
Finding Low Weight Polynomial Multiples Using Latti
esLaila El Aimani and Joa
him von zur GathenB-IT, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germanyelaimani,gathen�bit.uni-bonn.deAbstra
t. The low weight polynomial multiple problem arises in the 
ontext of stream 
iphers
ryptanalysis and of e�
ient �nite �eld arithmeti
, and is believed to be di�
ult. It 
an be for-mulated as follows: given a polynomial f ∈ F2[X] of degree d, and a bound n, the task is to �nda low weight multiple of f of degree at most n. The best algorithm known so far to solve thisproblem is based on a time memory trade-o� and runs in time O(n⌈(w−1)/2⌉) using O(n⌈(w−1)/4⌉)of memory, where w is the estimated minimal weight. In this paper, we propose a new te
hniqueto �nd low weight multiples using latti
e basis redu
tion. Our algorithm runs in time O(n(n− d)5)and uses O(nd) of memory. This improves the spa
e needed and gives a better theoreti
al timeestimate when w ≥ 12 or when the ex
ess degree n − d is small, say, (n − d)5 < n⌈(w−3)/2⌉. Theformer situation is plausible when the bound n, whi
h represents the available keystream, is small,whereas the latter one o

urs in e�
ient �nite �eld arithmeti
. We also propose bounds for theminimal weight of su
h multiples, supplying in this sense the state-of-the art te
hniques with amethod to 
he
k whether their estimated minimal weight is in the 
orre
t range. This provides aquantitative 
ryptographi
 quality 
riterion for su
h polynomials: the fewer low degree low weightmultiples a polynomial has, the harder be
omes this type of 
ryptanalysis of the 
orrespondingstream 
ipher. As an example, the Bluetooth polynomial turns out to be of good quality in thissense. Moreover, we introdu
e the 
orresponding number problem and apply a similar strategy to�nd sparse multiples of a given number with respe
t to the Hamming weight of their 2-ary repre-sentation. Finally, we run our experiments using the NTL library on some known polynomials in
ryptanalysis and we 
on�rm our analysis.Keywords: stream 
iphers analysis, low weight polynomial multiples, latti
es, shortest ve
tor.1 Introdu
tionFinding a low weight multiple of a polynomial over F2 is believed to be a di�
ult 1 problem.In fa
t, there exists no known polynomial time algorithm to solve it. Later in this do
ument wepoint out a redu
tion from this problem to the Syndrome De
oding problem whi
h is knownto be NP-
omplete, however the other dire
tion hasn't been investigated to the best of theauthors' knowledge. Anyway, the presumed di�
ulty of the problem has motivated Finiasz andVaudenay [9℄ to propose a publi
 key 
ryptosystem whose se
urity rests on the intra
tability ofthis problem.The problem 
an formulated as follows, given a polynomial f over a �nite �eld, F2 forinstan
e, and a bound n, determine the set:
Mf (n,w) = {g ∈ F2[X] : f |g,deg(g) < n,weight(g) ≤ w},where w is the least possible weight: w = min{wi : Mf (n,wi) 6= ∅}. It is often enough to 
omputesu�
iently many - but not all- elements from this set.There exists also the other variant whi
h 
onsists of determining the set Mf (n,w) for a givenweight w and for n = min{ni : Mf (ni, w) 6= ∅}. In this paper, we 
on
entrate on the �rst variant.The low weight polynomial multiple problem originated in 
ryptography from two distin
tareas: atta
ks on LFSR-based stream 
iphers and e�
ient �nite �eld arithmeti
.1 Oppositely to its inverse problem whi
h lies in �nding fa
tors of low weight polynomials, for instan
e trinomials,and for whi
h there exist e�
ient algorithms (Brent et al. [3℄).



2Appli
ation to stream 
iphers 
ryptanalysisStream 
iphers 
onstitute an important 
lass of se
ret-key en
ryption algorithms. In fa
t, LFSR-based stream 
iphers are widely used in many appli
ations be
ause of the advantages they present
ompared to other en
ryption s
hemes, for instan
e, blo
k 
iphers: they are faster, require lesshardware 
ir
uitry and have fewer propagation errors. An example is Bluetooth en
ryption.Stream 
iphers 
onsist of a seed, 
orresponding to the shared se
ret key, and a pseudorandomgenerator, whi
h 
onsists of 
onstituent LFSRs [17℄ and a nonlinear 
ombination fun
tion. Theresult is a pseudo-random binary sequen
e, 
alled the keystream, whi
h is, in the 
ase of a binaryadditive stream 
ipher, bitwise added to the plaintext in order to obtain the 
iphertext. Hen
e,atta
ks on stream 
iphers have as ultimate goal the re
overy of the initializations of the LFSRs.Correlation atta
ks are 
onsidered to be the most important 
lass of atta
ks against stream
iphers. There exists also a 
ategory of atta
ks that simply aim at verifying whether a bitstreamis the en
ryption of some (unknown) message, the so-
alled distinguishing atta
ks. Both atta
ksrequire �nding low weight multiples of a 
onstituent LFSR's feedba
k polynomial.Fast 
orrelation atta
ks. They were originally introdu
ed by Siegenthaler [27℄ and later improvedby Meier and Sta�elba
h [16℄. Sin
e then, a series of proposals sprang up, either very generalor adapted to a spe
i�
 s
heme, to name but a few [12, 11, 13, 4, 5℄. The prin
iple of this typeof atta
ks is as follows: we try to re
onstru
t the initialization of the 
onstituent LFSR, saythe i-th one, from the output keystream by viewing the latter as the transmission of the formerone through a noisy 
hannel. In fa
t, we assume that the adversary knows both the plaintextand the 
iphertext (a known plaintext atta
k). The errors resulting from this transmission aredue to the other registers. Let s and si denote the output of the keystream generator and the
i-th LFSR Ri respe
tively. The more the sequen
es s and si, are 
orrelated, the smaller is theatta
k's error probability. More pre
isely, let si = (si

0, . . . , s
i
N−1) be the initial N -bit sequen
egenerated by the 
onstituent LFSR Ri whose 
onne
tion polynomial is f with linear 
omplexity

