n — 1)(”771)1“*1)/\/'1\4 O(n’—wTil-‘) O((w — 1)24/(Atlog2 (W=D O((n — d)5n)

Space cost O(n) O(Poly(n — 1)(%)““” O(nTw=1/4T) O(24/(0+1oga (w=1))) O(nd)

From the list above, we conclude that our algorithm achieves a better cost when the weight
w increases, say gets bigger than 12. Also, In the case where the excess degree n—d is small (but
not too small such that an exhaustive search is feasible); one concrete example is when w = 3
and and n > (n — d)® or when w = 5 and n? > (n — d)®.

3.3 Experiments

To validate our method, we tested it on some known polynomials, using the NTL library [26]
developed by Victor Shoup on a 2.2-GHz Athlon processor with 2 GB of RAM. More precisely, we
used for the lattice basis reduction (step 3 in Algorithm 1) two implementations of floating LLL
(and its variants). In fact, the (original) LLL algorithm operates on rationals in order to compute
the Gram-Schmidt orthogonalization coefficients. In big dimensions, the size of these latter
items increases and makes the algorithm impractical, thus one is tempted to approximate the
mentioned coefficients using a floating point representation. We basically use the NTL LLL FP
algorithm which represents an improvement of the Schnorr-Euchner version [25] that uses a
double precision. In order to improve on the quality of the reduction, we also make use of a
floating point implementation of the Block Korkin-Zolotarev basis reduction (in double precision
as well), namely the BKZ FP algorithm. This is slower but yields a higher-quality basis, i.e.,
one with shorter vectors. It basically generalizes the LLL reduction condition from blocks of size
2 to blocks of larger size. BKZ FP is an implementation of the Schnorr-Euchner algorithm [25].
Finally, it is worth noting that the best fully proved floating point arithmetic LLL variant is due
to Nguyen and Stehlé [20]. The so-called L? algorithm which runs in time O(d*nlog B(d+log B)),
where d, n and B refer to the lattice dimension, the vector space dimension and an upper bound
on the lattice basis vectors’ norm.

We got the following results (n refers to the strict upper bound on the polynomial, w, and
wy refer to the estimated minimal weight and the smallest weight found resp. , finally M and
t denote the number of multiples found of degree at most w; and the corresponding time (in
seconds) resp.):

Experiment 1. f; =1+ X2+ X4 4+ X5+ X604+ X84+ X9 4 X104 x4 X134 xM 4 X154 x17,

1. The Lattice method using the floating variant of LLL (LLL_FP) from the NTL library with
the default parameters:
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n — 1|(17|20]20|20|21|22|24|30({44| 94 | 513
we (|13|12|11]10{9|8|7|6|5| 4 3
wy (13| 8]8|8|8|8|8 2| 5 4
M 1|11 (1|2{2(2|1]1| 1 2

t ||0]0]0]0(0]0]0(0]0(0.004/0.696

2. The Lattice method using the floating variant of LLL (BKZ FP) from the NTL library with
30 for the block size and 15 for pruning:

n — 1|{17|20|20{20|21|22|24|30(44| 94 |513
wy |[13]8 8155 5 | 3
M 1|1 211111 3 |1
t |00 0/10]0]0.0625.1

3. The Time-Memory Trade-Off (TMTO) using the C++ standard library (STL) hash function:

O =] Co
| = co
O N Co
O N Co

n—1\17) 20 | 20 | 20 |21| 22 | 24 | 30 | 44 | 94 | 513
wr (13) 8 | 8 | 8 (8] 8| 8|5 |5 |5]|3
M 111 (1 (2241|1271

t || 010.38]0.38]0.38]0.5|0.75|1.62(0.02{0.08|2.77]0.03

We provide in Appendix B the remaining experiments, where the TMTO method has been

running for several days without any results.

