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Abstract

In this paper we study the neighbourhood of 15-variable Patterson-Wiedemann (PW)
functions, i.e., the functions that differ by a small Hamming distance from the PW functions
in terms of truth table representation. The PW functions have nonlinearity 215−1−2

15−1
2 +

20 = 16276, which exceeds the bent concatenation bound 215−1− 2
15−1

2 = 16256 and these
functions do not have zeros in the Walsh spectra. We exploit the idempotent structure of
the PW functions and interpret them as Rotation Symmetric Boolean Functions (RSBFs).
Then we modify these RSBFs to introduce zeros in the Walsh spectra of the modified
functions with minimum reduction in nonlinearity. In the process, we construct 15-variable
functions with nonlinearity 215−1−2

15−1
2 +8 = 16264 with 15 zeros in the Walsh spectrum

of each functions. Moreover we modify these functions to achieve 15-variable balanced
functions with nonlinearity 215−1− 2

15−1
2 +10 = 16266, which is currently the best known.

Next we present a method to increase the number of zeros further in the Walsh spectra of
the functions with nonlinearity 16264. Applying linear transformation on these modified
functions we achieve 1-resilient functions having nonlinearity 16264. This shows for the
first time, the existence of the 15-variable 1-resilient Boolean functions with nonlinearity
greater than the bent concatenation bound. In the process, we find functions for which the
autocorrelation spectra and algebraic immunity parameters are best known till date.

keywords: Algebraic Immunity, Autocorrelation, Balancedness, Nonlinearity, Rotation
Symmetric Boolean Functions, Resiliency.

1 Introduction

In [23], Patterson and Wiedemann presented Boolean functions on 15-variables with nonlinear-
ity strictly greater than the bent concatenation bound. After more than two decades, in [15],
9-variable functions having nonlinearity exceeding the bent concatenation bound have been
demonstrated. Most interestingly, both these constructions rely on the idempotent structure
of the Boolean functions. Under the interpretation that a Boolean function is a mapping
f : GF (2n) → GF (2), the functions presented in [13, 15, 23] are such that f(x2) = f(x) for
any x ∈ GF (2n). These functions were studied in [9–11] and referred as idempotents. By
fixing any irreducible polynomial of degree n over GF(2), one may interpret the mapping
f : GF (2n) → GF (2) as f : {0, 1}n → {0, 1}. One can use this interpretation to get a Rotation

∗This is a revised and extended (Section 4 is a new addition) version of the paper that has been presented
in WCC 2007, International Workshop on Coding and Cryptography, April 16-20, 2007, Versailles (France).
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Symmetric Boolean Function (RSBF) from an idempotent by choosing a primitive polynomial
of degree n and a normal basis [9]. The RSBFs are studied in great detail recently and it has
been found that this sub class of Boolean functions is extremely rich in terms of cryptographic
and combinatorial properties [4,6,12–14,18,19,25,32,33]. Motivated by these results, we con-
centrate on PW functions in this paper and exploit the rotation symmetric structure of such
functions to get best known nonlinearity results in terms of balanced and 1-resilient functions.

High nonlinearity of a Boolean function is important when it is used as a building block
in any cryptographic system. On the other hand nonlinearity of a Boolean function is directly
related to the covering radius of first order Reed-Muller codes. It is well known that the
maximum possible nonlinearity of an n-variable Boolean function is 2n−1− 2

n
2
−1 for n even [7,

27] and functions with this nonlinearity are called bent functions. The bound 2n−1−d2
n
2
−1e is

in general not known to be achieved when n is odd. For odd n, one can easily get (balanced)
Boolean functions having nonlinearity 2n−1−2

n−1
2 by suitably concatenating two bent functions

on (n − 1) variables. That is the reason the nonlinearity value 2n−1 − 2
n−1

2 for odd n is
called the bent concatenation bound. For odd n ≤ 7, the maximum nonlinearity of n-variable
functions is 2n−1 − 2

n−1
2 [1, 21] and for odd n > 7, the maximum nonlinearity can exceed this

bound [13,15,23].
Since balancedness is a useful cryptographic property for a Boolean function, the question

of getting balanced Boolean function with high nonlinearity is an important issue. Further it
is also combinatorially very interesting. As the bent functions are not balanced, the maximum
nonlinearity for n-variable balanced functions for even n must be less than 2n−1 − 2

n
2
−1.

Denote the maximum nonlinearity for any balanced Boolean function on b-variables by nlb(b).
Dobbertin conjectured in [8] that for n even, nlb(n) 6> 2n−1 − 2

n
2 + nlb(n

2 ). This conjecture
still remains unsettled.

For odd n, the challenge is to get balanced Boolean functions having nonlinearity greater
than the bent concatenation bound. The first attempt in this direction was in [31], where
15-variable PW functions were used as a black box to construct balanced functions on odd
number of input variables (≥ 29) having nonlinearity greater than the bent concatenation
bound. Later, in [17,28], the truth tables of the PW functions were modified to get 15-variable
balanced functions having nonlinearity 16262 and that shows the existence of balanced Boolean
functions exceeding the bent concatenation bound for odd number of input variables greater
than or equal to 15.

Before explaining our contribution in detail, we first present some preliminaries.

1.1 Basics of Boolean functions

An n-variable Boolean function f is a mapping f : GF (2n) → GF (2). Another representation
of a Boolean function f is a mapping f : {0, 1}n → {0, 1}. This representation is called the
truth table representation. Using any basis of GF (2n), we can express each x ∈ GF (2n)
as an n-tuple (x1x2 . . . xn), xi ∈ GF (2), i = 1, . . . , n. Thus we can draw the truth table
representation from the former representation.

We now concentrate on the truth table representation of a Boolean function which is a 2n

length binary string

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)].

The Hamming weight of a binary string T is the number of 1’s in T , denoted by wt(T ). An
n-variable function f is said to be balanced if its truth table contains an equal number of 0’s
and 1’s, i.e., wt(f) = 2n−1. Also, the Hamming distance between two equidimensional binary
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strings T1 and T2 is defined by d(T1, T2) = wt(T1 ⊕ T2), where ⊕ denotes the addition over
GF (2).

An n-variable Boolean function f(x1, . . . , xn) can be considered to be a multivariate poly-
nomial over GF (2). This polynomial can be expressed as a sum of products representation of
all distinct k-th order products (0 ≤ k ≤ n) of the variables. More precisely, f(x1, . . . , xn) can
be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn,

where the coefficients a0, ai, aij , . . . , a12...n ∈ {0, 1}. This representation of f is called the
algebraic normal form (ANF) of f . The number of variables in the highest order product term
with nonzero coefficient is called the algebraic degree, or simply the degree of f and denoted
by deg(f).

Functions of degree at most one are called affine functions. An affine function with constant
term equal to zero is called a linear function. The set of all n-variable affine (respectively linear)
functions is denoted by A(n) (respectively L(n)). The nonlinearity of an n-variable function
f is defined as

nl(f) = min
g∈A(n)

(d(f, g)),

i.e., the minimum distance from the set of all n-variable affine functions.
Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belong to {0, 1}n and x · ω = x1ω1 ⊕ . . .⊕

xnωn. Let f(x) be a Boolean function on n variables. Then the Walsh transform of f(x) is an
integer valued function over {0, 1}n which is defined as

Wf (ω) =
∑

x∈{0,1}n

(−1)f(x)⊕x·ω.

The Walsh spectrum of f is the multiset {Wf (ω)|ω ∈ {0, 1}n}. In terms of Walsh spectrum,
the nonlinearity of f is given by

nl(f) = 2n−1 − 1
2

max
ω∈{0,1}n

|Wf (ω)|.

In [34], an important characterization of correlation immune functions has been presented,
which we use as the definition here. A function f(x1, . . . , xn) is m-th order correlation immune
(respectively m-resilient) iff its Walsh spectrum satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m
(respectively 0 ≤ wt(ω) ≤ m).

Autocorrelation properties are also cryptographically important [26,35] for a Boolean func-
tion f . Let β ∈ {0, 1}n. The autocorrelation value of the Boolean function f with respect to
the vector β is ∆f (β) =

∑
x∈{0,1}n(−1)f(x)⊕f(x⊕β). Further we denote

∆f = max
β∈{0,1}n,β 6=(0,...,0)

|∆f (β)|

and ∆f is called the absolute indicator. f is said to satisfy PC(k), if ∆f (β) = 0 for 1 ≤
wt(β) ≤ k.

