
Finding Low Weight Polynomial Multiples Using Lattices

Laila El Aimani and Joachim von zur Gathen

b-it, Dahlmannstr. 2, Universität Bonn, 53113 Bonn, Germany

Abstract. The low weight polynomial multiple problem arises in the context of stream ciphers cryptanalysis
and of efficient finite field arithmetic, and is believed to be difficult. It can be formulated as follows: given a
polynomialf ∈ F2[X] of degreed, and a boundn, the task is to find a low weight multiple off of degree
at mostn. The best algorithm known so far to solve this problem is based on a time memory trade-off and
runs in timeO(n⌈(w−1)/2⌉) usingO(n⌈(w−1)/4⌉) of memory, wherew is the estimated minimal weight.
In this paper, we propose a new technique to find low weight multiples using lattice basis reduction. Our
algorithm runs in timeO(n6) and usesO(nd) of memory. This improves the space needed and gives a better
theoretical time estimate whenw ≥ 12 . Such a situation is plausible when the boundn, which represents the
available keystream, is small. We run our experiments usingthe NTL library on some known polynomials in
cryptanalysis and we confirm our analysis.
Keywords: stream ciphers analysis, low weight polynomial multiples,lattices, shortest vector.

1 Introduction

Finding a low weight multiple, i.e. a multiple of low Hammingweight, of a polynomial overF2 is
believed to be a difficult problem. In fact, there exists no known polynomial time algorithm to solve it.
Later in this document, we point out a reduction from this problem to the Syndrome Decoding problem
which is known to be NP-complete, however the other direction has not been investigated to the best of
the authors’ knowledge.

The problem can formulated as follows, given a polynomialf over a finite field,F2 for instance, and
a boundn, determine the set:

Mf (n,w) = {g ∈ F2[X] : f |g,deg(g) < n,weight(g) ≤ w0},

wherew0 is the least possible weight:w0 = min{w : Mf (n,w) 6= ∅}. It is often enough to compute
sufficiently many - but not all- elements from this set.
There exists also the other variant which consists of determining the setMf (n,w) for a given weightw
and forn = min{ni : Mf (ni, w) 6= ∅}. In this paper, we concentrate on the first variant.

The low weight polynomial multiple problem originated in cryptography from two distinct areas:
attacks on LFSR-based stream ciphers and efficient finite field arithmetic.

Application to stream ciphers cryptanalysis

Stream ciphers constitute an important class of secret-keyencryption algorithms. In fact, LFSR-based
stream ciphers are widely used in many applications becauseof the advantages they present compared to
other encryption schemes, for instance, block ciphers: they are faster, require less hardware circuitry and
have fewer propagation errors. An example is Bluetooth encryption. Stream ciphers consist of a seed,
corresponding to the shared secret key, and a pseudorandom generator, which consists of constituent LF-
SRs [14] and a nonlinear combination function. The result isa pseudo-random binary sequence, called
the keystream, which is, in the case of a binary additive stream cipher, bitwise added to the plaintext
in order to obtain the ciphertext. Hence, attacks on stream ciphers have as ultimate goal the recovery
of the initializations of the LFSRs.Correlation attacksare considered to be the most important class
of attacks against stream ciphers. There exists also a category of attacks that simply aim at verifying

whether a bitstream is the encryption of some (unknown) message, the so-calleddistinguishing attacks.
Both attacks require finding low weight multiples of a constituent LFSR’s feedback polynomial.

Fast correlation attacks. They were originally introduced by Siegenthaler [24] and later improved by
Meier and Staffelbach [13]. Since then, a series of proposals sprang up, either very general or adapted
to a specific scheme, to name but a few [9, 8, 10, 3, 4]. The principle of this type of attacks is as fol-
lows: we try to reconstruct the initialization of the constituent LFSR, say thei-th one, from the output
keystream by viewing the latter as the transmission of the former one through a noisy channel. In fact,
we assume that the adversary knows both the plaintext and theciphertext (a known plaintext attack). The
errors resulting from this transmission are due to the otherregisters. Lets andsi denote the output of the
keystream generator and thei-th LFSRRi respectively. The more the sequencess andsi, are correlated,
the smaller is the attack’s error probability. More precisely, let si = (si

0, . . . , s
i
N−1) be the initialN -bit

sequence generated by the constituent LFSRRi whose connection polynomial isf with linear complex-
ity L, ands = (s0, . . . , sN−1) be the initialN -bit keystream. Let furtherp = Prob(si

k = sk) be the
correlation probability betweens andsi, where the probability is taken over the possible initializations
of the constituent LFSRs. Thens can be viewed as the result of the transmission ofsi through a binary
symmetric channel with error probability1−p. Moreover, the sequencesi satisfies the linear recurrence
defined by the polynomialf . Thus the wordsi = (si

0, . . . , s
i
N−1) belongs to the linear error correcting

code of lengthN and of dimensionL defined byf . We can then recover it using the iterative decoding
process due to Gallager [7] which exploits the existence of parity check equations.
Fast correlation attacks can then be mounted into two phases: the first one determines low weight parity
check equations or equivalently low weight multiples of an LFSR’s connection polynomial, whereas the
second phase decodes the sequences to recoversi. Ri could then be recovered as soon asN ≥ L.

