
Attacks on the Stream Ciphers TPy6 and Py6

and

Design of New Ciphers TPy6-A and TPy6-B

Gautham Sekar, Souradyuti Paul, and Bart Preneel

Katholieke Universiteit Leuven, Dept. ESAT/COSIC,
Kasteelpark Arenberg 10,

B–3001, Leuven-Heverlee, Belgium
{gautham.sekar, souradyuti.paul, bart.preneel}@esat.kuleuven.be

Abstract. The stream ciphers Py, Pypy and Py6 were designed by Biham and Seberry for
the ECRYPT-eSTREAM project in 2005. The ciphers were promoted to the ‘Focus’ ciphers
of the Phase II of the eSTREAM project. However, due to some cryptanalytic results on the
ciphers, strengthened versions of the ciphers, namely TPy, TPypy and TPy6 were built. So
far there exists no attacks on TPy6. In this paper, we find hitherto unknown weaknesses in
the keystream generation algorithms of the Py6 and of its stronger variant TPy6. Exploiting
these weaknesses, a large number of distinguishing attacks are mounted on the ciphers, the
best of which works with 2224.6 data and comparable time. In the second part, we present two
new ciphers derived from the TPy6, namely TPy6-A and TPy6-B, whose performances are
2.65 cycles/byte and 4.4 cycles/byte on Pentium III. As a result, to the best of our knowledge,
on Pentium platforms TPy6-A becomes the fastest stream cipher in the literature. Based on
our security analysis, we conjecture that no attacks better than brute force are possible on the
ciphers TPy6-A and TPy6-B.

1 Introduction

At first, we recall a brief history of the Py-family of ciphers.

Timeline: the Py-family of Ciphers

– April 2005. The ciphers Py and Py6, designed by Biham and Seberry, were submitted to the
ECRYPT project for analysis and evaluation in the category of software based stream ciphers
[3]. The impressive speed of the cipher Py in software (about 2.5 times faster than the RC4)
made it one of the fastest and most attractive contestants.

– March 2006 (at FSE 2006). Paul, Preneel and Sekar reported distinguishing attacks with 289.2

data and comparable time against the cipher Py [9]. Crowley [5] later reduced the complexity
to 272 by employing a Hidden Markov Model.

– March 2006 (at the Rump session of FSE 2006). A new cipher, namely Pypy, was proposed
by the designers to rule out the aforementioned distinguishing attacks on Py [4].

– May 2006 (presented at Asiacrypt 2006). Distinguishing attacks were reported against
Py6 with 268 data and comparable time by Paul and Preneel [10].

– October 2006 (presented at Eurocrypt 2007). Wu and Preneel showed key recovery attacks
against the ciphers Py, Pypy, Py6 with chosen IVs. This attack was subsequently improved by
Isobe et al. [8].

– January 2007. Three new ciphers TPypy, TPy, TPy6 were proposed by the designers [2]; the
ciphers can very well be viewed as the strengthened versions of the previous ciphers Py, Pypy
and Py6 where the above attacks do not apply.

– February 2007. Sekar et al. published attacks on TPy and TPypy, each of which requires 2281

data and comparable time [11].
– August 2007 (presented at SAC 2007). Tsunoo et al. showed a distinguishing attack on

TPypy with a data complexity of 2199 [14].

– October 2007 (to be presented at ISC 2007). Sekar et al. showed attacks on TPy, the best
of which requires 2275 data and comparable time [12]. So far there exist no attacks on the cipher
TPy6.

– December 2007 (to be presented at Indocrypt 2007). Sekar et al. showed related-key
attacks on Py, Pypy, TPy and TPypy, each requiring 2192 data and comparable time [13].

Algorithm 1 The keystream generation algorithm of TPy6 (and Py6)

Require: Y [−3, ..., 64], P [0, ..., 63], a 32-bit variable s

Ensure: 64-bit random output
/*Update and rotate P*/

1: swap (P [0], P [Y [43]&63]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [18]] − Y [P [57]];
4: s = ROTL32(s, ((P [26] + 18)&31));

/* Output 4 or 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [64]) + Y [P [8]]);
6: output ((s ⊕Y [−1]) + Y [P [21]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [48]];
8: rotate(Y);

2 Notation and Convention

– The mth bit (m = 0 denotes the least significant bit or lsb) of the first output-word generated
at round n is denoted by On(m). The second output-word is not used anywhere in our analysis.

– Pn, Yn+1 and sn are the inputs to the algorithm at round n. When this convention is followed, we
see that On = (ROTL32(sn, 25) ⊕ Yn[64]) + Yn[Pn[26]]- the index ‘n’ is maintained throughout
the expression.

– The ROTL32(x, k) denotes that the variable x is cyclically rotated to the left by k bits.
– Yn[m], Pn[m] denote the mth elements of array Yn and Pn respectively.
– Yn[m]i, Pn[m]i denote the ith bit (i = 0 denotes the lsb) of Yn[m], Pn[m] respectively.
– The symbol ‘&’ denotes the and operator.
– The operators ‘+’ and ‘−’ denote addition modulo 232 and subtraction modulo 232 respectively,

except when used with expressions which relate two elements of array P . In this case they denote
addition and subtraction over Z.