Recently algebraic attack has received a lot of attention (see [2, 3, 20] and the references
in these paper) in studying the security of the ciphers. One necessary condition to resist
this attack is that the Boolean function used in the cryptosystem should have good algebraic
immunity. An n-variable Boolean function g is called an annihilator of an n-variable Boolean
function f if fg = 0. We denote the set of all nonzero annihilators of f by AN(f). Then
algebraic immunity of f , denoted by AIn(f), is defined [20] as the degree of the minimum
degree annihilator among all the annihilators of f and 1 + f , i.e., AIn(f) = min{deg(g) : g 6=
0, g ∈ AN(f) ∪AN(1 + f)}. It is known [3,20] that AIn(f) ≤ dn

2 e.
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1.2 Rotation Symmetric Boolean Function (RSBF)

Let xi ∈ {0, 1} for 1 ≤ i ≤ n. For some integer k ≥ 0 we define ρk
n(xi) as ρk

n(xi) = xi+k mod n,
with the exception that when i + k ≡ 0 mod n, then we will assign i + k mod n by n in-
stead of 0. This is to cope up with the input variable indices 1, . . . , n for x1, . . . , xn. Let
(x1, x2, . . . , xn−1, xn) ∈ {0, 1}n. Then we extend the definition as ρk

n(x1, x2, . . . , xn−1, xn) =
(ρk

n(x1), ρk
n(x2), . . . , ρk

n(xn−1), ρk
n(xn)). Hence, ρk

n acts as k-cyclic rotation on an n-bit vector.
A Boolean function f is called rotation symmetric if for each input (x1, . . . , xn) ∈ {0, 1}n,

f(ρk
n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ k ≤ n− 1.

That is, the rotation symmetric Boolean functions are invariant under cyclic rotations of inputs.
The inputs of a rotation symmetric Boolean function can be divided into orbits so that each
orbit consists of all cyclic shifts of one input. An orbit generated by (x1, x2, . . . , xn) is

Gn(x1, x2, . . . , xn) = {ρk
n(x1, x2, . . . , xn)|1 ≤ k ≤ n}

and the number of such orbits is denoted by gn. Thus the total number of distinct n-variable
RSBFs is 2gn . Let φ be Euler’s phi -function, then it can be shown by Burnside’s lemma that
(see also [32])

gn =
1
n

∑
k|n

φ(k) 2
n
k .

An orbit is completely determined by its representative element Λn,i, which is the lexico-
graphically first element belonging to the orbit [33]. These representative elements are again
arranged lexicographically as Λn,0, . . . ,Λn,gn−1. Thus an n-variable RSBF f can be represented
by the gn length string [f(Λn,0), . . . , f(Λn,gn−1)].

In [33] it was shown that the Walsh spectrum of an RSBF f takes the same value for all
elements belonging to the same orbit, i.e., Wf (u) = Wf (v) if u ∈ Gn(v). Therefore the Walsh
spectrum of f can be represented by the gn length vector (waf [0], . . . , waf [gn − 1]), where
waf [j] = Wf (Λn,j). In analyzing the Walsh spectrum of an RSBF, the nA matrix has been
introduced [33]. The matrix nA = (nAi,j)gn×gn is defined as

nAi,j =
∑

x∈Gn(Λn,i)

(−1)x·Λn,j ,

for an n-variable RSBF. Using this gn × gn matrix, the Walsh spectrum for an RSBF can be
calculated as

Wf (Λn,j) =
gn−1∑
i=0

(−1)f(Λn,i)
nAi,j .

The operation of multiplying by 2 divides the integers mod (2n−1) into different sets called
2-cyclotomic cosets mod(2n−1). The 2-cyclotomic coset containing s consists of the elements
{s, 2s, 22s, . . . , 2ds−1s} where ds is the smallest positive integer such that 2ds ·s ≡ s mod (2n−1).
The term ds is called the length of the cyclotomic coset mod (2n−1). One may note that there
are (gn − 1) many cyclotomic cosets.

1.3 Equivalence between RSBF and Idempotent

Let us consider a Boolean function f : GF (2n) → GF (2). A Boolean function f is called
idempotent [9] iff f(γ) = f(γ2), for any γ ∈ GF (2n). Given a primitive element θ ∈ GF (2n),
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an idempotent function will have the same value corresponding to all elements θi where i
belongs to the same 2-cyclotomic coset, say {s, 2s, 22s, . . . , 2ds−1s}.

We fix a primitive polynomial P (X) of degree n over GF(2) and let θ be a root of
P (X). Let us consider a normal basis {θt, θ2t, θ22t . . . , θ2n−1t} of GF (2n). We represent
θt, θ2t, θ22t, . . . ,θ2n−1t by the n-bit binary vectors (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1) (the
order is (x1, x2, . . . , xn)) respectively. Then all the elements θj can be expressed as an n-bit bi-
nary vector with respect to the normal basis. Once the n-bit vector is decided, this is basically
the assignment to the inputs of the Boolean function and we can refer back to the standard
truth table (considering Boolean function as a mapping {0, 1}n → {0, 1}) to get the value of
the function corresponding to the input pattern. In this representation all the n-bit binary
vectors corresponding to the elements {θs, θ2s, θ22s . . . , θ2ds−1s} will be cyclic rotation of each
other [9]. That means the elements θi where i runs over a 2-cyclotomic coset, form an orbit
and as the idempotent f has the same value corresponding to all these θi’s, f will have the
same output in its truth table for all the elements in the orbit; i.e., in terms of truth table
representation, f becomes an RSBF.

1.4 Contribution of this paper

Balancedness is an important property of a Boolean function from a cryptographic as well
as a combinatorial point of view. A challenging question in this direction is to get balanced
Boolean functions with high nonlinearity. One natural attempt for the 15-variable case is to
use or modify the PW functions (which do not contain any zero in their Walsh spectra) to
get balancedness, keeping in mind that the nonlinearity should not decrease much due to the
modification.

The 15-variable PW functions were used as a black box in [31] to construct balanced
functions on an odd number of input variables (≥ 29) having nonlinearity greater than the
bent concatenation bound. However, the internal structure of the PW functions was not
studied in [31]. In [17, 28] the internal structure of the PW functions has been modified to
get improved results upon [31] in terms of nonlinearity for balanced functions on odd number
(≥ 15) of input variables. The idea of [17,28] was as follows.

Take n = 15. Consider the truth table of a PW function f as a mapping from {0, 1}n →
{0, 1}. One can easily check that there are 3255 many points ω ∈ {0, 1}n where the value of
the Walsh spectrum Wf (ω) = 40. Now consider a function g = f ⊕ ω · x. Clearly Wg(0) = 40
and one needs to toggle 20 output bits from 0 to 1 to achieve balancedness. The idea of [17,28]
was to divide the 2n-bit long truth table of g in 20 (almost) equal contiguous parts and
selecting a random 0 bit from each part and toggle that to 1. Thus the modified function
from g becomes balanced and in some of the cases the reduction in nonlinearity was less than
20. That provided the nonlinearity greater than the bent concatenation bound. Though the
simple method provided nice results, it was only a heuristic and the idempotent structure of
the PW functions was not exploited at all. In this paper we look at the idempotent structure
of the PW functions and get better results over [17,28]. In this direction, first we interpret the
PW functions as RSBFs in order to take the advantage of the matrix nA associated with the
Walsh transform of the functions. Then studying the distribution of the Walsh spectra values,
we modify the PW functions to obtain new functions having high nonlinearity. Let us list the
results we achieve in this paper that were not known earlier.

1. In Section 2.1, by modifying the two available PW functions from [23] we find 316 many
RSBFs (idempotents) each having nonlinearity 16264 and 15 Walsh spectrum zeros. All
these 316 functions have a different distribution in the Walsh spectra and they are not
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affinely equivalent among themselves. These functions can be transformed to balanced
functions and this nonlinearity 16264 is better than the nonlinearity 16262 presented
in [17, 28]. Once more we like to point out that this study is a more disciplined one
in terms of exploiting the structure of the idempotents rather than the simple heuristic
presented in [17, 28]. Some of these functions have the maximum absolute value in the
autocorrelation spectra as low as 192, which is better than 216 as presented in [17, 28].
Further we find functions having maximum possible algebraic immunity 8 where the
maximum absolute value in the autocorrelation spectra is as low as 200. This is the
first time a function on an odd number of variables having maximum possible algebraic
immunity with nonlinearity greater than the bent concatenation bound is demonstrated.
In [5], the functions of [17, 28] have been studied for their algebraic immunity and the
value found was 7, which is not the maximum possible.