L, and s = (s0, . . . , sN−1) be the initial N -bit keystream. Let further p = Prob(si
k = sk) bethe 
orrelation probability between s and si, where the probability is taken over the possibleinitializations of the 
onstituent LFSRs. Then s 
an be viewed as the result of the transmissionof si through a binary symmetri
 
hannel with error probability 1 − p. Moreover, the sequen
e

si satis�es the linear re
urren
e de�ned by the polynomial f . Thus the word si = (si
0, . . . , s

i
N−1)belongs to the linear error 
orre
ting 
ode of length N and of dimension L de�ned by f . We
an then re
over it using the iterative de
oding pro
ess due to Gallager [10℄ whi
h exploits theexisten
e of parity 
he
k equations.Fast 
orrelation atta
ks 
an then be mounted into two phases: the �rst one determines low weightparity 
he
k equations or equivalently low weight multiples of an LFSR's 
onne
tion polynomial,whereas the se
ond phase de
odes the sequen
e s to re
over si. Ri 
ould then be re
overed assoon as N ≥ L.Distinguishing atta
ks. A distinguishing atta
k as previously stated 
an be used to verify orfalsify whether a bitstream is the en
ryption of some message. This is of signi�
ant importan
eif the set of possible messages or possible keys is small. In fa
t, a small message set gives fewpossibilities for the keystream, this 
ould be obtained by bitwise adding the given 
iphertext tothe possible messages. Then, one 
an simply 
he
k the 
orre
t keystream by en
rypting someknown bitstreams using the possible keystreams and feeding the resulting 
iphertexts to thedistinguisher, the 
orre
t keystream is the one providing a 
iphertext that is identi�ed by thedistinguisher as yes instan
e. In 
ase the key size is small su
h that an exhaustive sear
h isplausible, distinguishing atta
ks are then equivalent to key-re
overy atta
ks and thus 
ould be



3employed to de
rypt the 
iphertexts.Low weight multiple polynomials are also required in su
h atta
ks, in fa
t, following theframework des
ribed in the above paragraph, namely, an LFSR-based stream 
ipher given by
onstituent LFSRs and a pseudo-random generator. We assume that the output keystream sis written as the sum of a binary biased sequen
e b, i.e., a sequen
e su
h that Prob(bi = 0) =
1/2 + γ, γ > 02, and an LFSR's output l (
ould be the equivalent LFSR of a subset of the
onstituent LFSRs 
ombined via a nonlinear fun
tion). Let M =

∑w
i=1 Xqi be a multiple of theLFSR's 
onne
tion polynomial of degree n and weight w, where 0 = q1 < q2 < . . . < qw = n.Then, by standard 
ryptanalyti
 te
hniques, the output keystream is biased with bias 1

2γw, sin
e
⊕w

i=1lt+qi = 0 holds for all t and ⊕w
i=1st+qi = ⊕w

i=1(lt+qi + bt+qi) = ⊕w
i=1bt+qi . It follows thatone needs γ−2·w samples to distinguish the output keystream from a truly random sequen
e.Noti
e, that the smaller w, the higher the bias will be and thus the fewer samples are neededto build the distinguisher. For examples of su
h atta
ks, see [15℄ on E0, and [8℄ on SOBER-t16and SOBER-t32.Appli
ation to e�
ient �nite �eld arithmeti
It is often attra
tive to use �nite �elds F2n in 
ryptography, in parti
ular for hardware appli-
ations. There are several ways of representing small �elds. One representation is by a sparseirredu
ible polynomial g ∈ F2[X] of degree n, as F2n = F2[X]/(g). In [28℄, this was found to bethe most e�
ient representation if exponentiation is a 
ore operation. Ideally, one would like touse the minimal possible weight, that is, trinomials of weight 3. However, these do not alwaysexist. Brent and Zimmermann [2℄ proposed an interesting solution: take an irredu
ible polyno-mial f ∈ F2[X] of degree n, but possibly large weight, a multiple g of f with small weight, say

g a trinomial, and work in the ring R = F2[X]/(g) most of the time, going ba
k to the �eld via
R → F2n only when ne
essary. This is parti
ularly useful if the ex
ess degree deg(g) − deg(f)is small. They a
tually des
ribe e�
ient algorithms for �nding trinomials with large irredu
ible(and possibly primitive) fa
tors and give examples of su
h trinomials. A systemati
 illustrationof this method is in preparation.Our 
ontributionsThe main result of the present paper dwells in a new algorithm to 
ompute sparse multiples, withdegrees at most a 
ertain n, for a given polynomial f , over F2, of degree d < n. Our algorithmis a latti
e-based solution, i.e., 
onsists of the basis redu
tion of an (n − d)-dimensional latti
ein Z

n. Hen
e, it runs in O(n(n− d)5) in 
ase the LLL redu
tion is applied. This gives a bettertime estimate 
ompared to the standard te
hniques whi
h run in O(n⌈(w−1)/2⌉) in 
ase w is big,say bigger than 12, or in 
ase the ex
ess degree n − d is small, namely, (n − d)5 < n⌈(w−3)/2⌉.Furthermore, our solution presents a huge improvement in the spa
e 
omplexity, that is O(n ·d)versus O(n⌈(w−1)/4⌉).In 
ontrast to our algorithm, the standard te
hniques estimate �rst the minimal weight, using aheuristi
 method, then try to �nd multiples with weight smaller than the expe
ted weight. Thisheuristi
 method is independent of the polynomial, in fa
t, the parameters that 
ome into playare just the degree of the given polynomial and the bound on the multiple's degree. The heuristi
works well for random polynomials. But there exist polynomials for whi
h the method predi
tsa weight that a
tually doesn't exist. This leads to run unprodu
tively the algorithm to �nd thesparse multiples. In fa
t, it is a goal of the 
ryptosystems designers to 
ome up with su
h �hard�2 The probability is again taken over the possible initializations of the 
onstituent LFSRs.



4polynomials whi
h thwart this type of atta
ks. This leads to a quantitative quality 
riterion forsu
h polynomials: the higher the degree of multiples with a given weight, the more resistantthey are to su
h atta
ks. To over
ome this problem, at least partially, we propose theoreti
albounds for the �real� weight using known results from latti
es. In this way, these te
hniques willpro
eed to �nd the sparse multiples only if the estimated weight is in the 
orre
t range. Besides,this result 
an be parsed from stream 
iphers designers in the following way: given a polynomial
f (feedba
k polynomial of a 
onstituent LFSR), they insure that an adversary 
annot �nd amultiple with weight smaller than a given bound given a

ess to a 
ertain amount of keystream.Finally, we introdu
e the 
orresponding number problem whi
h 
onsists of �nding sparse mul-tiples, with regard to the Hamming weight of the 2-ary representation, of a given number. Weapply almost the same strategy based on latti
es and 
on�rm our analysis by running the algo-rithm on some problem instan
es.The rest of the paper is organized as follows; �rst, we give some preliminaries about latti
es,for instan
e we re
all the de�nition of the orthogonal latti
e whi
h plays a 
entral role in ouralgorithm. Se
ond, we present our solution to �nd sparse multiples for a given polynomial; aftergiving the approa
h, we provide experiments as well as 
omparisons with the state-of-the artte
hniques in order to 
on�rm our analysis. In se
tion 4, we give bounds for the target weight us-ing some results on latti
es. In se
tion 5, we present our algorithm to �nd sparse binary multiplesof a given integer. Finally, we 
on
lude with general thoughts and prospe
tives.2 PreliminariesIn this se
tion we give some preliminaries about latti
es and their algorithmi
 problems. Thebook [18℄ 
onstitutes a good introdu
tion to this topi
.Let R

n be the n-dimensional Eu
lidean spa
e. A latti
e L is the set
L(b1, . . . , bd) = {

d
∑

i=1

xibi : xi ∈ Z},of all integral 
ombinations of d linearly independent ve
tors (over R
n) b1, . . . , bd. Then, d and