– The symbol ‘⊕’ denotes bitwise exclusive-or and
⋂

denotes set intersection.
– In On(i), sn(i) and Yn[Pm[X]]i, the index representing bit position, i.e., i denotes i mod 32.
– Y c

n [Pm[X]]i denotes the complement of Yn[Pm[X]]i.
– The pseudorandom bit generation algorithm of a stream cipher is denoted by PRBG.

3 Distinguishing attacks on the Py6 and the TPy6

We detect a large number of input-output correlations of TPy6 and Py6 that allow us to build
distinguishers. The weak states which lead to the best distinguishing attack are outlined in the
following theorem.

Theorem 1. O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7) = 0 if the following 17 conditions are simultaneously
satisfied.
1. P1[26] ≡ −18 mod 32 (event E1), 2. P2[26] ≡ 7 mod 32 (event E2), 3. P3[26] ≡ −4 mod 32
(event E3), 4. P7[26] ≡ 3 mod 32 (event E4),

2

5. P8[26] ≡ 3 mod 32 (event E5), 6. P1[18] = P2[57] + 1 (event E6), 7. P1[57] = P2[18] + 1 (event
E7), 8. P7[18] = P8[18] + 1 (event E8),
9. P7[57] = P8[57] + 1 (event E9), 10. P3[18] = 62 (event E10), 11. P1[8] = P3[57] + 2 (event E11),
12. P1[18] = 3 (event E12),
13. P3[8] = 0 (event E13), 14. P1[57] = P7[8] + 6 (event E14), 15. P7[48] = 60 (event E15), 16.
P6[48] = P8[8] + 2 (event E16),
17. d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7) ⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕ c8(i+7) ⊕ e8(i+7) = 0.1

Proof. First, we state and prove two lemmata which will be used to establish the theorem.

Lemma 1. If
1. P1[26] ≡ −18 mod 32, 2. P3[26] ≡ −4 mod 32, 3. P7[26] ≡ 3 mod 32, 4. P8[26] ≡ 3 mod 32
then the following equations are satisfied:

1. O1(i) = s0(i+7) ⊕ Y1[P1[18]]i+7 ⊕ Y c
1 [P1[57]]i+7 ⊕ Y1[256]i ⊕ Y1[P1[8]]i

⊕ c1(i) ⊕ d1(i+7),
2. O3(i+7) = s2(i) ⊕ Y3[P3[18]]i ⊕ Y c

3 [P3[57]]i ⊕ Y3[256]i+7 ⊕ Y3[P3[8]]i+7

⊕ c3(i+7) ⊕ d3(i),
3. O7(i+7) = Y7[P7[18]]i−7 ⊕ Y c

7 [P7[57]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[8]]i+7

⊕Y6[P6[48]]i+7 ⊕ c7(i+7) ⊕ d7(i−7) ⊕ e7(i+7),
4. O8(i+7) = Y8[P8[18]]i−7 ⊕ Y c

8 [P8[57]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[8]]i+7

⊕Y7[P7[48]]i+7 ⊕ c8(i+7) ⊕ d8(i−7) ⊕ e8(i+7).

Proof. From Figure 1, we get

Yn[i] = Yn+1[i − 1] (1)

when −2 ≤ i ≤ 64. When i = −3,

Yn+1[64] = (ROTL32(si, 14)⊕ Yn[−3]) + Yn[Pn[48]].

Generalizing (1), we have

Yn[i] = Yn+k[i − k] (2)

when −3 ≤ i − k ≤ 63. Line 5 of Algorithm 1 gives

A

B

C

X

Y

B

C

Y

D

A1

C

D

A1

E

B1

− 3

− 2

− 1

63

64

Y Yn Y n+ 2n+ 1

Fig. 1. The figure shows the update of the S-box Y . Yn[i] = Yn+1[i − 1] when −2 ≤ i ≤ 64. Yn+1[64] = A1
when i = −3 and A1 = (ROTL32(sn, 14) ⊕ A) + Yn[Pn[48]]. Generalizing the above, we can write Yn[i] =
Yn+k[i − k] when −3 ≤ i − k ≤ 63.

O7 = (ROTL32(s7, 25) ⊕ Y7[64]) + Y7[P7[8]]. (3)

1 The terms c, d, e are the carries generated in certain expressions, the descriptions of which can be found
in the proof of Theorem 1.