2. In Section 3, we further modify some of the 316 RSBFs (reported in Subsection 2.1)
by toggling the outputs corresponding to two input points and could achieve balanced
functions with nonlinearity 16266, algebraic immunity 8 and maximum absolute value
in the autocorrelation spectra 208. Again, this is not done by randomly modifying
two output points, but following a specific strategy examining the Walsh spectra of the
functions. The nonlinearity presented here is the best known for 15-variable balanced
functions and it provides the construction of n-variable (n ≥ 15 and odd) balanced
functions having nonlinearity 2n−1 − 2

n−1
2 + 10× 2

n−15
2 .

3. Each of the 15-variable functions presented in Section 2.1 and Section 3 (having nonlinear-
ity either 16264 or 16266) has 15 many Walsh spectrum zeros. Unfortunately one needs
at least 16 many zeros to have an attempt to get a 1-resilient function by the method
of linear transformation on input variables. Thus we target some of the functions with
certain distribution in the Walsh spectra having nonlinearity 16264 and modify each of
them to increase the number of Walsh spectrum zeros keeping the rotation symmetric
structure unchanged. We concentrate on the points where the Walsh spectrum values are
close to zero and modify the function accordingly so that the values at those points can
be changed to zero increasing the overall number of zeros in the Walsh spectrum. This
technique has the risk that the nonlinearity will be reduced further, but we managed to
control the reduction so that the resulting nonlinearity remains greater than the bent
concatenation bound. In Section 4, we could modify the functions having nonlinearity
16264 from Section 2.1 to get functions with nonlinearity 16260 or 16264, each having 30
or more Walsh spectrum zeros. For example, we could get a function with nonlinearity
16264 with 135 many zeros in the Walsh spectrum that has then been suitably modified
to 1-resilient function by linear transformation on input variables [16, 22]. This shows
that it is possible to construct 1-resilient functions having nonlinearity greater than the
bent concatenation bound for (15 + 2i) variables (i ≥ 0). The maximum absolute auto-
correlation value of this function is 232. This shows for the first time the existence of
a 1-resilient function exceeding the bent concatenation bound in nonlinearity with the
maximum absolute value in the autocorrelation spectrum less than 2

15+1
2 .

Earlier 1-resilient 15-variable functions having nonlinearity greater than the bent concatenation
bound were known for odd number of variables greater than or equal to 41 [28,30]. In [28,30],
the 15-variable PW functions have been used in the construction of resilient functions but
modification of the internal structure was not attempted to get resiliency. Thus 15-variable
1-resilient functions with nonlinearity more than the bent concatenation bound could not be
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identified in [28, 30]. Our work is based on the modification of internal structure of PW func-
tions and it shows the construction of 1-resilient functions on n variables having nonlinearity
strictly greater than 2n−1 − 2

n−1
2 for n ≥ 15 and odd. Thus the gap from 15 to 39 variables is

resolved by our work in terms of getting 1-resilient functions having nonlinearity > 2n−1−2
n−1

2 .
Further our nonlinearity is better than what was presented for the 41-variable case in [28,30].

2 Studying the Walsh Spectrum of PW functions as RSBF

We first present the construction of RSBFs from the two PW functions on (n = 15)-variables
given in [23]. Each of these functions is idempotent when we consider them as a mapping from
GF (2n) to GF (2). Let fPW denotes one such function.

Construction 1

Take n = 15.
Consider a PW function fPW on n-variables.
Take the primitive polynomial P (X) = X15 +X + 1 over GF (2).
Consider a root α of P (X).
Take the normal basis N = {α(2i·29) mod (215−1) : i = 0, . . . , 14}.
Represent each x ∈ GF (2n) as an n-bit binary vector with respect to N .
Denote the corresponding mapping {0, 1}n → {0, 1} by f .
f is an RSBF with nl(f) = 2n−1 − 2

n−1
2 + 20 = 16276.

In the rest of the paper we will consider f as the RSBF obtained from a PW function using
Construction 1. We get two distinct (the first one is of algebraic degree 8 and the second one
is of algebraic degree 9) RSBFs up to affine equivalence from Construction 1. Each of them
are of nonlinearity 16276 and the distribution of Walsh spectra of both the functions are the
same (presented in Table 1).

For n = 15, the number of orbits is gn = 2192, out of them there are 2182 orbits of size 15,
6 orbits of size 5, 2 orbits of size 3 and 2 orbits of size 1.

Table 1: Distribution of Walsh spectrum for 15-variable PW function.

Weight Number of Vectors Walsh Spectra Value How it comes
w (number of input points) 215 − 2w (# of orbits of size 15, 5, 3, 1)

16492 13021 -216 868, 0, 0, 1
16428 217 -88 12, 6, 2, 1
16364 3255 40 217, 0, 0, 0
16300 16275 168 1085, 0, 0, 0

We are interested in modifying each of the PW functions such that we can get zeros in
the Walsh spectrum with minimum number of toggles at the output bits. A random strategy
has been presented in [28] that we have briefly explained in the previous section. Here our
motivation is to toggle the outputs of f corresponding to one or more orbits. It means that
after the modification, the function will remain RSBF.

2.1 Modification with respect to one orbit of size 15 and another of size 5

We first start with a theoretical result.
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Theorem 1 Refer to the function f as in Construction 1. Let Gn(Λn,j) be an orbit such that
Wf (Λn,j) = 40 and

(−1)f(Λn,q)
nAq,j + (−1)f(Λn,r)

nAr,j = 20,

for some q, r, where Λn,q is the representative element of an orbit of size 15 and Λn,r is the
representative element of an orbit of size 5. Construct

g(x) = f(x) for x ∈ {0, 1}n \ ((Gn(Λn,q) ∪Gn(Λn,r)),
= 1⊕ f(x) for x ∈ Gn(Λn,q) ∪Gn(Λn,r).

Then Wg(Λn,j) = 0.
Further, let Λn,s be the representative elements such that Wf (Λn,s) = −216 as s varies. If

(−1)f(Λn,q)
nAq,s + (−1)f(Λn,r)

nAr,s < 20 for all s, then nl(g) > 2n−1 − 2
n−1

2 .

Proof: Since, (−1)f(Λn,q)
nAq,j + (−1)f(Λn,r)

nAr,j = 20, and g = 1 ⊕ f for the input points
corresponding to the orbits represented by Λn,q,Λn,r, we have,

(−1)g(Λn,q)
nAq,j + (−1)g(Λn,r)

nAr,j = −20.

Also since Wf (Λn,j) = 40 and (−1)f(Λn,q)
nAq,j + (−1)f(Λn,r)

nAr,j = 20, therefore we have∑
i/∈{q,r}(−1)f(Λn,i)

nAi,j = 20. Thus,

Wg(Λn,j) =
(
(−1)g(Λn,q)

nAq,j + (−1)g(Λn,r)
nAr,j

)
+

∑
i/∈{q,r}

(−1)g(Λn,i)
nAi,j = −20 + 20 = 0.

This proves the first part of the theorem.
Now refer to Table 1 and note that for any ω, such that Wf (ω) = −88, 40, 168, |Wg(ω)| ≤

168 + 40 = 208. Further, consider the points Λn,s where the Walsh spectrum values of f are
maximum in absolute terms, i.e., referring to Table 1, we have Wf (Λn,s) = −216 as s varies.
Let (−1)f(Λn,q)

nAq,s + (−1)f(Λn,r)
nAr,s = 20− δs, where δs > 0. Thus,

Wg(Λn,s) = (−1)g(Λn,q)
nAq,s + (−1)g(Λn,r)

nAr,s +
∑

i∈{q,r}(−1)g(Λn,i)
nAi,s

= −
(
(−1)f(Λn,q)

nAq,s + (−1)f(Λn,r)
nAr,s

)
+

∑
i/∈{q,r}(−1)f(Λn,i)

nAi,s

= −20 + δs + (−216− 20 + δs) = −256 + 2δs.