Remarks. In order to evaluate experimentally the time estimate of our method, we utilized
the linear regression tool to express the relationship between the logarithm of the time estimate
(In(t) ) and the logarithm of the bound on the multiples (In(n)). We got the following for the

first experiment:

" LLL_FP.dat’
"BKZ_FP dat"
"TRITO dat" --------

log(t) in base n

L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 550
n

Fig. 1. Polynomial f;

We first notice that for the TMTO method, the coefficient a = log,,(t) is not always equal

to [“’T_l] as it should be. This is explained by the fact that the time estimate for this method,

that is, O(n((w_lm), is only the best case complexity. In fact, the search in a hash table can be
performed in constant time in the best case and linear time in the worst. It might be wiser then

to use a more efficient hash table than the one provided by the standard library (STL) of C++.
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We can also relate this to the unfruitful execution of the algorithm when the heuristic predicts
a weight that doesn’t exist.

Next, we note that the coefficient a of LLL _FP and BKZ FP is constant and about 3.5 and 4
respectively. This explains why the TMTO method looses the lead as soon as the weight w gets
greater than 8.

We did the same for the polynomials fo and f3. Since we were not able to run the TMTO method
on these instances, we defined the corresponding coefficient as o = [UJT_W, which corresponds
to the best possible time estimate one could obtain. It is clear from the graphs that the lattice
method is better since the weights that come into play are pretty big.

24

“LLL_FP.dat" “LLL_FP.dat"

"BKZ_FP.dat e "BKZ_FP.dat"
"TMTO(theoretical).dat" - | 22 ————— “TMTO(theorefical).dat" -~ |

20F
181
5| M R 16
s

12 |

log(t) in base n
I
log(t) in base n

10

L L L L L L L L
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
n n

(a) Polynomial f, (b) Polynomial f3

From the results above, we conclude that our algorithm wins in cases that are intractable for
the previously known birthday-based methods, namely when the target weight is big and also
when the excess degree is small.

4 Estimation of the Minimal Weight

As mentioned earlier in this document, the methods used in the literature to find low weight
polynomial multiples, namely Time-Memory Trade-Off and Syndrome decoding, estimate first
the expected minimal weight wg, then find multiples of weight at most wy. The way used to
estimate the minimal weight is to solve for w the following inequality; wg is the smallest solution

o2d ("1} >
w

This estimation is quite reasonable and works well in practice. However, since it is indepen-
dent of the polynomial in question, there exist polynomials for which the estimation leads to a
smaller or greater minimal weight. The problem is posed when the estimation outputs a weight
that is much smaller that the actual minimal weight since this would correspond to running
unproductively the algorithms to find sparse multiples until we hit the “correct” weight. It is
worth noting that from a stream ciphers designer’s perspective, these polynomials are regarded
as secure as they are resistant to this strategy. The Bluetooth polynomial is an illustration of
such polynomials.
In this section, we supply these methods by providing lower and upper bounds for the estimated
minimal weight. In this way, the techniques will proceed to find sparse multiples only if the
estimated weight is in the correct range. This result can be interpreted from stream ciphers
designers as follows: given a polynomial (feedback polynomial of a constituent input LFSR),
they insure that an adversary cannot find a multiple with weight below a certain bound given
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access to a certain amount of keystream.

The bounds follow directly from Theorem 1. Moreover, according to Theorem 2, we have
det(Lt) = det(L) = det(L) since the coordinates of L, basis vectors are in {0,1}. This re-
sults in the following:

[min 1K (7] < wa < [yn—adet(L)* 4],

where (K ;)* represents the Gram-Schmidt data for the matrix K,. We obtained the follow-
ing bounds for polynomial f; (Ib and ub refer to the lower and upper bounds on the minimal
weight respectively whereas w, denotes the estimated weight):

n — 1/120|21|22|24/30{44(94(513
b ||5]5|5]5]3|2]2] 2
we 109 |8|7|6|5(4| 3
ub ||10/10]11]12| 6 | 9 |15| 60

The remaining experiments are given in Appendix C.