3

Let the c7 denote the carry in the above equation. Since ROTL32(s7, 25)i = s7(i−25 mod 32),

O7(i) = s7(i−25 mod 32) ⊕ Y7[64]i ⊕ Y7[P7[8]]i ⊕ c7(i). (4)

Lines 3 and 4 of Algorithm 1 give us

s7 = ROTL32(s6 + Y7[P7[18]] − Y7[P7[57]], P7[26] + 18 mod 32) (5)

⇒ s7(j) = s6(j−k mod 32) ⊕ Y7[P7[18]]j−k mod 32 ⊕ Y c
7 [P7[57]]j−k mod 32

⊕ d7(j−k mod 32) (6)

where k = P7[26] + 18 mod 32, d7(i) = f7(i) ⊕ g7(i) and d7(0) = 1 (f7 and g7 are the carry terms
in (5) which are explained in Sect. 4.2). For simplicity, henceforth we denote X(i mod 32) by X(i).
Thus (6) becomes,

s7(j) = s6(j−k) ⊕ Y7[P7[18]]j−k ⊕ Y c
7 [P7[57]]j−k ⊕ d7(j−k). (7)

If j = i − 25 mod 32, then (7) becomes

s7(i−25) = s6(i−k−25) ⊕ Y7[P7[18]]i−k−25 ⊕ Y c
7 [P7[57]]i−k−25 ⊕ d7(i−k−25). (8)

Substituting (8) in (4), we get,

O7(i) = s6(i−k−25) ⊕ Y7[P7[18]]i−k−25 ⊕ Y c
7 [P7[57]]i−k−25 ⊕ Y7[64]i

⊕Y7[P7[8]]i ⊕ c7(i) ⊕ d7(i−k−25). (9)

Next, we have

Y7[64] = (ROTL32(s6, 14)⊕ Y6[−3]) + Y6[P6[48]], (10)

Y7[64]i = s6(i−14) ⊕ Y6[−3]i ⊕ Y6[P6[48]]i ⊕ e7(i) (11)

where e7 is the carry term in (10). Substituting (11) in (9), we get,

O7(i) = s6(i−k−25) ⊕ s6(i−14) ⊕ Y7[P7[18]]i−k−25 ⊕ Y c
7 [P7[57]]i−k−25 ⊕ Y6[−3]i

⊕Y7[P7[8]]i ⊕ Y6[P6[48]]i ⊕ c7(i) ⊕ d7(i−k−25) ⊕ e7(i). (12)

Now, if k = −11 (i.e., k ≡ −11 mod 32 ⇒ P7[26] + 18 ≡ −11 mod 32 ⇒ P7[26] ≡ 3 mod 32) then
s6(i−k−25) ⊕ s6(i−14) = 0. Hence, when P7[26] ≡ 3 mod 32, (12) becomes

O7(i) = Y7[P7[18]]i−14 ⊕ Y c
7 [P7[57]]i−14 ⊕ Y6[−3]i ⊕ Y7[P7[8]]i

⊕Y6[P6[48]]i ⊕ c7(i) ⊕ d7(i−14) ⊕ e7(i). (13)

By similar arguments, when P8[26] ≡ 3 mod 32,

O8(i) = Y8[P8[18]]i−14 ⊕ Y c
8 [P8[57]]i−14 ⊕ Y7[−3]i ⊕ Y8[P8[8]]i

⊕Y7[P7[48]]i ⊕ c8(i) ⊕ d8(i−14) ⊕ e8(i). (14)

From (9), we get

O1(i) = s0(i−k−25) ⊕ Y1[P1[18]]i−k−25 ⊕ Y c
1 [P1[57]]i−k−25 ⊕ Y1[64]i

⊕Y1[P1[8]]i ⊕ c1(i) ⊕ d1(i−k−25). (15)

When k = 0 (i.e., P1[26] ≡ −18 mod 32), the above equation reduces to

O1(i) = s0(i+7) ⊕ Y1[P1[18]]i+7 ⊕ Y c
1 [P1[57]]i+7 ⊕ Y1[64]i ⊕ Y1[P1[8]]i

⊕ c1(i) ⊕ d1(i+7). (16)

4

Similarly, when P3[26] ≡ −4 mod 32, we have

O3(i+7) = s2(i) ⊕ Y3[P3[18]]i ⊕ Y c
3 [P3[57]]i ⊕ Y3[64]i+7 ⊕ Y3[P3[8]]i+7

⊕ c3(i+7) ⊕ d3(i). (17)

From (13) and (14), we derive the following results:

O7(i+7) = Y7[P7[18]]i−7 ⊕ Y c
7 [P7[57]]i−7 ⊕ Y6[−3]i+7 ⊕ Y7[P7[8]]i+7

⊕Y6[P6[48]]i+7 ⊕ c7(i+7) ⊕ d7(i−7) ⊕ e7(i+7), (18)

O8(i+7) = Y8[P8[18]]i−7 ⊕ Y c
8 [P8[57]]i−7 ⊕ Y7[−3]i+7 ⊕ Y8[P8[8]]i+7

⊕Y7[P7[48]]i+7 ⊕ c8(i+7) ⊕ d8(i−7) ⊕ e8(i+7). (19)

This completes the proof. �

Now we state the second lemma.

Lemma 2. s0(i+7) = s2(i) if the following conditions are simultaneously satisfied,

1. P1[26] ≡ −18 mod 32,
2. P2[26] ≡ 7 mod 32,
3. P1[18] = P2[57] + 1,
4. P1[57] = P2[18] + 1.

Table 1. Terms generated in O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7), given the events E1 to E7 simultaneously
occur (the terms are grouped by their bit positions)

Bit position: i − 7 Bit position: i Bit position: i + 7

Y7[P7[18]] Y1[64] Y1[P1[18]]

Y7[P7[57]] Y1[P1[8]] Y1[P1[57]]

Y8[P8[18]] Y3[P3[18]] Y3[256]

Y8[P8[57]] Y3[P3[57]] Y3[P3[8]]

Carries Carries Y6[P6[48]]

Y6[−3]

Y7[P7[8]]

Y7[P7[48]]

Y7[−3]

Y8[P8[8]]

Carries

Proof. Equation (5) gives us:

s1 = ROTL32(s0 + Y1[P1[18]]− Y1[P1[57]], P1[26] + 18 mod 32).