Thus nl(g) > 2n−1 − 2
n−1

2 .
Using the idea of the above theorem, we design an algorithm to get 15-variable RSBFs g

such that nl(g) > 2n−1 − 2
n−1

2 with Wg(ω) = 0 for some point ω. There are 217 orbits (each
of size 15) at which the Walsh spectrum value of f is 40. We take an orbit Gn(Λn,j) such that
Wf (Λn,j) = 40. Next we choose one orbit Gn(Λn,q) of size 15 and another orbit Gn(Λn,r) of
size 5 such that

(−1)f(Λn,q)
nAq,j + (−1)f(Λn,r)

nAr,j = 20.

Then by Theorem 1, we have Wg(Λn,j) = 0, i.e., Wg(ω) = 0 for each ω ∈ Gn(Λn,j). As
|Gn(Λn,j)| = 15, number of the zeros in the Walsh spectrum of g will be 15.

Now we present the actual algorithm.

Algorithm 1
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maxnl = 0;
for each of the representative elements λ such that Wf (λ) = 40

for each pair of the representative elements δ, γ with |Gn(δ)| = 15, |Gn(γ)| = 5
sum = (−1)f(δ)

∑
x∈Gn(δ)(−1)x·λ + (−1)f(γ)

∑
x∈Gn(γ)(−1)x·λ;

if sum = 20
g(x) = f(x) for x ∈ {0, 1}n \ (Gn(δ) ∪Gn(γ));
g(x) = 1⊕ f(x) for x ∈ Gn(δ) ∪Gn(γ);
if maxnl < nl(g), then maxnl = nl(g)

store δ, γ and nl(g) in a file F;
for each δ, γ, nl(g) tuple in a file F

if nl(g) < maxnl
remove the tuple from file F;

file F provides the RSBFs with nonlinearity maxnl with at least 15 Walsh zeros;

Complexity of Algorithm 1

We define the following sets.

S1 = {Λn,d : Wf (Λn,d) = 40}, S2 = {Λn,d : |Gn(Λn,d)| = 15} and S3 = {Λn,d : |Gn(Λn,d)| = 5}.

Then we need to check |S1| × |S2| × |S3|, i.e., 217× 2182× 6 < 222 many options. For each of
the options, we need to calculate the nonlinearity of g, requiring O(n2n) time using the Fast
Walsh Transform which is around 219. Thus the total time complexity is around 241, which is
negligible compared to any search in the space of 15-variable Boolean functions.
Outcome of Algorithm 1

Running Algorithm 1 we get 253 and 63 RSBFs g respectively from degree 8 and degree
9 PW functions with nonlinearity maxnl = 16264 and for each of these functions the Walsh
spectrum contains 15 many zeros which occur exactly at an orbit of size 15. We further check
these functions and find that they are all affinely non-equivalent as their Walsh distributions
are different.

Refer to Appendix A to get the list of these 316 functions with nonlinearity 16264. We
studied these functions and the distribution of the functions g with respect to ∆g is given in
the following table.

Table 2: Number of RSBFs g with nonlinearity 16264 with corresponding ∆g values.

∆g 192 200 208 216 224 232 240 248 256 280
Number of functions g 1 21 87 101 60 34 8 2 1 1

Now consider ω ∈ {0, 1}n such that Wg(ω) = 0. Then it is clear that the function g′(x) =
g(x) ⊕ ω · x will be balanced and nl(g′) = nl(g) = 16264, ∆g′ = ∆g = 192. Thus we get
balanced functions g′ having better nonlinearity and autocorrelation values than presented
in [28]. Note that, though g is an RSBF, the rotational symmetric property may be lost in g′.

In all the following examples of this paper, we express any element x ∈ {0, 1}n as the n-bit
binary vector (xn, xn−1, . . . , x1), where xn is the most significant bit.

Example 1 Now we provide the exact specification of a function g having nonlinearity 16264
and ∆g = 192. First we construct the RSBF f from the PW function of degree 9 by using
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Construction 1. Then we toggle the outputs of f corresponding to the orbits represented
by (0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1) (of size 15) and (0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) (of size
5) to get g. The function g has the Walsh spectrum values zero corresponding to the orbit
represented by (0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1) (of size 15). The algebraic degree of g is 13.
If we consider ω = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1), then g′(x) = g(x)⊕ω ·x will be balanced.
We have also noted that the algebraic immunity of g′ is 7, which is not the maximum possible.

Example 2 Next we present a function with the maximum possible algebraic immunity 8.
We take the RSBF f obtained from the 9-degree PW function using Construction 1. Then we
toggle the outputs of f corresponding to the orbits represented respectively by the elements
(0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1) (of size 15) and (0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1) (of size 5)
to get g. This function has the Walsh spectrum values zero for the orbit represented by
(0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1) (of size 15). For this function g, we have nonlinearity 16264,
∆g = 200 and algebraic degree 13. Let ω = (0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1), then g′(x) =
g(x)⊕ω ·x will be balanced and g′ possesses maximum possible algebraic immunity 8. This is
the first demonstration of a Boolean function on an odd number of variables having nonlinearity
greater than the bent concatenation bound and maximum possible algebraic immunity.

3 Further improvement of nonlinearity

Now we study the functions which are the outputs of Algorithm 1. We modify these functions
to get 15-variable balanced functions with nonlinearity better than 16264. Let us first explain
the theoretical idea behind this.

For this section, by g, we denote any function which is an output of Algorithm 1.

Theorem 2 Consider a function g. Let both of the maximum and second maximum absolute
values in the Walsh spectrum of g be negative in sign and let the values be −v and −v + δ,
where v, δ > 0. Let Wg(ω) = −v for ω ∈ {ω(1), . . . , ω(t)}. Consider the set {x(1), . . . , x(s)}
such that for any x ∈ {x(1), . . . , x(s)}, the values ω · x are the same and g(x) = 1⊕ω · x for all
ω ∈ {ω(1), . . . , ω(t)}.

Consider |{x(1), . . . , x(s)}| ≥ δ
4 and let Q be a δ

4 size subset of {x(1), . . . , x(s)}. Construct

g′(x) = g(x) for x ∈ {0, 1}n \Q,
= 1⊕ g(x) for x ∈ Q.

Then the maximum Walsh spectrum value of g′ at the points ω ∈ {ω(1), . . . , ω(t)} will be the
absolute value of −v+ δ

2 and the maximum absolute value of Walsh spectrum of g′ will be v− δ
2 .

If there exists an input point ζ with Wg(ζ) = 0 and
∑

x∈Q(−1)g(x)⊕ζ·x = 0, then Wg′(ζ) = 0.

Proof: For any ω ∈ {ω(1), . . . , ω(t)} and any x ∈ Q, we have

(−1)g(x)⊕ω·x = (−1)1⊕ω·x⊕ω·x = −1.

Thus,
∑

x∈Q(−1)g(x)⊕ω·x = − δ
4 . Then,

Wg′(ω) =
∑

x∈{0,1}n\Q(−1)g′(x)⊕ω·x +
∑

x∈Q(−1)g′(x)⊕ω·x

=
∑

x∈{0,1}n\Q(−1)g(x)⊕ω·x −
(∑

x∈Q(−1)g(x)⊕ω·x
)

= Wg(ω)− 2
(∑

x∈Q(−1)g(x)⊕ω·x
)

= Wg(ω)− 2 · (− δ
4) = −v + δ

2 .
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Due to the toggling of δ
4 output bits of g to get g′, other Walsh spectrum values (−v + δ, the

next maximum Walsh spectrum value in absolute terms) can be modified to −v + δ
2 in g′ (at

most in absolute terms).
Again since, Wg(ζ) = 0 and

∑
x∈Q(−1)g(x)⊕ζ·x = 0, then

∑
x∈{0,1}n\Q(−1)g(x)⊕ζ·x = 0.

Therefore

Wg′(ζ) =
∑

x∈{0,1}n\Q(−1)g′(x)⊕ζ·x +
∑

x∈Q(−1)g′(x)⊕ζ·x

=
∑

x∈{0,1}n\Q(−1)g(x)⊕ζ·x −
(∑

x∈Q(−1)g(x)⊕ζ·x
)

= 0− 0 = 0.

Note that the maximum absolute value in the Walsh spectrum of g is 240 and the sign is
negative. While modifying g we will keep in mind the following points.

1. We attempt to toggle two output points of g to get an increment of 2 in nonlinearity
having one or more zeros in the Walsh spectrum. We refer to this modified function as
g′. The function g′ is not an RSBF as this function will have two input orbits of size > 1
where the outputs are not constant.

