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Abstract

Proof-of-work schemes are economic measures to de-
ter denial-of-service attacks: service requesters com-
pute moderately hard functions that are easy to check
by the provider. We present such a new scheme for
solution-verification protocols. Although most schemes
to date are probabilistic unbounded iterative processes
with high variance of the requester effort, our Merkle
tree scheme is deterministic, with an almost constant
effort and null variance, and is computation-optimal.

1 Introduction

Economic measures to contain denial-of-service attacks
such as spams were first suggested by Dwork and
Naor [7]: a computation stamp is required to obtain
a service. Proof-of-work schemes are dissymmetric:
the computation must be moderately hard for the re-
quester, but easy to check for the service provider. Ap-
plications include having uncheatable benchmarks [4],
helping audit reported metering of web-sites [8], adding
delays [18, 11], managing email addresses [9], mak-
ing a data preservation protocol resistant to malign
peers [19], or limiting abuses on peer-to-peer net-
works [10]. Proofs may be purchased in advance [1].
These schemes are formalized [12], and actual financial
analysis is needed [14, 15] to evaluate their real impact.
There are two flavors of protocol:

1. request service

3. challenge 2. chose

7. grant service

5. response

6. verify

4. solve

Client Server

Figure 1: Challenge-Response protocol

Challenge-response protocols in Figure 1 assume an
interaction between client and server, so that the ser-
vice provider chooses the problem, say an item with
some property from a finite set, and the requester must

retrieve the item in the set. The solution is known to
exist, the search time distribution is basically uniform,
the solution is found on average when about half of
the set has been processed, and standard deviation is
about 1

2
√

3
≈ 0.3 of the mean.

Sender Receiver

1. compute

2. solve

4. verify
3. send

Figure 2: Solution-Verification protocol

Solution-verification protocols in Figure 2 do not as-
sume such a link. The problem must be self-imposed,
based somehow on the service description, say the in-
tended recipient and date of a message. The target
is usually a probabilistic property reached by itera-
tions. The verification phase must check both the prob-
lem choice and the provided solution. Such iterative
searches have a constant probability of success at each
trial, resulting in a shifted geometrical distribution, the
mean is the inverse of the success probability, and the
standard deviation nearly equals the mean. The re-
sulting distribution has a long tail, as the number of
iterations to success is not bounded: about every 50
searches an unlucky case requires more than 4 times
the average to complete.

We present a new proof-of-work solution-verification
scheme based on Merkle trees [16] with an almost con-
stant effort and null variance for the client. The so-
lution costs about 2N , the amount of data sent is
P · ln(N), and the verification costs P · ln(N), with
P = 8 log2(N) a reasonable choice. This contribution
is theoretic with a low variance of the requester effort,
but is also practical as the computation-optimal func-
tion has an interesting work-ratio.

Section 2 discusses proof-of-work schemes suggested
to date, and analyzes their optimality and the com-
putation distribution of solution-verification variants.
Section 3 describes our new computation-optimal
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scheme based on Merkle trees built on top of the ser-
vice description. The solution involves the computa-
tion of most of the tree, although only part of it is sent
thanks to a feedback mechanism that selects only some
leaves. Section 4 computes a cost lower bound to find a
matching tree, then outlines two attacks: the first one
achieves better but close to the bound performance;
the second illustrates the need for the feedback choices
to be independent. Section 5 concludes the paper.

2 Related work

Let the effort be the amount of computation of the
requester as a function of the provider work, and the
work-ratio the effort divided by the provider work. We
introduce two optimality criteria to analyze proof-of-
work schemes, then discuss solution-verification pro-
tocols suggested to date with respect to these crite-
ria and to the work distribution on the requester side.
Challenge-response only functions [17, 13, 21] are not
discussed further in this section.

Proof-of-work schemes may be: (a) communication-
optimal if the amount of data sent on top of the service
description D is minimal. For solution-verification iter-
ative schemes it is ln(work-ratio) to identify the found
solution. For challenge-response protocols, it would be
ln(search space size). This criterion emphasizes mini-
mum impact on communications, and is met by itera-
tive schemes that return an index. (b) computation-
optimal if the challenge or verification work is sim-
ply linear in the amount of communicated data, which
it must at least be if the data are processed. This
criterion mitigates denial-of-service attacks on service
providers, as it avoids fake proof-of-works that would
require significant resources to disprove. A scheme
meeting both criteria is deemed optimal.

