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Abstract. The low weight polynomial multiple problem arises in the &t of stream ciphers cryptanalysis
and of efficient finite field arithmetic, and is believed to bfficllt. It can be formulated as follows: given a
polynomial f € F2[X] of degreed, and a boundh, the task is to find a low weight multiple gf of degree
at mostn. The best algorithm known so far to solve this problem is bas® a time memory trade-off and
runs in timeO(n“=Y/21) using O(n!“~1/41) of memory, wherew is the estimated minimal weight.
In this paper, we propose a new technique to find low weightiipies using lattice basis reduction. Our
algorithm runs in timeD(n®) and use®)(nd) of memory. This improves the space needed and gives a better
theoretical time estimate when > 12 . Such a situation is plausible when the boundvhich represents the
available keystream, is small. We run our experiments usiad\NTL library on some known polynomials in
cryptanalysis and we confirm our analysis.
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1 Introduction

Finding a low weight multiple, i.e. a multiple of low Hammingeight, of a polynomial oveff, is
believed to be a difficult problem. In fact, there exists nown polynomial time algorithm to solve it.
Later in this document, we point out a reduction from thisghem to the Syndrome Decoding problem
which is known to be NP-complete, however the other direchias not been investigated to the best of
the authors’ knowledge.

The problem can formulated as follows, given a polynonjfiaver a finite fieldJF'» for instance, and
a boundrn, determine the set:

My(n,w) = {g € Fo[X]: flg,deg(g) < n,weight(g) < wo},

wherewy is the least possible weightyy = min{w: M(n,w) # 0}. It is often enough to compute
sufficiently many - but not all- elements from this set.
There exists also the other variant which consists of deténgthe set)M ;(n,w) for a given weightw
and forn = min{n;: M¢(n;,w) # 0}. In this paper, we concentrate on the first variant.

The low weight polynomial multiple problem originated inyptography from two distinct areas:
attacks on LFSR-based stream ciphers and efficient finitk didhmetic.

Application to stream ciphers cryptanalysis

Stream ciphers constitute an important class of secreekeyyption algorithms. In fact, LFSR-based
stream ciphers are widely used in many applications beazfuke advantages they present compared to
other encryption schemes, for instance, block ciphery: dne faster, require less hardware circuitry and
have fewer propagation errors. An example is Bluetoothygtion. Stream ciphers consist of a seed,
corresponding to the shared secret key, and a pseudoraret@mragpr, which consists of constituent LF-
SRs [14] and a nonlinear combination function. The resudt iseudo-random binary sequence, called
the keystreamwhich is, in the case of a binary additive stream cipheryibé added to the plaintext
in order to obtain the ciphertext. Hence, attacks on streigimecs have as ultimate goal the recovery
of the initializations of the LFSR<Correlation attacksare considered to be the most important class
of attacks against stream ciphers. There exists also aargtef attacks that simply aim at verifying



whether a bitstream is the encryption of some (unknown) atggsshe so-calledistinguishing attacks
Both attacks require finding low weight multiples of a consnt LFSR's feedback polynomial.

Fast correlation attacks. They were originally introduced by Siegenthaler [24] angdamproved by
Meier and Staffelbach [13]. Since then, a series of progosalang up, either very general or adapted
to a specific scheme, to name but a few [9, 8, 10, 3, 4]. The iptmof this type of attacks is as fol-
lows: we try to reconstruct the initialization of the cohstint LFSR, say théth one, from the output
keystream by viewing the latter as the transmission of theéo one through a noisy channel. In fact,
we assume that the adversary knows both the plaintext arwithertext (a known plaintext attack). The
errors resulting from this transmission are due to the athgisters. Les ands’ denote the output of the
keystream generator and théh LFSRR; respectively. The more the sequensesds’, are correlated,
the smaller is the attack’s error probability. More prelyistet s* = (s, ..., s'y_;) be the initial N-bit
sequence generated by the constituent LES®hose connection polynomial jswith linear complex-

ity L, ands = (so,...,sy_1) be the initial N-bit keystream. Let furthep = Prob(s}, = s) be the
correlation probability betweenands?, where the probability is taken over the possible initiians

of the constituent LFSRs. Thencan be viewed as the result of the transmissios’ through a binary
symmetric channel with error probability— p. Moreover, the sequencé satisfies the linear recurrence
defined by the polynomiaf. Thus the words’ = (s, ..., s%_,) belongs to the linear error correcting
code of lengthV and of dimension. defined byf. We can then recover it using the iterative decoding
process due to Gallager [7] which exploits the existenceaatycheck equations.