2. The points ω for which Wg(ω) = −240 should provide Wg′(ω) = −236.

3. The points ω for which Wg(ω) = −236 should provide Wg′(ω) = −236 or Wg′(ω) = −232.
After toggling two points in the output of g, if we get Wg′(ω) = −240 for any such ω, then
the increment in nonlinearity will not be possible. Note that this issue can be avoided if
there is no ω for which Wg(ω) = −236. This is the reason we only consider the functions
g where there is no ω such that Wg(ω) = −236. That is for each of these functions, the
second maximum absolute value in the Walsh spectrum corresponds to -232. We find
that there are plenty of such functions among the 316 functions reported in the previous
section.

4. For each of the functions g, the Walsh spectrum values are in the range [−240, 208]. The
points ω for which −232 ≤Wg(ω) ≤ 208 will provide −236 ≤Wg′(ω) ≤ 212 and they will
not create any trouble if we want to have an increment in nonlinearity by 2 by toggling
two output bits of g.

We select a function g such that the second maximum absolute Walsh spectrum value of g
corresponds to −232. Referring to Appendix A will provide a handful of such functions. From
the above argument it is clear that we need to concentrate on the ω’s for which Wg(ω) = −240.
Let us consider that there are t such ω’s denoted by ω(1), . . . , ω(t). We would like to get
input points x such that for all ω ∈ {ω(1), . . . , ω(t)} the values ω · x are the same and also
g(x) = 1⊕ ω · x. Say there are s such input points x(1), . . . , x(s). We choose two input points
x(i), x(j), 1 ≤ i 6= j ≤ s such that (−1)g(x(i))⊕ζ·x(i)

+ (−1)g(x(j))⊕ζ·x(j)
= 0 where Wg(ζ) = 0 and

prepare g′ as follows:

g′(x) = g(x) when x ∈ {0, 1}n \ {x(i), x(j)}
= 1⊕ g(x) when x ∈ {x(i), x(j)}.

Then following Theorem 2, g′ will have nonlinearity increased by 2 over that of g as Wg′(ω) =
−236 for ω ∈ {ω(1), . . . , ω(t)} and for all other ω’s the maximum absolute value of Wg′(ω)
cannot exceed 236. Moreover the fact that (−1)g(x(i))⊕ζ·x(i)

+ (−1)g(x(j))⊕ζ·x(j)
= 0 will ensure

that Wg′(ζ) = 0.
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Construct the set S of 15-variable functions g with nonlinearity 16264 obtained by running
Algorithm 1 such that the second maximum absolute value in the Walsh spectrum of each of
them corresponds to −232. We present the algorithm which takes a function g ∈ S and returns
a function with nonlinearity 16266 with some Walsh spectrum values equal to zero.

Algorithm 2

choose a function g ∈ S
form the set {ω(1), . . . , ω(t)} which is the set of all ω such that Wg(ω) = −240;
form the set {x(1), . . . , x(s)} such that

for all ω ∈ {ω(1), . . . , ω(t)}
(i) the values of ω · x, are the same and
g(x) = 1⊕ ω · x for all x ∈ {x(1), . . . , x(s)};

for any pair x(i), x(j) ∈ {x(1), . . . , x(s)}, (i 6= j) if
(−1)g(x(i))⊕ζ·x(i)

+ (−1)g(x(j))⊕ζ·x(j)
= 0, for some ζ with Wg(ζ) = 0

construct
g′(x) = g(x) when x ∈ {0, 1}n \ {x(i), x(j)}

= 1⊕ g(x) when x ∈ {x(i), x(j)}
report g′(x) as a function having nonlinearity 16266 and Wg′(ζ) = 0;

Complexity of Algorithm 2
Let N = {ω(1), . . . , ω(t)}. While forming the set M = {x(1), . . . , x(s)}, we require N checks

for each x(i) ∈ M , i.e., in total M · N checks. Also to get the points ζ and ω such that
Wg(ζ) = 0 and Wg(ω) = −240, we require O(n2n) time using the Fast Walsh Transform which
is around 219. Now for any pair x(i), x(j) ∈ {x(1), . . . , x(s)}, the checking for (−1)g(x(i))⊕ζ·x(i)

+
(−1)g(x(j))⊕ζ·x(j)

= 0, for ζ with Wg(ζ) = 0 requires constant time. Thus the total time
complexity for Algorithm 2 is (219 + |M | · |N |) < 219 + (2192)2 < 223. There are 232 functions
g in S. Therefore if we run Algorithm 2 for all the 232 functions g, the complexity will be
around 231.

Example 3 It is clear that the possibility of getting a larger set {x(1), . . . , x(s)} increases
when the size of the set {ω(1), . . . , ω(t)} becomes smaller. In this manner we found functions
g such that Wg(ω) = −240 is at only 30 points. We choose such a function g with the
following description. We consider the PW function having degree 9 and the function is
transformed to an RSBF f as described in Construction 1. The outputs of f are toggled
corresponding to the orbits represented by (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1) (of size 15) and
(0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1) (of size 5) to get g. Note that nl(g) = 16264 and ∆g = 200.

As per our description, we get t = 30 points ω(1), . . . , ω(t), for which the Walsh spectrum
value of g is -240. Based on these we get s = 82 many x(1), . . . , x(s) and toggling the outputs
of g at any two of these 82 points increases the nonlinearity by 2. As example we take the
two input points (0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1) and (0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0) and
toggle the outputs of g at these two points to obtain g′. The function g′ has nonlinearity 16266
having 15 Walsh spectrum zeros, ∆g′ = 208 and algebraic degree 14. Next we construct the
balanced functions g′′, such that g′′(x) = g′(x)⊕ ω · x, where, Wg′(ω) = 0. We choose such an
ω = (0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0), and for this the function g′′(x) has maximum possible
algebraic immunity equal to 8.

Once we have g′′, we can construct a balanced function on n-variables (odd n > 15) as
b(x16, . . . , xn)⊕ g′′(x1, . . . , x15) with nonlinearity 2n−1 − 2

n−1
2 + 10× 2

n−15
2 , where b is a bent

function.
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4 Strategy to get 1-resilient functions

Any 15-variable RSBF g with nonlinearity 16264 from the list of Appendix A (i.e., output of
Algorithm 1) has 15 many zeros and all of these 15 input points with Walsh spectrum zeros
belong to one orbit of size 15. Now one may note that for an n-variable 1-resilient function,
the number of Walsh spectrum zeros is at least n + 1. Thus the functions from Appendix A
cannot be affinely transformed to 1-resilient functions. To get more Walsh spectrum zeros,
we need to modify the functions further. We consider the additional points where the Walsh
spectrum values are close to zero. We observe that the value in the Walsh spectrum closest to
zero is 16 which occurs for some functions of Appendix A, also for each of these functions the
Walsh spectrum value 16 occurs at one or more orbits of size 15 only. We construct the set S′

which constitutes the functions g such that the second minimum Walsh spectrum value is 16.
We would like to modify any function from S′ such that

1. the existing orbit with Walsh spectrum value zero stays at zero and

2. one or more of the existing orbits with Walsh spectrum value 16 drop to zero.

This strategy will indeed increase the Walsh spectrum zeros in the modified function. The only
issue that has to be noted is the drop in nonlinearity after this modification. As the nonlinearity
of 1-resilient functions must be divisible by four [29] and we are interested in nonlinearities
greater than the bent concatenation bound 16256, the nonlinearities of the modified functions
should be 16260 or 16264 (or even more, but we actually did not get more than that in the
experimentation we did).

Theorem 3 Consider a function g ∈ S′ such that Wg(Λn,p) = 0 and Wg(Λn,j) = 16. Let

1. (−1)f(Λn,q)
nAq,j + (−1)f(Λn,r)

nAr,j = 8, and

2. (−1)f(Λn,q)
nAq,p + (−1)f(Λn,r)

nAr,p = 0,

where Λn,q,Λn,r are two orbit representative elements. Construct

h(x) = g(x) for x ∈ {0, 1}n \Gn(Λn,q) ∪Gn(Λn,r),
= 1⊕ g(x) for x ∈ Gn(Λn,q) ∪Gn(Λn,r),

then Wh(Λn,j) = Wh(Λn,p) = 0.