Three proof-of-work schemes are suggested by
Dwork and Naor [7]. One is a formula (integer square
root modulo a large prime p ≡ 3 mod 4), as comput-
ing a square root is more expensive than squaring the
result to check it. Assuming a näıve implementation,
it costs ln(p)3 to compute, ln(p) to communicate and
ln(p)2 to check. The search effort is constant and the
variance is null, but the effort is not very interesting,
and is not optimal in any sense. Better implementa-
tions reduce both solution and verification complexi-
ties. If p ≡ 1 mod 4, the square root computation with
the Tonelli-Shanks algorithm involves a non determin-
istic step with a geometrical distribution. The next
two schemes present shortcuts which allow some par-
ticipants to generate cheaper stamps. They rely on
forging a signature without actually breaking a private
key. One uses the Fiat-Shamir signature with a weak
hash function for which an inversion is sought by it-
erating, with a geometrical distribution of the effort.
The computation costs E · ln(N)2, the communication
ln(N) and the verification ln(N)2, where N � 2512 is
needed for the scheme security and the arbitrary ef-

fort E is necessarily much smaller than N , thus the
scheme is not optimal. The other is the Ong-Schnorr-
Shamir signature broken by Pollard, with a similar
non-optimality and a geometrical distribution because
of an iterative step.

Some schemes [3, 8, 20] seek partial hash inversions.
Hashcash [3] iterates a hash function on a string in-
volving the service description and a counter, and is
optimal. The following string was computed in 400
seconds on a 2005 laptop:

1:28:170319:hobbes@comics::7b7b973c8bdb0cb1:147b744d

It allows to send an email to hobbes on March 19, 2017.
The last part is the hexadecimal counter, and the SHA1
hash of the whole string begins with 28 binary zeros.
Franklin and Malkhi [8] builds a hash sequence: it sta-
tistically catches cheaters, but the verification may be
expensive. Wang and Reiter [20] allows the requester
to tune the effort to improve its priority.

Memory-bound schemes [2, 6, 5] seek to reduce the
impact of the computer hardware performance on com-
putation times. All solution-verification variants are
based on an iterative search targeting a partial hash
inversion, thus have a geometrical distribution of suc-
cess, and are communication-optimal. However only
the last of these memory-bound solution-verification
schemes is computation-optimal.

3 Scheme

This sections describes our (almost) constant-effort
and null variance solution-verification proof-of-work
scheme. The client is expected to compute a Merkle
tree, but is required to give only part of the tree for ver-
ification by the service provider. The feedback mecha-
nism uses the root hash so that the given part cannot
be known in advance, thus induces the client to com-
pute most of the tree for a solution. Finally choice
of parameters and a memory-computation implemen-
tation trade-off are discussed.

Merkle tree

Let h be a cryptographic (one way) hash function from
anything to a domain of size 2m. The complexity of
such functions usually depends linearly in the input
length by step, and for our purpose the input is short
thus computations only involve one step. Let D be
a service description and s = h(D) its hash. The
Merkle binary hash tree of depth d (N = 2d) is com-
puted as: (1) leaf digests nN−1+i = h(s‖i) for i in
0 . . . N − 1 ; (2) inner nodes are propagated upwards
ni = h(s‖n2i+1‖n2i+2) for i in N−2 . . . 0. Root hash n0

is computed with 2N calls to h, half of which for leaf
computations, one for the service, and the remainder
for the internal nodes.
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Figure 3: Merkle tree proof (P = 4, N = 28)

Feedback

Merkle trees help manage Lamport signatures: a par-
tial tree allows to check that some leaves belong to
the full tree. The feedback phase of our scheme is to
choose P evenly-distributed independent leaves derived
from the root hash as partial proofs of the whole com-
putation. A cryptographic approximation of such an
independent-dependent derivation is to seed a pseudo-
random number generator from the root hash and to
extract P numbers corresponding to leaves in P con-
secutive segments of size N

P . These leaf numbers and
the additional nodes necessary to check for the full tree
constitute the proof-of-work. Figure 3 illustrates the
data sent for 4 leaf-proofs (black) and the intermedi-
ate hashes that must be provided (green) or computed
(white) on a 256-leaves tree.