Distinguishing attacks. A distinguishing attack as previously stated can be used to verify or falsify
whether a bitstream is the encryption of some message. This is of significant importance if the set of
possible messages or possible keys is small. In fact, a smallmessage set gives few possibilities for the
keystream, this could be obtained by bitwise adding the given ciphertext to the possible messages. Then,
one can simply check the correct keystream by encrypting some known bitstreams using the possible
keystreams and feeding the resulting ciphertexts to the distinguisher, the correct keystream is the one
providing a ciphertext that is identified by the distinguisher as yes instance. In case the key size is small
such that an exhaustive search is plausible, distinguishing attacks are then equivalent to key-recovery
attacks and thus could be employed to decrypt the ciphertexts.
Low weight multiple polynomials are also required for such attacks. In fact, following the framework
described in the above paragraph, namely, an LFSR-based stream cipher given by constituent LFSRs
and a pseudo-random generator. We assume that the output keystreams is written as the sum of a binary
biased sequenceb, i.e., a sequence such thatProb(bi = 0) = 1/2 + γ, γ > 01, and an LFSR’s outputl
(could be the equivalent LFSR of a subset of the constituent LFSRs combined via a nonlinear function).
Let M =

∑w
i=1 Xqi be a multiple of the LFSR’s connection polynomial of degreen and weightw,

where0 = q1 < q2 < . . . < qw = n. Then, by standard cryptanalytic techniques, the output keystream
is biased with bias12γw, since⊕w

i=1lt+qi = 0 holds for allt and⊕w
i=1st+qi = ⊕w

i=1(lt+qi + bt+qi) =
⊕w

i=1bt+qi . It follows that one needsγ−2·w samples to distinguish the output keystream from a truly
random sequence. Notice, that the smallerw, the higher the bias will be and thus the fewer samples are
needed to build the distinguisher. For examples of such attacks, see [12] on E0, and [6] on SOBER-t16
and SOBER-t32.

1 The probability is again taken over the possible initializations of the constituent LFSRs.

2

Application to efficient finite field arithmetic

It is often attractive to use finite fieldsF2n in cryptography, in particular for hardware applications.There
are several ways of representing small fields. One representation is by a sparse irreducible polynomial
g ∈ F2[X] of degreen, asF2n = F2[X]/(g). In [25], this was found to be the most efficient represen-
tation if exponentiation is a core operation. Ideally, one would like to use the minimal possible weight,
that is, trinomials of weight3. However, these do not always exist. Brent and Zimmermann [2] proposed
an interesting solution: take an irreducible polynomialf ∈ F2[X] of degreen, but possibly large weight,
a multipleg of f with small weight, sayg a trinomial, and work in the ringR = F2[X]/(g) most of the
time, going back to the field viaR → F2n only when necessary. They actually describe efficient algo-
rithms for finding trinomials with large irreducible (and possibly primitive) factors and give examples of
such trinomials.

Previous work

Most strategies used so far to solve this problem consist in first estimating the minimal weightw of mul-
tiples of the given polynomialf with degree at mostn− 1, then finding multiples of weight at mostw.
To estimate the minimal weight, one solves forwd the following inequality;w is the smallest solution:

2−d

(

n− 1
wd

)

≥ 1. In fact, if multiples were random then one expects that the above inequality holds. It

is worth mentioning that the number of such multiples could be approximated byNM = 2−d

(

n− 1
w − 1

)

.

The techniques used to find sparse multiples of weight at mostw are:

– Exhaustive search.When the boundn is just aboved, an exhaustive search turns out to be faster.
The cost of such an attack isO(Poly(d) · 2n−d−1).

– Finding Minimum Weight Words in a Linear Code. The low weight polynomial multiple prob-
lem can be also solved by techniques that find a minimum weightword in a linear code. In fact,
polynomial multiples form a linear code of lengthn, wheren is the bound on the multiple’s degree,
and a low weight multiple corresponds to a minimum weight word in this code. There are known
algorithms for performing this task, we note as a reference the algorithm by Canteaut and Chabaud
[?], which runs empirically in2ncH2(1+R0)+d, wherec = 0.12, d = 10, R0 = 3.125 10−2 andH2

corresponds to the entropy function. Besides, the algorithm uses approximatelyn2 of memory. Note
that this method, as the exhaustive search, does not estimate the minimal weight of the multiples.

– Syndrome decoding.We compute the matrixH whose columns are defined byHi = Xi mod f ,
1 ≤ i ≤ n − 1, then find a low weight word in the preimages of1 of this matrix. The cost of this
method isO(Poly(n − 1)(n−1

d)w−1)NM , wherePoly is a polynomial of degree2 or 3.
– The birthday Paradox [13]. Setw = q1 + q2 + 1, q1 ≤ q2, and build two lists; the first one

contains all possible linear combinations ofXi mod f , 0 < i < n of weightq1 whereas the second
list contains all possible linear combinations ofXi mod f , 0 < i < n of weight q2. Then look
for pairs that sum to1. Clearly, this method runs inO(nq2) (if we implement the first list by an
efficient hash-table), and usesO(nq1) of memory. The usual time-memory trade-off is to useq1 =
⌊w−1

2 ⌋ andq2 = ⌈w−1
2 ⌉ in order to balance the cost of the two phases. Note that the running time

depends on the parity ofw since we do not have to compute anything ifq1 = q2. There exist
many improvements of this method, for example Chose et al. [4] use thematch-and-sortalternative
that consists of splitting the huge task of finding collisions amongnw combinations into smaller
tasks: finding less restrictive collisions on smaller subsets, sort the results and then aggregate these
intermediate results to solve the complete task. This leadsto a considerable improvement of the
space complexity, namelyO(n⌈w−1/4⌉). Didier and Laigle-Chapuy [5] consider a new approach
that uses discrete logarithms instead of the direct representation of the involved polynomials. They

3

achieve a time/space complexity ofO(nL⌊(w−1)/2⌋), whereL is the cost of computing a discrete
logarithm inF2d , andO(n⌊(w−2)/2⌋) respectively.