Proof: Since, Wg(Λn,j) = 16 and (−1)g(Λn,q)
nAq,j + (−1)g(Λn,r)

nAr,j = 8, therefore,∑
i/∈{q,r}(−1)g(Λn,i)

nAi,j = 8. Now,

Wh(Λn,j) =
∑

i/∈{q,r}(−1)h(Λn,i)
nAi,j + (−1)h(Λn,q)

nAq,j + (−1)h(Λn,r)
nAr,j

=
∑

i/∈{q,r}(−1)g(Λn,i)
nAi,j − (−1)g(Λn,q)

nAq,j − (−1)g(Λn,r)
nAr,j

= 8− 8 = 0.

Again since, Wg(Λn,p) = 0 and (−1)f(Λn,q)
nAq,p + (−1)f(Λn,r)

nAr,p = 0, the proof that
Wh(Λn,p) = 0 follows easily by the similar argument as given above.

We consider a function g ∈ S′. Then the orbit Gn(Λn,p) such that Wg(Λn,p) = 0 is of size
15 and also the orbits Gn(Λn,j) such that Wg(Λn,j) = 16 are of size 15. Now we form the sets
{q1, . . . , qt} and {r1, . . . , rl} such that for each q ∈ {q1, . . . , qt} and r ∈ {r1, . . . , rl}, we have,
|nAq,j | = 5 and |nAr,j | = 3. Then we consider those pairs for which

1. (−1)f(Λn,q)
nAq,j + (−1)f(Λn,r)

nAr,j = 8, and
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2. (−1)f(Λn,q)
nAq,p + (−1)f(Λn,r)

nAr,p = 0.

Then by Theorem 3, we have Wh(Λn,j) = Wh(Λn,p) = 0. Thus the modified function h
will have at least 30 zeros in its Walsh spectrum. Due to this modification, nonlinearity
may fall. However we intend to keep functions h which have nonlinearity more than the
bent concatenation bound 16256 and divisible by 4 (as a 1-resilient function must have its
nonlinearity divisible by 4). Based on this discussion we present the following algorithm.

Algorithm 3

n = 15;
choose a function g ∈ S′;

find an orbit representative Λn,j such that Wg(Λn,j) = 16;
find the orbit representative Λn,p such that Wg(Λn,p) = 0;
form the set {q1, . . . , qt} and {r1, . . . , rl} such that

|nAq,j | = 5 and |nAr,j | = 3 for all q ∈ {q1, . . . , qt} and r ∈ {r1, . . . , rl}
for each q ∈ {q1, . . . , qt} and for each r ∈ {r1, . . . , rl} if

1. (−1)g(Λn,q)
nAq,j + (−1)g(Λn,r)

nAr,j = 8
2. (−1)g(Λn,q)

nAq,p + (−1)g(Λn,r)
nAr,p = 0

Construct
h(x) = g(x) for x ∈ {0, 1}n \Gn(Λn,q) ∪Gn(Λn,r),

= 1⊕ g(x) for x ∈ Gn(Λn,q) ∪Gn(Λn,r);
if nl(h) ≥ 16260 and 4 divides nl(g)

store h in file F ;
file F provides 15-variable functions with nonlinearity ≥ 16260

and having Walsh spectrum zeros in at least 30 points for each of the functions;

Complexity of Algorithm 3
The computational effort of this algorithm depends on the number of orbits Gn(Λn,q) and

Gn(Λn,r) such that |nAq,j | = 5 and |nAr,j | = 3, i.e., we have to check t × l many options
which can attain the maximum value (2192

2 )2. Also within the loop, determination of the
nonlinearity of the modified function h requires O(n2n), i.e., around 219 time by using Fast
Walsh Transform. Thus total complexity for Algorithm 2 is t× l × 219 < (2192

2 )2 × 219 < 240.
There are 292 functions g ∈ S′. Therefore if one wishes to run Algorithm 3 for all these
functions, the time complexity will be less than 249.

Given an n-variable Boolean function φ, let us define

Sφ = {ω ∈ {0, 1}n |Wφ(ω) = 0}.

If there exist n linearly independent vectors in Sφ, then one can construct a nonsingular n×n
matrix Bφ whose rows are linearly independent vectors from Sφ. Let, Cφ = B−1

φ . Now one can
define φ′(x) = φ(Cφx). Both φ′ and φ have the same weight, nonlinearity and algebraic degree.
Moreover, Wφ′(ω) = 0 for wt(ω) = 1. This ensures that φ′ is correlation immune of order 1.
Further if φ is balanced then φ′ is 1-resilient. This technique has been used in [16,22].

We run Algorithm 3 for few functions g ∈ S′. In the following example we describe it.

Example 4 Let n = 15. We consider the RSBF f obtained from the 9-degree PW function
using Construction 1. We run Algorithm 3 for a small subset of S′. We take functions g ∈ S′
obtained from f such that the value 16 occurs exactly at 15 points in the Walsh spectrum. For
these functions we find 32066 functions with nonlinearity either 16260 or 16264 and having at
least 30 Walsh zeros. For example, we take a function g ∈ S′ which is obtained by toggling
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the outputs of f corresponding to the orbits of size 15 and 5 having representative elements
respectively (0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1) and (0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1). We have
nl(g) = 16264 and Wg contains 15 many zeros. We apply Algorithm 3 over the function
g to get h such that nl(h) = 16264 and Wh contains 135 many zeros. The function h is
obtained by toggling the outputs of g corresponding to the orbits represented by the tuples
(0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1) and (0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1) each of size 15. We
note that Wh(ω) = 0 for ω = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1). Thus the function φ = h⊕ω ·x
will be balanced. Then as described above, we find 15 linearly independent vectors from Sφ and
hence a 1-resilient function φ′ having nonlinearity 16264 is found. We note that for φ′, ∆φ′ =
232 with algebraic degree 12 and algebraic immunity 7. See Appendix B for the truth table of
this function. This shows for the first time the existence of a 1-resilient function exceeding the
bent concatenation bound in nonlinearity with maximum absolute autocorrelation value less
than 2

15+1
2 .

In [15], existence of 1-resilient functions having the maximum absolute value in the autocorre-
lation spectra < 2

n+1
2 has been demonstrated for n = 9, 11. However, the nonlinearity in those

cases did not exceed the bent concatenation bound.
In [28, 30], a method to construct resilient functions on odd numbers of variables, having

nonlinearity greater than the bent concatenation bound, has been proposed. The construction
used the PW functions as a part of it. In the process, a 41-variable 1-resilient function ψ1

has been designed with nl(ψ1) > 240 − 220 + 51 × 210. Thus so far, the resilient functions,
having nonlinearity greater than the bent concatenation bound, had been known for 41 or more
variables. Example 4 above shows the existence of a 15-variable function with nonlinearity that
exceeds the bent concatenation bound. Again for odd n > 15, the function b(x16, . . . , xn) ⊕
φ′(x1, . . . , x15), where b(x16, . . . , xn) is a bent function, will be 1-resilient with nonlinearity
2n−1 − 2

n−1
2 + 8 × 2

n−15
2 . This shows that 1-resilient functions are available for 15 or more

variables. Thus the gap between 15 to 39 variables is now settled. Further we show that using
the function φ′ we can construct a 41-variable 1-resilient function with nonlinearity that exceeds
the lower bound of nl(ψ1). Let ψ2 = b(x16, . . . , x41)⊕ φ′(x1, . . . , x15), where b(x16, . . . , x41) is
a bent function, then nl(ψ2) = 240 − 220 + 8 × 2

41−15
2 = 240 − 220 + 64 × 210 which is greater

than 240 − 220 + 51× 210, the lower bound of nl(ψ1).

5 Conclusion

In this paper we successfully modify the two 15-variable PW functions [23] to construct bal-
anced functions f with nonlinearities 16264 and 16266. Corresponding to these nonlinearities,
we get the ∆f values as low as 192 and 208 respectively. Some of these functions provide the
maximum algebraic immunity 8. All these parameters are the best known till date and clearly
improve the parameters reported in [17, 28]. Further we could also construct 1-resilient func-
tions on 15-variables having nonlinearity 16264 that were not known earlier. The 1-resilient
functions on odd number of variables having nonlinearity greater than the bent concatenation
bound were earlier known for 41 or more variables [28,30].