The first condition (P1[26] ≡ −18 mod 32) reduces this to

s1 = s0 + Y1[P1[18]] − Y1[P1[57]].

Therefore,

s2 = ROTL32(s0 + Y2[P2[18]]− Y2[P2[57]] + Y1[P1[18]] − Y1[P1[57]],

P2[26] + 18 mod 32).

Conditions 3 and 4, when used with (1), reduce the above equation to

s2 = ROTL32(s0, P2[26] + 18 mod 32).

5

Finally, with condition 2 (i.e., P2[26] ≡ 7 mod 32), the previous equation becomes

s2 = ROTL32(s0, 25)

⇒ s2(i) = ROTL32(s0, 25)i = s0(i−25)

= s0(i+7). (20)

This completes the proof. �

Now we observe that, when the conditions listed under (i) Lemma 1 (i.e., events E1, E3, E4 and E5)
and (ii) Lemma 2 (i.e., events E1, E2, E6 and E7) are simultaneously satisfied, then the expression
O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) is the XOR of the terms which are listed in Table 1 (grouped
according to the bit positions).2 Similarly, the ‘carries’ in Table 1 are elaborated in Table 2.

Table 2. Carry terms generated in O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) grouped by their bit positions

Bit position: i − 7 Bit position: i Bit position: i + 7

d7 c1 d1

d8 d3 c3

c7

e7

c8

e8

If the Y -terms in Table 1 are pairwise equated (this is achieved when the events E8 through to
E16 occur) then we get

O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7)

⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕ c8(i+7)

⊕ e8(i+7). (21)

Now, when the RHS of (21) equals zero (i.e., E17 occurs) we get

O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = 0.

This completes the proof. �

4 Computation of the Bias

In this section, we quantify the bias in the outputs of TPy6 (and hence Py6) induced by the fortuitous
events similar to the one described in Sect. 3. Now it is important to note that there may be more than
one set of 17 conditions possible, where each of them results in O1(i)⊕O3(i+7)⊕O7(i+7)⊕O8(i+7) = 0
(let us assume that there are n such sets). In Theorem 1, we listed one such set. Our experiments
suggest that these n sets are mutually independent, however, a formal proof of that is nontrivial.

Each of the events E1 to E5 occurs with approximate probability 1
32 and each of the events E6 to

E16 occurs with probability which is approximately 1
64 . Let p denote the probability that condition

17 is satisfied. Let F denote the event
⋂16

j=1 Ej . Therefore,

P [F] = (
1

32
)5 · (

1

64
)11.

2 Note that none of the terms listed in Table 1 is of the form Ac because we used the fact that Ac⊕Bc = A⊕B

in (16), (17), (18) and (19).

6

We see that there are n F -like events (i.e., the intersection of 16 conditions). Let Fn denote the
union of these n events. Since, each event occurs with approximately the same probability,

P [Fn] ≈ n · P [F]

≈ n · (
1

32
)5 · (

1

64
)11

= n ·
1

291
.

From Table 1, we get the maximum number of ways that terms of a particular column can be
pairwise equated and hence the upper bound on n can be calculated to be 2 · 2 · 945 = 3780, that is,
n < 3780.

4.1 Formulating the Bias

Now, we establish a formula to compute P [O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7) = 0], under the as-
sumption of a perfectly random key/IV setup and the uniformity of bits when Fn does not occur.Our
experiments suggest that it is infeasible to find a set of conditions such that the overall bias (com-
puted on the basis of the aforementioned assumption of randomness in the event that Fn does not
occur) is canceled or reduced in magnitude. Therefore, this assumption is reasonable. Let T denote
O1(i) ⊕ O3(i+7) ⊕ O7(i+7) ⊕ O8(i+7). Then using Bayes’ rule we get

P [T = 0] = P [T = 0|Fn ∩ E17] · P [Fn ∩ E17] + P [T = 0|F c
n ∪ Ec

17] · P [F c
n ∪ Ec

17]

= P [T = 0|Fn ∩ E17] · P [Fn ∩ E17] + P [T = 0|F c
n ∩ E17] · P [F c

n ∩ E17]

+ P [T = 0|Fn ∩ Ec
17] · P [Fn ∩ Ec

17] + P [T = 0|F c
n ∩ Ec

17] · P [F c
n ∩ Ec

17]

= 1 · (n · p ·
1

291
) +

1

2
· (1 − n ·

1

291
) · p + 0 · P [Fn ∩ Ec

17]

+
1

2
· (1 − n ·

1

291
) · (1 − p)

=
1

2
+ n · (2p − 1) ·

1

292
. (22)

Hence, we see that the distribution of the outputs (O1(i), O3(i+7), O7(i+7), O8(i+7)) is biased. The

bias is equal to n · (2p− 1) · 1
292 . In the following section, we provide formulas to compute p, i.e., the

probability that E17 occurs; or more generally, the probability that the 17th condition of each of the
n F -like events occurs, i.e., P [d7(i−7) ⊕ d8(i−7) ⊕ c1(i) ⊕ d3(i) ⊕ d1(i+7) ⊕ c3(i+7) ⊕ c7(i+7) ⊕ e7(i+7) ⊕
c8(i+7) ⊕ e8(i+7)] = 0.

