
Finding Low Weight Polynomial Multiples Using LattiesLaila El Aimani and Joahim von zur GathenB-IT, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germanyelaimani,gathen�bit.uni-bonn.deAbstrat. The low weight polynomial multiple problem arises in the ontext of stream iphersryptanalysis and of e�ient �nite �eld arithmeti, and is believed to be di�ult. It an be for-mulated as follows: given a polynomial f ∈ F2[X] of degree d, and a bound n, the task is to �nda low weight multiple of f of degree at most n. The best algorithm known so far to solve thisproblem is based on a time memory trade-o� and runs in time O(n⌈(w−1)/2⌉) using O(n⌈(w−1)/4⌉)of memory, where w is the estimated minimal weight. In this paper, we propose a new tehniqueto �nd low weight multiples using lattie basis redution. Our algorithm runs in time O(n(n− d)5)and uses O(nd) of memory. This improves the spae needed and gives a better theoretial timeestimate when w ≥ 12 or when the exess degree n − d is small, say, (n − d)5 < n⌈(w−3)/2⌉. Theformer situation is plausible when the bound n, whih represents the available keystream, is small,whereas the latter one ours in e�ient �nite �eld arithmeti. We also propose bounds for theminimal weight of suh multiples, supplying in this sense the state-of-the art tehniques with amethod to hek whether their estimated minimal weight is in the orret range. This provides aquantitative ryptographi quality riterion for suh polynomials: the fewer low degree low weightmultiples a polynomial has, the harder beomes this type of ryptanalysis of the orrespondingstream ipher. As an example, the Bluetooth polynomial turns out to be of good quality in thissense. Moreover, we introdue the orresponding number problem and apply a similar strategy to�nd sparse multiples of a given number with respet to the Hamming weight of their 2-ary repre-sentation. Finally, we run our experiments using the NTL library on some known polynomials inryptanalysis and we on�rm our analysis.Keywords: stream iphers analysis, low weight polynomial multiples, latties, shortest vetor.1 IntrodutionFinding a low weight multiple of a polynomial over F2 is believed to be a di�ult 1 problem.In fat, there exists no known polynomial time algorithm to solve it. Later in this doument wepoint out a redution from this problem to the Syndrome Deoding problem whih is knownto be NP-omplete, however the other diretion hasn't been investigated to the best of theauthors' knowledge. Anyway, the presumed di�ulty of the problem has motivated Finiasz andVaudenay [9℄ to propose a publi key ryptosystem whose seurity rests on the intratability ofthis problem.The problem an formulated as follows, given a polynomial f over a �nite �eld, F2 forinstane, and a bound n, determine the set:
Mf (n,w) = {g ∈ F2[X] : f |g,deg(g) < n,weight(g) ≤ w},where w is the least possible weight: w = min{wi : Mf (n,wi) 6= ∅}. It is often enough to omputesu�iently many - but not all- elements from this set.There exists also the other variant whih onsists of determining the set Mf (n,w) for a givenweight w and for n = min{ni : Mf (ni, w) 6= ∅}. In this paper, we onentrate on the �rst variant.The low weight polynomial multiple problem originated in ryptography from two distintareas: attaks on LFSR-based stream iphers and e�ient �nite �eld arithmeti.1 Oppositely to its inverse problem whih lies in �nding fators of low weight polynomials, for instane trinomials,and for whih there exist e�ient algorithms (Brent et al. [3℄).



2Appliation to stream iphers ryptanalysisStream iphers onstitute an important lass of seret-key enryption algorithms. In fat, LFSR-based stream iphers are widely used in many appliations beause of the advantages they presentompared to other enryption shemes, for instane, blok iphers: they are faster, require lesshardware iruitry and have fewer propagation errors. An example is Bluetooth enryption.Stream iphers onsist of a seed, orresponding to the shared seret key, and a pseudorandomgenerator, whih onsists of onstituent LFSRs [17℄ and a nonlinear ombination funtion. Theresult is a pseudo-random binary sequene, alled the keystream, whih is, in the ase of a binaryadditive stream ipher, bitwise added to the plaintext in order to obtain the iphertext. Hene,attaks on stream iphers have as ultimate goal the reovery of the initializations of the LFSRs.Correlation attaks are onsidered to be the most important lass of attaks against streamiphers. There exists also a ategory of attaks that simply aim at verifying whether a bitstreamis the enryption of some (unknown) message, the so-alled distinguishing attaks. Both attaksrequire �nding low weight multiples of a onstituent LFSR's feedbak polynomial.Fast orrelation attaks. They were originally introdued by Siegenthaler [27℄ and later improvedby Meier and Sta�elbah [16℄. Sine then, a series of proposals sprang up, either very generalor adapted to a spei� sheme, to name but a few [12, 11, 13, 4, 5℄. The priniple of this typeof attaks is as follows: we try to reonstrut the initialization of the onstituent LFSR, saythe i-th one, from the output keystream by viewing the latter as the transmission of the formerone through a noisy hannel. In fat, we assume that the adversary knows both the plaintextand the iphertext (a known plaintext attak). The errors resulting from this transmission aredue to the other registers. Let s and si denote the output of the keystream generator and the
i-th LFSR Ri respetively. The more the sequenes s and si, are orrelated, the smaller is theattak's error probability. More preisely, let si = (si

0, . . . , s
i
N−1) be the initial N -bit sequenegenerated by the onstituent LFSR Ri whose onnetion polynomial is f with linear omplexity