Apart from the improvements in the parameter values, the theoretical contribution of this
paper is to modify any of the PW functions keeping their idempotent structure unchanged
and inducing Walsh spectrum zeros in the modified function. Given balancedness, 1-resiliency,
maximum possible algebraic immunity, very good nonlinearity and nice autocorrelation prop-
erties, we recommend use of these functions in cipher design.
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Appendix A

In Table 3, 253 pairs in the upper part and 63 pairs in the lower part correspond to 15-variable
functions with nonlinearity 16264 obtained respectively from the 8-degree and 9-degree PW
functions. In each pair the first integer indicates the decimal value of the representative of
the orbit of size 15 and the second one indicates the decimal value of the representative of the
orbit of size 5. The decimal value corresponding to an n-bit binary vector (xn, xn−1, . . . , x1) ∈
{0, 1}n is determined by taking xn as the most significant bit. Pairs marked (*) indicate the
functions with the second maximum absolute Walsh spectrum value corresponding to −232.
Pairs marked (+) indicate functions having 16 in their Walsh spectra.

(1819, 19)∗+

(1819, 53)+

(1819, 173)∗+

(1819, 225)+

(1819, 329)+

(1819, 987)+

(1819, 1099)∗+

(1819, 1183)∗+

(1819, 1269)∗+

(1819, 1417)∗+

(1819, 1507)∗+

(1819, 1639)∗+

(1819, 1715)∗+

(1819, 1753)∗+

(1819, 1957)∗+

(1819, 1999)∗+

(1819, 2211)∗+

(1819, 2287)+

(1819, 2893)∗+

(1819, 2923)+

(1819, 3359)+

(1819, 3411)∗+

(1819, 3689)∗+

(1819, 3739)+

(1819, 3799)+

(1819, 4855)∗+

(1819, 5631)∗+

(1819, 7151)∗+

(1819, 8187)+

(2249, 19)∗+

(2249, 173)∗+

(2249, 225)+

(2249, 503)+

(2249, 575)∗+

(2249, 869)+

(2249, 1099)∗+

(2249, 1133)+

(2249, 1183)+

(2249, 1417)∗+

(2249, 1507)∗+

(2249, 1639)∗+

(2249, 1715)∗+

(2249, 1753)∗+

(2249, 2485)∗+

(2249, 2893)∗+

(2249, 3385)∗+

(2249, 3411)∗+

(2249, 3531)

(2249, 3689)∗+

(2249, 3739)+

(2249, 3799)∗+

(2249, 4855)∗+

(2249, 5631)+

(2249, 6837)+

(2249, 7151)∗+

(2249, 7613)+

(2249, 8119)∗+

(2527, 19)∗+

(2527, 173)∗+

(2527, 575)+

(2527, 1099)∗+

(2527, 1133)+

(2527, 1183)∗+

(2527, 1269)∗+

(2527, 1417)∗+

(2527, 1507)∗+

(2527, 1639)∗+

(2527, 1715)∗+

(2527, 1753)∗+

(2527, 1853)+

(2527, 1957)∗+

(2527, 1999)∗+

(2527, 2211)∗+

(2527, 2893)∗+

(2527, 3385)+

(2527, 3411)∗+

(2527, 3689)∗+

(2527, 3891)+

(2527, 4855)∗+

(2527, 5631)∗+

(2527, 5725)+

(2527, 7151)∗+

(2527, 7613)+

(2527, 7639)

(2527, 12255)+

(2789, 19)∗+

(2789, 173)∗+

(2789, 329)+

(2789, 575)∗+

(2789, 1099)∗+

(2789, 1297)+

(2789, 1417)∗+

(2789, 1507)∗+

(2789, 1639)∗+

(2789, 1715)∗+

(2789, 1753)∗+

(2789, 1853)+

(2789, 1999)+

(2789, 2211)+

(2789, 2485)∗+

(2789, 2685)+

(2789, 2893)∗+

(2789, 3385)∗+

(2789, 3411)∗+

(2789, 3689)∗+

(2789, 3799)∗+

(2789, 3891)+

(2789, 4795)+

(2789, 4855)∗+

(2789, 5037)+

(2789, 5327)+

(2789, 7151)∗+

(2789, 8119)∗+

(2789, 8187)+

(3059, 19)∗+

(3059, 173)∗+

(3059, 575)∗+

(3059, 1099)∗+

(3059, 1209)+

(3059, 1269)+

(3059, 1417)∗+

(3059, 1507)∗+

(3059, 1639)∗+

(3059, 1715)∗+

(3059, 1753)∗+

(3059, 1957)+

(3059, 2287)+

(3059, 2451)+

(3059, 2485)∗+

(3059, 2893)∗+

(3059, 3359)+

(3059, 3385)∗+

(3059, 3411)∗+

(3059, 3689)∗+

(3059, 3799)∗+

(3059, 4071)+

(3059, 4855)∗+

(3059, 5725)+

(3059, 7151)∗+

(3059, 8119)∗+

(3059, 12255)+

(3773, 19)∗+

(3773, 329)+

(3773, 575)∗+

(3773, 1099)∗+

(3773, 1133)+

(3773, 1183)∗+

(3773, 1269)∗+

(3773, 1417)∗+

(3773, 1507)+

(3773, 1639)+

(3773, 1715)∗+

(3773, 1753)∗+

(3773, 1957)∗+

(3773, 1999)∗+

(3773, 2211)∗+

(3773, 2485)∗+

(3773, 2893)∗+

(3773, 3385)∗+

(3773, 3411)∗+

(3773, 3799)∗+

(3773, 4071)

(3773, 4855)∗+

(3773, 5631)∗+

(3773, 7151)∗+

(3773, 7613)+

(3773, 8119)∗+

(3773, 8187)+

(5755, 173)∗+

(5755, 225)+

(5755, 575)∗+

(5755, 1183)∗+

(5755, 1269)∗+

(5755, 1297)+

(5755, 1417)∗+

(5755, 1507)∗+

(5755, 1639)∗+

(5755, 1715)∗+

(5755, 1957)∗+

(5755, 1999)∗+

(5755, 2211)∗+

(5755, 2485)∗+

(5755, 2685)+

(5755, 2893)+

(5755, 3385)∗+

(5755, 3411)∗+

(5755, 3689)∗+

(5755, 3739)+

(5755, 3799)∗+

(5755, 4071)

(5755, 4855)∗+

(5755, 5327)+

(5755, 5631)∗+

(5755, 7151)+

(5755, 7639)