4.2 Biases in the Carry Terms

In this section, we provide formulas to calculate the bias in the carry terms. The carry terms c and
e are generated in expressions of the form (S ⊕ X) + Z. We now proceed to calculate P [cl(i) = 0]
assuming that S, X and Z are uniformly distributed and independent. Under this assumption,
P [Si = 0] = P [Xi = 0] = P [Zi = 0] = 1

2 , that is, the probability that the carry bit at position i

equals zero depends only on i. Stated otherwise, P [c(i) = 0] = P [e(i) = 0]. Let P [c(i) = 0] be denoted
by pi. Since there is no carry on the lsb, p0 = 1. We now have Table 3.

From Table 3, using Bayes’ rule we get

pi =
pi−1

2
+

1

4
.

Solving this recursion, given p0 = 1, we get

pi =
1

2
+

1

2i+1
. (23)

7

Table 3. Truth table for computing pi (NR=Not Required)

c(i−1) S(i−1) X(i−1) Z(i−1) c(i) Probability

0 0 0 0 0
pi−1

8

0 0 0 1 0
pi−1

8

0 0 1 0 0
pi−1

8

0 0 1 1 0
pi−1

8

0 1 0 0 0
pi−1

8

0 1 0 1 1 NR

0 1 1 0 1 NR

0 1 1 1 0
pi−1

8

1 0 0 0 0
1−pi−1

8

1 0 0 1 1 NR

1 0 1 0 1 NR

1 0 1 1 0
1−pi−1

8

1 1 0 0 1 NR

1 1 0 1 1 NR

1 1 1 0 1 NR

1 1 1 1 1 NR

1 0 1 0 1 0 10

0 0

00

1 1 1 1 1 1

111111

0

0 0

0

0 0 0 00

011111

1

1111 0 0 0 0

0+ 0 +

10
1 + 1 + 1 = (3) = (0 1 1)2

S = 85

X= 123

Z = 245

g

f

Carries

SUM = 197

(modulo 256)

Fig. 2. An example showing how the carries are generated when three 8-bit variables S = 85, X = 123 and
Z = 245 are added

Now, the carry terms f and g are generated in expressions of the form S + X − Z. This can be
rewritten as S + X + Zc + 1 since the additions in these two expressions are modulo 232. The
presence of two carries in S + X + Z is demonstrated using the Figure 2. The carries generated in
S + X + Zc + 1 can be thought of as carries generated in S + X + A where A = Zc and the carries
on the lsb f(0) = 1, g(0) = 0. Let qi denote P [f(i) = 0] and ri denote P [g(i) = 0]. Hence, q0 = 0,
r0 = 1 and r1 = 1. Now we have Table 4.

From Table 4, using Bayes’ rule we get

qi =
1

2
+

5 · qi−1 · ri−1

8
−

qi−1

4
−

ri−1

4
, (24)

ri+1 =
1

2
−

qi−1 · ri−1

4
+

3 · qi−1

8
+

3 · ri−1

8
. (25)

Using the initial conditions, q0 = 0, r0 = 1 and r1 = 1, qi and ri are computed recursively. Since
dm(i) denotes fm(i) ⊕ gm(i) for any m > 0,

1. P [d7(i−7) = 0] = P [d8(i−7) = 0] = qi−7 mod 32 · ri−7 mod 32

+ (1 − qi−7 mod 32) · (1 − ri−7 mod 32),

8

Table 4. Truth table for computing qi and ri+1 using qi−1 and ri−1 (NR=Not Required)

f(i−1) g(i−1) S(i−1) X(i−1) Z(i−1) f(i) g(i+1) Probability

0 0 0 0 0 0 0
qi−1·ri−1

8

0 0 0 0 1 0 0
qi−1·ri−1

8

0 0 0 1 0 0 0
qi−1·ri−1

8

0 0 0 1 1 1 0 NR

0 0 1 0 0 0 0
qi−1·ri−1

8

0 0 1 0 1 1 0 NR

0 0 1 1 0 1 0 NR

0 0 1 1 1 0 0
qi−1·ri−1

8

0 1 0 0 0 0 0
qi−1·(1−ri−1)

8

0 1 0 0 1 1 0 NR

0 1 0 1 0 1 0 NR

0 1 0 1 1 1 0 NR

0 1 1 0 0 1 0 NR

0 1 1 0 1 1 0 NR

0 1 1 1 0 1 0 NR

0 1 1 1 1 0 1
qi−1·(1−ri−1)