Verification

The service provider receives the required service de-
scription D, P leaf numbers, and the intermediate
hashes necessary to compute the root of the Merkle
tree which amount to about P · log2(N) ·m bits.

The server checks the consistency of the partial tree
by recomputing the hashes starting from hash ser-
vice s and leaf numbers and up to the root hash by
using the provided intermediate node hashes, and then
by checking that this root hash leads to the provided
choice of leaves. This requires about P · log2(N) hash
computations for the tree, and some computations of
the pseudo-random number generation. This phase is
computation-optimal as each data is processed a fixed
number of times by the hash function for the tree and
generator computations.

The root hash is not needed to validate the Merkle
tree: it is computed anyway by the verification, and if
enough leaves are required its value is validated indi-
rectly when checking that the leaves are indeed the one
derived from the root hash.

Choice of parameters

Let us discuss the hash function, the random generator,
the tree depth, and the number of proofs.

The hash width may not be the same for the descrip-
tion, the tree, and possibly the generator. Anyway it
should not be easily invertible, so that a convenient
hash cannot be targeted by a search process, e.g. a
service hash for which the tree is available. For perfect
hash functions a sufficient condition is 2m > 2N : one
inversion requires more work than the whole computa-
tion. Moreover the smaller m the better, as it drives
the amount of temporary data as well as the commu-
nicated proof size, especially for the hash used to com-
pute the tree. Any cryptographic hash function such
as SHA1, possibly folded to m = 24 for N = 222, suits
our purpose. Even for such a small m an attacker may
not reuse precomputed hashes as they depend on s.

The pseudo-random number generator must sup-
ply P · log2(N

P ) bits (14 bits per proof for N = 222

and P = 256) to choose the evenly-distributed leaves.
Many generators are available with a seeded internal
state updated periodically. The seed could be the root
hash (possibly not folded) or anything derived from it.
To add to the cost of an attack without impact on the
verification complexity, the generator may rely on h or
its unfolded version. e.g. compute r = hP (s‖n0), and
choose the ith leaf as li = h(r‖i) mod N

P , so that be-
tween P and 2P hash computations are needed to test
a partial tree, as discussed in the next section.

The Merkle tree depth leads to the number of
leaves N and the expected number of hash computa-
tions 2N . The resource consumption required before
the service is provided must depend on the cost of the
service. For emails, a few seconds per recipient seems
reasonable. With SHA1, a depth of 22 leads to 223 hash
calls and warrants this effort on my 2005 laptop. For
other hash functions, the right depth depends on the
performance of these functions on the target hardware.

The smaller the number of proofs, the better for the
communication and verification involved, but if very
few proofs are required a partial computation of the
Merkle tree could be greatly beneficial. We choose P =
8 log2(N), maybe rounded up to a power of two to ease
the even distribution. Section 4 shows this as enough
to make the service requester compute most of the tree.
With this number of proofs, the solution effort is e

w
2 .

It is not communication-optimal: proofs are a little bit
large, about 16 KB for N = 222.

Memory-computation trade-off

The full Merkle tree computation needs (2N−1)·m bits
if the tree is kept in memory to extract the feedback.
A simple yet efficient trade-off is to keep only the up-
per part of the tree, dividing the memory requirement
by 2t, at the price of P · 2t+1 hash computations to
rebuild the subtrees that contain the proofs. The limit
case recomputes the full tree once the needed leaves
are known.
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4 Attacks

In the above protocol, the requester uses 2N hash com-
putations for the Merkle tree, but the provider only
P · log2(N) ≈ 8 log2(N)2 to verify the extracted par-
tial tree, and both side must run the generator. This
section discusses attacks which reduce the requester
work by computing only a fraction of the tree and be-
ing lucky with the feedback so that required leaves are
available. We first compute a lower bound for the cost
of finding a solution depending on the parameters, then
we discuss two attacks.