B = (b1, . . . , bd) are 
alled the rank and basis of L, respe
tively.A latti
e L 
an be generated by more that one basis. These bases, referred to as equivalentbases share the same number of elements, 
alled rank or dimension of the latti
e as well asthe same Gram determinant ∆(L) = ∆(b1, . . . , bd) = det(G), where G is the Gram matrix:
G = (< bi, bj >)1≤i,j≤d and < ·, · > denotes the usual inner produ
t. The determinant orvolume of the latti
e, denoted as det(L), is by de�nition √

∆(L).De�nition 1. (Su

essive Minima) Let L be a d-dimensional latti
e and let Bd(0, r) = {x ∈
R

d : ‖x‖ < r} be the d-dimensional open ball of radius r 
entered in 0. The su

essive minima of
L, are 
onstants λ1(L), . . . , λd(L) verifying the following: λi = inf{r : dim(span(L∩Bd(0, r))) ≥
i}. We 
learly have λ1 ≤ λ2 ≤ . . . ≤ λd. We 
all gap of the latti
e the ratio between the �rst andse
ond minima. Finally, the �rst minimum λ1 is 
alled also norm of the latti
e and 
orrespondsto the norm of the shortest ve
tor in the latti
e.Theorem 1. Let B be a d-dimensional latti
e basis, and let B∗ be the 
orresponding Gram-S
hmidt orthogonalization. Then, the �rst minimum λ1 of the latti
e (in the ℓ2-norm) satis�es:
min

j
‖b∗j‖ ≤ λ1 ≤

√
γd det(L)1/d, where γd is the Hermite's 
onstant.Proof. The lower bound is proved in [18, Basi
s/Latti
es/Su

esive minima/Theorem 1.1℄ whereasthe upper bound follows from a 
lassi
al result of Minkowski whi
h states that for any d-dimensional latti
e L and for any r ≤ d: ∏r

i=1 λi(L) ≤√

γr
d det(L)r/d.



5
⊓⊔We get now to the orthogonal latti
e, a notion whi
h was �rst introdu
ed in a 
ryptanalyti

ontext by Nguyen and Stern in 1997 [21℄. It has proved very important and was used to atta
kmany publi
 key 
ryptosystems [21�23℄.De�nition 2. (Orthogonal Latti
e) Let L be a latti
e in Z

n, and let span(L) be the ve
torspa
e (over R) generated by L. The orthogonal latti
e is de�ned as follows:
L⊥ = span(L)⊥ ∩ Z

n = {x ∈ Z
n : ∀y ∈ L,< x, y >= 0}.The biorthogonal (L⊥)⊥ 
ontains L but generally it is not equal to it. We de�ne the 
ompletedlatti
e L̄ as being (L⊥)⊥. It 
an be viewed as the interse
tion of Z

n and span(L). The determinantof L and L̄ are related by the following theorem.Theorem 2. Let L be a d-dimensional latti
e in Z
n, given by a basis (b1, . . . , bd) and bi =

(b1
i , . . . , b

n
i ). Then: det(L) = det(L̄) ·∏d

i=1 gcd(b1
i , . . . , b

n
i ).This theorem is quite intuitive and probably already known. Sin
e we have not been able tolo
ate appropriate referen
es, we provide its proof in appendix A.Moreover, we have the following result [19, Chapter 2/Lemma 2.7 and Theorem 2.8℄Theorem 3. If L is a latti
e in Z

n, then dim(L) + dim(L⊥) = n and det(L⊥) = det(L̄).
⊓⊔Finally, 
omputing the orthogonal latti
e amounts to determining the kernel of a matrix (as a

Z-module); see [6, Algorithm 2.4.10℄Theorem 4. Given a basis of a latti
e L in Z
n, one 
an 
ompute a basis of the orthogonal latti
e

L⊥ in time polynomial in n, d and the bit-size of the basis.
⊓⊔3 Finding Low Weight Polynomial Multiples Using Latti
esThe idea underlying our approa
h is simple and based on the remark that a low weight polyno-mial multiple of degree less than n is a low weight linear 
ombination with integer 
oe�
ientsof the monomials Xi, 0 ≤ i < n, that evaluates to zero modulo the given polynomial. Thealgorithm follows then in a straightforward way.Input: a polynomial f of degree d and a bound n > d.Output: (n− d) multiples of f of degree less than n.1. Compute hi = Xi mod f for all 0 ≤ i < n and build the d× n matrix Mn whose 
olumnsare the 
oe�
ients of the hi's ;2. Consider the latti
e Ln in R

n generated by the rows of the matrix Mn ;3. Compute a basis of the orthogonal latti
e L⊥
n and redu
e it ;4. The (n− d) basis ve
tors 
onstitute the (n− d) polynomial multiples. For instan
e, if

v = (v0, . . . , vn−1) is a basis ve
tor, then m =
∑

0≤i<n

(vi mod 2)Xi is a multiple of f ;Algorithm 1: Computing low weight multiples of a given polynomialThe hope is that the multiples 
omputed above are sparse; this is dis
ussed below.