– Wagner’s generalized birthday paradox. When the boundn on the multiples’ degree increases,
then Wagner’s generalized birthday paradox [26] becomes more efficient. In fact, if there exists

a ≥ 2 such that

(

n− 1

(w − 1)/2a

)

≥ 2d/(a+1), then one can find a solution inO(2a2d/(a+1)). For

instance, ifn ≥ 2d/(1+log2(w−1)), using this method, one can find a multiple within almost linear
time inn, namely,O((w − 1)n).

We summarize the costs (time and space) of the different methods in the following table:

Method Exhaustive Search Syndrome Decoding Min Weight Words Birthday Paradox Generalized BP

Time cost O(Poly(d) · 2n−d−1) O(Poly(n − 1)(n−1
d

)w−1)NM O(2ncH2(1+R0)+d) O(n⌈w−1

2
⌉) O((w − 1)2d/(1+log2(w−1)))

Space cost O(n) O(Poly(n − 1)(n−1
d

)w−1) O(n2) O(n⌈w−1/4⌉) O(2d/(1+log2(w−1)))

Our contributions

The main result of the present paper dwells in a new algorithmto compute sparse multiples, with degrees
at most a certainn, for a given polynomialf , over F2, of degreed < n. Our algorithm is a lattice-
based solution, i.e., consists of the basis reduction of a full dimensional lattice inZn. Hence, it runs
theoretically inO(n6) (the entries of the matrix representing the lattice are in in{0,±1, 2}) in case
the LLL reduction is applied. This constitutes the first polynomial time algorithm for approximatively
solving this problem. In fact, although the lattice basis reduction algorithms give only an approximation
to the solution which is exponential in the lattice dimension, they are empirically known to perform better
and lead to almost exact solutions when this dimension is sufficiently small. Therefore, our algorithm
only supplements the known methods in specific ranges. For instance, it gives a better time estimate
compared to the Time Memory Trade-Off (birthday technique)which runs inO(n⌈(w−1)/2⌉) in casew
is big, say bigger than12.

The rest of the paper is organized as follows; first, we give some preliminaries about lattices. Second,
we present our solution to find sparse multiples for a given polynomial; after giving the approach, we
provide experiments as well as comparisons with the TMTO (Time Memory Trade-Off) technique in
order to confirm our analysis. Finally, we conclude with general thoughts and prospectives.

2 Preliminaries

In this section we give some preliminaries about lattices and their algorithmic problems. The book [15]
constitutes a good introduction to this topic.

Let R
n be then-dimensional Euclidean space. A latticeL is the set

L(b1, . . . , bd) = {
d

∑

i=1

xibi : xi ∈ Z},

of all integral combinations ofd linearly independent vectors (overR
n) b1, . . . , bd. Then,d andB =

(b1, . . . , bd) are called therank andbasisof L, respectively.
A lattice L can be generated by more than one basis. These bases, referred to asequivalent basesshare
the same number of elements, calledrank or dimension of the lattice, as well as the sameGram
determinant ∆(L) = ∆(b1, . . . , bd) = det(G), whereG is the Gram matrix:G = (< bi, bj >)1≤i,j≤d

and< ·, · > denotes the usual inner product. Thedeterminant or volume of the lattice, denoted as
det(L), is by definition

√

∆(L).

4

Remark 1.In the rest of the document, ifM is a matrix with rowsb1, . . . , bd, then we denote byL(M),
the lattice generated by the vectorsbi’s, 1 ≤ i ≤ d. Similarly, if L is a lattice given by a generating
family (b1, . . . , bd), then the matrix having for rows the vectorsbi’s, 1 ≤ i ≤ d, is denotedB(L).

Definition 1. (Successive Minima) Let L be ad-dimensional lattice and letBd(0, r) = {x ∈ R
d :

‖x‖ < r} be thed-dimensional open ball of radiusr centered in0. The successive minima ofL, are
constantsλ1(L), . . . , λd(L) verifying the following:λi = inf{r : dim(span(L ∩ Bd(0, r))) ≥ i}. We
clearly haveλ1 ≤ λ2 ≤ . . . ≤ λd. We call gap of the lattice the ratio between the first and second
minima. Finally, the first minimumλ1 is called also norm of the lattice and corresponds to the normof
the shortest vector in the lattice.

We get now to theorthogonal lattice, a notion which was first introduced in a cryptanalytic context
by Nguyen and Stern in 1997 [18]. It has proved very importantand was used to attack many public key
cryptosystems [18–20].

Definition 2. (Orthogonal Lattice) LetL be a lattice inZ
n, and letspan(L) be the vector space (over

R) generated byL. The orthogonal lattice is defined as follows:

L⊥ = span(L)⊥ ∩ Z
n = {x ∈ Z

n : ∀y ∈ L,< x, y >= 0}.

The biorthogonal(L⊥)⊥ containsL but generally it is not equal to it. We define thecompleted lattice
L̄ as being(L⊥)⊥. It can be viewed as the intersection ofZ

n andspan(L).
Moreover, we have the following result [16, Chapter 2/Lemma2.7]

Theorem 1. If L is a lattice inZ
n, thendim(L) + dim(L⊥) = n.

⊓⊔
Finally, computing the orthogonal lattice amounts to determining the kernel of a matrix (as aZ-module).

Theorem 2. Given a basis of ad-dimensional latticeL in Z
n, one can compute a basis of the orthogonal

lattice L⊥ in O((n− d)2d3|A|2), whereA is a bound on the bit size of the lattice basis entries.
⊓⊔

3 Finding Low Weight Polynomial Multiples Using Lattices

Let f be a polynomial of degreed over Z2 and letn > d be a given bound. The task is to find a low
weight multiple off overZ2 with degree strictly less thann.