L, and s = (s0, . . . , sN−1) be the initial N -bit keystream. Let further p = Prob(si
k = sk) bethe orrelation probability between s and si, where the probability is taken over the possibleinitializations of the onstituent LFSRs. Then s an be viewed as the result of the transmissionof si through a binary symmetri hannel with error probability 1 − p. Moreover, the sequene

si satis�es the linear reurrene de�ned by the polynomial f . Thus the word si = (si
0, . . . , s

i
N−1)belongs to the linear error orreting ode of length N and of dimension L de�ned by f . Wean then reover it using the iterative deoding proess due to Gallager [10℄ whih exploits theexistene of parity hek equations.Fast orrelation attaks an then be mounted into two phases: the �rst one determines low weightparity hek equations or equivalently low weight multiples of an LFSR's onnetion polynomial,whereas the seond phase deodes the sequene s to reover si. Ri ould then be reovered assoon as N ≥ L.Distinguishing attaks. A distinguishing attak as previously stated an be used to verify orfalsify whether a bitstream is the enryption of some message. This is of signi�ant importaneif the set of possible messages or possible keys is small. In fat, a small message set gives fewpossibilities for the keystream, this ould be obtained by bitwise adding the given iphertext tothe possible messages. Then, one an simply hek the orret keystream by enrypting someknown bitstreams using the possible keystreams and feeding the resulting iphertexts to thedistinguisher, the orret keystream is the one providing a iphertext that is identi�ed by thedistinguisher as yes instane. In ase the key size is small suh that an exhaustive searh isplausible, distinguishing attaks are then equivalent to key-reovery attaks and thus ould be



3employed to derypt the iphertexts.Low weight multiple polynomials are also required in suh attaks, in fat, following theframework desribed in the above paragraph, namely, an LFSR-based stream ipher given byonstituent LFSRs and a pseudo-random generator. We assume that the output keystream sis written as the sum of a binary biased sequene b, i.e., a sequene suh that Prob(bi = 0) =
1/2 + γ, γ > 02, and an LFSR's output l (ould be the equivalent LFSR of a subset of theonstituent LFSRs ombined via a nonlinear funtion). Let M =

∑w
i=1 Xqi be a multiple of theLFSR's onnetion polynomial of degree n and weight w, where 0 = q1 < q2 < . . . < qw = n.Then, by standard ryptanalyti tehniques, the output keystream is biased with bias 1

2γw, sine
⊕w

i=1lt+qi = 0 holds for all t and ⊕w
i=1st+qi = ⊕w

i=1(lt+qi + bt+qi) = ⊕w
i=1bt+qi . It follows thatone needs γ−2·w samples to distinguish the output keystream from a truly random sequene.Notie, that the smaller w, the higher the bias will be and thus the fewer samples are neededto build the distinguisher. For examples of suh attaks, see [15℄ on E0, and [8℄ on SOBER-t16and SOBER-t32.Appliation to e�ient �nite �eld arithmetiIt is often attrative to use �nite �elds F2n in ryptography, in partiular for hardware appli-ations. There are several ways of representing small �elds. One representation is by a sparseirreduible polynomial g ∈ F2[X] of degree n, as F2n = F2[X]/(g). In [28℄, this was found to bethe most e�ient representation if exponentiation is a ore operation. Ideally, one would like touse the minimal possible weight, that is, trinomials of weight 3. However, these do not alwaysexist. Brent and Zimmermann [2℄ proposed an interesting solution: take an irreduible polyno-mial f ∈ F2[X] of degree n, but possibly large weight, a multiple g of f with small weight, say

g a trinomial, and work in the ring R = F2[X]/(g) most of the time, going bak to the �eld via
R → F2n only when neessary. This is partiularly useful if the exess degree deg(g) − deg(f)is small. They atually desribe e�ient algorithms for �nding trinomials with large irreduible(and possibly primitive) fators and give examples of suh trinomials. A systemati illustrationof this method is in preparation.Our ontributionsThe main result of the present paper dwells in a new algorithm to ompute sparse multiples, withdegrees at most a ertain n, for a given polynomial f , over F2, of degree d < n. Our algorithmis a lattie-based solution, i.e., onsists of the basis redution of an (n − d)-dimensional lattiein Z

n. Hene, it runs in O(n(n− d)5) in ase the LLL redution is applied. This gives a bettertime estimate ompared to the standard tehniques whih run in O(n⌈(w−1)/2⌉) in ase w is big,say bigger than 12, or in ase the exess degree n − d is small, namely, (n − d)5 < n⌈(w−3)/2⌉.Furthermore, our solution presents a huge improvement in the spae omplexity, that is O(n ·d)versus O(n⌈(w−1)/4⌉).In ontrast to our algorithm, the standard tehniques estimate �rst the minimal weight, using aheuristi method, then try to �nd multiples with weight smaller than the expeted weight. Thisheuristi method is independent of the polynomial, in fat, the parameters that ome into playare just the degree of the given polynomial and the bound on the multiple's degree. The heuristiworks well for random polynomials. But there exist polynomials for whih the method preditsa weight that atually doesn't exist. This leads to run unprodutively the algorithm to �nd thesparse multiples. In fat, it is a goal of the ryptosystems designers to ome up with suh �hard�2 The probability is again taken over the possible initializations of the onstituent LFSRs.



4polynomials whih thwart this type of attaks. This leads to a quantitative quality riterion forsuh polynomials: the higher the degree of multiples with a given weight, the more resistantthey are to suh attaks. To overome this problem, at least partially, we propose theoretialbounds for the �real� weight using known results from latties. In this way, these tehniques willproeed to �nd the sparse multiples only if the estimated weight is in the orret range. Besides,this result an be parsed from stream iphers designers in the following way: given a polynomial
f (feedbak polynomial of a onstituent LFSR), they insure that an adversary annot �nd amultiple with weight smaller than a given bound given aess to a ertain amount of keystream.Finally, we introdue the orresponding number problem whih onsists of �nding sparse mul-tiples, with regard to the Hamming weight of the 2-ary representation, of a given number. Weapply almost the same strategy based on latties and on�rm our analysis by running the algo-rithm on some problem instanes.The rest of the paper is organized as follows; �rst, we give some preliminaries about latties,for instane we reall the de�nition of the orthogonal lattie whih plays a entral role in ouralgorithm. Seond, we present our solution to �nd sparse multiples for a given polynomial; aftergiving the approah, we provide experiments as well as omparisons with the state-of-the arttehniques in order to on�rm our analysis. In setion 4, we give bounds for the target weight us-ing some results on latties. In setion 5, we present our algorithm to �nd sparse binary multiplesof a given integer. Finally, we onlude with general thoughts and prospetives.2 PreliminariesIn this setion we give some preliminaries about latties and their algorithmi problems. Thebook [18℄ onstitutes a good introdution to this topi.Let R

n be the n-dimensional Eulidean spae. A lattie L is the set
L(b1, . . . , bd) = {

d
∑

i=1

xibi : xi ∈ Z},of all integral ombinations of d linearly independent vetors (over R
n) b1, . . . , bd. Then, d and

