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Abstract

We construct two new multiparty digital signature schemes that allow multiple signers to
sequentially produce a compact, fixed-length signature. First, we introduce a new primitive
that we call ordered multisignatures (OMS), which allows signers to attest to a common mes-
sage as well as the order in which they signed. Our OMS construction substantially improves
computational efficiency and scalability over any existing scheme with suitable functionality.
Second, we design a new identity-based sequential aggregate signature scheme, where signers
can attest to different messages and signature verification does not require knowledge of tradi-
tional public keys. The latter property permits savings on bandwidth and storage as compared
to public-key solutions. In contrast to the only prior scheme to provide this functionality, ours
offers improved security that does not rely on synchronized clocks or a trusted first signer. We
provide formal security definitions and support the proposed schemes with security proofs under
appropriate computational assumptions. We focus on potential applications of our schemes to
secure network routing, but we believe they will find many other applications as well.
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1 Introduction

1.1 Overview

The current Internet design largely lacks the principles of AAA: Authentication, Authorization,
and Accountability. It is understood that incorporation of these principles would make tackling
security and reliability problems more tractable.

A large body of recent research focuses on identifying weak points in the current design and
proposing fixes to the deployed infrastructure. For example, the Secure Border Gateway Proto-
col (S-BGP) initiative (and its variants) [28, 1, 30, 50, 48, 16, 19, 17], whose primary goal is to
patch authenticity of route announcements in BGP, a path-vector protocol used in Internet rout-
ing, is currently under consideration for standardization by the IETF. While it is accepted that
new security measures are necessary, many remain skeptical about the prospects of widespread
adoption and deployment in the near future. The main technical reason is that secure networking
adds additional time, space, and communication complexity to protocols. We view our role as
cryptographers in this regard as designing suitable provably-secure mechanisms to address some
of the identified weaknesses, which maintain as closely as possible the design goals of the original
protocols, especially in terms of processing time, storage, bandwidth overhead, and scalability.

In line with this view, this work introduces two new “multiparty” digital signature schemes
for efficiently enhancing authenticity in several network routing applications. Our schemes offer
important performance and security improvements as compared to previous candidate solutions.
We show that they provably provide security according to the corresponding security definitions
(that are of independent interest) and under appropriate computational assumptions.

We clarify that we do not attempt to rigorously analyze all possible threats and assumptions
about adversarial abilities in the network routing applications we discuss. Indeed, much work
remains to be done in this regard, and the specific security requirements in these applications
remain an issue of contention [41]. Instead, we suggest that our schemes appear to be useful in
future resolution of some of the security concerns that have been raised. We next discuss our
schemes and their applications in more detail.

1.2 Ordered Multisignatures

Definition and motivation. We introduce a new primitive that we call ordered multisignatures
(OMS). A multisignature scheme [7, 33] is a public-key primitive that allows multiple signers who
want to sign some message to produce a single compact (constant-size) signature convincing a
verifier that each signer signed the message. However, some network routing applications that we
discuss below require verifying the path (i.e. the ordered list of routers) in which a packet travels
to reach its destination, where routers have incentive to lie. Although by using multisignatures
the routers could each sign (a fixed part of) the packet while keeping total packet overhead due to
signatures fixed to a constant, this would be insufficient from a security standpoint because it does
not allow to verify the order in which they signed.

Ensuring signing order in multisignatures has been previously addressed, but the constructions
all require multiple rounds of interaction among signers (sometimes even in key generation) in
order to produce the single constant-size signature, which is not suitable for the routing-based
applications we consider. (We discuss these works in more detail later.) We point out that one way
to ensure signing order in a (non-interactive) multisignature scheme would be to have each signer use
a separate public-private key-pair for signing messages in each position on a path. But the resulting
scheme would be impractical due to large combined key size. On the other hand, aggregate signature
schemes [11, 35, 33, 4], which allow multiple signers to sign different messages while keeping total

3



signature size constant, can of course immediately provide the needed functionality if the signers
sign, in addition to the packet, their position on the path, but they are also computationally much
less efficient than multisignatures. As an alternative, the OMS primitive we introduce produces a
compact (constant-size) multisignature, uses constant-size keys, is “sequential” in that signers sign
one after another and no further interaction among the signers is required, and ensures authenticity
of both the signing order and that of the message.

Further contributions. After introducing and defining the new primitive, we propose a formal
security model for OMS. It adapts the notion of security for multisignatures first presented in [7]
to also ensure authenticity of the signing order. Intuitively, a secure OMS scheme, in addition to
being secure as a “plain” multisignature scheme, must enforce an additional unforgeability with
respect to the ordering of the signers. We then provide a construction that we prove secure in
our model, under a standard computational assumption on the groups equipped with the “bilinear
maps” (aka. pairings) we use, in the random oracle (RO) model of [6]. As compared to known
aggregate schemes, our construction offers substantial computational savings. Namely, the work
per required on both signing and verification is essentially constant in the number of signatures
currently in the OMS. Section 3.2 gives detailed efficiency comparisons.