63.1 AnalysisThe �rst two steps 
an be 
learly performed in O(d(n − d)) arithmeti
 operations. In fa
t, to
ompute hi = Xi mod f , 0 ≤ i < n, we 
ompute hi = Xi for 0 ≤ i < d, and for the remainingindi
es we use the fa
t that Xi = Xhi−1 is either Xhi−1 (if deg(hi−1) < d − 1) or Xhi−1 + fif ( deg(hi−1) = d − 1). The 
omputation and redu
tion of the orthogonal latti
e basis 
an beperformed in one step as in [21℄, or in two steps; �rst 
ompute the integer kernel (as a free
Z-module and not as a ve
tor spa
e) of the matrix Mn's transpose using algorithms from [6℄,then redu
e it. In this problem, we 
an 
ompute the orthogonal latti
e L⊥

n in almost linear timein (n− d) using a simple remark from elementary linear algebra.Computation of the orthogonal latti
e. The latti
e Ln ⊆ R
n, has dimension d sin
e the�rst d 
omponents of its generators form a unit matrix, and thus the generators are linearlyindependent. The orthogonal latti
e L⊥

n then has dimension n − d a

ording to Theorem 3 .Moreover, we 
an 
onstru
t this orthogonal latti
e in
rementally, i.e., from L⊥
n , one 
an easilyderive L⊥

n+1. Indeed, let L = (l1, . . . , ln−d) be a basis of L⊥
n . It is 
lear that (li, 0) ∈ L⊥

n+1.Let now mi,j, where 0 ≤ i ≤ d − 1 and 0 ≤ j ≤ n, be the entries of the matrix Mn+1. The�rst d 
olumns of Mn+1 
orrespond to the 
olumns of the identity matrix Id ∈ R
d×d. By def-inition, the other 
olumns Xj mod f , d ≤ j ≤ n, of Mn+1 are linear 
ombinations of the the�rst d 
olumns with 
oe�
ients mi,j, for instan
e: Xn ≡

∑

0≤i≤d−1

mi,nXi mod f. It follows that
∑

0≤i≤d−1

−mi,nXi +
∑

d≤i≤n−1

0 ·Xi + Xn ≡ 0 mod f , or ∑

0≤i≤d−1

−mi,nhi +
∑

d≤i≤n−1

0 · hi + hn = 0,where hi = Xi mod f . Hen
e, the ve
tor u = (−m0,n, . . . ,−md−1,n, 0, . . . , 0, 1) is also in L⊥
n+1and linearly independent of the ve
tors (li, 0). Sin
e dim(L⊥

n+1) = dim(L⊥
n ) + 1, we suggest thefollowing: if L = (l1, . . . , ln−d) is a basis of L⊥

n then K = (k1, . . . , kn+1−d) is a basis of L⊥
n+1where ki = (li, 0) for 1 ≤ i ≤ n − d and kn+1−d = u. We derive then the following algorithm to
ompute L⊥

n :Input: The latti
e Ln or equivalently the matrix Mn = (mi,j), where 0 ≤ i < d and
0 ≤ j < n.Output: The orthogonal latti
e L⊥

n .Create the matrix Kn = (ki,j), 0 ≤ i < n− d and 0 ≤ j < n, where the entries ki,j areinitially set to 0 ;for i from 0 to n− d− 1 dofor j from 0 to d− 1 do
ki,j ← −mj,i+d ;
j ← j + 1 ;end

ki,i+d ← 1 ;
i← i + 1 ;endThe rows of Kn 
onstitute the basis ve
tors of L⊥

n .Algorithm 2: Computing the orthogonal latti
e L⊥
nThe (n− d)×n matrix representing the orthogonal latti
e L⊥

n (the latti
e basis ve
tors formthe rows of the matrix) will have the following shape:
Kn =











−m0,d . . . −md−1,d 1 0 0 . . . 0
−m0,d+1 . . . −md−1,d+1 0 1 0 . . . 0... ... ... ... . . .
−m0,n−1 . . . −md−1,n−1 0 0 . . . 0 1













7Lemma 1. Algorithm 2 
omputes a basis of the orthogonal latti
e L⊥
n with running time O((n−

d)d) .Proof. It is 
lear that Algorithm 2 runs in time O((n− d)d). It remains to prove that it a
tually
omputes a basis of the orthogonal latti
e L⊥
n . Sin
e the matrix Kn has (n − d) rows and thelatti
e L⊥

n has dimension n− d a

ording to Theorem 3, it su�
es to prove that the rows of Knform a generating family of L⊥
n . Let v = (v0, . . . , vn−1) ∈ L⊥

n . Then by de�nition of the orthogonallatti
e, < v, u >= 0,∀u ∈ Ln, for instan
e < v, ui >= 0 for all the latti
e L basis ve
tors ui(rows of the matrix Mn). It follows that ∑

0≤j≤n−1

mi,jvj = 0 and thus vi = −
∑

d≤j≤n−1

mi,jvj for
0 ≤ i ≤ d− 1. Consequently,

v = (v0, . . . , vn)

= (−
∑

d≤j≤n−1

m0,jvj , . . . ,−
∑

d≤j≤n−1

md−1,jvj, vd, . . . , vn−1)

=
∑

d≤j≤n−1

vj(−m0,j , . . . ,−md−1,j , 0, . . . , 1, 0, . . . , 0).

v 
an then be written as a linear 
ombination of the rows of Kn with 
oe�
ients vj, d ≤ j ≤
vn−1, whi
h 
on
ludes the proof.

⊓⊔Finding the low weight polynomial multiples. This is the most expensive part of Al-gorithm 1 sin
e it 
orresponds to the basis redu
tion of the orthogonal latti
e L⊥
n . The LLLredu
tion 
an be performed in O(n(n − d)5)3. This means that the higher the dimension, themore infeasible the atta
k gets.Theorem 5. Algorithm 1, in 
ase the redu
tion applied is LLL, runs in O(n(n − d)5) arith-meti
 operations, and 
omputes (n − d) multiples of the polynomial f of weight wi: wi ≤

2n−d−1λi(L
⊥
n )2, 1 ≤ i ≤ n− d, where λi(L

⊥
n ) denote the su

essive minima of the latti
e L⊥

n , forinstan
e λ1(L
⊥
n ) is the shortest nonzero ve
tor in the latti
e whi
h 
orresponds also to the lowestweight of f 's multiples of degree at most n− 1.Proof. We �rst show that Algorithm 1 
omputes multiples of f . Let v = (v0, . . . , vn−1) ∈

L⊥
n . Then ∑n

j=0 vjmi,j = 0, 0 ≤ i ≤ d − 1. It follows that ∑n
j=0 vj(X

j mod f) = 0, thus,
∑n

j=0 vj(X
j mod f) ≡ 0 mod 2 or equivalently f |∑n

j=0(vj mod 2)Xj . To prove the runningtime as well as the bound on the weights of the resulting multiples, we just refer to the famousLLL paper [14℄ where the the authors prove the approximation fa
tors of the redu
ed basisve
tors with regard to the su

essive minima when the LLL redu
tion is applied.
⊓⊔Remark 1. In order to improve on the quality of the obtained basis, we 
ould use, insteadof the LLL redu
tion, S
hnorr's redu
tion algorithm [24℄ or the re
ently improved algorithm[1℄. We will obtain then approximation fa
tors that are slightly sub-exponential , namely -

2O((n−d)(log log(n−d))2/ log(n−d)) and 2O((n−d) log log(n−d)/ log(n−d)) respe
tively. Note that an exa
tsolution of the lowest weight multiple (or even an approximation to within polynomial fa
torsin the ex
ess degree (n− d)), 
an be a
hieved in exponential running time.3 A
tually LLL runs in O(d5n)B3, where d and n represent the latti
e and ve
tor spa
e dimensions resp. andB is an upper bound on the 
oe�
ients'size of the inupt basis ve
tors. In our 
ase these have values in {0, 1},thus B = 1.