In our computations, we used the following, known so far, values for the Hermite’s constant:

n—d|l 2 [3]4]5 6 7 [8[24
Yn—a|[2/V/3|2Y/3v/2|81/5|(64/3)1/6]641/7|2| 4

and for the other dimensions, we used these asymptotic bounds, which are known to be the
best:

n—d n log(m(n —d)) - < 1.744(n — d)

2me 2me

(1 + o(1)).

First, we notice that the heuristic method works well in practice, since all the estimated weights
fall in the provided range. Next, we remark that as soon as the dimension increases, the upper
bounds become trivial and could be replaced simply by the weight of the given polynomial. It
is clear then that exact values or even tighter bounds for the Hermite constant would lead to
tighter upper bounds for the minimal weight.

5 Sparse Binary Multiples of an integer

The method applied above to find sparse multiples for a given polynomial applies also for search-
ing sparse binary multiples of a given integer.
In fact, we define the following problem: we have integers n and g with g dividing "™ — 1, and
consider the set S of all multiples ag with 0 < a < (b™ — 1)/g. We want to know the smallest
Hamming weight of the b-ary representations in S.
In the case b = 2, the same analysis is almost applicable. In fact, we are searching sparse mul-
tiples of the given number g that are smaller 2" — 1, i.e., multiples whose bitsizes are smaller
than the bound * n.

The algorithm is then described as follows:

* This bound represents the order of the 2 in the multiplicative group Zg4. Similarly, we searched sparse multiples,
of a given polynomial f, of degree less than n, where n is smaller than the order of the polynomial f, otherwise
the multiple X°*%") 4 1 would have been a solution.
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Input: a number g of size d diving 2" — 1.
Output: low weight multiples of g smaller than 2™ — 1

1. Compute the lattice n-dimensional lattice K, defined by
Ko = {(z0,...,2n_1) €Z": Y0 ;2" = 0 mod g};
2. Reduce it . The basis vectors with entries in +{0, 1} constitute the low weight multiples.

Algorithm 3: Computing sparse multiples of a given number

In this situation, the computation of the orthogonal lattice can be also achieved in linear time
in n using the following remark. An element of the lattice K, is either a multiple of g (the
coordinates of the element constitute its 2-ary representation), thus it belongs to the one di-
mensional lattice ¢gZ and therefore generated by the vector v = (g,0,...,0), or it belongs to
the sub-lattice L+ = (1,...,2""1)*, which is generated by vectors v; = (=2,1,0,...,0),v9 =
(—4,0,1,0,...,0),...,vp_1 = (=2"71,0,...,0,1). Hence, (v1,...,v,_1,v) is a basis of K.
Note that the sparse multiples of g are only those which have entries in £{0,1}. We can get
rid of the parasite vectors, namely those with entries in {#1,0} by considering the lattice
K| = 2K, + Z(1,...,1). We are then guaranteed that the desired vectors will appear in any
reduced basis of the new lattice.
Full details about this problem and its applications to error-correcting codes will appear else-
where.

We run again our experiments with NTL and got the following:

(g, n)][(268501,100)](3173389601,200)[(10567201,300)[(82471201,400)
wy 3 3 2 5

M 27 18 132 2

t 0.06 0.3 1.02 1.66

6 General Thoughts and Prospectives

An interesting question is to study the special form of the lattice L or equivalently of the
matrix K, in order to reduce the cost of the reduction, or improve on the gotten results. In fact,
the matrix in question is sparse and one is tempted to use a more compact representation or at
least a representation that makes easy for the basis reduction algorithms, namely LLL and its
variants, the search for short vectors. For instance, we noticed that changing the shape of the
matrix such that the first (n — d) columns form the unit matrix I,_4 € R"™? - in the original
lattice, the last (n — d) columns formed the unit matrix - leads to different results but still not
spectacular.