The idea underlying our approach is simple and based on the remark that such a polynomial multiple
is a low weight linear combination with coefficients in{0, 1} of the monomialsxi, 0 ≤ i < n, that
evaluates to zero modulof . Moreover, the polynomial multiples overZ2, with degrees at mostn − 1,
form a latticeLn in Z

n. In fact, they are (a polynomial is given by its coefficients vector) inZ
n, and the

subtraction (or addition) of two multiples overZ2 is again a multiple overZ2. Therefore, searching a
low weight polynomial multiple off corresponds to searching a short vector in the latticeLn. A high
level description of the algorithm is depicted below.

Input : a polynomialf of degreed, and a boundn > d.
Output : multiples off of degree less thann which are hopefully sparse.

1. Compute a basis of the latticeLn ;
2. Reduce it using an appropriate lattice basis reduction algorithm ;
3. The resulting basis vectors constitute the desired polynomial multiples. For instance, if

v = (v0, . . . , vn−1) is a short basis vector, thenm =
∑

1≤i<n

(vi mod 2)xi is a sparse multiple off ;

Algorithmus 1 : Computing low weight multiples of a given polynomial
In the sequel, we analyze the details of the above algorithm.

5

3.1 The latticeLn

We define the setLn of multiples off overZ2 as follows:

Ln = {g ∈ Z2[x] : g = 0 mod f,deg(g) < n}

Lemma 1. Ln is a full-dimensional lattice inZn.

Proof. Ln is clearly a lattice since it is a subgroup ofZ
n.

Moreover, every polynomial, of degree at mostn− 1, with even coefficients is a multiple off overZ2.
ThereforeLn contains a family ofn linearly independent vectorsvi, 1 ≤ i ≤ n:

vi(j) =

{

2 if j = i,
0 otherwise.

wherevi(j) denotes thej-th entry of then-length vectorvi. It is easy to see that the vectorsvi,
1 ≤ i ≤ n, correspond to the polynomials2, 2x,...,2xn−1. We conclude thatLn has dimensionn.

⊓⊔
Clearly the family of the above vectorsvi is not a basis of the latticeLn since it does not span it. In fact,
a multiple off over Z2 is the addition of a multiple off over Z and a polynomial of degree at most
n − 1 with even coefficients, i.e., a linear combination of the vectorsvi. Hence, the vectorsvi together
with a basis of the multiples off overZ constitute a generating family of the latticeLn.

Computing a basis of the multiples off over Z. Let Kn be the set of multiple off , overZ with
degree at mostn− 1:

Kn = {g ∈ Z[x] : g = 0 mod f,deg(g) ≤ n− 1}

Kn is clearly a subgroup and therefore a lattice inZ
n. We can actually view it as the orthogonal lattice

of ad-dimensional lattice inZn.
Let Mn be thed×n matrix whose columns are the coefficients ofhi = xi mod f for all 0 ≤ i < n.

Let furtherL(Mn) denote the lattice, inZn, generated by the rows of the matrixMn. This lattice has
dimensiond since the firstd components of its generators form a unit matrix, and thus thegenerators
are linearly independent.

One can easily see that the orthogonal latticeL(Mn)⊥ is nothing but the latticeKn. Hence, accord-
ing to Theorem 1,Kn has dimensionn− d. Hence and according to Theorem 2, one can construct it in
timeO((n − d)2d3). However, we will show how to make use of the special form ofKn to construct it
in timeO(d(n − d)).

In fact, we can construct this orthogonal lattice incrementally, i.e., fromKn, we will easily derive
Kn+1. Indeed, letK = (k1, . . . , kn−d) be a basis ofKn. It is clear that(ki, 0) ∈ Kn+1. Let nowmi,j,
where0 ≤ i ≤ d − 1 and0 ≤ j ≤ n, be the entries of the matrixMn+1. The firstd columns of
Mn+1 correspond to the columns of the identity matrixId ∈ R

d×d. By definition, the other columns
xj mod f , d ≤ j ≤ n, of Mn+1 are linear combinations of the firstd columns with coefficientsmi,j,

for instance:xn ≡
∑

0≤i≤d−1

mi,nxi mod f. It follows that
∑

0≤i≤d−1

−mi,nxi +
∑

d≤i≤n−1

0 · xi + xn ≡

0 mod f , or
∑

0≤i≤d−1

−mi,nhi +
∑

d≤i≤n−1

0 · hi + hn = 0, wherehi = xi mod f . Hence, the vector

u = (−m0,n, . . . ,−md−1,n, 0, . . . , 0, 1) is also inKn+1 and linearly independent of the vectors(ki, 0).
Sincedim(Kn+1) = dim(Kn) + 1, we suggest the following: ifKn = (k1, . . . , kn−d) is a basis of
Kn thenKn+1 = (k′

1, . . . , k
′
n+1−d) is a basis ofKn+1 wherek′

i = (ki, 0) for 1 ≤ i ≤ n − d and
k′

n+1−d = u. We derive then the following algorithm to computeKn:

6

Input : The latticeL(Mn) given by the matrixMn = (mi,j), where0 ≤ i < d and0 ≤ j < n.
Output : The orthogonal latticekn = M⊥

n .
Create the matrixB(Kn) = (ki,j), 0 ≤ i < n− d and0 ≤ j < n, where the entrieski,j are
initially set to0 ;
for i from0 to n− d− 1 do

for j from0 to d− 1 do
ki,j ← −mj,i+d ;
j ← j + 1 ;

end
ki,i+d ← 1 ;
i← i + 1 ;

end
The rows of the matrixB(Kn) form a basis of the orthogonal latticeKn;

Algorithmus 2 : Computing the orthogonal latticeKn

The output matrix representing the orthogonal latticeKn will have the following shape:

B(Kn) =











−m0,d . . . −md−1,d 1 0 0 . . . 0
−m0,d+1 . . . −md−1,d+1 0 1 0 . . . 0

...
...