8Remark 2. There exists also a heuristi
 that estimates the ve
tors lengths in a redu
ed basisoutput by the algorithm 1 by the produ
t of the square root of the dimension n − d and the
(n−d)-th root of the latti
e determinant. This gives us multiples of weights with approximationfa
tors polynomial in (n− d) to the a
tual minimal weight.On the pra
ti
al side, the LLL algorithm, despite its pessimisti
 theoreti
al bounds, a
hieves abasis with moderately short ve
tors. For instan
e, all the resulting ve
tors in the redu
ed basisof L⊥

n have entries in {0,±1} and if the dimension is small enough, then we �nd multiples withthe lowest possible weight.In order to relate the shortness of the obtained redu
ed basis ve
tors and the sparsenessof the resulting polynomials, we make the following assumption whi
h is a
tually an empiri
alresult, run over several instan
es of the problem, that we 
ould not prove theoreti
allyAssumption 1 Algorithm 2 outputs a basis for the orthogonal latti
e with ve
tors having entriesin {0,±1}In this way, the weight of the resulting polynomials will be nothing but the square of the basisve
tors' ℓ2-norm.3.2 Previous workThe strategy used so far to solve this problem 
onsists of �rst estimating the minimal weight
w of multiples of the given polynomial f with degree at most n − 1, then �nding multiples ofweight at most w. To estimate the minimal weight, one solves for wd the following inequality; wis the smallest solution: 2−d

(

n− 1
wd

)

≥ 1. In fa
t, if multiples were random then one expe
tsthat the above inequality holds. It is worth mentioning that the number of su
h multiples 
ouldbe approximated by NM = 2−d

(

n− 1
w − 1

).The te
hniques used to �nd sparse multiples of weight at most w are:� Exhaustive sear
h. When the bound n is just above d, an exhaustive sear
h turns out tobe faster. The 
ost of su
h an atta
k is O(Poly(d) · 2n−d−1).� Syndrome de
oding. We 
ompute the matrix H whose 
olumns are de�ned by Hi =
Xi mod f , 1 ≤ i ≤ n − 1, then �nd a low weight word in the preimages of 1 of this matrix.The 
ost of this method is O(Poly(n−1)(n−1

d )w−1)NM , where Poly is a polynomial of degree
2 or 3.� The birthday Paradox [16℄. Set w = q1 + q2 + 1, q1 ≤ q2, and build two lists; the�rst one 
ontains all possible linear 
ombinations of Xi mod f , 0 < i < n of weight q1whereas the se
ond list 
ontains all possible linear 
ombinations of Xi mod f , 0 < i < nof weight q2. Then look for pairs that sum to 1. Clearly, this method runs in O(nq2) (if weimplement the �rst list by an e�
ient hash-table), and uses O(nq1) of memory. The usualtime-memory trade-o� is to use q1 = ⌊w−1

2 ⌋ and q2 = ⌈w−1
2 ⌉ in order to balan
e the 
ostof the two phases. Note that the running time depends on the parity of w sin
e we do nothave to 
ompute anything if q1 = q2. There exist many improvements of this method, forexample Chose et al. [5℄ use the mat
h-and-sort alternative that 
onsists of splitting the hugetask of �nding 
ollisions among nw 
ombinations into smaller tasks: �nding less restri
tive
ollisions on smaller subsets, sort the results and then aggregate these intermediate results tosolve the 
omplete task. This leads to a 
onsiderable improvement of the spa
e 
omplexity,namely O(n⌈w−1/4⌉). Didier and Laigle-Chapuy [7℄ 
onsider a new approa
h that uses dis
retelogarithms instead of the dire
t representation of the involved polynomials. They a
hieve



9a time/spa
e 
omplexity of O(nL⌊(w−1)/2⌋), where L is the 
ost of 
omputing a dis
retelogarithm in F2d , and O(n⌊(w−2)/2⌋) respe
tively.� Wagner's generalized birthday paradox. When the bound n on the multiples'degreein
reases, then Wagner's generalized birthday paradox [29℄ be
omes more e�
ient. In fa
t,if there exists a ≥ 2 su
h that (

n− 1

(w − 1)/2a

)

≥ 2d/(a+1), then one 
an �nd a solutionin O(2a2d/(a+1)). For instan
e, if n ≥ 2d/(1+log2(w−1)), using this method, one 
an �nd amultiple within almost linear time in n, namely, O((w − 1)n).We summarize the 
osts (time and 
omplexity) of the di�erent methods in the followingtable:Method Exhaustive Sear
h Syndrome De
oding Birthday Paradox Generalized BP Our methodTime 
ost O(Poly(d) · 2n−d−1) O(Poly(n − 1)(n−1
d

)w−1)NM O(n⌈ w−1

2
⌉) O((w − 1)2d/(1+log

2
(w−1))) O((n − d)5n)Spa
e 
ost O(n) O(Poly(n − 1)(n−1

d
)w−1) O(n⌈w−1/4⌉) O(2d/(1+log

2
(w−1))) O(nd)From the list above, we 
on
lude that our algorithm a
hieves a better 
ost when the weight