Partial tree

In order to cheat one must provide a matching tree, i.e.:
(a) a valid partial tree starting from the service hashes,
or the tree itself is rejected ; (b) with valid leaves choice
based on the root hash, or the feedback fails. As this
tree is built from a non-invertible hash function, the
hash computations must have been performed by the
requester at least for the accepted partial tree, or the
verification would very likely fail.

0
1
2
3

n

Figure 4: Partial Merkle tree (f = 0.5, P = 4)

Let us assume that the attacker builds a partial
tree involving a fraction f of the leaves, where missing
hash values are filled-in randomly, as outlined in Fig-
ure 4: evenly-distributed proofs result in 4 real hashes
at depth 2, computed from 4 fake hashes introduced at
depth 3 to hide the non-computed subtrees, and 4 real
hashes coming from the subtrees. At the leaf level, half
of the hashes are really computed.

Once the root hash is available, the feedback leaves
can be derived. If they are among available ones, a
solution has been found and can be returned. The
probability of this event is fP . It is quickly reduced by
smaller fractions and larger numbers of proofs. If the
needed proof leaves are not all available, no solution
was found. From this point, the attacker can either
start all over again, or reuse only part of the tree at
another attempt, or alter the current tree. The later is
the best choice. This tree alteration can either consist
of changing a fake node (iteration at constant f), or of
adding new leaves (extending f).

We are interested in the expected average cost of the
search till a suitable root hash which points to available
leaves is found. Many strategies are possible as itera-

tions or extensions involving any subset of leaves can
be performed in any order. However, each trial requires
the actual root hash for a partial tree and running the
generator. Doing so adds to the current total cost of
the tree and to the cost of later trials.

Cost lower bound

A conservative lower bound cost for a successful attack
can be computed by assuming that every added leaf
is tried up to the root hash with no over-cost for the
queue to reach the root nor for running the generator.
We first evaluate an upper bound of the probability of
success for these partial trees, which is then used to
derive a lower bound for the total cost.

If we neglect the even distribution of proofs, the
probability of success at iteration i (an ith leaf is added
in the tree) is ρi = ( i

N )P , and the probability of getting
there is (1−σi−1) where σi is the cumulated probabil-
ity of success up to i: σ0 = 0, σi = σi−1 + (1−σi−1)ρi,
and σN = 1, as the last iteration solves the problem
with ρN = 1. The (1−σi−1)ρi term is the global prob-
ability of success at i: the computation got there (the
problem was not solved before) and is solved at this
very iteration. As it is lower than ρi:

σj ≤
j∑

i=0

ρi ≤
∫ j+1

N

0

NxP dx =
N

P + 1
(
j + 1
N

)P+1 (1)

If c(i) is the increasing minimal cost of building a tree
with i leaves, the average cost C for the requester is:

C(N,P ) ≥
N∑

i=1

c(i)(1− σi−1)ρi =
N∑

i=1

c(i)(σi − σi−1)

=
`−1∑
i=1

c(i)(σi − σi−1) +
N∑

i=`

c(i)(σi − σi−1)

≥ 0 + c(`)(σN − σ`−1)
= c(`)(1− σ`−1) ≥ c(`)(1− σ`)

The cost is bounded by cutting the summation at `
chosen as `+1

N = ( 1
N )

1
P+1 . The contributions below

this limit are zeroed, and those over are minimized as
c(`) ≥ 2` and (1 − σ`) is bound with Equation (1) so
that (1− σ`) ≥ (1− 1

P+1 ) = P
P+1 hence:

C(N,P ) ≥ (
1
N

)
1

P+1
P

P + 1
(2N) (2)

Figure 5 plots this estimation. A corner is empty where
the number of proofs is greater than the number of
leaves. Choosing P = 8 log2(N) and assuming N ≥ 27:

C(N) ≥ (
1
2

)
1
8

8 log2(N)
8 log2(N) + 1

(2N) ≥ 0.9(2N)

Whatever the attack strategy, for our suggested num-
ber of proofs and a tree of depth 7 or more, a requester
will have to compute at least 90% of the full Merkle
tree on average.
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Figure 5: Relative cost lower bound – Equation (2)

Iterative attack

Let us investigate a strategy that fills a fraction of the
tree with fake hashes introduced to hide non computed
leaves, and then iterates by modifying a fake hash till
success, without increasing the number of leaves. The
resulting average cost is shown in Equation (3). The
first term approximates the hash tree computation cost
for the non-faked leaves and nodes, and is a minimum
cost for the attack with a given fraction f . The second
term is the average iteration cost for a solution, by try-
ing faked hash values from depth log2(P )+1 thanks to
the even-distribution, and another P for the generator.