Fast correlation attacks can then be mounted into two phtmefirst one determines low weight parity
check equations or equivalently low weight multiples of &8R’s connection polynomial, whereas the
second phase decodes the sequertoerecovers’. R; could then be recovered as soonNas> L.

Distinguishing attacks. A distinguishing attack as previously stated can be usecetibyvor falsify
whether a bitstream is the encryption of some message. Jhkdgignificant importance if the set of
possible messages or possible keys is small. In fact, a snesibage set gives few possibilities for the
keystream, this could be obtained by bitwise adding therpiighertext to the possible messages. Then,
one can simply check the correct keystream by encryptingesimown bitstreams using the possible
keystreams and feeding the resulting ciphertexts to thndisisher, the correct keystream is the one
providing a ciphertext that is identified by the disting@slas yes instance. In case the key size is small
such that an exhaustive search is plausible, distingugshitacks are then equivalent to key-recovery
attacks and thus could be employed to decrypt the ciphertext

Low weight multiple polynomials are also required for sudtaeks. In fact, following the framework
described in the above paragraph, namely, an LFSR-basshsiripher given by constituent LFSRs
and a pseudo-random generator. We assume that the outstrigaays is written as the sum of a binary
biased sequendg i.e., a sequence such tHatob(b; = 0) = 1/2 + v, v > 0%, and an LFSR’s output
(could be the equivalent LFSR of a subset of the constituéi®Rs combined via a nonlinear function).
Let M = >"%", X% be a multiple of the LFSR’s connection polynomial of degreand weightw,
where0 = ¢; < ¢2 < ... < g, = n. Then, by standard cryptanalytic techniques, the outpysgtkeam

is biased with bias;y®, sinced? 1,44, = 0 holds for allt and &Y si1q, = 1 (litg, + birg) =

DY 1biyq - It follows that one needs—2* samples to distinguish the output keystream from a truly
random sequence. Notice, that the smallethe higher the bias will be and thus the fewer samples are
needed to build the distinguisher. For examples of suclksisee [12] on EO, and [6] on SOBER-t16
and SOBER-t32.

! The probability is again taken over the possible initiafimas of the constituent LFSRs.



Application to efficient finite field arithmetic

It is often attractive to use finite field&- in cryptography, in particular for hardware applicatiohbere

are several ways of representing small fields. One repr@samtis by a sparse irreducible polynomial
g € Fy[X] of degreen, asFo» = F3[X]/(g). In [25], this was found to be the most efficient represen-
tation if exponentiation is a core operation. Ideally, ormuld like to use the minimal possible weight,
that is, trinomials of weigh3. However, these do not always exist. Brent and Zimmermahpr{osed

an interesting solution: take an irreducible polynonfia F[X| of degreen, but possibly large weight,

a multipleg of f with small weight, say; a trinomial, and work in the rind? = F[X]/(g) most of the
time, going back to the field vi& — [F,» only when necessary. They actually describe efficient algo-
rithms for finding trinomials with large irreducible (andgsibly primitive) factors and give examples of
such trinomials.

Previous work

Most strategies used so far to solve this problem consistsndstimating the minimal weight of mul-
tiples of the given polynomiaf with degree at most — 1, then finding multiples of weight at most.
To estimate the minimal weight, one solves {ay the following inequality;w is the smallest solution:

2—d (nw_ 1) > 1. In fact, if multiples were random then one expects that bwva inequality holds. It
d

is worth mentioning that the number of such multiples coddpproximated by, = 2-¢ <Z B i) .

The techniques used to find sparse multiples of weight at mase:

— Exhaustive search.When the bound is just aboved, an exhaustive search turns out to be faster.
The cost of such an attack@(Poly(d) - 2"~4~1).

— Finding Minimum Weight Words in a Linear Code. The low weight polynomial multiple prob-
lem can be also solved by techniques that find a minimum weigid in a linear code. In fact,
polynomial multiples form a linear code of length wheren is the bound on the multiple’s degree,
and a low weight multiple corresponds to a minimum weightdvior this code. There are known
algorithms for performing this task, we note as a refereheeatgorithm by Canteaut and Chabaud
[?], which runs empirically irR7cH2(+Fo)+d wherec = 0.12, d = 10, Ry = 3.125 10~2 and H
corresponds to the entropy function. Besides, the algaritees approximateby? of memory. Note
that this method, as the exhaustive search, does not estileaminimal weight of the multiples.

— Syndrome decoding. We compute the matri¥/ whose columns are defined B = X’ mod f,

1 < i < n—1,then find a low weight word in the preimageslobf this matrix. The cost of this
method isO(Poly(n — 1)(2:1)* =1 Ny, wherePoly is a polynomial of degree or 3.