8

1 0 0 0 0 0 0
(1−qi−1)·ri−1

8

1 0 0 0 1 1 0 NR

1 0 0 1 0 1 0 NR

1 0 0 1 1 1 0 NR

1 0 1 0 0 1 0 NR

1 0 1 0 1 1 0 NR

1 0 1 1 0 1 0 NR

1 0 1 1 1 0 1
(1−qi−1)·ri−1

8

1 1 0 0 0 1 0 NR

1 1 0 0 1 1 0 NR

1 1 0 1 0 1 0 NR

1 1 0 1 1 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 0 0 1 0 NR

1 1 1 0 1 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 1 0 0 1
(1−qi−1)·(1−ri−1)

8

1 1 1 1 1 0 1
(1−qi−1)·(1−ri−1)

8

9

2. P [c1(i) = 0] = 1
2 + 1

2i+1 ,
3. P [d3(i) = 0] = qi · ri + (1 − qi) · (1 − ri),
4. P [d1(i+7) = 0] = qi+7 mod 32 · ri+7 mod 32

+ (1 − qi+7 mod 32) · (1 − ri+7 mod 32),
5. P [c3(i+7) = 0] = P [c7(i+7) = 0] = P [e7(i+7) = 0] = P [c8(i+7) = 0]

= P [e8(i+7) = 0] = 1
2 + 1

2(i+7 mod 32)+1 .

Using the above formulas, the value of p can be computed for any given i. Running simulation,
we find that the maximum bias in the chosen outputs occurs when i = 25 which corresponds to
p = 0.5 − 2−34.2. Hence, (22) gives us

P [T = 0] =
1

2
−

n

2125.2

⇒ P [T = 1] =
1

2
+

n

2125.2
,

when i = 25. Substituting n = 3780 in the above equation, we get:

P [T = 1] =
1

2
+

1

2113.3
. (26)

This is an upper bound on the probability that the outputs (O1(i), O3(i+7), O7(i+7), O8(i+7)) of TPy6
(and hence Py6) are biased. From Sect. 3, we found that n ≥ 1. From the previous discussion, we
see that n < 3780. Hence, 1 ≤ n < 3780. If n = 1, then P [T = 1] = 1

2 + 1
2125.2 . Thus,

1

2
(1 +

1

2124.2
) ≤ P [T = 1] <

1

2
(1 +

1

2112.3
). (27)

5 The Distinguisher

A distinguisher is an algorithm which distinguishes a given stream of bits from a stream of bits gen-
erated by a perfect PRBG. The distinguisher is constructed by collecting sufficiently many outputs
(O1(25), O3(0), O7(0), O8(0)) generated by as many key/IVs. To compute the minimum number of
samples required to establish the distinguisher, we use the following corollary of a theorem from [7].

Corollary 1. If an event e occurs in a distribution X with probability p and in Y with probability
p(1 + q) then, if p = 1

2 , O(1
q2) samples are required to distinguish X from Y with non-negligible

probability of success.

In the present case, e is the event O1(25) ⊕ O3(0) ⊕ O7(0) ⊕ O8(0) = 0, X is the distribution of the
outputs O1, O3, O7 and O8 produced by a perfectly random keystream generator and Y is the
distribution of the outputs produced by TPy6. From (27), p = 1

2 and the highest value of q = 1
2112.3 .

Hence O(1
(2−112.3)2

) = O(2224.6) output samples are needed to construct the best distinguisher with

a non-negligible probability of success.

6 A Family of Distinguishers

In Sect. 3 we found that the outputs at rounds 1, 3, 7 and 8 are biased allowing us to build a
distinguisher. It is found that there exist plenty of 4-tuples of biased outputs. The generalization is
presented in the following theorem.

Theorem 2. The distribution of the outputs (Or(i), Or+2(i+7), Ot(i+7), Ou(i+7)) of the TPy6 are
biased for many suitably chosen (r, t, u)’s where r > 0; t, u ≥ 5; t 6∈ {r, r + 2, u}; u 6∈ {r, r + 2, t}.

We omit the proof as it is similar to the proof furnished for Theorem 1. This allows us to
construct a family of distinguishers for the cipher TPy6. It seems possible to combine these huge
number of distinguishers in order to construct one single efficient distinguisher; however, any concrete
mathematical model to combine them is still an interesting open problem. Another major implication
of the above generalization theorem is the fact that the TPy6 outputs will remain always biased no
matter how many initial outputwords are discarded from the keystream.