...
...

. . .
−m0,n−1 . . . −md−1,n−1 0 0 . . . 0 1











Lemma 2. Algorithm 2 computes a basis of the orthogonal latticeKn with running timeO(d(n− d)) .

Proof. It is clear that Algorithm 2 runs in timeO(d(n−d)). It remains to prove that it actually computes
a basis of the orthogonal latticeKn.

Since the latticeKn has dimensionn− d according to Theorem 1 and the output matrix has (n− d)
rows, it suffices to prove that these rows form a generating family of Kn. Let v = (v0, . . . , vn−1) ∈
Kn. Then by definition of the orthogonal lattice,< b, u >= 0 for all vectorsu in the latticeL(Mn),
for instance< b, ui >= 0 for all the lattice basis vectorsui, rows of the matrixMn. It follows that

∑

0≤j≤n−1

mi,jbj = 0 and thusbi = −
∑

d≤j≤n−1

mi,jbj for 0 ≤ i ≤ d− 1. Consequently,

b = (b0, . . . , bn)

= (−
∑

d≤j≤n−1

m0,jbj , . . . ,−
∑

d≤j≤n−1

md−1,jbj, bd, . . . , bn−1)

=
∑

d≤j≤n−1

bj(−m0,j , . . . ,−md−1,j , 0, . . . , 1, 0, . . . , 0).

b can then be written as a linear combination of the rows of the resulting matrixB(Kn) with coeffi-
cientsbj, d ≤ j ≤ n− 1, which concludes the proof.

⊓⊔

Piecing all together. We are interested in the latticeLn, set of all multiples overZ2, of the polynomial
f , that have degree at mostn− 1. As mentioned earlier, a generating family of this lattice is given by a
basis of the latticeKn and the already mentioned vectorsvi, 1 ≤ i ≤ n:

vi(j) =

{

2 if j = i,
0 otherwise.

7

wherevi(j) denotes thej-th entry of then-length vectorvi. Let k1, . . . , kn−d be the rows of the matrix
B(Kn) computed by Algorithm 2. The vectorsvi, d + 1 ≤ i ≤ n can be generated by the vectorsvi,
1 ≤ i ≤ d and the vectorsk1, . . . , kn−d. In fact, for alld + 1 ≤ i ≤ n:

vi = 2 · ki −
∑

1≤j≤d

ki(j)vj .

Therefore, a generating family ofLn consists simply of the vectorsv1, . . . , vd, k1, . . . , kn−d. The algo-
rithm to compute a basis forLn follows in a straightforward way:

Input : The polynomialf , overZ2, of degreed, and a boundn > d
Output : A basis for the latticeLn.
Build the matrixMn whose columns are thehi = xi mod f for 0 ≤ i < n ;
Call the algorithm 2 on the inputMn to compute a basis for the orthogonal latticeKn ;
Kn basis vectors together with the vectorsv1 . . . vd form a basis forLn;

Algorithmus 3 : Computing the lattice Ln

The matrix representing the latticeLn, given thatMn = (mi,j), 0 ≤ i < d, 0 ≤ j < n, is:

B(Ln) =































2 0 0 0 0 0 . . . 0
0 2 0 0 0 0 . . . 0
...

...
...

...
. . .

0 . . . 2 0
. . .

−m0,d . . . −md−1,d 1 0 0 . . . 0
−m0,d+1 . . . −md−1,d+1 0 1 0 . . . 0

...
...

...
...

. . .
−m0,n−1 . . . −md−1,n−1 0 0 . . . 0 1































Lemma 3. Algorithm 3 computes a basis of the latticeLn with running timeO(d(n − d)) .

Proof. The latticeLn has dimensionn. From the discussion above, Algorithm 3 outputs a generating
family for Ln whose number of elements is exactlyn. Therefore, the algorithm computes a basis forLn.

Concerning, the running time, the computation ofKn is done withinO(d(n − d)). It remains to
figure out the cost of calculating the matrixMn.

To computehi = xi mod f , 0 ≤ i < n, we proceed as follows. First, we remark that for0 ≤ i < d,
we havehi = xi mod f = xi. Next and for the remaining indices, we use the fact thatxi = xhi−1 is
eitherxhi−1 (if deg(hi−1) < d− 1) or xhi−1 − LC(hi)f if (deg(hi−1) = d− 1), whereLC(p) refers
to the leading coefficient of the polynomialp. Note that, thanks to the presence of the vectorsv1, . . . , vd,
we can perform these computations overZ2 instead ofZ. This leads to an overall cost ofO(d(n − d)),
which concludes the proof.

⊓⊔

3.2 Finding the low weight polynomial multiples.

This is the most expensive part of Algorithm 1 since it corresponds to the basis reduction of the lattice
Ln. The LLL reduction can be performed inO(n6). In fact, LLL runs inO(d5n)B3, whered andn
represent the lattice and vector space dimensions resp. andB is an upper bound on the coefficients’size
of the input basis vectors. In our case these have values in{0,±1, 2}, thusB = 1. We conclude that the
highern, the more infeasible the attack gets.

Theorem 3. Algorithm 1, in case the reduction applied is LLL, runs inO(n6) arithmetic operations,
and computesn multiples of the polynomialf of weightwi: wi ≤ 2n−1λi(Ln)2, 1 ≤ i ≤ n, where
λi(Ln) denote the successive minima of the latticeLn.