w in
reases, say gets bigger than 12. Also, In the 
ase where the ex
ess degree n−d is small (butnot too small su
h that an exhaustive sear
h is feasible); one 
on
rete example is when w = 3and and n > (n− d)5 or when w = 5 and n2 > (n − d)5.3.3 ExperimentsTo validate our method, we tested it on some known polynomials, using the NTL library [26℄developed by Vi
tor Shoup on a 2.2-GHz Athlon pro
essor with 2 GB of RAM. More pre
isely, weused for the latti
e basis redu
tion (step 3 in Algorithm 1) two implementations of �oating LLL(and its variants). In fa
t, the (original) LLL algorithm operates on rationals in order to 
omputethe Gram-S
hmidt orthogonalization 
oe�
ients. In big dimensions, the size of these latteritems in
reases and makes the algorithm impra
ti
al, thus one is tempted to approximate thementioned 
oe�
ients using a �oating point representation. We basi
ally use the NTL LLL_FPalgorithm whi
h represents an improvement of the S
hnorr-Eu
hner version [25℄ that uses adouble pre
ision. In order to improve on the quality of the redu
tion, we also make use of a�oating point implementation of the Blo
k Korkin-Zolotarev basis redu
tion (in double pre
isionas well), namely the BKZ_FP algorithm. This is slower but yields a higher-quality basis, i.e.,one with shorter ve
tors. It basi
ally generalizes the LLL redu
tion 
ondition from blo
ks of size2 to blo
ks of larger size. BKZ_FP is an implementation of the S
hnorr-Eu
hner algorithm [25℄.Finally, it is worth noting that the best fully proved �oating point arithmeti
 LLL variant is dueto Nguyen and Stehlé [20℄. The so-
alled L2 algorithm whi
h runs in timeO(d4n log B(d+log B)),where d, n and B refer to the latti
e dimension, the ve
tor spa
e dimension and an upper boundon the latti
e basis ve
tors' norm.We got the following results (n refers to the stri
t upper bound on the polynomial, we and
wf refer to the estimated minimal weight and the smallest weight found resp. , �nally M and
t denote the number of multiples found of degree at most wf and the 
orresponding time (inse
onds) resp.):Experiment 1. f1 = 1+X2 +X4 +X5 +X6 +X8 +X9 +X10 +X11 +X13 +X14 +X15 +X17.1. The Latti
e method using the �oating variant of LLL (LLL_FP) from the NTL library withthe default parameters:
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n− 1 17 20 20 20 21 22 24 30 44 94 513
we 13 12 11 10 9 8 7 6 5 4 3
wf 13 8 8 8 8 8 8 5 5 5 4
M 1 1 1 1 2 2 2 1 1 1 2
t 0 0 0 0 0 0 0 0 0 0.004 0.6962. The Latti
e method using the �oating variant of LLL (BKZ_FP) from the NTL library with

30 for the blo
k size and 15 for pruning:
n− 1 17 20 20 20 21 22 24 30 44 94 513
wf 13 8 8 8 8 8 8 5 5 5 3
M 1 1 1 1 2 2 2 1 1 3 1
t 0 0 0 0 0 0 0 0 0 0.06 25.13. The Time-Memory Trade-O� (TMTO) using the C++ standard library (STL) hash fun
tion:

n− 1 17 20 20 20 21 22 24 30 44 94 513
wf 13 8 8 8 8 8 8 5 5 5 3
M 1 1 1 1 2 2 4 1 1 27 1
t 0 0.38 0.38 0.38 0.5 0.75 1.62 0.02 0.08 2.77 0.03We provide in Appendix B the remaining experiments, where the TMTO method has beenrunning for several days without any results.Remarks. In order to evaluate experimentally the time estimate of our method, we utilizedthe linear regression tool to express the relationship between the logarithm of the time estimate(ln(t) ) and the logarithm of the bound on the multiples (ln(n)). We got the following for the�rst experiment:

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300  350  400  450  500  550

lo
g(

t)
 in

 b
as

e 
n

n

"LLL_FP.dat"
"BKZ_FP.dat"

"TMTO.dat"

Fig. 1. Polynomial f1We �rst noti
e that for the TMTO method, the 
oe�
ient α = logn(t) is not always equalto ⌈w−1
2 ⌉ as it should be. This is explained by the fa
t that the time estimate for this method,that is, O(n⌈(w−1)2⌉), is only the best 
ase 
omplexity. In fa
t, the sear
h in a hash table 
an beperformed in 
onstant time in the best 
ase and linear time in the worst. It might be wiser thento use a more e�
ient hash table than the one provided by the standard library (STL) of C++.



11We 
an also relate this to the unfruitful exe
ution of the algorithm when the heuristi
 predi
tsa weight that doesn't exist.Next, we note that the 
oe�
ient α of LLL_FP and BKZ_FP is 
onstant and about 3.5 and 4respe
tively. This explains why the TMTO method looses the lead as soon as the weight w getsgreater than 8.We did the same for the polynomials f2 and f3. Sin
e we were not able to run the TMTO methodon these instan
es, we de�ned the 
orresponding 
oe�
ient as α = ⌈w−1
2 ⌉, whi
h 
orrespondsto the best possible time estimate one 
ould obtain. It is 
lear from the graphs that the latti
emethod is better sin
e the weights that 
ome into play are pretty big.
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(b) Polynomial f3From the results above, we 
on
lude that our algorithm wins in 
ases that are intra
table forthe previously known birthday-based methods, namely when the target weight is big and alsowhen the ex
ess degree is small.4 Estimation of the Minimal WeightAs mentioned earlier in this do
ument, the methods used in the literature to �nd low weightpolynomial multiples, namely Time-Memory Trade-O� and Syndrome de
oding, estimate �rstthe expe
ted minimal weight wd, then �nd multiples of weight at most wd. The way used toestimate the minimal weight is to solve for w the following inequality; wd is the smallest solutionto 2−d

(

n− 1
w

)

≥ 1This estimation is quite reasonable and works well in pra
ti
e. However, sin
e it is indepen-dent of the polynomial in question, there exist polynomials for whi
h the estimation leads to asmaller or greater minimal weight. The problem is posed when the estimation outputs a weightthat is mu
h smaller that the a
tual minimal weight sin
e this would 
orrespond to runningunprodu
tively the algorithms to �nd sparse multiples until we hit the �
orre
t� weight. It isworth noting that from a stream 
iphers designer's perspe
tive, these polynomials are regardedas se
ure as they are resistant to this strategy. The Bluetooth polynomial is an illustration ofsu
h polynomials.In this se
tion, we supply these methods by providing lower and upper bounds for the estimatedminimal weight. In this way, the te
hniques will pro
eed to �nd sparse multiples only if theestimated weight is in the 
orre
t range. This result 
an be interpreted from stream 
iphersdesigners as follows: given a polynomial (feedba
k polynomial of a 
onstituent input LFSR),they insure that an adversary 
annot �nd a multiple with weight below a 
ertain bound given



12a

ess to a 
ertain amount of keystream.The bounds follow dire
tly from Theorem 1. Moreover, a

ording to Theorem 2, we have
det(L⊥

n ) = det(L̄) = det(L) sin
e the 
oordinates of Ln basis ve
tors are in {0, 1}. This re-sults in the following:
⌈min

j
‖K∗

j ‖2⌉ ≤ wd ≤ ⌊γn−d det(L)2/(n−d)⌋,where (Ki,j)
∗ represents the Gram-S
hmidt data for the matrix Kn. We obtained the follow-ing bounds for polynomial f1 (lb and ub refer to the lower and upper bounds on the minimalweight respe
tively whereas we denotes the estimated weight):

n− 1 20 21 22 24 30 44 94 513
lb 5 5 5 5 3 2 2 2
we 10 9 8 7 6 5 4 3
ub 10 10 11 12 6 9 15 60The remaining experiments are given in Appendix C.In our 
omputations, we used the following, known so far, values for the Hermite's 
onstant:

n− d 2 3 4 5 6 7 8 24
γn−d 2/

√
3 21/3

√
2 81/5 (64/3)1/6 641/7 2 4and for the other dimensions, we used these asymptoti
 bounds, whi
h are known to be thebest:

n− d

2πe
+

log(π(n − d))