B = (b1, . . . , bd) are alled the rank and basis of L, respetively.A lattie L an be generated by more that one basis. These bases, referred to as equivalentbases share the same number of elements, alled rank or dimension of the lattie as well asthe same Gram determinant ∆(L) = ∆(b1, . . . , bd) = det(G), where G is the Gram matrix:
G = (< bi, bj >)1≤i,j≤d and < ·, · > denotes the usual inner produt. The determinant orvolume of the lattie, denoted as det(L), is by de�nition √

∆(L).De�nition 1. (Suessive Minima) Let L be a d-dimensional lattie and let Bd(0, r) = {x ∈
R

d : ‖x‖ < r} be the d-dimensional open ball of radius r entered in 0. The suessive minima of
L, are onstants λ1(L), . . . , λd(L) verifying the following: λi = inf{r : dim(span(L∩Bd(0, r))) ≥
i}. We learly have λ1 ≤ λ2 ≤ . . . ≤ λd. We all gap of the lattie the ratio between the �rst andseond minima. Finally, the �rst minimum λ1 is alled also norm of the lattie and orrespondsto the norm of the shortest vetor in the lattie.Theorem 1. Let B be a d-dimensional lattie basis, and let B∗ be the orresponding Gram-Shmidt orthogonalization. Then, the �rst minimum λ1 of the lattie (in the ℓ2-norm) satis�es:
min

j
‖b∗j‖ ≤ λ1 ≤

√
γd det(L)1/d, where γd is the Hermite's onstant.Proof. The lower bound is proved in [18, Basis/Latties/Suesive minima/Theorem 1.1℄ whereasthe upper bound follows from a lassial result of Minkowski whih states that for any d-dimensional lattie L and for any r ≤ d: ∏r

i=1 λi(L) ≤√

γr
d det(L)r/d.



5
⊓⊔We get now to the orthogonal lattie, a notion whih was �rst introdued in a ryptanalytiontext by Nguyen and Stern in 1997 [21℄. It has proved very important and was used to attakmany publi key ryptosystems [21�23℄.De�nition 2. (Orthogonal Lattie) Let L be a lattie in Z

n, and let span(L) be the vetorspae (over R) generated by L. The orthogonal lattie is de�ned as follows:
L⊥ = span(L)⊥ ∩ Z

n = {x ∈ Z
n : ∀y ∈ L,< x, y >= 0}.The biorthogonal (L⊥)⊥ ontains L but generally it is not equal to it. We de�ne the ompletedlattie L̄ as being (L⊥)⊥. It an be viewed as the intersetion of Z

n and span(L). The determinantof L and L̄ are related by the following theorem.Theorem 2. Let L be a d-dimensional lattie in Z
n, given by a basis (b1, . . . , bd) and bi =

(b1
i , . . . , b

n
i ). Then: det(L) = det(L̄) ·∏d

i=1 gcd(b1
i , . . . , b

n
i ).This theorem is quite intuitive and probably already known. Sine we have not been able toloate appropriate referenes, we provide its proof in appendix A.Moreover, we have the following result [19, Chapter 2/Lemma 2.7 and Theorem 2.8℄Theorem 3. If L is a lattie in Z

n, then dim(L) + dim(L⊥) = n and det(L⊥) = det(L̄).
⊓⊔Finally, omputing the orthogonal lattie amounts to determining the kernel of a matrix (as a

Z-module); see [6, Algorithm 2.4.10℄Theorem 4. Given a basis of a lattie L in Z
n, one an ompute a basis of the orthogonal lattie

L⊥ in time polynomial in n, d and the bit-size of the basis.
⊓⊔3 Finding Low Weight Polynomial Multiples Using LattiesThe idea underlying our approah is simple and based on the remark that a low weight polyno-mial multiple of degree less than n is a low weight linear ombination with integer oe�ientsof the monomials Xi, 0 ≤ i < n, that evaluates to zero modulo the given polynomial. Thealgorithm follows then in a straightforward way.Input: a polynomial f of degree d and a bound n > d.Output: (n− d) multiples of f of degree less than n.1. Compute hi = Xi mod f for all 0 ≤ i < n and build the d× n matrix Mn whose olumnsare the oe�ients of the hi's ;2. Consider the lattie Ln in R

n generated by the rows of the matrix Mn ;3. Compute a basis of the orthogonal lattie L⊥
n and redue it ;4. The (n− d) basis vetors onstitute the (n− d) polynomial multiples. For instane, if

v = (v0, . . . , vn−1) is a basis vetor, then m =
∑

0≤i<n

(vi mod 2)Xi is a multiple of f ;Algorithm 1: Computing low weight multiples of a given polynomialThe hope is that the multiples omputed above are sparse; this is disussed below.



63.1 AnalysisThe �rst two steps an be learly performed in O(d(n − d)) arithmeti operations. In fat, toompute hi = Xi mod f , 0 ≤ i < n, we ompute hi = Xi for 0 ≤ i < d, and for the remainingindies we use the fat that Xi = Xhi−1 is either Xhi−1 (if deg(hi−1) < d − 1) or Xhi−1 + fif ( deg(hi−1) = d − 1). The omputation and redution of the orthogonal lattie basis an beperformed in one step as in [21℄, or in two steps; �rst ompute the integer kernel (as a free
Z-module and not as a vetor spae) of the matrix Mn's transpose using algorithms from [6℄,then redue it. In this problem, we an ompute the orthogonal lattie L⊥

n in almost linear timein (n− d) using a simple remark from elementary linear algebra.Computation of the orthogonal lattie. The lattie Ln ⊆ R
n, has dimension d sine the�rst d omponents of its generators form a unit matrix, and thus the generators are linearlyindependent. The orthogonal lattie L⊥

n then has dimension n − d aording to Theorem 3 .Moreover, we an onstrut this orthogonal lattie inrementally, i.e., from L⊥
n , one an easilyderive L⊥

n+1. Indeed, let L = (l1, . . . , ln−d) be a basis of L⊥
n . It is lear that (li, 0) ∈ L⊥

n+1.Let now mi,j, where 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ n, be the entries of the matrix Mn+1. The�rst d olumns of Mn+1 orrespond to the olumns of the identity matrix Id ∈ R
d×d. By def-inition, the other olumns Xj mod f , d ≤ j ≤ n, of Mn+1 are linear ombinations of the the�rst d olumns with oe�ients mi,j, for instane: Xn ≡