10

7 Two New Ciphers: TPy6-A and TPy6-B

The Py-family of stream ciphers has been subject to extensive analysis ever since Py and Py6 were
proposed in April 2005. The impressive speeds of the ciphers in software, particularly the Py6 and
the TPy6, have motivated us to modify the TPy6 to rule out all the attacks described in the previous
sections of the paper. Firstly, many attacks on the Py, in particular, [5], [8], [9] and [15] can be easily
translated to attacks on the Py6. However, due to smaller internal state of the TPy6, the attack
described in [11] does not apply to TPy6. Secondly, the speed of execution of Py6 on Pentium-III is
about 2.82 cycles/byte which is very fast. These observations make TPy6 and Py6 more favorable to
be used as fast stream ciphers than Py. The TPy6 is resistant to the attacks described in [8], [15]. In
order to generate a fast and secure stream cipher, we redesign the TPy6 where the variable rotation of
a 32-bit term s in the round function is replaced by a constant, non-zero rotation term. The resultant
cipher is named TPy6-A. It is shown that this tweak clearly reduces one addition operation in each
round (thereby, the performance is improved) and makes the cipher secure against all the existing
attacks on Py6 and TPy6. A relatively slower version, where one outputword is removed from each
round of TPy6, is also proposed. The speeds of execution of the TPy6-A and TPy6-B on Pentium-
III are 2.65 cycles/byte and 4.4 cycles/byte. Our security analysis conjectures that the TPy6-A and
TPy6-B are immune to all attacks better than brute force. Algorithm 2 describes the PRBGs of
the TPy6-A and TPy6-B. Note that the key/IV setup algorithms of the ciphers are identical to the
key/IV setup of TPy6.

Algorithm 2 Round functions of TPy6-A and TPy6-B

Require: Y [−3, ..., 64], P [0, ..., 63], a 32-bit variable s

Ensure: 64-bit random (TPy6-A) or 32-bit random (TPy6-B) output
/*Update and rotate P*/

1: swap (P [0], P [Y [43]&63]);
2: rotate (P);

/* Update s*/
3: s+ = Y [P [18]] − Y [P [57]];
4: s = ROTL32(s, 19); /*Tweak: variable rotation in TPy6 replaced by a constant non-zero rotation*/

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [64]) + Y [P [8]]);/*this step is removed for TPy6-B*/
6: output ((s ⊕Y [−1]) + Y [P [21]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [48]];
8: rotate(Y);

7.1 Security Analysis

In this section we justify how the new ciphers TPy6-A and TPy6-B should be able to resist several
common attacks against array-based stream ciphers.

(i) Resistance to Distinguishing Attacks: The TPy6-A and the TPy6-B are modified versions of
the TPy6. The following distinguishing attacks are applicable to the TPy6. We now show why those
attacks do not apply to the new designs.

1. Paul-Preneel attack[10]: This attack applies to the TPy6. Condition 1 under Theorem 1 in [9],
that is, P2[26] ≡ −18 mod 32, is impossible when c = 19 (in which case we have P2[26] ≡
1 mod 32). Note that when c = 0, P2[26] ≡ −18 mod 32 is satisfied. Therefore, c = 0 is not a
safe choice.

2. The attack described in this paper: Again, condition 1 under Theorem 1, that is, P1[26] ≡
−18 mod 32, is violated when c = 19 (in which case we have P1[26] ≡ 1 mod 32). Note that

11

condition 1 is common to all the n sets (1 ≤ n < 3780) of conditions (see Sect. 4) and hence its
violation nullifies the attack.

In Appendix A, we elaborate more on the usefulness of selection of constant rotation to eliminate
any distinguishing attacks on the new ciphers.
(ii) Resistance to Differential attacks : Wu and Preneel found weaknesses in the IV setups of the
Py6 [15]. Exploiting these weaknesses, it is possible to recover some key-dependent information. The
cipher TPy6 was specifically designed to rule out these weaknesses. Since the IV setup algorithms of
the TPy6-A and the TPy6-B are identical with that of TPy6, these attacks are no longer applicable
to the new ciphers.

(iii) Resistance to Algebraic attacks and Guess-and-Determine Attacks: TPy6-A and TPy6-B are
array-based stream ciphers. The sizes of the internal states of TPy6-A and TPy6-B are 2,720 bits
each, which is quite large. Hence, it appears infeasible to mount algebraic attacks that are otherwise
common against LFSR-based stream ciphers which have low footprints. From our experiments, we
expect that the TPy6-A and TPy6-B are also secure against guess-and-determine attacks.

8 Conclusions and Open Problems

The first contribution of the paper is the development of a family of distinguishers from the outputs
at rounds r, r + 2, t and u of the cipher TPy6 (and Py6), where r > 0; t, u ≥ 5; t 6∈ {r, r + 2, u};
u 6∈ {r, r+2, t}. The best distinguisher works with data complexity 2224.6. It is reasonable to assume
that these weak states can be combined to mount a more efficient attack on TPy; however, methods
to combine many distinguishers into a single yet more efficient one is still an open problem. The
second contribution is a proposal of two new, extremely fast stream ciphers TPy6-A and TPy6-B,
which rule out all the existing attacks on the TPy6 and are conjectured to be immune to all attacks
better than brute force.

References

1. T. Baignères, P. Junod and S. Vaudenay, “How Far Can We Go Beyond Linear Cryptanalysis?,”Asiacrypt

2004 (P. Lee, ed.), vol. 3329 of LNCS, pp. 432–450, Springer-Verlag, 2004.

2. E. Biham, J. Seberry, “Tweaking the IV Setup of the Py Family of Ciphers – The Ciphers Tpy, TPypy,
and TPy6,” Published on the author’s webpage at http://www.cs.technion.ac.il/ biham/, January
25, 2007.

3. E. Biham, J. Seberry, “Py (Roo): A Fast and Secure Stream Cipher using Rolling Arrays,” ecrypt

submission, 2005.