8

Proof. We first show that Algorithm 1 computes multiples off overZ2. Let v = (v0, . . . , vn−1) ∈ Ln.
Then

∑n
j=0 vjmi,j = 0 mod 2, 0 ≤ i ≤ d − 1. Thus,

∑n
j=0 vj(x

j mod f) ≡ 0 mod 2 or equivalently
f |

∑n
j=0(vj mod 2)xj . To prove the running time as well as the bound on the weights of the resulting

multiples, we just refer to the famous LLL paper [11] where the the authors prove the approximation
factors of the reduced basis vectors with regard to the successive minima when the LLL reduction is
applied.

⊓⊔

Remark 2.In case the minimal weightw = min{wi : Mf (n,wi) 6= ∅} is greater than4, then the
successive minima of the lattice are simply the vectorsv1, . . . , vn. Therefore, Algorithm 1 computes
multiples with weightswi ≤ 2n+1. Note, that a reduced basis will always consist of at mostd vectors
whose corresponding polynomial is identically zero modulo2 (the vectorsvi, 1 ≤ i ≤ d) since otherwise
it won’t possible to generate the basis vectors of the orthogonal latticeKn (the vectorski, 1 ≤ i ≤ n−d).
For instance a basis output by Algorithm 1 will never consistonly of the vectorsv1, . . . , vn since they
don’t span the latticeLn. Therefore, Algorithm 1 will output at leastn − d “interesting” multiples, i.e.,
multiples that are not identically zero modulo 2.

Remark 3.In order to improve on the quality of the obtained basis, we could use, instead of the LLL
reduction, Schnorr’s reduction algorithm [21] or the recently improved algorithm [1]. We will ob-
tain then approximation factors that are slightly sub-exponential , namely 2O(n(log log n)2/ log n) and
2O(n log log n/ log n) respectively. Note that an exact solution of the lowest weight multiple (or even an
approximation to within polynomial factors in the dimension n), can be achieved in exponential running
time. There exists also a heuristic that estimates the vectors lengths in a reduced basis output by Algo-
rithm 1 by the product of the square root of the dimensionn and then-th root of the lattice determinant,
that is2d. This gives us multiples of weights with approximation factors polynomial inn to the actual
minimal weight.
On the practical side, the LLL algorithm, despite its pessimistic theoretical bounds, achieves a basis with
moderately short vectors.

Finally, to relate the quality of the basis and the sparseness of the resulting polynomials, it is easy
to see that, due to the presence of the vectorsv1, . . . , vn, the vectors in a reduced basis, others than
the vectorsvi’s, will have coefficients in{0,±1}. Thus, a short vector (in the sense of theℓ2-norm)
produces a sparse polynomial since the weight of the resulting polynomial is simply the square of the
vector’sℓ2-norm.

3.3 Experiments

To validate our method, we tested it on some known polynomials, using the NTL library [23] developed
by Victor Shoup on a2.66-GHz Intel processor with2 GB of RAM. More precisely, we used for the
lattice basis reduction (step 3 in Algorithm 1) two implementations of floating LLL (and its variants).
In fact, the (original) LLL algorithm operates on rationalsin order to compute the Gram-Schmidt or-
thogonalization coefficients. In big dimensions, the size of these latter items increases and makes the
algorithm impractical, thus one is tempted to approximate the mentioned coefficients using a floating
point representation. We basically use the NTL LLL_FP algorithm which represents an improvement
of the Schnorr-Euchner version [22] that uses a double precision. In order to improve on the quality
of the reduction, we also make use of a floating point implementation of the Block Korkin-Zolotarev
basis reduction (in double precision as well), namely the BKZ_FP algorithm. This is slower but yields a
higher-quality basis, i.e., one with shorter vectors. It basically generalizes the LLL reduction condition
from blocks of size 2 to blocks of larger size. BKZ_FP is an implementation of the Schnorr-Euchner al-
gorithm [22]. Finally, it is worth noting that the best fullyproved floating point arithmetic LLL variant is

9

due to Nguyen and Stehlé [17]. The so-calledL2 algorithm which runs in timeO(d4n log B(d+log B)),
whered, n andB refer to the lattice dimension, the vector space dimension and an upper bound on the
lattice basis vectors’ norm.
We got the following results (n refers to the strict upper bound on the polynomial,we andwf refer to
the estimated minimal weight and the smallest weight found resp. , finallyM andt denote the number
of multiples found of degree at mostwf and the corresponding time (in seconds) resp.):

Experiment. f = 1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x14 + x15 + x17.

1. The Lattice method using the floating variant of LLL (LLL_FP) from the NTL library with the
default parameters:

n− 1 17 20 20 20 21 22 24 30 44 94 513
we 13 12 11 10 9 8 7 6 5 4 3
wf 13 8 8 8 8 8 8 5 5 5 4
M 1 1 1 1 1 1 1 1 1 2 1
t 0 0 0 0 0 0 0 0 0 0.0440.2

2. The Lattice method using the floating variant of LLL (BKZ_FP) from the NTL library with300 for
the block size and100 for pruning (in dimension513):

n− 1 17 20 20 20 21 22 24 30 44 94 513
wf 13 8 8 8 8 8 8 5 5 4 4
M 1 1 1 1 1 1 1 1 1 3 7
t 0 0 0 0 0 0 0 0 0 3.1216.29

3. The Time-Memory Trade-Off (TMTO) using the C++ standard library (STL) hash function:

n− 1 17 20 20 20 21 22 24 30 44 94 513
wf 13 8 8 8 8 8 8 5 5 4 3
M 1 1 1 1 2 2 4 1 1 27 1
t 0 0.30.30.30.420.61.450.020.081.240.03

Remarks. In order to evaluate experimentally the time estimate of ourmethod, we utilized the linear
regression tool to express the relationship between the logarithm of the time estimate (ln(t)) and the
logarithm of the bound on the multiples (ln(n)). We got the following graph:

We first notice that for the TMTO method, the coefficientα = logn(t) is not always equal to⌈w−1
2 ⌉

as it should be. This is explained by the fact that the time estimate for this method is only the best case
complexity. In fact, the search in a hash table can be performed in constant time in the best case and
linear time in the worst. It might be wiser then to use a more efficient hash table than the one provided
by the standard library (STL) of C++. We can also relate this to the unfruitful execution of the algorithm
when the heuristic predicts a weight that does not exist.
Next, we note that the coefficientα of LLL_FP and BKZ_FP is constant and about1 and2 respectively.
This explains why the TMTO method looses the lead as soon as the weightw gets greater than8.
We must however note that our lattice-based method, oppositely to the TMTO method, does not always
give the sparsest multiples, especially when the dimensionof the lattice is big (in the experiment above,
we were not able to recover the 3-weight multiple in dimension 513). In fact, lattice basis reduction
algorithms are known to give only approximations to the exact solutions, and the bigger the dimension
of the lattice, the looser the approximation factors get. Wediscuss in the next section the limitations as
well as the possible extensions of our method.

10

2.5

500

0.5

2.0

1.5

1.0

0.0

400300200100

LLL

BKZ

TMTO

Fig. 1. Polynomialf

4 General Thoughts and Prospectives

4.1 Limitations

The strongest restriction on our algorithm is the lattice dimension, which corresponds to the bound on
the polynomial multiple’s degree. This is illustrated by the experiment discussed earlier. In fact, we
were not able to find the 3-weight multiple off , in dimension513. This “non exactitude” of the solution
becomes more tangible when the dimension of the lattice exceeds few dozens of hundreds. In fact, when
we run our experiments on the E0 polynomial in dimension2387, we got only a multiple with weight
41, given that at this dimension, there exists already a multiple with weight31. This is again explained
by the looseness of the solution which grows with the latticedimension.

Furthermore, the reduced basis ofLn contains short vectors or equivalently sparse multiples that do
not have necessarily nonzero constant term. This is due to the following fact: if g is a sparse multiple
with nonzero constant term, then there is no restriction on the basis to contain the multiplesxig granted
thatdeg(g) + i < n. This leads to redundancies in the basis. It would then be desirable if one filters out
extraneous polynomials in order to allow more “interesting” multiples to appear in the basis. One way
to achieve this is to compute points in the latticeLn that are close to the constant polynomial1. The cost
of such a technique will be about the same since we will use thefamousembedding technique, which
consists in reducing the(n + 1)-dimensional latticeL′

n ⊆ Z
n+1 given by the basisK′ = (l′1, . . . , l

′
n+1),

wherel′i = (li, 0), 1 ≤ i ≤ n, andln+1 = (1, 0, . . . , 0, 1). Experiments carried out improved slightly
the results, for instance, we got a further multiple (with non zero constant term) with weight4 at degree
94. The weak impact of this strategy lies in the small CVP-gap, i.e., the ratio between the shortest vector
of L′

n and its distance to the constant polynomial1 . In fact, the embedding technique requires a large
gap in order to give accurate results. It would be interesting to dig further in this direction, for example
solve directly the CVP instance instead of reducing it to a SVP instance.

4.2 Possible extensions

An interesting question is to study the special form of the lattice Ln in order to reduce the cost of the
reduction, or improve on the gotten results. In fact, the corresponding matrix in question is sparse, lower

11

triangular and has small entries. Hence, one is tempted to use a more compact representation or at least
a representation that makes easy for the basis reduction algorithms, namely LLL and its variants, the
search for short vectors. We believe if one can “open up” the black box reduction algorithms and change
them according to our special instance, one could possibly get better results.

Besides, with our approach, we managed to relate solving thelow weight polynomial multiple prob-
lem to finding the shortest vector problem inLn. We can also relate the closest vector problem to our
problem, in fact, a lattice point inLn close to the constant polynomial1 will lead to a low weight multiple
of nonzero constant term. This suggests to study the hardness of the shortest/closest vector problems of
this special instance of lattices (lattice of the formLn) in order to better estimate the hardness of the low
weight polynomial multiple problem. We believe the taxonomy: sparse polynomial multiple problem -
shortest/closest vector problem of lattices with formLn - syndrome decoding, deserves further attention.
In fact, this would provide us either with very efficient tools to solve the problem and hence lead to new
improvements in stream ciphers cryptanalysis and fast finite field arithmetic, or with confidence on the
hardness of the problem (if we manage to exhibit a reduction from syndrome decoding or SVP/CVP to
it), since the other two problems are known to be NP-complete.

Finally, one is tempted to extend the method into finding low weight multiples of polynomials over
Fp , wherep > 2 is a prime number , or even a ringZN . However, the naive approach would not work
since the correspondence short vector / sparse multiple won’t hold anymore. The natural thing to do in
this case is search for shortl2-norm polynomial multiples. Such a problem arises already in cryptanaly-
sis, more precisely in Coppersmith’s method for attacking RSA-based cryptosystems. Surprisingly, the
algorithm used to solve this problem is a lattice-based technique.

5 Summary

We have proposed a new algorithm to find low weight multiples for a given polynomial of degree at
mostn using lattice basis reduction. The method has a theoreticaltime estimate ofO(n6) in case LLL
is the reduction algorithm used, and an experimental one about O(n). It takes then the lead as soon as
the expected minimal weightw gets bigger than8, provided thatn is small. In fact, the best known
methods, that are the birthday-based ones, have a best-casetime estimate aboutO(n⌈(w−1)/2⌉). Such a
situation occurs when the bound on the multiple, which denotes the available keystream, is small. We
confirmed our analysis by implementing the method using NTL;our method is applicable for relatively
high dimensions (up to few hundreds), using the floating variants of LLL, and has proved very efficient
in giving approximate solutions to instances that are intractable for the standard methods.