∑

0≤i≤d−1

mi,nXi mod f. It follows that
∑

0≤i≤d−1

−mi,nXi +
∑

d≤i≤n−1

0 ·Xi + Xn ≡ 0 mod f , or ∑

0≤i≤d−1

−mi,nhi +
∑

d≤i≤n−1

0 · hi + hn = 0,where hi = Xi mod f . Hene, the vetor u = (−m0,n, . . . ,−md−1,n, 0, . . . , 0, 1) is also in L⊥
n+1and linearly independent of the vetors (li, 0). Sine dim(L⊥

n+1) = dim(L⊥
n ) + 1, we suggest thefollowing: if L = (l1, . . . , ln−d) is a basis of L⊥

n then K = (k1, . . . , kn+1−d) is a basis of L⊥
n+1where ki = (li, 0) for 1 ≤ i ≤ n − d and kn+1−d = u. We derive then the following algorithm toompute L⊥

n :Input: The lattie Ln or equivalently the matrix Mn = (mi,j), where 0 ≤ i < d and
0 ≤ j < n.Output: The orthogonal lattie L⊥

n .Create the matrix Kn = (ki,j), 0 ≤ i < n− d and 0 ≤ j < n, where the entries ki,j areinitially set to 0 ;for i from 0 to n− d− 1 dofor j from 0 to d− 1 do
ki,j ← −mj,i+d ;
j ← j + 1 ;end

ki,i+d ← 1 ;
i← i + 1 ;endThe rows of Kn onstitute the basis vetors of L⊥

n .Algorithm 2: Computing the orthogonal lattie L⊥
nThe (n− d)×n matrix representing the orthogonal lattie L⊥

n (the lattie basis vetors formthe rows of the matrix) will have the following shape:
Kn =











−m0,d . . . −md−1,d 1 0 0 . . . 0
−m0,d+1 . . . −md−1,d+1 0 1 0 . . . 0... ... ... ... . . .
−m0,n−1 . . . −md−1,n−1 0 0 . . . 0 1













7Lemma 1. Algorithm 2 omputes a basis of the orthogonal lattie L⊥
n with running time O((n−

d)d) .Proof. It is lear that Algorithm 2 runs in time O((n− d)d). It remains to prove that it atuallyomputes a basis of the orthogonal lattie L⊥
n . Sine the matrix Kn has (n − d) rows and thelattie L⊥

n has dimension n− d aording to Theorem 3, it su�es to prove that the rows of Knform a generating family of L⊥
n . Let v = (v0, . . . , vn−1) ∈ L⊥

n . Then by de�nition of the orthogonallattie, < v, u >= 0,∀u ∈ Ln, for instane < v, ui >= 0 for all the lattie L basis vetors ui(rows of the matrix Mn). It follows that ∑

0≤j≤n−1

mi,jvj = 0 and thus vi = −
∑

d≤j≤n−1

mi,jvj for
0 ≤ i ≤ d− 1. Consequently,

v = (v0, . . . , vn)

= (−
∑

d≤j≤n−1

m0,jvj , . . . ,−
∑

d≤j≤n−1

md−1,jvj, vd, . . . , vn−1)

=
∑

d≤j≤n−1

vj(−m0,j , . . . ,−md−1,j , 0, . . . , 1, 0, . . . , 0).

v an then be written as a linear ombination of the rows of Kn with oe�ients vj, d ≤ j ≤
vn−1, whih onludes the proof.

⊓⊔Finding the low weight polynomial multiples. This is the most expensive part of Al-gorithm 1 sine it orresponds to the basis redution of the orthogonal lattie L⊥
n . The LLLredution an be performed in O(n(n − d)5)3. This means that the higher the dimension, themore infeasible the attak gets.Theorem 5. Algorithm 1, in ase the redution applied is LLL, runs in O(n(n − d)5) arith-meti operations, and omputes (n − d) multiples of the polynomial f of weight wi: wi ≤

2n−d−1λi(L
⊥
n )2, 1 ≤ i ≤ n− d, where λi(L

⊥
n ) denote the suessive minima of the lattie L⊥

n , forinstane λ1(L
⊥
n ) is the shortest nonzero vetor in the lattie whih orresponds also to the lowestweight of f 's multiples of degree at most n− 1.Proof. We �rst show that Algorithm 1 omputes multiples of f . Let v = (v0, . . . , vn−1) ∈

L⊥
n . Then ∑n

j=0 vjmi,j = 0, 0 ≤ i ≤ d − 1. It follows that ∑n
j=0 vj(X

j mod f) = 0, thus,
∑n

j=0 vj(X
j mod f) ≡ 0 mod 2 or equivalently f |∑n

j=0(vj mod 2)Xj . To prove the runningtime as well as the bound on the weights of the resulting multiples, we just refer to the famousLLL paper [14℄ where the the authors prove the approximation fators of the redued basisvetors with regard to the suessive minima when the LLL redution is applied.
⊓⊔Remark 1. In order to improve on the quality of the obtained basis, we ould use, insteadof the LLL redution, Shnorr's redution algorithm [24℄ or the reently improved algorithm[1℄. We will obtain then approximation fators that are slightly sub-exponential , namely -

2O((n−d)(log log(n−d))2/ log(n−d)) and 2O((n−d) log log(n−d)/ log(n−d)) respetively. Note that an exatsolution of the lowest weight multiple (or even an approximation to within polynomial fatorsin the exess degree (n− d)), an be ahieved in exponential running time.3 Atually LLL runs in O(d5n)B3, where d and n represent the lattie and vetor spae dimensions resp. andB is an upper bound on the oe�ients'size of the inupt basis vetors. In our ase these have values in {0, 1},thus B = 1.