(5755, 8119)∗+

(5997, 19)+

(5997, 53)+

(5997, 173)∗+

(5997, 575)∗+

(5997, 987)+

(5997, 1133)+

(5997, 1183)∗+

(5997, 1209)+

(5997, 1269)∗+

(5997, 1417)∗+

(5997, 1507)∗+

(5997, 1639)∗+

(5997, 1715)∗+

(5997, 1753)+

(5997, 1957)∗+

(5997, 1999)∗+

(5997, 2211)∗+

(5997, 2451)+

(5997, 2485)∗+

(5997, 2923)+

(5997, 3385)∗+

(5997, 3411)∗+

(5997, 3689)∗+

(5997, 3799)∗+

(5997, 4795)+

(5997, 4855)∗+

(5997, 5037)+

(5997, 5631)∗+

(5997, 7613)+

(5997, 8119)∗+

(8157, 173)∗+

(8157, 503)+

(8157, 575)∗+

(8157, 1099)+

(8157, 1183)∗+

(8157, 1269)∗

(8157, 1417)∗+

(8157, 1507)∗+

(8157, 1639)∗+

(8157, 1715)∗+

(8157, 1853)+

(8157, 1957)∗+

(8157, 1999)∗+

(8157, 2211)∗+

(8157, 2287)+

(8157, 2485)∗+

(8157, 3359)+

(8157, 3385)∗+

(8157, 3411)∗+

(8157, 3531)+

(8157, 3689)∗+

(8157, 3799)∗+

(8157, 3891)+

(8157, 4855)∗+

(8157, 5631)∗+

(8157, 6837)+

(8157, 8119)∗+

(181, 1057)∗

(181, 7399)∗+

(181, 11627)∗+

(595, 1057)∗

(595, 7399)∗+

(595, 11627)∗

(767, 1057)∗

(767, 7399)∗+

(767, 11627)∗+

(861, 1057)∗+

(861, 7399)∗

(861, 11627)∗+

(935, 1057)∗+

(935, 7399)∗+

(935, 11627)∗+

(1165, 1057)∗

(1165, 7399)∗+

(1165, 11627)∗+

(1401, 1057)∗

(1401, 7399)∗+

(1401, 11627)∗

(1493, 1057)∗+

(1493, 7399)∗+

(1493, 11627)∗+

(1643, 1057)∗+

(1643, 7399)∗

(1643, 11627)∗+

(1843, 1057)∗+

(1843, 7399)∗+

(1843, 11627)∗+

(1993, 1057)∗+

(1993, 7399)∗+

(1993, 11627)∗+

(2861, 1057)∗

(2861, 7399)∗+

(2861, 11627)∗+

(2939, 1057)∗

(2939, 7399)∗+

(2939, 11627)∗+

(3493, 1057)∗+

(3493, 7399)∗+

(3493, 11627)∗+

(4097, 1057)∗+

(4097, 7399)∗

(4097, 11627)∗+

(4837, 1057)∗+

(4837, 7399)∗+

(4837, 11627)∗+

(5053, 1057)∗

(5053, 7399)∗+

(5053, 11627)∗+

(5099, 1057)∗

(5099, 7399)∗+

(5099, 11627)∗+

(6967, 1057)∗

(6967, 7399)∗+

(6967, 11627)∗+

(8181, 1057)∗

(8181, 7399)∗+

(8181, 11627)∗+

(10939, 1057)∗

(10939, 7399)∗+

(10939, 11627)∗

Table 3: 15-variable functions with nonlinearity 16264 obtained from 8 and 9-degree PW functions
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Appendix B

Truth table of the 15-variable 1-resilient function with nonlinearity 16264, degree 12, maximum
autocorrelation value 232 and algebraic immunity 7 as given in Example 4 is as follows:

49D1CCFBCED8C4BD485BAE6B5D0E130BEAEAEDB7E9016569171EE5C63C43B9D60AC22A8B5BD2E025E5FFDB6C2AA57201413D498087AE07293F62DFA77BDDAB69

FE02CE542EE83C702D6E13B811BBF1463057171C79FE868BBE3549660711D14CB9DFA6AA727E860AA0752AD37CCF7E5F887232ED8417BA58C7E3DCB1B8BCD299

C2E4EB2E44CA090752EC400E75936CF9D625BA0AD413EBFE41B34873DD1BCD44A7F64EA5BA7D5A2789B11A774F141062D60B9710B139781D9AF5D99E47E4DB19

6A9D72DEFDDA06230DCCA45A1CB8FA9B2788CDD610ED0E6E29129B72B0EA2ADCB195AB7551799726D0F06E869A5850CE36756E9A82E6FE56E944BEC62B802B74

C36FA87BA2674837FB09B73DDF6C74DD3D65E3EDA4E65F95524F3E4B8AF3B2EDE54385FDB1EB5E98D8B87EFDD1C2C4EDC40F6109C79C6026471994B6D6BD5EDB

C87FD6CA40952939B7B2E2DB5BBD1B8E9414126E92582400E9963B152B8B554889F413607D75CFDFFD9CE2D53CF86B95C4E2E5B235F0E8F4266EBE1D156A399F

3307F97EA963B49B0FE40067450B10EBB44D97C2E0581500D04AD9C7EDE492BB4925FA9042802EB355251BF3B9DD1366BE6F9D925216924EF67E343EFC663206

70A3030536EC545D6C16308F70ACC8D7261A948EE1CD594F2C8188263C19F3DE2D18C1FA4D051C7DF91C63D512F31E33136994C02EE307A43B09D02EF3BCED6E

496434E025159CD0C78F8444A495FA702F3FD43C5992BF7058287C7D4CADB45E862630E173E1B3B3922B3F13DC6879B60F1EE672AF85A7267E87A90CBC098A84

113362C0110A307D88758E2FAE116379FB3D505B4EBA461CCCE37C5DAE54C8759AFBC676920BE19CFB89BB2443E54CA3E45F13CAD45501E2061F7AE5BD766A4F

3A21153F04E11F6F2D231C9CA95C741DA1BE00F8258CB711AFFAF8D1128473BD332B08F158AD69830BA7F402190CA7490C93BCEB352013F5844D03EEDF9D2450

BEB81490DFA69C5F9688D25A624812D2BAD31CF4F919DC742358789A19B5D8F211BB3F52BD866B8907008AFEFB8439F47FDD49087EA672E3F1D0D9E630B85F22

E9A0CA2E201D6A74C8FC949A8851F8EC15F1E3AF9340859ABB5AD8989B06EA30DA2D2AC7A0CA6E2850327D72E8C7770AD5EA7884E12A49BE0F5A83E62EABC8E5

1DC0429F00CB57798DCD3D33D091D43EFA3BFF17EF63F4F118836A45D7DCED2267EA93AA7069BAB2A4A2AE7089581974E6B387116B3184ED53D361D7FE4D252B

07E4449538648DC846CEA6EAD75C141FE690BEAE854445DD122F497CE98010ABDEED960DCE08B72210DAF7E0C1A5E3BEB656A36BD8E02AFF2C4AD01B4BF5A77E

1C015EC56C5601A54A101952ACD6BADEEEC9677D1CACB98DDC91BA9E67BE58692C5B0ACA693B95F2746460199D78AE8D04355A8C6ADE748D1DF941A05769A537

758D661E151A0F75F28BBD0F98FFB60170F641AA589B8CD43178883BD62804D49A46AD031B5A3E5AD4052909B93E3BD4E5294172754F5D4F6FA850E28C7F9197

D34D21E91DF685C9151538B9CC43DCF1052A8E9F43172747EA0E2A414C589CAAD2EAEF9823D79841802414AC61C8882C02C328BF990767467F62DA785E7FBE96

DDB07B23A80EF82D3EE263A98E97741F81E554D21070B48A20432B4A55639DD454FDF4D4F2C2349E584B3AC52EA9AA2C8FF654C91036CDA3B23398F065D18832

9FC8299FE8427AD805AFE93BF82007129B2E2A61E0598765C618F3C35DB035B9BC0016B9A08CFF4FE2BBC10EA3004C84977F86074ECE3ADADE109029E4D51A85

E698D48BC54F9FF23976989BDB26F47AC4AF0DC1D015FC2CF69A90ABD3B7BB928748D7910599C2AABD1B899318463B24F565A1A7CF7BDCE82C900BD2C544AD41

1BE9082B35BD5897059C1AF9150F2D6B4740770070346F38919FEE353212F7AB3E2B5FDFD0FB25B2FFD4FA0B7A565CFB5C00108D745A8D5162D1DAEDF1A37FA8

428862454CB17D652957560F7D9213F326B5D9929F71D93BDDFB7D21DA580045E417D249D6215B1C2F1F391DBCDF124E79CD6F3CB9925F7E74092E45F0233E93

9D04AF08A0CB9816564758C16EBFF7BC5BABC26C7816C8775ECEC598E7166C2111C8C6FD3240B765F16CA1AD2923F4798BEB5CB37DA3852BB3FCE30C80C9C471

13F5ACA22EB9AF335A1285E500634B99DC1B8A188B64AB19E30019B452F41A8C3E8DAD8B2A83BB15E9F3DC540F25CA79919BDE418B5058F6772599B4352F0511

D8F81662B4E4794F7D373354E256FDAB4729E724C1AD997D3A7377B5C023008ACDA3EAA90263EE7DF64982BF48804768224C703AA1CA2A15B6DD070F25103ED4

19C3101B9E0FA71EEB74FD07E91C701C58CE6B7985DA1D9F35C33F25F9BDC4D3E66C377C5D157D17E2B8E89F8347F32CC78E3EA864923B936FD7F42CDA2021F0

3495CBBF17F22790BE9B4F90C885F1F6A4FC85133C2E6BE1DA787165F93BF22FE9372F4E415ECD9ED151C2146BF93206796AD6C789529838698F6AB5CB3E22A0

7DB32F13F9F3457482CB0E61CD4EB3E8EEF7916265C254B611A2E93D808E1D0BD04153A83A96A9455E5517C3390712EE96E7EE7915A4B033CE282711324350F0

4E3EBE0A10ED7262D7A15A4CDBCB39941E05E60CF286C93ADDF3FDA7C0490AA52F4B99283B2744CB5A52D26702CFA267F0C3319B33CD621D81A7E15EBEF57300

5830A26FA319C1304BC235C691F017588214C89CC874875BADD4A34CD8CE68E3A2E5006F54BBE0740AD5651360B9C6166EBD9C903CE0485C907D167660E065F5
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