— The birthday Paradox [13]. Setw = ¢1 + ¢2 + 1, ¢1 < ¢o, and build two lists; the first one
contains all possible linear combinationsXf mod f, 0 < i < n of weightq; whereas the second
list contains all possible linear combinations ¥f mod f, 0 < i < n of weight g;. Then look
for pairs that sum td. Clearly, this method runs i®(n%) (if we implement the first list by an
efficient hash-table), and uségn?') of memory. The usual time-memory trade-off is to yse=
|2+ ] andgs = [%51] in order to balance the cost of the two phases. Note that themg time
depends on the parity ab since we do not have to compute anythingzif = ¢». There exist
many improvements of this method, for example Chose et aligd thematch-and-sortlternative
that consists of splitting the huge task of finding colliscmongn® combinations into smaller
tasks: finding less restrictive collisions on smaller stdssort the results and then aggregate these
intermediate results to solve the complete task. This léads considerable improvement of the
space complexity, namel§p(n/“~1/41). Didier and Laigle-Chapuy [5] consider a new approach
that uses discrete logarithms instead of the direct reptasen of the involved polynomials. They
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achieve a time/space complexity Of(n”L(*=1)/2) ‘whereL is the cost of computing a discrete
logarithm inFy., andO(nl(w=2)/21) respectively.

— Wagner’s generalized birthday paradox. When the bound: on the multiples’ degree increases,
then Wagner’'s generalized birthday paradox [26] becomes rafficient. In fact, if there exists

a > 2 such that<(wn__1)/2a> > 24/(a+1) 'then one can find a solution (2024 (@+1)), For

instance, ifn > 24/(1+log;(w—1)) "ysing this method, one can find a multiple within almostdine
time inn, namely,O((w — 1)n).

We summarize the costs (time and space) of the differentadstim the following table:

Method Exhaustive Search Syndrome Decoding Min Weight Words |Birthday Parado, Generalized BP
Time cost||O(Poly(d) - 2"~ 4~ 1)|O(Poly(n — 1)(%)”71)NA4 O(2ret2(1+Ro)+d) O(n(wgl Y Oo((w — 1)24/(A+lega(w=1))y
Space cos O(n) O(Poly(n — 1)(21)w—1) O(n?) O(nlw—1/1T) O(24/0+logx (w—1)))

Our contributions

The main result of the present paper dwells in a new algorithcompute sparse multiples, with degrees
at most a certaim, for a given polynomialf, overF,, of degreed < n. Our algorithm is a lattice-
based solution, i.e., consists of the basis reduction oflalifionensional lattice inZ™. Hence, it runs
theoretically inO(n") (the entries of the matrix representing the lattice are if(nt1,2}) in case
the LLL reduction is applied. This constitutes the first pmiynial time algorithm for approximatively
solving this problem. In fact, although the lattice baswuetion algorithms give only an approximation
to the solution which is exponential in the lattice dimensithiey are empirically known to perform better
and lead to almost exact solutions when this dimension fecgritly small. Therefore, our algorithm
only supplements the known methods in specific ranges. Btarine, it gives a better time estimate
compared to the Time Memory Trade-Off (birthday techniqui)ch runs inO(n/(@=1/21) in casew

is big, say bigger tham2.

The rest of the paper is organized as follows; first, we giveespreliminaries about lattices. Second,
we present our solution to find sparse multiples for a givegrmomial; after giving the approach, we
provide experiments as well as comparisons with the TMT@EMemory Trade-Off) technique in
order to confirm our analysis. Finally, we conclude with gahthoughts and prospectives.

2 Preliminaries

In this section we give some preliminaries about latticas thrir algorithmic problems. The book [15]
constitutes a good introduction to this topic.
Let R™ be then-dimensional Euclidean space. A latti€as the set

d
L(bla s 7bd) = {lebz HE S Z}7
i=1

of all integral combinations of linearly independent vectors (ov&™) by,...,b4. Then,d andB =
(b1,...,by) are called theank andbasisof L, respectively.

A lattice L can be generated by more than one basis. These bases,défesequivalent baseshare
the same number of elements, calleohk or dimension of the lattice, as well as the san@ram
determinant A(L) = A(b, ..., bq) = det(G), whereG is the Gram matrixG = (< b;,b; >)1<i j<d
and < -,- > denotes the usual inner product. Téeterminant or volume of the lattice, denoted as

det(L), is by definition/A(L).



Remark 1.In the rest of the document, i/ is a matrix with rowsy, ..., b;, then we denote by (M),
the lattice generated by the vecté$, 1 < i < d. Similarly, if L is a lattice given by a generating
family (b1, ...,bq), then the matrix having for rows the vectds$, 1 < i < d, is denoted3(L).