8Remark 2. There exists also a heuristi that estimates the vetors lengths in a redued basisoutput by the algorithm 1 by the produt of the square root of the dimension n − d and the
(n−d)-th root of the lattie determinant. This gives us multiples of weights with approximationfators polynomial in (n− d) to the atual minimal weight.On the pratial side, the LLL algorithm, despite its pessimisti theoretial bounds, ahieves abasis with moderately short vetors. For instane, all the resulting vetors in the redued basisof L⊥

n have entries in {0,±1} and if the dimension is small enough, then we �nd multiples withthe lowest possible weight.In order to relate the shortness of the obtained redued basis vetors and the sparsenessof the resulting polynomials, we make the following assumption whih is atually an empirialresult, run over several instanes of the problem, that we ould not prove theoretiallyAssumption 1 Algorithm 2 outputs a basis for the orthogonal lattie with vetors having entriesin {0,±1}In this way, the weight of the resulting polynomials will be nothing but the square of the basisvetors' ℓ2-norm.3.2 Previous workThe strategy used so far to solve this problem onsists of �rst estimating the minimal weight
w of multiples of the given polynomial f with degree at most n − 1, then �nding multiples ofweight at most w. To estimate the minimal weight, one solves for wd the following inequality; wis the smallest solution: 2−d

(

n− 1
wd

)

≥ 1. In fat, if multiples were random then one expetsthat the above inequality holds. It is worth mentioning that the number of suh multiples ouldbe approximated by NM = 2−d

(

n− 1
w − 1

).The tehniques used to �nd sparse multiples of weight at most w are:� Exhaustive searh. When the bound n is just above d, an exhaustive searh turns out tobe faster. The ost of suh an attak is O(Poly(d) · 2n−d−1).� Syndrome deoding. We ompute the matrix H whose olumns are de�ned by Hi =
Xi mod f , 1 ≤ i ≤ n − 1, then �nd a low weight word in the preimages of 1 of this matrix.The ost of this method is O(Poly(n−1)(n−1

d )w−1)NM , where Poly is a polynomial of degree
2 or 3.� The birthday Paradox [16℄. Set w = q1 + q2 + 1, q1 ≤ q2, and build two lists; the�rst one ontains all possible linear ombinations of Xi mod f , 0 < i < n of weight q1whereas the seond list ontains all possible linear ombinations of Xi mod f , 0 < i < nof weight q2. Then look for pairs that sum to 1. Clearly, this method runs in O(nq2) (if weimplement the �rst list by an e�ient hash-table), and uses O(nq1) of memory. The usualtime-memory trade-o� is to use q1 = ⌊w−1

2 ⌋ and q2 = ⌈w−1
2 ⌉ in order to balane the ostof the two phases. Note that the running time depends on the parity of w sine we do nothave to ompute anything if q1 = q2. There exist many improvements of this method, forexample Chose et al. [5℄ use the math-and-sort alternative that onsists of splitting the hugetask of �nding ollisions among nw ombinations into smaller tasks: �nding less restritiveollisions on smaller subsets, sort the results and then aggregate these intermediate results tosolve the omplete task. This leads to a onsiderable improvement of the spae omplexity,namely O(n⌈w−1/4⌉). Didier and Laigle-Chapuy [7℄ onsider a new approah that uses disretelogarithms instead of the diret representation of the involved polynomials. They ahieve



9a time/spae omplexity of O(nL⌊(w−1)/2⌋), where L is the ost of omputing a disretelogarithm in F2d , and O(n⌊(w−2)/2⌋) respetively.� Wagner's generalized birthday paradox. When the bound n on the multiples'degreeinreases, then Wagner's generalized birthday paradox [29℄ beomes more e�ient. In fat,if there exists a ≥ 2 suh that (

n− 1

(w − 1)/2a

)

≥ 2d/(a+1), then one an �nd a solutionin O(2a2d/(a+1)). For instane, if n ≥ 2d/(1+log2(w−1)), using this method, one an �nd amultiple within almost linear time in n, namely, O((w − 1)n).We summarize the osts (time and omplexity) of the di�erent methods in the followingtable:Method Exhaustive Searh Syndrome Deoding Birthday Paradox Generalized BP Our methodTime ost O(Poly(d) · 2n−d−1) O(Poly(n − 1)(n−1
d

)w−1)NM O(n⌈ w−1

2
⌉) O((w − 1)2d/(1+log

2
(w−1))) O((n − d)5n)Spae ost O(n) O(Poly(n − 1)(n−1

d
)w−1) O(n⌈w−1/4⌉) O(2d/(1+log

2
(w−1))) O(nd)From the list above, we onlude that our algorithm ahieves a better ost when the weight

w inreases, say gets bigger than 12. Also, In the ase where the exess degree n−d is small (butnot too small suh that an exhaustive searh is feasible); one onrete example is when w = 3and and n > (n− d)5 or when w = 5 and n2 > (n − d)5.3.3 ExperimentsTo validate our method, we tested it on some known polynomials, using the NTL library [26℄developed by Vitor Shoup on a 2.2-GHz Athlon proessor with 2 GB of RAM. More preisely, weused for the lattie basis redution (step 3 in Algorithm 1) two implementations of �oating LLL(and its variants). In fat, the (original) LLL algorithm operates on rationals in order to omputethe Gram-Shmidt orthogonalization oe�ients. In big dimensions, the size of these latteritems inreases and makes the algorithm impratial, thus one is tempted to approximate thementioned oe�ients using a �oating point representation. We basially use the NTL LLL_FPalgorithm whih represents an improvement of the Shnorr-Euhner version [25℄ that uses adouble preision. In order to improve on the quality of the redution, we also make use of a�oating point implementation of the Blok Korkin-Zolotarev basis redution (in double preisionas well), namely the BKZ_FP algorithm. This is slower but yields a higher-quality basis, i.e.,one with shorter vetors. It basially generalizes the LLL redution ondition from bloks of size2 to bloks of larger size. BKZ_FP is an implementation of the Shnorr-Euhner algorithm [25℄.Finally, it is worth noting that the best fully proved �oating point arithmeti LLL variant is dueto Nguyen and Stehlé [20℄. The so-alled L2 algorithm whih runs in timeO(d4n log B(d+log B)),where d, n and B refer to the lattie dimension, the vetor spae dimension and an upper boundon the lattie basis vetors' norm.We got the following results (n refers to the strit upper bound on the polynomial, we and
wf refer to the estimated minimal weight and the smallest weight found resp. , �nally M and
t denote the number of multiples found of degree at most wf and the orresponding time (inseonds) resp.):Experiment 1. f1 = 1+X2 +X4 +X5 +X6 +X8 +X9 +X10 +X11 +X13 +X14 +X15 +X17.1. The Lattie method using the �oating variant of LLL (LLL_FP) from the NTL library withthe default parameters:



10
n− 1 17 20 20 20 21 22 24 30 44 94 513
we 13 12 11 10 9 8 7 6 5 4 3
wf 13 8 8 8 8 8 8 5 5 5 4
M 1 1 1 1 2 2 2 1 1 1 2
t 0 0 0 0 0 0 0 0 0 0.004 0.6962. The Lattie method using the �oating variant of LLL (BKZ_FP) from the NTL library with

30 for the blok size and 15 for pruning:
n− 1 17 20 20 20 21 22 24 30 44 94 513
wf 13 8 8 8 8 8 8 5 5 5 3
M 1 1 1 1 2 2 2 1 1 3 1
t 0 0 0 0 0 0 0 0 0 0.06 25.13. The Time-Memory Trade-O� (TMTO) using the C++ standard library (STL) hash funtion:

n− 1 17 20 20 20 21 22 24 30 44 94 513
wf 13 8 8 8 8 8 8 5 5 5 3
M 1 1 1 1 2 2 4 1 1 27 1
t 0 0.38 0.38 0.38 0.5 0.75 1.62 0.02 0.08 2.77 0.03We provide in Appendix B the remaining experiments, where the TMTO method has beenrunning for several days without any results.Remarks. In order to evaluate experimentally the time estimate of our method, we utilizedthe linear regression tool to express the relationship between the logarithm of the time estimate(ln(t) ) and the logarithm of the bound on the multiples (ln(n)). We got the following for the�rst experiment:
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Fig. 1. Polynomial f1We �rst notie that for the TMTO method, the oe�ient α = logn(t) is not always equalto ⌈w−1
2 ⌉ as it should be. This is explained by the fat that the time estimate for this method,that is, O(n⌈(w−1)2⌉), is only the best ase omplexity. In fat, the searh in a hash table an beperformed in onstant time in the best ase and linear time in the worst. It might be wiser thento use a more e�ient hash table than the one provided by the standard library (STL) of C++.



11We an also relate this to the unfruitful exeution of the algorithm when the heuristi preditsa weight that doesn't exist.Next, we note that the oe�ient α of LLL_FP and BKZ_FP is onstant and about 3.5 and 4respetively. This explains why the TMTO method looses the lead as soon as the weight w getsgreater than 8.We did the same for the polynomials f2 and f3. Sine we were not able to run the TMTO methodon these instanes, we de�ned the orresponding oe�ient as α = ⌈w−1
2 ⌉, whih orrespondsto the best possible time estimate one ould obtain. It is lear from the graphs that the lattiemethod is better sine the weights that ome into play are pretty big.
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(b) Polynomial f3From the results above, we onlude that our algorithm wins in ases that are intratable forthe previously known birthday-based methods, namely when the target weight is big and alsowhen the exess degree is small.4 Estimation of the Minimal WeightAs mentioned earlier in this doument, the methods used in the literature to �nd low weightpolynomial multiples, namely Time-Memory Trade-O� and Syndrome deoding, estimate �rstthe expeted minimal weight wd, then �nd multiples of weight at most wd. The way used toestimate the minimal weight is to solve for w the following inequality; wd is the smallest solutionto 2−d

(

n− 1
w

)

≥ 1This estimation is quite reasonable and works well in pratie. However, sine it is indepen-dent of the polynomial in question, there exist polynomials for whih the estimation leads to asmaller or greater minimal weight. The problem is posed when the estimation outputs a weightthat is muh smaller that the atual minimal weight sine this would orrespond to runningunprodutively the algorithms to �nd sparse multiples until we hit the �orret� weight. It isworth noting that from a stream iphers designer's perspetive, these polynomials are regardedas seure as they are resistant to this strategy. The Bluetooth polynomial is an illustration ofsuh polynomials.In this setion, we supply these methods by providing lower and upper bounds for the estimatedminimal weight. In this way, the tehniques will proeed to �nd sparse multiples only if theestimated weight is in the orret range. This result an be interpreted from stream iphersdesigners as follows: given a polynomial (feedbak polynomial of a onstituent input LFSR),they insure that an adversary annot �nd a multiple with weight below a ertain bound given



12aess to a ertain amount of keystream.The bounds follow diretly from Theorem 1. Moreover, aording to Theorem 2, we have
det(L⊥

n ) = det(L̄) = det(L) sine the oordinates of Ln basis vetors are in {0, 1}. This re-sults in the following:
⌈min

j
‖K∗

j ‖2⌉ ≤ wd ≤ ⌊γn−d det(L)2/(n−d)⌋,where (Ki,j)
∗ represents the Gram-Shmidt data for the matrix Kn. We obtained the follow-ing bounds for polynomial f1 (lb and ub refer to the lower and upper bounds on the minimalweight respetively whereas we denotes the estimated weight):

n− 1 20 21 22 24 30 44 94 513
lb 5 5 5 5 3 2 2 2
we 10 9 8 7 6 5 4 3
ub 10 10 11 12 6 9 15 60The remaining experiments are given in Appendix C.In our omputations, we used the following, known so far, values for the Hermite's onstant:

n− d 2 3 4 5 6 7 8 24
γn−d 2/

√
3 21/3

√
2 81/5 (64/3)1/6 641/7 2 4and for the other dimensions, we used these asymptoti bounds, whih are known to be thebest:

n− d

2πe
+

log(π(n − d))