Applications. We sketch some potential applications of our OMS scheme in more detail. One
problem that appears suitable, raised in [24], is “data plane” security in S-BGP. This means allowing
autonomous systems (ASes, i.e. networks under control of a single entity such as Georgia Tech or
AT&T) to verify that data packets they send and receive/forward actually travel via previously-
authenticated AS paths. (Authentication of AS paths is handled in the “control plane” by route
attestation, explained in the following subsection.) To do so, a data packet should be signed, in
order, by egress routers of ASes that forward it, allowing ingress routers to accept and forward only
packets that followed an authenticated path and the originating AS to later verify that the packet
actually took an authenticated path to reach its destination (an OMS attesting to which could be
piggybacked onto traffic on the reverse path).

Another setting where OMS could help arises in the recent in-band network troubleshooting
system Orchid [40, 39]. In order to quickly and accurately diagnose faults (e.g. packet drops, re-
orderings, duplications) along a flow from a sender to a receiver, Orchid has routers along the
flow “mark” a fixed-size header in the data packets being sent. The first packet triggers a probe,
which is sent to find out which routers are on the path. Later, a certain pattern of marks in the
data packets by a router can implicate packet re-ordering or duplication by the previous router on
the path, according to the data collected by the probe. When deployed across multiple networks
(i.e. ASes), a router may wish to “frame” a router in another network by making it appear that the
latter is directly upstream from it. Thus the probe should be signed, in order, by all the routers
on the path, before fault data collected by the receiver can be considered authentic.

We suggest that the computational savings our scheme provides over existing solutions is desir-
able in the above-mentioned applications because it (1) distributes processing time more equitably
amongst routers, (2) offers a sizable gain in total processing time, and (3) scales much better in
the number of routers or ASes in the network.

Related work. As we mentioned, verifiability of signing order in multisignatures has been
considered before, specifically in [22, 23, 14, 38, 47, 15], where they are usually called “structured”
or “order-specified.” However, this line of work is in the interactive setting, meaning the schemes
they consider require multiple rounds of communication between co-signers (sometimes even in key
generation, requiring a separate interactive key-generation protocol for each subgroup of signers),
which is impractical in applications we consider. Other differences between these works and ours
are that they mainly treat more complicated structures on the group of signers than just linear
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ordering, and they do not give concrete applications of their schemes. In the interactive setting,
the literature on “plain” multisignatures is extensive; see [7] for a comprehensive list of references.

One-way signature chains [42] are designed for different applications than those we consider
where signer attests to which specific signers came before it (cf. Remark 4.3), and moreover their
construction does not provide any efficiency gain over existing aggregate signature schemes.

1.3 Identity-based Sequential Aggregate Signatures

Motivation and previous work. It has been pointed out in numerous works and tested in [50]
that aggregate signatures [11, 35, 33, 4], which allow multiple signers to sign different messages while
keeping total signature size constant, can be used to address route announcement authenticity in
S-BGP while significantly reducing associated bandwidth overhead. According to the proposal,
each AS forwarding an update message should add its signature on the label of the next AS on
the route, so that route authenticity can be verified upon receipt of the aggregate. The latter is
to prevent an unauthorized AS from extending the path and means that that signers need to sign
genuinely different messages (as opposed to applications of OMS).

However, any public-key-infrastructure-based cryptographic proposal for networking applica-
tions requires all parties to know the authentic public keys of all other parties involved. This
means that, in routing-based applications, these protocols incur the setup and storage overhead
of distributing the public keys and corresponding certificates of all users out-of-band, and partici-
pating routers storing the keys indefinitely. Otherwise, public keys (which cannot be aggregated)
and certificates of each signer in a signature would always have to be sent along with the latter,
defeating the purpose of using constant-size multiparty signatures to minimize bandwidth overhead
in the first place. As noted in previous works [26, 5, 49], identity-based cryptography [13], in which
an arbitrary string (e.g. an IP address) acts as a user’s public key (the corresponding private key
for which can be obtained by authenticating oneself to a trusted private key generator or PKG)
and verifying a signature requires knowledge only of a sender’s identity in addition to a “master”
public key of the PKG, can offer a superior alternative for such applications (subject to various
trade-offs). This is because most of the information needed for verifying an aggregate signature is
already contained in the description of “who signed what.” It is a compelling setting in which to
design and deploy aggregate schemes.