Definition 1. (Successive Minima) Let L be ad-dimensional lattice and leB;(0,7) = {z € R :
|z|| < r} be thed-dimensional open ball of radius centered in0. The successive minima bf are
constants\; (L), ..., \;(L) verifying the following:\; = inf{r : dim(span(L N B4(0,7))) > i}. We
clearly haver; < XAy < ... < Ag. We call gap of the lattice the ratio between the first and sdco
minima. Finally, the first minimum; is called also norm of the lattice and corresponds to the nofm
the shortest vector in the lattice.

We get now to therthogonal lattice a notion which was first introduced in a cryptanalytic cante
by Nguyen and Stern in 1997 [18]. It has proved very importenat was used to attack many public key
cryptosystems [18-20].

Definition 2. (Orthogonal Lattice) Let L be a lattice inZ™, and letspan(L) be the vector space (over
R) generated by.. The orthogonal lattice is defined as follows:

Lt =span(L)* NZ" = {x € Z" : Yy € L, < z,y >= 0}.

The biorthogona( L)+ containsL but generally it is not equal to it. We define ttempleted lattice
L as being L+)*. It can be viewed as the intersectionZsf andspan(L).
Moreover, we have the following result [16, Chapter 2/Lenfrig

Theorem 1. If L is a lattice inZ", thendim (L) + dim(L") = n.
0
Finally, computing the orthogonal lattice amounts to datamg the kernel of a matrix (aszmodule).

Theorem 2. Given a basis of @-dimensional latticd. in Z™, one can compute a basis of the orthogonal
lattice L+ in O((n — d)?d®| A|?), whereA is a bound on the bit size of the lattice basis entries.
O

3 Finding Low Weight Polynomial Multiples Using Lattices

Let f be a polynomial of degreé overZ, and letn > d be a given bound. The task is to find a low
weight multiple of f overZs with degree strictly less tham

The idea underlying our approach is simple and based onth&rkethat such a polynomial multiple
is a low weight linear combination with coefficients {0, 1} of the monomialsr?, 0 < i < n, that
evaluates to zero modulp. Moreover, the polynomial multiples ovér,, with degrees at most — 1,
form a latticeL,, in Z™. In fact, they are (a polynomial is given by its coefficiengxtor) inZ", and the
subtraction (or addition) of two multiples ov&r, is again a multiple ove¥.,. Therefore, searching a
low weight polynomial multiple off corresponds to searching a short vector in the lattigeA high
level description of the algorithm is depicted below.

Input : a polynomialf of degreed, and a bound: > d.

Output : multiples of f of degree less tham which are hopefully sparse.

1. Compute a basis of the lattidg, ;
2. Reduce it using an appropriate lattice basis reductigorghm ;
3. The resulting basis vectors constitute the desired pofyal multiples. For instance, if

v = (vp,...,vy—1) iS @short basis vector, then = Z (v; mod 2)z’ is a sparse multiple of ;
1<i<n

Algorithmus 1 : Computing low weight multiples of a given polynomial
In the sequel, we analyze the details of the above algorithm.
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3.1 The lattice L,

We define the sek,, of multiples of f overZ, as follows:
Ly = {g € Zs[z] : g = 0 mod f,deg(g) < n}
Lemma 1. L, is a full-dimensional lattice irZ".

Proof. L, is clearly a lattice since it is a subgroupZt.
Moreover, every polynomial, of degree at mast 1, with even coefficients is a multiple gf overZs,.
ThereforeL,, contains a family of: linearly independent vectors, 1 < i < n:

. 2if 5 =1,
vily) = {0 otherwise.

wherewv;(j) denotes the-th entry of then-length vectory;. It is easy to see that the vectars

1 < i < n, correspond to the polynomiats 2z,...22" . We conclude thak.,, has dimensiom.
0

Clearly the family of the above vectorsis not a basis of the latticg,, since it does not span it. In fact,
a multiple of f overZ, is the addition of a multiple of overZ and a polynomial of degree at most
n — 1 with even coefficients, i.e., a linear combination of thetoexv;. Hence, the vectors; together
with a basis of the multiples of overZ constitute a generating family of the lattiég .

Computing a basis of the multiples of f over Z. Let K,, be the set of multiple of, overZ with
degree at most — 1:

K, ={g € Z[z]: g=0mod f,deg(g) <n—1}

K, is clearly a subgroup and therefore a lattic&Zih We can actually view it as the orthogonal lattice
of ad-dimensional lattice irZ.".

Let M,, be thed x n matrix whose columns are the coefficientsipf= 2* mod f forall0 < i < n.
Let further £(M,,) denote the lattice, i, generated by the rows of the mattix,,. This lattice has
dimensiond since the firsd components of its generators form a unit matrix, and thugydreerators
are linearly independent.