2πe
+ o(1) ≤ γn−d ≤

1.744(n − d)

2πe
(1 + o(1)).First, we noti
e that the heuristi
 method works well in pra
ti
e, sin
e all the estimated weightsfall in the provided range. Next, we remark that as soon as the dimension in
reases, the upperbounds be
ome trivial and 
ould be repla
ed simply by the weight of the given polynomial. Itis 
lear then that exa
t values or even tighter bounds for the Hermite 
onstant would lead totighter upper bounds for the minimal weight.5 Sparse Binary Multiples of an integerThe method applied above to �nd sparse multiples for a given polynomial applies also for sear
h-ing sparse binary multiples of a given integer.In fa
t, we de�ne the following problem: we have integers n and g with g dividing bn − 1, and
onsider the set S of all multiples ag with 0 < a < (bn − 1)/g. We want to know the smallestHamming weight of the b-ary representations in S.In the 
ase b = 2, the same analysis is almost appli
able. In fa
t, we are sear
hing sparse mul-tiples of the given number g that are smaller 2n − 1, i.e., multiples whose bitsizes are smallerthan the bound 4 n.The algorithm is then des
ribed as follows:4 This bound represents the order of the 2 in the multipli
ative group Zg. Similarly, we sear
hed sparse multiples,of a given polynomial f , of degree less than n, where n is smaller than the order of the polynomial f , otherwisethe multiple Xord(f) + 1 would have been a solution.



13Input: a number g of size d diving 2n − 1.Output: low weight multiples of g smaller than 2n − 11. Compute the latti
e n-dimensional latti
e Kn de�ned by
Kn = {(x0, . . . , xn−1) ∈ Z

n :
∑n−1

i=0 xi2
i = 0 mod g};2. Redu
e it . The basis ve
tors with entries in ±{0, 1} 
onstitute the low weight multiples.Algorithm 3: Computing sparse multiples of a given numberIn this situation, the 
omputation of the orthogonal latti
e 
an be also a
hieved in linear timein n using the following remark. An element of the latti
e Kn is either a multiple of g (the
oordinates of the element 
onstitute its 2-ary representation), thus it belongs to the one di-mensional latti
e gZ and therefore generated by the ve
tor v = (g, 0, . . . , 0), or it belongs tothe sub-latti
e L⊥ = (1, . . . , 2n−1)⊥, whi
h is generated by ve
tors v1 = (−2, 1, 0, . . . , 0), v2 =

(−4, 0, 1, 0, . . . , 0), . . . , vn−1 = (−2n−1, 0, . . . , 0, 1). Hen
e, (v1, . . . , vn−1, v) is a basis of Kn.Note that the sparse multiples of g are only those whi
h have entries in ±{0, 1}. We 
an getrid of the parasite ve
tors, namely those with entries in {±1, 0} by 
onsidering the latti
e
K ′

n = 2Kn + Z(1, . . . , 1). We are then guaranteed that the desired ve
tors will appear in anyredu
ed basis of the new latti
e.Full details about this problem and its appli
ations to error-
orre
ting 
odes will appear else-where.We run again our experiments with NTL and got the following:
(g, n) (268501,100) (3173389601,200) (10567201,300) (82471201,400)
wf 3 3 2 5
M 27 18 132 2
t 0.06 0.3 1.02 1.666 General Thoughts and Prospe
tivesAn interesting question is to study the spe
ial form of the latti
e L⊥

n or equivalently of thematrix Kn in order to redu
e the 
ost of the redu
tion, or improve on the gotten results. In fa
t,the matrix in question is sparse and one is tempted to use a more 
ompa
t representation or atleast a representation that makes easy for the basis redu
tion algorithms, namely LLL and itsvariants, the sear
h for short ve
tors. For instan
e, we noti
ed that 
hanging the shape of thematrix su
h that the �rst (n − d) 
olumns form the unit matrix In−d ∈ R
n−d - in the originallatti
e, the last (n− d) 
olumns formed the unit matrix - leads to di�erent results but still notspe
ta
ular.Besides, a

ording to Algorithm 1, short ve
tors in the latti
e L⊥

n lead to sparse multiples ofthe polynomial f . So we managed to relate the hardness of the low weight polynomial multipleproblem to the hardness of the shortest ve
tor problem in L⊥
n . We 
an also relate the 
losestve
tor problem to our problem, in fa
t, a latti
e point in L⊥

n 
lose to the 
onstant polynomial 1will lead to a low weight multiple of nonzero 
onstant term. This suggests to study the hardnessof the shortest/
losest ve
tor problems of this spe
ial instan
e of latti
es (latti
e of the form
Kn) in order to better estimate the hardness of the low weight polynomial multiple problem. Webelieve the taxonomy: sparse polynomial multiple problem - shortest/
losest ve
tor problem oflatti
es with form Kn - syndrome de
oding, deserves further attention. In fa
t, this would provideus either with very e�
ient tools to solve the problem and hen
e lead to new improvements instream 
iphers 
ryptanalysis and fast �nite �eld arithmeti
, or with 
on�den
e on the hardnessof the problem (if we manage to exhibit a redu
tion from syndrome de
oding or SVP/CVP toit ), sin
e the other two problems are known to be NP-
omplete. The last point is motivated by