2πe
+ o(1) ≤ γn−d ≤

1.744(n − d)

2πe
(1 + o(1)).First, we notie that the heuristi method works well in pratie, sine all the estimated weightsfall in the provided range. Next, we remark that as soon as the dimension inreases, the upperbounds beome trivial and ould be replaed simply by the weight of the given polynomial. Itis lear then that exat values or even tighter bounds for the Hermite onstant would lead totighter upper bounds for the minimal weight.5 Sparse Binary Multiples of an integerThe method applied above to �nd sparse multiples for a given polynomial applies also for searh-ing sparse binary multiples of a given integer.In fat, we de�ne the following problem: we have integers n and g with g dividing bn − 1, andonsider the set S of all multiples ag with 0 < a < (bn − 1)/g. We want to know the smallestHamming weight of the b-ary representations in S.In the ase b = 2, the same analysis is almost appliable. In fat, we are searhing sparse mul-tiples of the given number g that are smaller 2n − 1, i.e., multiples whose bitsizes are smallerthan the bound 4 n.The algorithm is then desribed as follows:4 This bound represents the order of the 2 in the multipliative group Zg. Similarly, we searhed sparse multiples,of a given polynomial f , of degree less than n, where n is smaller than the order of the polynomial f , otherwisethe multiple Xord(f) + 1 would have been a solution.



13Input: a number g of size d diving 2n − 1.Output: low weight multiples of g smaller than 2n − 11. Compute the lattie n-dimensional lattie Kn de�ned by
Kn = {(x0, . . . , xn−1) ∈ Z

n :
∑n−1

i=0 xi2
i = 0 mod g};2. Redue it . The basis vetors with entries in ±{0, 1} onstitute the low weight multiples.Algorithm 3: Computing sparse multiples of a given numberIn this situation, the omputation of the orthogonal lattie an be also ahieved in linear timein n using the following remark. An element of the lattie Kn is either a multiple of g (theoordinates of the element onstitute its 2-ary representation), thus it belongs to the one di-mensional lattie gZ and therefore generated by the vetor v = (g, 0, . . . , 0), or it belongs tothe sub-lattie L⊥ = (1, . . . , 2n−1)⊥, whih is generated by vetors v1 = (−2, 1, 0, . . . , 0), v2 =

(−4, 0, 1, 0, . . . , 0), . . . , vn−1 = (−2n−1, 0, . . . , 0, 1). Hene, (v1, . . . , vn−1, v) is a basis of Kn.Note that the sparse multiples of g are only those whih have entries in ±{0, 1}. We an getrid of the parasite vetors, namely those with entries in {±1, 0} by onsidering the lattie
K ′

n = 2Kn + Z(1, . . . , 1). We are then guaranteed that the desired vetors will appear in anyredued basis of the new lattie.Full details about this problem and its appliations to error-orreting odes will appear else-where.We run again our experiments with NTL and got the following:
(g, n) (268501,100) (3173389601,200) (10567201,300) (82471201,400)
wf 3 3 2 5
M 27 18 132 2
t 0.06 0.3 1.02 1.666 General Thoughts and ProspetivesAn interesting question is to study the speial form of the lattie L⊥

n or equivalently of thematrix Kn in order to redue the ost of the redution, or improve on the gotten results. In fat,the matrix in question is sparse and one is tempted to use a more ompat representation or atleast a representation that makes easy for the basis redution algorithms, namely LLL and itsvariants, the searh for short vetors. For instane, we notied that hanging the shape of thematrix suh that the �rst (n − d) olumns form the unit matrix In−d ∈ R
n−d - in the originallattie, the last (n− d) olumns formed the unit matrix - leads to di�erent results but still notspetaular.Besides, aording to Algorithm 1, short vetors in the lattie L⊥

n lead to sparse multiples ofthe polynomial f . So we managed to relate the hardness of the low weight polynomial multipleproblem to the hardness of the shortest vetor problem in L⊥
n . We an also relate the losestvetor problem to our problem, in fat, a lattie point in L⊥

n lose to the onstant polynomial 1will lead to a low weight multiple of nonzero onstant term. This suggests to study the hardnessof the shortest/losest vetor problems of this speial instane of latties (lattie of the form
Kn) in order to better estimate the hardness of the low weight polynomial multiple problem. Webelieve the taxonomy: sparse polynomial multiple problem - shortest/losest vetor problem oflatties with form Kn - syndrome deoding, deserves further attention. In fat, this would provideus either with very e�ient tools to solve the problem and hene lead to new improvements instream iphers ryptanalysis and fast �nite �eld arithmeti, or with on�dene on the hardnessof the problem (if we manage to exhibit a redution from syndrome deoding or SVP/CVP toit ), sine the other two problems are known to be NP-omplete. The last point is motivated by



14the reent proposal of a ryptosystem whose seurity relies on the problem [9℄.Furthermore, the redued basis of Kn ontains short vetors or equivalently sparse multiplesthat do not have neessarily nonzero onstant term. This is due to the following fat: if g is asparse multiple with nonzero onstant term, then there is no restrition on the basis to ontainthe multiples Xig granted that deg(g)+ i < n. This leads to redundanies in the basis. It wouldthen be desirable if one �lters out extraneous polynomials in order to allow more �interesting�multiples to appear in the basis. One way to ahieve this is to ompute points in the lattie L⊥
nthat are lose to the onstant polynomial 1. The ost of suh a tehnique will be about the samesine we will use the famous embedding tehnique, whih onsists of reduing the (n + 1 − d)-dimensional lattie L′

n ⊆ Z
n+1 given by the basis K′ = (k′

1, . . . , k
′
n+1−d), where k′

i = (ki, 0),
1 ≤ i ≤ n − d, and kn+1−d = (1, 0, . . . , 0, 1). Experiments urried out improved slightly theresults, for instane, we got a further nonzero multiple of f1 of degree at most 94. The weakimpat of this strategy lies in the small CVP-gap, i.e., the ratio between the shortest vetorof L′