One can easily see that the orthogonal Iatthn)l is nothing but the latticé(,,. Hence, accord-
ing to Theorem 1/, has dimensiom — d. Hence and according to Theorem 2, one can construct it in
time O((n — d)%d®). However, we will show how to make use of the special forni@fto construct it
intime O(d(n — d)).

In fact, we can construct this orthogonal lattice increraliyti.e., from K,,, we will easily derive
Ky 41. Indeed, letC = (kq,...,k,—_q) be a basis of<,,. Itis clear that(k;,0) € K, 1. Let nowm,; ;,
where0 < i < d—1and0 < j < n, be the entries of the matri&/,, . The firstd columns of
M, correspond to the columns of the identity matfix e R%*<. By definition, the other columns
2/ mod f,d < j < n, of M, are linear combinations of the firgtcolumns with coefficientsn; ;,
for instancez™ = > m;pa’ mod f. Itfollows that Y~ —mina’+ Y 0.2 42" =

0<i<d—1 0<i<d—1 d<i<n—1
Omod f,or > —minh’+ > 0B+ k" =0, whereh; = 2 mod f. Hence, the vector
0<i<d—1 d<i<n—1
uw=(—mon,.-.,—M4—1n,0,...,0,1) is also ink,; and linearly independent of the vectd¥s, 0).
Sincedim(K,+1) = dim(K,,) + 1, we suggest the following: iK,, = (ki,...,k,_q) is a basis of
K, thenK, 11 = (K,..., Kk ) is a basis ofK,,; wherek] = (k;,0) for1 < ¢ < n —d and

» Vn41—d
k! .1 _q = u. We derive then the following algorithm to compuig;:
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Input : The lattice£(M,,) given by the matrix\/,, = (m; ;), where0 <i < dand0 < j < n.
Output : The orthogonal latticé,, = M-

Create the matri8(K,,) = (k; j),0 < i <n —dand0 < j < n, where the entrie; ; are
initially set to0 ;

for i from0ton —d —1do

for j from0Otod — 1 do
Kij — —mjiva;
Je—J+1;

end

Kiiva < 1;

1— 1+ 1;

end

The rows of the matrib53(kK,,) form a basis of the orthogonal latti¢é,;
Algorithmus 2 : Computing the orthogonal lattice K,

The output matrix representing the orthogonal latii¢ewill have the following shape:

—moa ... —Mg—-1,d 100 ...0
—mo,d+1 --- —Md—1,d+1 010 ...0
—mMon—1-.-- —Md—1n-1 00... 01

Lemma 2. Algorithm 2 computes a basis of the orthogonal latticg with running timeO(d(n — d)) .

Proof. Itis clear that Algorithm 2 runs in timé(d(n—d)). It remains to prove that it actually computes
a basis of the orthogonal lattid€,, .

Since the latticd(,, has dimensiom — d according to Theorem 1 and the output matrix has-(d)
rows, it suffices to prove that these rows form a generatinglyaof K,,. Letv = (vg,...,v,-1) €
K,. Then by definition of the orthogonal lattice, b,« >= 0 for all vectorsu in the latticeL(M,,),
for instance< b,u; >= 0 for all the lattice basis vectors;, rows of the matrixi/,,. It follows that

Z m; ;b; = 0 and thush; = — Z m; ;b; for 0 <7 < d — 1. Consequently,
0<j<n—1 d<j<n-1
b= (bo,.--,bn)
= (— Z m(),jbj,...,— Z md—l,jbj7bd7---7bn—l)
d<j<n-1 d<j<n-1
= Z bj(—mo,j,...,—md_Lj,O,...,1,0,...,0).
d<j<n-1

b can then be written as a linear combination of the rows of éiselting matrix3(kK,,) with coeffi-

cientsb;, d < j < n — 1, which concludes the proof.
a

Piecing all together. We are interested in the lattidg,, set of all multiples oveZ.,, of the polynomial
f, that have degree at mast— 1. As mentioned earlier, a generating family of this lattisgiven by a
basis of the latticd(,, and the already mentioned vectars1l < i < n:

L [2ifj =1,
vij) = {0 otherwise.



wherev;(j) denotes thg-th entry of then-length vecton;. Letky, ..., k,_4 be the rows of the matrix
B(K,) computed by Algorithm 2. The vectots, d + 1 < ¢ < n can be generated by the vectars