14the re
ent proposal of a 
ryptosystem whose se
urity relies on the problem [9℄.Furthermore, the redu
ed basis of Kn 
ontains short ve
tors or equivalently sparse multiplesthat do not have ne
essarily nonzero 
onstant term. This is due to the following fa
t: if g is asparse multiple with nonzero 
onstant term, then there is no restri
tion on the basis to 
ontainthe multiples Xig granted that deg(g)+ i < n. This leads to redundan
ies in the basis. It wouldthen be desirable if one �lters out extraneous polynomials in order to allow more �interesting�multiples to appear in the basis. One way to a
hieve this is to 
ompute points in the latti
e L⊥
nthat are 
lose to the 
onstant polynomial 1. The 
ost of su
h a te
hnique will be about the samesin
e we will use the famous embedding te
hnique, whi
h 
onsists of redu
ing the (n + 1 − d)-dimensional latti
e L′

n ⊆ Z
n+1 given by the basis K′ = (k′

1, . . . , k
′
n+1−d), where k′

i = (ki, 0),
1 ≤ i ≤ n − d, and kn+1−d = (1, 0, . . . , 0, 1). Experiments 
urried out improved slightly theresults, for instan
e, we got a further nonzero multiple of f1 of degree at most 94. The weakimpa
t of this strategy lies in the small CVP-gap, i.e., the ratio between the shortest ve
torof L′

n and the distan
e of the 
onstant polynomial 1 to it. In fa
t, the embedding te
hniquerequires a large gap in order to give a

urate results. It would be interesting to dig furtherin this dire
tion, for example solve dire
tly the CVP instan
e instead of redu
ing it to a SVPinstan
e. Experiments are in progress and will appear in the full version of the paper.Finally, one is tempted to extend the method into �nding low weight multiples of polynomialsover Fp , where p > 2 is a prime number (for the 
orresponding number problem, 
onsider the
ase b > 2). However, the naive approa
h would not work sin
e the 
orresponden
e short ve
tor/ sparse multiple won't hold anymore.7 SummaryWe have proposed a new algorithm to �nd low weight multiples for a given polynomial ofdegree at most n using latti
e basis redu
tion. The method has a theoreti
al time estimate of
O((n − d)5n) , in 
ase LLL is the redu
tion algorithm used, and an experimental one about
O(n4). It takes then the lead as soon as the expe
ted minimal weight w gets bigger that 8. Infa
t, the best known methods, that are the birthday-based ones, have a best-
ase time estimateabout O(n⌈(w−1)/2⌉). Su
h a situation o

urs when the bound on the multiple, whi
h denotes theavailable keystream, is small. We also gave bounds for the minimal weight of su
h polynomialsusing latti
es. This helps to 
he
k whether the estimated weight, furnished by the state-of-theart methods is in the 
orre
t range. Also, it provides a quality 
riterion, from a stream 
iphersdesigner 's stand, on the used polynomial. In fa
t, designers insure that the adversary 
annot�nd multiples with weight below a 
ertain bound, given a

ess to a 
ertain amount of keystream.Furthermore, we introdu
ed the 
orresponding number problem and applied almost the samete
hnique to �nd sparse binary multiples of a given integer. Finally, we 
on�rmed our analysisby implementing the method using NTL; our method is appli
able for relatively high dimensions(up to 2000), using the �oating variants of LLL, and has proved very e�
ient on instan
es thatare intra
tible for the the standard methods.
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16A Proof of Theorem 2Proof. First, we note that if (b1, . . . , bd) with bi = (b1
i , . . . , b

n
i ) is a basis for L, then ( 1

g1
b1, . . . ,

1
gd

bd)is a basis for L̄, where gi = gcd(b1
i , . . . , b

n
i ), 1 ≤ i ≤ d. In fa
t, Let x ∈ L̄, then there exist

x1, . . . , xd ∈ R su
h that x =
∑

1≤i≤d

xibi =
∑

1≤i≤d

xigi
1

gi
bi and x ∈ Z

n. Sin
e 1
gi

bi ∈ Z
n, it followsthat x ∈ Z

n if and only if xigi ∈ Zn, ∀1 ≤ i ≤ d. So we managed to write x as a linear 
ombi-nation, with integer 
oe�
ient, of the 1
gi

bi's. Sin
e these latter ve
tors are linearly independent,
( 1

g1
b1, . . . ,

1
gd

bd) is then a basis of L̄.Next, we apply the de�nition of the determinant of a latti
e and get the announ
ed result.
⊓⊔B ExperimentsB.1 Experiment 2.

f2 = 1 + X + X3 + X5 + X9 + X11 + X12 + X17 + X19 + X21 + X125 + X27 + X29 + X32 +
X33 + X38 + X40.1. The latti
e method using LLL_FP:

n− 1 40 49 51 54 59 67 78 95 124 181 307 669 2268
we 17 16 15 14 13 12 11 10 9 8 7 6 5
wf 17 17 16 15 15 13 13 13 13 13 11 9 8
M 1 1 1 1 1 1 1 1 2 2 1 1 1
t 0 0 0 0 0 0 0.004 0 0.012 0.05 0.34 1.78 49.752. The latti
e method using BKZ_FP:

n− 1 40 49 51 54 59 67 78 95 124 181 307 669 2268
wf 17 17 16 15 15 13 13 13 12 12 11 10 8
M 1 1 1 1 1 1 1 1 1 2 1 1 1
t 0 0 0 0.004 0 0 0.008 0.016 0.07 0.56 6.38 142.8 2506.773. The TMTO method:

n− 1 40 49 51 54 59 67 78 95 124 181 307 669 2268
t 0 - - - - - - - - - - - -B.2 Experiment 3.The Bluetooth polynomial (multiple of the four 
onstituent LFSRs feedba
k polynomials ) ;

f3 = f1
3 · f2

3 · f3
3 · f4

3 where:
f1
3 (x) = x25 + x20 + x12 + x8 + 1;

f2
3 (x) = x31 + x24 + x16 + x12 + 1;

f3
3 (x) = x33 + x28 + x24 + x4 + 1;

f4
3 (x) = x39 + x36 + x28 + x4 + 1;



171. The latti
e method using LLL_FP
n− 1 128 247 458 600 700 855 1100 1400 1749 2387
we 49 31 24 23 22 20 19 18 17 16
wf 49 47 47 47 47 47 47 41 41 41
M 1 1 1 1 1 1 1 1 1 1
t 0 0.03 0.74 3.8 5.9 7.9 12.4 20.7 35.11 77.032. The latti
e method using BKZ_FP

n− 1 128 247 458 600 700 855 1100 1400 1749 2387
wf 49 47 44 44 44 44 44 44 44 44
M 1 1 1 1 1 1 1 1 1 1
t 0 0.184 18.32 75.97 123.2 305.3 600 970.82 1520.62 31383. The latti
e method using BKZ_FP

n− 1 128 247 458 600 700 855 1100 1400 1749 2387
n− 1 0 - - - - - - - - -C Estimation of the Minimal Weight� The polynomial f2:

n− 1 49 51 54 59 67 78 95 124 181 307 669 2268
lb 11 10 8 6 4 4 3 2 2 2 2 2
we 16 15 14 13 12 11 10 9 8 7 6 5
ub 12 15 17 20 24 28 32 35 39 51 89 255� The Bluetooth polynomial f3:

n− 1 247 458 522 604 855 1053 1334 1749 2387
lb 7 2 2 2 2 2 2 2 2
we 31 24 23 22 20 19 18 17 16
ub 218 174 171 171 183 199 225 266 330