n and the distane of the onstant polynomial 1 to it. In fat, the embedding tehniquerequires a large gap in order to give aurate results. It would be interesting to dig furtherin this diretion, for example solve diretly the CVP instane instead of reduing it to a SVPinstane. Experiments are in progress and will appear in the full version of the paper.Finally, one is tempted to extend the method into �nding low weight multiples of polynomialsover Fp , where p > 2 is a prime number (for the orresponding number problem, onsider thease b > 2). However, the naive approah would not work sine the orrespondene short vetor/ sparse multiple won't hold anymore.7 SummaryWe have proposed a new algorithm to �nd low weight multiples for a given polynomial ofdegree at most n using lattie basis redution. The method has a theoretial time estimate of
O((n − d)5n) , in ase LLL is the redution algorithm used, and an experimental one about
O(n4). It takes then the lead as soon as the expeted minimal weight w gets bigger that 8. Infat, the best known methods, that are the birthday-based ones, have a best-ase time estimateabout O(n⌈(w−1)/2⌉). Suh a situation ours when the bound on the multiple, whih denotes theavailable keystream, is small. We also gave bounds for the minimal weight of suh polynomialsusing latties. This helps to hek whether the estimated weight, furnished by the state-of-theart methods is in the orret range. Also, it provides a quality riterion, from a stream iphersdesigner 's stand, on the used polynomial. In fat, designers insure that the adversary annot�nd multiples with weight below a ertain bound, given aess to a ertain amount of keystream.Furthermore, we introdued the orresponding number problem and applied almost the sametehnique to �nd sparse binary multiples of a given integer. Finally, we on�rmed our analysisby implementing the method using NTL; our method is appliable for relatively high dimensions(up to 2000), using the �oating variants of LLL, and has proved very e�ient on instanes thatare intratible for the the standard methods.
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16A Proof of Theorem 2Proof. First, we note that if (b1, . . . , bd) with bi = (b1
i , . . . , b

n
i ) is a basis for L, then ( 1

g1
b1, . . . ,

1
gd

bd)is a basis for L̄, where gi = gcd(b1
i , . . . , b

n
i ), 1 ≤ i ≤ d. In fat, Let x ∈ L̄, then there exist

x1, . . . , xd ∈ R suh that x =
∑

1≤i≤d

xibi =
∑

1≤i≤d

xigi
1

gi
bi and x ∈ Z

n. Sine 1
gi

bi ∈ Z
n, it followsthat x ∈ Z

n if and only if xigi ∈ Zn, ∀1 ≤ i ≤ d. So we managed to write x as a linear ombi-nation, with integer oe�ient, of the 1
gi

bi's. Sine these latter vetors are linearly independent,
( 1

g1
b1, . . . ,

1
gd

bd) is then a basis of L̄.Next, we apply the de�nition of the determinant of a lattie and get the announed result.
⊓⊔B ExperimentsB.1 Experiment 2.

f2 = 1 + X + X3 + X5 + X9 + X11 + X12 + X17 + X19 + X21 + X125 + X27 + X29 + X32 +
X33 + X38 + X40.1. The lattie method using LLL_FP:

n− 1 40 49 51 54 59 67 78 95 124 181 307 669 2268
we 17 16 15 14 13 12 11 10 9 8 7 6 5
wf 17 17 16 15 15 13 13 13 13 13 11 9 8
M 1 1 1 1 1 1 1 1 2 2 1 1 1
t 0 0 0 0 0 0 0.004 0 0.012 0.05 0.34 1.78 49.752. The lattie method using BKZ_FP:

n− 1 40 49 51 54 59 67 78 95 124 181 307 669 2268
wf 17 17 16 15 15 13 13 13 12 12 11 10 8
M 1 1 1 1 1 1 1 1 1 2 1 1 1
t 0 0 0 0.004 0 0 0.008 0.016 0.07 0.56 6.38 142.8 2506.773. The TMTO method:

n− 1 40 49 51 54 59 67 78 95 124 181 307 669 2268
t 0 - - - - - - - - - - - -B.2 Experiment 3.The Bluetooth polynomial (multiple of the four onstituent LFSRs feedbak polynomials ) ;

f3 = f1
3 · f2

3 · f3
3 · f4

3 where:
f1
3 (x) = x25 + x20 + x12 + x8 + 1;

f2
3 (x) = x31 + x24 + x16 + x12 + 1;

f3
3 (x) = x33 + x28 + x24 + x4 + 1;

f4
3 (x) = x39 + x36 + x28 + x4 + 1;



171. The lattie method using LLL_FP
n− 1 128 247 458 600 700 855 1100 1400 1749 2387
we 49 31 24 23 22 20 19 18 17 16
wf 49 47 47 47 47 47 47 41 41 41
M 1 1 1 1 1 1 1 1 1 1
t 0 0.03 0.74 3.8 5.9 7.9 12.4 20.7 35.11 77.032. The lattie method using BKZ_FP

n− 1 128 247 458 600 700 855 1100 1400 1749 2387
wf 49 47 44 44 44 44 44 44 44 44
M 1 1 1 1 1 1 1 1 1 1
t 0 0.184 18.32 75.97 123.2 305.3 600 970.82 1520.62 31383. The lattie method using BKZ_FP

n− 1 128 247 458 600 700 855 1100 1400 1749 2387
n− 1 0 - - - - - - - - -C Estimation of the Minimal Weight� The polynomial f2:

n− 1 49 51 54 59 67 78 95 124 181 307 669 2268
lb 11 10 8 6 4 4 3 2 2 2 2 2
we 16 15 14 13 12 11 10 9 8 7 6 5
ub 12 15 17 20 24 28 32 35 39 51 89 255� The Bluetooth polynomial f3:

n− 1 247 458 522 604 855 1053 1334 1749 2387
lb 7 2 2 2 2 2 2 2 2
we 31 24 23 22 20 19 18 17 16
ub 218 174 171 171 183 199 225 266 330