1 < i< dandthevectorg,...,k,_q. Infact, foralld +1 < i < n:
vV = 2. k‘i — Z k:z(j)v]
1<5<d
Therefore, a generating family @f,, consists simply of the vectots, . .., vq, k1, . .., kn_q- The algo-

rithm to compute a basis fdr,, follows in a straightforward way:
Input : The polynomialf, overZ,, of degreed, and a bound, > d
Output : A basis for the latticd.,,.
Build the matrix)/,, whose columns are thig = 2* mod f for0 <i < n;
Call the algorithm 2 on the input/,, to compute a basis for the orthogonal latti€g ;

K, basis vectors together with the vectois . . v, form a basis fotl,,;
Algorithmus 3 : Computing the lattice L,

The matrix representing the lattide,, given thatM,, = (m;;),0 <i<d,0 < j <mn,is:

2 0 0 000 ...0
0 2 0 000 ...0

B(L,) = 0 e 2 0
_mO,d —’I’)’Ld_17d 100 ...0
—mMo,d+1 --- —Md—1,d+1 010 ...0
—mMon—1-.-- —Md—1n-1 00...01

Lemma 3. Algorithm 3 computes a basis of the lattitg with running timeO(d(n — d)) .

Proof. The latticeL,, has dimensiom. From the discussion above, Algorithm 3 outputs a genegatin
family for L,, whose number of elements is exactlyTherefore, the algorithm computes a basisligr

Concerning, the running time, the computationfof is done withinO(d(n — d)). It remains to
figure out the cost of calculating the matrix,,.

To computeh; = 2* mod f, 0 < i < n, we proceed as follows. First, we remark that@og i < d,
we haveh; = z° mod f = 2*. Next and for the remaining indices, we use the fact #hat zh;_; is
eitherzh;_; (if deg(h;—1) < d— 1) orzh;—; — LC(h;)f if ( deg(h;—1) = d — 1), whereLC(p) refers
to the leading coefficient of the polynomialNote that, thanks to the presence of the vecters. . , vg,
we can perform these computations o¥grinstead ofZ. This leads to an overall cost 6f(d(n — d)),
which concludes the proof.

O

3.2 Finding the low weight polynomial multiples.

This is the most expensive part of Algorithm 1 since it cqumagls to the basis reduction of the lattice
L,. The LLL reduction can be performed #i(n%). In fact, LLL runs inO(d°n)B3, whered andn
represent the lattice and vector space dimensions resyB a&ndn upper bound on the coefficients'size
of the input basis vectors. In our case these have valugs ial, 2}, thusB = 1. We conclude that the
highern, the more infeasible the attack gets.

Theorem 3. Algorithm 1, in case the reduction applied is LLL, runsin®) arithmetic operations,
and computes, multiples of the polynomiaf of weightw;: w; < 2" '\;(L,)?,1 < i < n, where
Ai(Ly,) denote the successive minima of the latfice
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Proof. We first show that Algorithm 1 computes multiples obverZ,. Letv = (vg, ..., vn—1) € Ly,.
Thenzyzo vjm;; =0mod2,0<i<d-1. Thus,zglzo v;(z7 mod f) = 0 mod 2 or equivalently
fl Z;.‘:O(vj mod 2)z7. To prove the running time as well as the bound on the weightiseoresulting
multiples, we just refer to the famous LLL paper [11] where the authors prove the approximation
factors of the reduced basis vectors with regard to the ssa@minima when the LLL reduction is
applied.

0

Remark 2.In case the minimal weighty = min{w;: Ms(n,w;) # 0} is greater thant, then the
successive minima of the lattice are simply the vectgrs. ., v,. Therefore, Algorithm 1 computes
multiples with weightsw; < 2"*!. Note, that a reduced basis will always consist of at niogtctors
whose corresponding polynomial is identically zero modufthe vectorsy;, 1 < i < d) since otherwise
it won't possible to generate the basis vectors of the odhablattice K™ (the vectorg:;, 1 < i < n—d).
For instance a basis output by Algorithm 1 will never coneidly of the vectora, ..., v, since they
don't span the latticd.,,. Therefore, Algorithm 1 will output at least — d “interesting” multiples, i.e.,
multiples that are not identically zero modulo 2.

Remark 3.In order to improve on the quality of the obtained basis, wald¢daise, instead of the LLL
reduction, Schnorr’s reduction algorithm [21] or the rabermmproved algorithm [1]. We will ob-
tain then approximation factors that are slightly sub-eugial , namely 20 (n(loglogn)?/logn) gng
20(nloglogn/logn) ragpectively. Note that an exact solution of the lowest Weigultiple (or even an
approximation to within polynomial factors in the dimensig), can be achieved in exponential running
time. There exists also a heuristic that estimates the kel#agths in a reduced basis output by Algo-
rithm 1 by the product of the square root of the dimensicand then-th root of the lattice determinant,
that is2¢. This gives us multiples of weights with approximation tastpolynomial inn to the actual
minimal weight.