Besides, according to Algorithm 1, short vectors in the lattice L~ lead to sparse multiples of
the polynomial f. So we managed to relate the hardness of the low weight polynomial multiple
problem to the hardness of the shortest vector problem in L. We can also relate the closest
vector problem to our problem, in fact, a lattice point in L# close to the constant polynomial 1
will lead to a low weight multiple of nonzero constant term. This suggests to study the hardness
of the shortest/closest vector problems of this special instance of lattices (lattice of the form
K,) in order to better estimate the hardness of the low weight polynomial multiple problem. We
believe the taxonomy: sparse polynomial multiple problem - shortest/closest vector problem of
lattices with form K, - syndrome decoding, deserves further attention. In fact, this would provide
us either with very efficient tools to solve the problem and hence lead to new improvements in
stream ciphers cryptanalysis and fast finite field arithmetic, or with confidence on the hardness
of the problem (if we manage to exhibit a reduction from syndrome decoding or SVP/CVP to
it ), since the other two problems are known to be NP-complete. The last point is motivated by
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the recent proposal of a cryptosystem whose security relies on the problem [9].

Furthermore, the reduced basis of K,, contains short vectors or equivalently sparse multiples
that do not have necessarily nonzero constant term. This is due to the following fact: if g is a
sparse multiple with nonzero constant term, then there is no restriction on the basis to contain
the multiples X’g granted that deg(g) +i < n. This leads to redundancies in the basis. It would
then be desirable if one filters out extraneous polynomials in order to allow more “interesting”
multiples to appear in the basis. One way to achieve this is to compute points in the lattice L
that are close to the constant polynomial 1. The cost of such a technique will be about the same
since we will use the famous embedding technique, which consists of reducing the (n + 1 — d)-
dimensional lattice L/, C Z"*! given by the basis K' = (kI,..., 1—q), where ki = (k;,0),
1 <i<n-—d and kyy1-4 = (1,0,...,0,1). Experiments curried out improved slightly the
results, for instance, we got a further nonzero multiple of f; of degree at most 94. The weak
impact of this strategy lies in the small CVP-gap, i.e., the ratio between the shortest vector
of L and the distance of the constant polynomial 1 to it. In fact, the embedding technique
requires a large gap in order to give accurate results. It would be interesting to dig further
in this direction, for example solve directly the CVP instance instead of reducing it to a SVP
instance. Experiments are in progress and will appear in the full version of the paper.

Finally, one is tempted to extend the method into finding low weight multiples of polynomials
over IF,, , where p > 2 is a prime number (for the corresponding number problem, consider the
case b > 2). However, the naive approach would not work since the correspondence short vector
/ sparse multiple won’t hold anymore.

7 Summary

We have proposed a new algorithm to find low weight multiples for a given polynomial of
degree at most n using lattice basis reduction. The method has a theoretical time estimate of
O((n — d)®n) , in case LLL is the reduction algorithm used, and an experimental one about
O(n). Tt takes then the lead as soon as the expected minimal weight w gets bigger that 8. In
fact, the best known methods, that are the birthday-based ones, have a best-case time estimate
about O(n/(®=1/21)_ Such a situation occurs when the bound on the multiple, which denotes the
available keystream, is small. We also gave bounds for the minimal weight of such polynomials
using lattices. This helps to check whether the estimated weight, furnished by the state-of-the
art methods is in the correct range. Also, it provides a quality criterion, from a stream ciphers
designer ’s stand, on the used polynomial. In fact, designers insure that the adversary cannot
find multiples with weight below a certain bound, given access to a certain amount of keystream.
Furthermore, we introduced the corresponding number problem and applied almost the same
technique to find sparse binary multiples of a given integer. Finally, we confirmed our analysis
by implementing the method using N'TL; our method is applicable for relatively high dimensions
(up to 2000), using the floating variants of LLL, and has proved very efficient on instances that
are intractible for the the standard methods.
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A Proof of Theorem 2