Citer(f) ≈ 2Nf + (P + log2(P ) + 1)
1
fP

(3)

If f is small, the second term dominates, and the cost
is exponential. If f is close to 1, the first linear term
is more important and the cost is close to the full tree
computation. This effect is illustrated in Figure 6 for
different number of proofs: few proofs lead to very ben-
eficial fractions: many proofs make the minimum of the
functions close to the full tree computation.
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Figure 6: Iterative cost for fraction f with N = 222

F(N,P ) = P+1

√
P (P + log2(P ) + 1)

2N
(4)

Equation (4), the zero of (3) derivative, gives the best
fraction of this iterative strategy for a given size and
number of proofs. F(222, 256) = 0.981 and the cost is
0.989 of the full tree, to be compared to the 0.9 lower
bound computed in the previous subsection. Whether
a significantly better strategy can be devised is unclear.
A numerical cost lower bound gives a 0.961 multiplier
for the same parameters. In order to reduce the effec-
tiveness of this attack further, the hash-based gener-
ator may cost up to P · log2(N) to derive r without
impact on the overall verification complexity, but at
the price of doubling the verification cost.

This successful attack justifies the almost constant-
effort claim: either a full tree is computed and a solu-
tion is found with a null variance, or some partial-tree
unbounded attack is carried out, maybe with a low
variance, and costing at least 90% of the full tree.

Skewed feedback attack

Let us illustrate the impact of a non-independent proof
selection by the pseudo-random number generator. We
assume an extreme case where the generator directly
uses the first bits of the root hash as a unique leaf
index in all N

P chunks: the selected leaves would be
{k, k+ N

P , k+ 2N
P , . . .}. Then in the partial tree attack

the requester could insure that any leaf k computed in
the first chunk have their corresponding shifted leaves
in the other chunks available. Thus, when hitting one
leaf in the first chunk, all other leaves follow, and the
probability of a successful feedback is f instead of fP .
N = 222 and P = 256 lead to 0.002(2N), a 474 speedup
of the attack efficiency.

5 Conclusion

We have made the following contributions:

1. two optimality criteria for proof-of-work schemes:
communication-optimal if the minimum amount
of data is sent, and computation-optimal if the
verification is linear in the received data;

2. a computation-optimal proof-of-work solution-
verification scheme based on Merkle trees with a
e

w
2 effort, for which the work on the requester side

is bounded and the variance is null;

3. a conservative lower bound of the cost of finding
a solution at 90% of the full computation, which
shows that our chosen number of proofs is sound;

4. a successful attack with a small 1% gain for our
parameters, which involves a large constant cost
and a small iterative unbounded part, thus results
in a low overall variance.
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These contributions are both theoretic and practi-
cal. Our solution-verification scheme has a bounded,
constant-effort solution. In contrast to iterative proba-
bilistic searches for which the found solution is exactly
checked, but the requester’s effort is probably known
with a high variance, we rather have a probabilistic
check of the proof-of-work, but the actual solution work
is quite well known with a small variance thanks to
the cost lower bound. Moreover our scheme is prac-
tical, as it is computation-optimal thus not prone to
denial-of-service attacks, and, although not optimal,
the communication induces an interesting work-ratio.
The only other bounded solution-verification scheme is
a formula with a w1.5 effort, which is neither communi-
cation nor computation-optimal. Whether a bounded
fully optimal solution-verification scheme may be built
is an open question.

One may finally reflect that wasting cpu-cycles in
heat for pointless computations is not ecological. How-
ever, denial-of-service attacks are not green either, and
deterring them may avoid wasting significant resources
on the provider side.

Thanks
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