On the practical side, the LLL algorithm, despite its pesstimtheoretical bounds, achieves a basis with
moderately short vectors.

Finally, to relate the quality of the basis and the sparsenéshe resulting polynomials, it is easy
to see that, due to the presence of the vectgrs. ., v,, the vectors in a reduced basis, others than
the vectorsy;’s, will have coefficients in{0, +1}. Thus, a short vector (in the sense of thenorm)
produces a sparse polynomial since the weight of the raguttolynomial is simply the square of the
vector's/y-norm.

3.3 Experiments

To validate our method, we tested it on some known polyna@niading the NTL library [23] developed
by Victor Shoup on £.66-GHz Intel processor witl2 GB of RAM. More precisely, we used for the
lattice basis reduction (step 3 in Algorithm 1) two implertegions of floating LLL (and its variants).
In fact, the (original) LLL algorithm operates on ration@hsorder to compute the Gram-Schmidt or-
thogonalization coefficients. In big dimensions, the siz¢hese latter items increases and makes the
algorithm impractical, thus one is tempted to approximhte mentioned coefficients using a floating
point representation. We basically use the NTL LLL_FP atgar which represents an improvement
of the Schnorr-Euchner version [22] that uses a double giteti In order to improve on the quality
of the reduction, we also make use of a floating point impldaten of the Block Korkin-Zolotarev
basis reduction (in double precision as well), namely th&BRP algorithm. This is slower but yields a
higher-quality basis, i.e., one with shorter vectors. Hibally generalizes the LLL reduction condition
from blocks of size 2 to blocks of larger size. BKZ_FP is anlienpentation of the Schnorr-Euchner al-
gorithm [22]. Finally, it is worth noting that the best fulbroved floating point arithmetic LLL variant is
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due to Nguyen and Stehlé [17]. The so-calledalgorithm which runs in time)(d*n log B(d+log B)),
whered, n and B refer to the lattice dimension, the vector space dimensiahaa upper bound on the
lattice basis vectors’ norm.

We got the following results{ refers to the strict upper bound on the polynomial,andw refer to
the estimated minimal weight and the smallest weight fowsp.r, finally)d/ andt¢ denote the number
of multiples found of degree at most; and the corresponding time (in seconds) resp.):

Experiment. f =1+ 24t Fad b a2 20t g3 g g5 41T

1. The Lattice method using the floating variant of LLL (LLLP}from the NTL library with the
default parameters:

n — 1|17)2020120[21)122/2430|44| 94 |51
we |[1312/11110/9|8|7|6|5| 4
wy (1388|8888 |5|5| 5
M ||1{1|1j1|1(1|1|2}1| 2
t (|0/0|0]0|0{0|0|0|0|0.0440.2

2. The Lattice method using the floating variant of LLL (BKZ2)Hrom the NTL library with300 for
the block size and00 for pruning (in dimensior$13):

N

n — 1||171202020/21)22|2430/44| 94 | 513
wy [[138|8/8|8|8|8(5|5| 4| 4
M ||1j1)1{1|241|1|2j1| 3| 7
t (|0/0/0]0|0|0|0|0|0|3.1216.29

3. The Time-Memory Trade-Off (TMTO) using the C++ standabddry (STL) hash function:

n — 1|17/20{20{20| 21 |22| 24 | 30| 44 | 94 | 513
wy (13818[8| 8|8 8| 5|5 |43
M |1j1j1j1|2 2411|271
t 110]0.30.30.30.420.61.450.020.081.240.03

Remarks. In order to evaluate experimentally the time estimate ofroathod, we utilized the linear
regression tool to express the relationship between treritbgn of the time estimatdi((¢) ) and the
logarithm of the bound on the multipleBi(n)). We got the following graph:

We first notice that for the TMTO method, the coefficient= log,, (t) is not always equal tH21]
as it should be. This is explained by the fact that the timienggé for this method is only the best case
complexity. In fact, the search in a hash table can be peddrin constant time in the best case and
linear time in the worst. It might be wiser then to use a mofieieht hash table than the one provided
by the standard library (STL) of C++. We can also relate thithe unfruitful execution of the algorithm
when the heuristic predicts a weight that does not exist.
Next, we note that the coefficientof LLL_FP and BKZ_FP is constant and abduand?2 respectively.
This explains why the TMTO method looses the lead as sooreaseightw gets greater thad.
We must however note that our lattice-based method, oghpsit the TMTO method, does not always
give the sparsest multiples, especially when the dimerdidime lattice is big (in the experiment above,
we were not able to recover the 3-weight multiple in dimensi®3). In fact, lattice basis reduction
algorithms are known to give only approximations to the &satutions, and the bigger the dimension
of the lattice, the looser the approximation factors get.digeuss in the next section the limitations as
well as the possible extensions of our method.
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4 General Thoughts and Prospectives