Yet the only (non-interactive) identity-based aggregate signature scheme to date is that of [26],
which has the restriction that signers in a given aggregate must agree on a “common nonce” never
used by any of them before; indeed, if a signer in the scheme ever re-uses such a nonce in two
different signatures, it then becomes simple to forge a signature by that signer on any message
of one’s choice. From a functionality perspective, then, in order for the scheme to remain non-
interactive, one possibility would be to simply trust the first signer in an aggregate (when signing
is done in a “sequential” fashion) to pick a fresh random nonce each time. But there is no reason
for this trust. Alternatively, one could rely on synchronized clocks of the signers and instantiate
the nonce as a time-stamp; however, an honest computer’s perceived clock-time could be altered
by a simple virus or after a power failure, which would lead to new potential attacks in practice.
Therefore, the above restriction seems rather imprudent from the standpoint of security.

Contributions. After defining the primitive, we design a security model for identity-based se-
quential aggregate signatures (IBSAS) which adapts the security model of [35] to the identity-based
setting. (“Sequential” here refers to the fact that, as for OMS, signatures are aggregated one-by-one
as the aggregate-so-far moves along the path, as is natural in the routing-based applications we
consider.) Then we provide the first construction of an IBSAS scheme that does not place any such
“common nonce” restriction on the signers. At a high level, this is achieved by not “aggregating
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the randomness” produced by the signers on a single group element in an aggregate signature as
in previous schemes. (See Section 4.2 for more details.) We prove our construction secure in the
RO model under a suitable modification of a computational assumption previously used e.g. in
[36, 18, 2]. To help justify the new assumption, we its prove hardness in the generic bilinear group
model of [9]. This proof is a “heuristic” security argument showing that the problem is hard un-
less adversarial algorithms exploit specific properties of the underlying algebraic group (i.e. special
properties beyond its basic structure), which has become a common way of building confidence in
new cryptographic assumptions in the “bilinear” groups we use (see e.g. [9, 10]).

Applications in more detail. As we mentioned, our scheme seems to fit in nicely with route
attestation in S-BGP, especially because storage overhead of the protocol has been cited as a major
concern [17]. Identities here would roughly consist of an organization name, AS number, and IP
address range; the latter is included in an AS path anyway and all together are vastly smaller than
traditional public keys and certificates. Each identity would be bound to a secret key by a PKG,
e.g. ICANN or IANA. In practice, a PKG would be in a hierarchy rooted at the latter [31], whereby
it can issue user secret keys that can be verified via the master public keys of the PKGs on the
path to the root. (We provide an extension of our IBSAS scheme that allows this.) Note that the
overhead associated with obtaining and storing these keys, which is equivalent to that of obtaining
and storing public-keys of a hierarchical certification authority (CA), is typically much smaller than
that of obtaining traditional public keys and certificates of the signers, which the identity-based
setting cuts out.

Further related work. Herranz and Galindo et al. [29, 25] obtain results about identity-based
signature schemes permitting aggregation of messages from the same signer only. “Append-only”
signatures [32] is an interesting public-key primitive suggested for use in S-BGP route attestation,
but no construction yielding less than ω(

√
n)-size signatures for n signers is currently known. We

clarify that [26] appears to be the only previous (non-interactive) identity-based aggregate signature
scheme in the literature; another recent scheme of [20] is interactive. Interactive (i.e. multi-round)
identity-based multisignatures are also studied in [5].

1.4 Versions of this Paper and Corrections

This full version of the paper corrects several typos and mistakes from the proceedings version, as
well as includes all proofs omitted from the latter. In particular, our security model for IBSAS
schemes given in Definition 4.2 has changed. We initially claimed that our IBSAS scheme addition-
ally met an “enhanced” notion of security beyond what is typically required of aggregate signature
schemes. (We are unaware of any concrete application of the enhanced definition to secure routing.)
We elaborate on this and define such an enhanced security definition for IBSAS in Appendix A for
completeness.

2 Preliminaries

Notation and conventions. We denote by {0, 1}∗ the set of all (binary) strings of finite length.
If X is a string then |X| denotes its length in bits. If X,Y are strings then X‖Y denotes an encoding

from which X and Y are uniquely recoverable. If S is a finite set then A
$← S denotes that A is

selected uniformly at random from S. For convenience, for any l ∈ N we write X1, X2, . . . , Xl
$← S

as shorthand for X1
$← S ; X2

$← S ; . . . ; Xl
$← S. We let the notation B

δ←{0, 1} mean that a
bit B is assigned value 1 with some probability 0 ≤ δ ≤ 1 and 0 otherwise. If A is a randomized
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algorithm or adversary, then X
$← A(Y,Z, . . .) denotes that X is assigned the output of running

S on inputs Y,Z, . . .. If A is deterministic, then we drop the dollar sign above the arrow. We
let “A(Y,Z, . . .)⇒X” denote that A outputs X after it is run on inputs Y,Z, . . .. All algorithms
and adversaries considered in this paper are possibly randomized unless indicated otherwise. By
convention, the running-time of an adversary includes that of its overlying experiment.