Proof. First, we note that if (by, ..., bg) with b; = (b},...,b?) is a basis for L, then (g%blv e gidbd)

is a basis for L, where g; = ged(b},...,b"), 1 < i < d. In fact, Let € L, then there exist

z1,...,24 € R such that x = Z x;b; = Z a:,-gilb,- and x € Z". Since ibi € Z", it follows
1<i<d 1<i<a 9

that x € Z" if and only if x;9; € Z™, V1 < i < d. So we managed to write x as a linear combi-

nation, with integer coefficient, of the ébi’s. Since these latter vectors are linearly independent,

(g%bl? ce ébd) is then a basis of L.
Next, we apply the definition of the determinant of a lattice and get the announced result.

B Experiments

B.1 Experiment 2.

X33+X38—|-X40.

1. The lattice method using LLL _FP:

n — 1|{40|149|51{54|59|67| 78 |95 124 |181|307|669 2268
we |[17(16(15(14|13|12| 11 |10| 9 8| 7|6 b}
wy || 17)117|16|{15{15(13| 13 (13| 13 | 13 | 11 | 9 8
M j1|1{1j1r1j1f 1 |1] 2 2 |1

t [|0{0]0]0({0]010.004]{00.012|0.05/0.34|1.78(49.75

2. The lattice method using BKZ FP:

[y
[a—y

n — 1/|40149|51| 54 |59(67| 78 | 95 |124|181|307| 669 | 2268
wy (17)117|16] 15 1513 13 | 13 |12 | 12| 11 | 10 8
M ||1(1]1] 1 |1|1| 1 1 1121 1 1

t |0]0]010.004{0]0 (0.008|0.016|0.07]0.56|6.38|142.8|2506.77

3. The TMTO method:

n — 1|(40|149/51|54|59(67|78|95124|181|307|669|2268

B.2 Experiment 3.

The Bluetooth polynomial (multiple of the four constituent LFSRs feedback polynomials ) ;
fs = f3 - f3- f3- f3 where:

fi() = 2% + 220 + 22 4 2% 4 1;
f??(ﬂi) — 1L'31 +$24 +$16 +$12 + 1;
fx) =2 + 2% + 2™ + 2t + 1

fi(@) = 2% + 230 4 228 4 2% + 1;



1. The lattice method using LLL FP

n — 1|[128|247 {458 |600{700|855/1100|1400| 1749 | 2387
we |49 312412312220 19 | 18| 17 | 16
wy || 49| AT | AT |47 |47 147 | 47 | 41 | 41 | 41
M (|11 (1 ]1(1]1]1 1 1 1
t 0 10.03]0.74|3.8(5.9|7.9(12.4|20.7(35.11|77.03

2. The lattice method using BKZ FP

n — 1|[128] 247 | 458 | 600 | 700 | 855 |1100| 1400 | 1749 |2387

wyp (49| 47 | 44 | 44 | 44 | 44 | 44| 44 44 44

M |1 1 1 1 1 1 1 1 1 1

t 0 10.184(18.32(75.97|123.2(305.3| 600 [970.82(1520.62|3138

3. The lattice method using BKZ FP

n — 1][128]247[458]600[700[855[1100]1400[1749]2387
n—10 - |- -]-1-1-1-1-1-

C Estimation of the Minimal Weight

— The polynomial fs:

n — 1||49|51154|59|67|78|95(124|181|307|669|2268
b ||11110/8 (6|4 |4|3| 2|2 |2 |2 ]| 2
we |16/15|14]13(12|11110{ 9 | 8 | 7T | 6 | 5
ub ||12(15]17)20/24/28|32| 35 | 39 | 51 | 89 | 255

— The Bluetooth polynomial fs:

n — 1{|247]458(522|604|855|1053|1334|1749|2387
w7122 12|2] 2 2 2 2
we (3124232220 | 19 | 18 | 17 | 16
ub |[218(174(171]171]183| 199 | 225 | 266 | 330