4.1 Limitations

The strongest restriction on our algorithm is the lattiamelsion, which corresponds to the bound on
the polynomial multiple’s degree. This is illustrated by texperiment discussed earlier. In fact, we
were not able to find the 3-weight multiple 6fin dimensions13. This “non exactitude” of the solution
becomes more tangible when the dimension of the latticessdectew dozens of hundreds. In fact, when
we run our experiments on the EO polynomial in dimensi8a7, we got only a multiple with weight
41, given that at this dimension, there exists already a maltipth weight31. This is again explained
by the looseness of the solution which grows with the latticeension.

Furthermore, the reduced basislgf contains short vectors or equivalently sparse multiplasdib
not have necessarily nonzero constant term. This is duectéottowing fact: if g is a sparse multiple
with nonzero constant term, then there is no restrictiorherbiasis to contain the multiple$g granted
thatdeg(g) + ¢ < n. This leads to redundancies in the basis. It would then bieat#s if one filters out
extraneous polynomials in order to allow more “interestingltiples to appear in the basis. One way
to achieve this is to compute points in the latticethat are close to the constant polynomial’he cost
of such a technique will be about the same since we will uséatm®usembedding techniquevhich
consists in reducing the: + 1)-dimensional latticeL;, C Z"*! given by the basi&’ = (I},...,1,,),
wherel, = (1;,0),1 < i < n, andl,+1 = (1,0,...,0,1). Experiments carried out improved slightly
the results, for instance, we got a further multiple (witlnizero constant term) with weightat degree
94. The weak impact of this strategy lies in the small CVP-gap, the ratio between the shortest vector
of L!, and its distance to the constant polynomiialln fact, the embedding technique requires a large
gap in order to give accurate results. It would be intergstindig further in this direction, for example
solve directly the CVP instance instead of reducing it to &@3Wtance.

4.2 Possible extensions

An interesting question is to study the special form of théda L,, in order to reduce the cost of the
reduction, or improve on the gotten results. In fact, theesponding matrix in question is sparse, lower
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triangular and has small entries. Hence, one is temptedeta nsore compact representation or at least
a representation that makes easy for the basis reductionitalgs, namely LLL and its variants, the
search for short vectors. We believe if one can “open up” thekdbox reduction algorithms and change
them according to our special instance, one could poss#dletter results.

Besides, with our approach, we managed to relate solvingphereight polynomial multiple prob-
lem to finding the shortest vector problemiin. We can also relate the closest vector problem to our
problem, in fact, a lattice point ih,, close to the constant polynomiaWill lead to a low weight multiple
of nonzero constant term. This suggests to study the hasdrig¢ke shortest/closest vector problems of
this special instance of lattices (lattice of the fofry) in order to better estimate the hardness of the low
weight polynomial multiple problem. We believe the taxonorsparse polynomial multiple problem -
shortest/closest vector problem of lattices with fatm- syndrome decoding, deserves further attention.
In fact, this would provide us either with very efficient tedb solve the problem and hence lead to new
improvements in stream ciphers cryptanalysis and faseffigtd arithmetic, or with confidence on the
hardness of the problem (if we manage to exhibit a reductioam syndrome decoding or SVP/CVP to
it ), since the other two problems are known to be NP-complete

Finally, one is tempted to extend the method into finding logighit multiples of polynomials over
F, , wherep > 2 is a prime number , or even a rirfyy. However, the naive approach would not work
since the correspondence short vector / sparse multiplé Wwold anymore. The natural thing to do in
this case is search for sh@stnorm polynomial multiples. Such a problem arises alreadyryptanaly-
sis, more precisely in Coppersmith’s method for attacki@AFbased cryptosystems. Surprisingly, the
algorithm used to solve this problem is a lattice-basedrtiegcte.

5 Summary

We have proposed a new algorithm to find low weight multiples& given polynomial of degree at
mostn using lattice basis reduction. The method has a theoreiinal estimate o (n®) in case LLL

is the reduction algorithm used, and an experimental onata®(). It takes then the lead as soon as
the expected minimal weight gets bigger tham, provided thatn is small. In fact, the best known
methods, that are the birthday-based ones, have a bestirasestimate abou®(n!(¥=1/21). Such a
situation occurs when the bound on the multiple, which denthe available keystream, is small. We
confirmed our analysis by implementing the method using Ndtr;method is applicable for relatively
high dimensions (up to few hundreds), using the floatingavasi of LLL, and has proved very efficient
in giving approximate solutions to instances that are atétisle for the standard methods.
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