4. E. Biham, J. Seberry, “Pypy (Roopy): Another Version of Py,” ecrypt submission, 2006.

5. P. Crowley, “Improved Cryptanalysis of Py,” Workshop Record of SASC 2006 - Stream Ciphers Revisited,
ECRYPT Network of Excellence in Cryptology, February 2006, Leuven (Belgium), pp. 52-60.

6. S. Fluhrer, I. Mantin, A. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4,” Selected Areas
in Cryptography 2001 (S. Vaudenay, A. Youssef, eds.), vol 2259 of LNCS, pp. 1-24, Springer-Verlag, 2001.

7. I. Mantin, A. Shamir, “A Practical Attack on Broadcast RC4,” Fast Software Encryption 2001 (M. Mat-
sui, ed.), vol. 2355 of LNCS, pp. 152-164, Springer-Verlag, 2001.

8. T. Isobe, T. Ohigashi, H. Kuwakado M. Morii, “How to Break Py and Pypy by a Chosen-IV Attack,”
eSTREAM, ECRYPT Stream Cipher Project, Report 2006/060.

9. S. Paul, B. Preneel, G. Sekar, “Distinguishing Attacks on the Stream Cipher Py,” Fast Software En-

cryption 2006 (M. Robshaw, ed.), vol. 4047 of LNCS, pp. 405-421, Springer-Verlag, 2006.

10. S. Paul, B. Preneel “On the (In)security of Stream Ciphers Based on Arrays and Modular Addition,”
Asiacrypt 2006 (X. Lai and K. Chen, eds.), vol. 4284 of LNCS, pp. 69-83, Springer-Verlag, 2006.

11. G. Sekar, S. Paul, B. Preneel, “Weaknesses in the Pseudorandom Bit Generation Algorithms of the
Stream Ciphers TPypy and TPy,” available at http://eprint.iacr.org/2007/075.pdf.

12. G. Sekar, S. Paul, B. Preneel, “New Weaknesses in the Keystream Generation Algorithms of the Stream
Ciphers TPy and Py,” Information Security Conference 2007 (to appear).

12

13. G. Sekar, S. Paul, B. Preneel, “Related-key Attacks on the Py-family of Ciphers and an Approach to
Repair the Weaknesses,” Indocrypt 2007 (to appear).

14. Y. Tsunoo, T. Saito, T. Kawabata, H. Nakashima, “Distinguishing Attack against TPypy,” Selected

Areas in Cryptography 2007 (to appear).
15. H. Wu, B. Preneel, “Differential Cryptanalysis of the Stream Ciphers Py, Py6 and Pypy,” Eurocrypt

2007 (Moni Naor, ed.), vol. 4515 of LNCS, pp. 276-290, Springer-Verlag, 2007.

A Effect of Any Non-zero Constant Rotation in TPy6-A and TPy6-B

The distinguishing attacks on Py6 (and hence TPy6) presented in [10] are based on the fact that,
when certain conditions on the elements of array P are satisfied then sr(i) = sr+2(j), where r denotes
the round and i, j (0 ≤ i, j ≤ 31) denote the bit positions.

We now examine the effect of constant rotation (say c) in step 4 of the PRBG of TPy6 (see
Algorithm 1).

sr(i) = ROTL32(sr−1 + Yr[Pr[18]] − Yr[Pr[57]], c)i (28)

= (sr−1 + Yr[Pr [18]]− Yr[Pr[57]])i−c mod 32. (29)

Let k denote i − c mod 32. Therefore,

sr(i) = sr−1(k) ⊕ Yr[Pr [18]]k ⊕ Y c
r [Pr[57]]k ⊕ er(k),

where e denotes the carry term generated in (29) and er(0) = 1.
Similarly, if l denotes j − c mod 32, we have,

sr+2(j) = sr+1(l) ⊕ Yr+2[Pr+2[18]]l ⊕ Y c
r+2[Pr+2[57]]l ⊕ er+2(l). (30)

Again, we have

sr+1(l) = sr(m) ⊕ Yr+1[Pr+1[18]]m ⊕ Y c
r+1[Pr+1[57]]m ⊕ er+1(m), (31)

where m denotes l − c mod 32, and

sr(m) = sr−1(n) ⊕ Yr[Pr[18]]n ⊕ Y c
r [Pr[57]]n ⊕ er(n), (32)

where n denotes m − c mod 32. Substituting (31) and (32) in (30), we get that the expression for
sr(i) ⊕ sr+2(j) contains the term sr−1(k) ⊕ sr−1(n). Now, it follows that if k 6= n, it is very likely that
the terms sr(i) and sr+2(j) are not correlated. Besides, there are a number of Y -terms at different
bit-positions and the terms do not cancel out if i 6= j.

Now, n = j − 3c mod 32 and k = i − c mod 32. Hence, when i = j, we have c 6= 0 in order that
k 6= n be satisfied. Thus, with c = 19, we expect that there will be no correlations in the output
stream such that a distinguisher can be built with data complexity less than that of exhaustive
search. The constant 19 is not influenced by any factors and may be replaced by any non-zero
constant.

13