12

References

1. R. Ajtai, M. Kumar and D. Sivakumar,A sieve algorithm for the shortest lattice vector problem, 33rd ACM Symp. on
Theory of Computing, 2001, pp. 601–610.

2. S. Brent and P. Zimmermann,Algorithms for finding almost irreducible and almost primitive trinomials, Lectures in
Honour of the Sixtieth Birthday of Hugh Cowie Williams (2003).

3. A. Canteaut and M. Trabbia,Improved Fast Correlation Attacks Using Parity-Check Equations of Weight 4 and 5, Ad-
vances in Cryptology - EUROCRYPT2000 (B. Preneel, ed.), LNCS, vol. 1807, Springer, 2000, pp.573,588.

4. A. Chose, P. Joux and M. Mitton,Fast correlation attacks: an algorithmic point of view, Advances in Cryptology -
EUROCRYPT2002 (L. R. Knudsen, ed.), LNCS, vol. 2332, Springer, 2002, pp. 209,221.

5. J. Didier and Y. Laigle-Chapuy,Finding low-weight polynomial multiples using discrete logarithm, IEEE INTERNA-
TIONAL SYMPOSIUM ON INFORMATION THEORY ISIT’07 (Nice,France), June 2007, p. to appear.

6. P. Ekdahl and T Johansson,Distinguishing Attacks on SOBER-t16 and t32, Advances in Cryptology - FSE 2002 (Joan
Daemen and Vincent Rijmen, eds.), LNCS, vol. 2365, Springer, 2002, pp. 210,224.

7. R.G. Gallager,Low-density parity-check codes., IRE Trans. Inform. TheoryIT-8 (1962), 21–28.
8. T. Johansson and F. Jönsson,Fast correlation attacks based on turbo code techniques codes, Advances in Cryptology -

CRYPTO1999 (M. J. Wiener, ed.), LNCS, vol. 1666, Springer, 1999, pp. 181,197.
9. , Improved fast correlation attack on stream ciphers via convolutional codes, Advances in Cryptology - EURO-

CRYPT 1999 (J. Stern, ed.), LNCS, vol. 1592, Springer, 1999, pp. 347,362.
10. , Fast correlation attacks through reconstruction of linearpolynomials, Advances in Cryptology - CRYPTO 2000

(M. Bellare, ed.), LNCS, vol. 1880, Springer, 2000, pp. 300,315.
11. H. Lenstra, A. Lenstra and L. Lovasz,Factoring polynomials with rational coefficients, Math. ann261 (1982), no. 4,

515–534.
12. Y. Lu and S. Vaudenay,Faster correlation attack on Bluetooth keystream generator E0, Advances in Cryptology - CRYPTO

2004 (M. K. Franklin, ed.), LNCS, vol. 3152, Springer, 2004,pp. 407,425.
13. W. Meier and O. Staffelbach,Fast correlation attacks on certain stream ciphers, J. Cryptology (1989), 159–176.
14. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,Handbook of Applied Cryptography., Discrete Mathematics and

its Applications., CRC Press, Boca Raton, FL, 1997.
15. D. Miccianccio and S. Goldwasser,Complexity of lattice problems - A cryptographic perspective., Kluwer Academic

Publishers, 2002.
16. P Nguyen,La géométrie des nombres en cryptologie, Ph.D. thesis, Laboratoire d’Informatique de l’École Normale

Supérieure, France, November 1999.
17. P. Nguyen and D. Stehlé,Floating-Point LLL Revisited, Advances in Cryptology - EUROCRYPT2005 (R. Cramer, ed.),

LNCS, vol. 3494, Springer, 2005, pp. 215–233.
18. P. Nguyen and J. Stern,Merkle-Hellman Revisited: A cryptanalysis of the Qu-Vanstone cryptosystem based on group fac-

torizations, Advances in Cryptology - CRYPTO1997 (B. S. Kaliski Jr., ed.), LNCS, vol. 1294, Springer, 1997, pp. 198,212.
19. , The Béguin-Quisquater server-aided RSA protocol from Crypto ’95 is not secure, Advances in Cryptology -

ASIACRYPT1998 (K. Ohta and D. Pei, eds.), LNCS, vol. 1514, Springer, 1998, pp. 372–379.
20. , Cryptanalysis of a fast public key cryptosystem presented at SAC ’97, SAC 1998 (Stafford E. Tavares and Henk

Meijer, eds.), LNCS, vol. 1556, Springer, 1999, pp. 213–218.
21. C.-P. Schnorr,A hierarchy of polynomial time lattice basis reduction algorithms, Theoretical Computer Science53 (1987),

no. 2-3, 201–224.
22. C. P. Schnorr and M. Euchner,Lattice basis reduction: improved practical algorithms and solving subset sum problems,

FCT, Lect. Notes Comput. Sci., vol. 591, Springer, 1991, pp.68–85.
23. V. Shoup,NTL: a library for doing number theory., Available online athttp://www.shoup.net/ntl/.
24. T. Siegenthaler,Decrypting a class of stream ciphers using ciphertext only., IEEE Trans.ComputersC-34 (1985), no. 1,

81–84.
25. J. von zur Gathen and M. Nöcker,Polynomial and normal bases for finite fields, J.Cryptology18 (2005), no. 4, 337–355.
26. D. Wagner,A Generalized Birthday Problem., Advances in Cryptology - CRYPTO2002 (M. Yung, ed.), LNCS, vol. 2442,

Springer, 2002, pp. 288–304.

13