Bilinear maps. Our schemes use of bilinear maps (aka. pairings). We call an algorithm G that
outputs Let G,GT be groups of the same prime order p. (So G,GT are cyclic.) Following a
convention in the cryptographic community, we write both groups multiplicatively. A pairing is an
efficiently computable map e : G×G→ GT such that the following two conditions hold:

• Bilinearity: For all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.

• Non-degeneracy: For any generator g ∈ G, we have e(g, g) 6= 1GT (the identity in GT ).

Observe that e(·, ·) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Definition 2.1 We call an algorithm G that outputs (descriptions of) p,G,GT , e as above a
bilinear-group generation algorithm, and G a bilinear group.

In practice, G is typically a subgroup of the group of rational points of an elliptic curve over
a finite field. Using embedding degree (the degree of certain extension of the ground field) k = 2,
for standard security levels (meaning discrete log computation is believed to take at least 280 basic
operations), elements in G can be represented using about 512 bits. It is also currently possible to
reduce this length to 237 bits for the same (assumed) security level by choosing k = 6, but there
are fewer suitable curves known in this case [12]. It is possible that this bit-length will be further
reduced in future research. Note that we purposely do not consider the “asymmetric” setting, as
in e : G1 × G2 → GT on groups G1 6= G2, because, although in this case elements in G1 could be
represented using only 160 bits in this case, representation of elements in G2 would then require
at least 1024 bits (due to the “MOV” attack [37]). Since our signatures would contain elements of
both, their total length would actually be longer.

Although the bit-length of the representation of elements in G is 512 bits with embedding
degree k = 2, for computational efficiency the order of G is usually be chosen to be about 2160. In
particular, this means that exponentiations in G use exponents of only about 160 bits in length.
With embedding degree k = 2, the cost of computing a pairing is currently about that of two RSA
decryptions using CRT preprocessing; with k = 6, the cost is about twice as much. See recent
benchmarks at [34]. While pairing computation is expensive, on-going algorithmic advances and
hardware implementations may bring this cost down in the future.

CDH problem. First we recall the well-known computational Diffie-Hellman problem (CDH) in
bilinear groups.

Definition 2.2 Fix a bilinear group generator G. We define the CDH -advantage of an algorithm
A relative to G as

AdvCDH
G (A)

def= Pr
[
C = gab : (p,G,GT , e) $← G ; g $← G ; a, b $← Zp ; C $← A(p,G,GT , e, g, ga, gb)

]
.

LRSW problem. We next recall the LRSW problem (LRSW), which was introduced in [36] and
has subsequently been used in other works, including [18, 2].
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Definition 2.3 Fix a bilinear group generator G. For (p,G,GT , e) output by G, we define for all
x, y ∈ Zp the associated oracle OLRSW

x,y (·), which takes input m ∈ Zp and is defined as

Oracle OLRSW
x,y (m)

u
$← G

Return (ux+mxy, uy, u)

We then define the LRSW -advantage of an algorithm A relative to G as

AdvLRSW
G (A) def= Pr

[
C = (m′, va+m

′ab, vb, v) : (p,G,GT , e) $← G ; g $← G ; a, b $← Zp

; C $← AO
LRSW
a,b (·)(p,G,GT , e, g, ga, gb)

]
,

where m′ ∈ Zp was not queried by A to its oracle and any v 6= 1G.

M-LRSW problem. We introduce a related computational problem that we call the modified-
LRSW problem (M-LRSW), defined in a similar way to the above.

Definition 2.4 Fix a bilinear group generator G. For (p,G,GT , e) output by G, we define for all
a, b ∈ Zp and g, u, v ∈ G the associated oracle OM-LRSW

g,u,v,a,b (·), which takes input m ∈ Zp and is defined
as

Oracle OM-LRSW
g,u,v,a,b (m)

If m = 0 then return ⊥
r

$← Zp
Return (umrgab, vrgab, gr)

We then define the M-LRSW -advantage of an algorithm A relative to G as

AdvM-LRSW
G (A) def= Pr

[
C = (m′, um

′xgab, vxgab, gx) : (p,G,GT , e) $← G ; g, u, v $← G

; a, b $← Zp ; C $← AO
M-LRSW
g,u,v,a,b (·)(g, u, v, ga, gb)

]
,

where m′ ∈ Zp was not queried to the oracle and any x ∈ Zp.

Intuitively, the difference between the M-LRSW and LRSW problems is that in the former, the
oracle provided to A forms its tuple to return by raising some fixed group elements (meaning these
group elements are the same across all invocations of the oracle), namely u, v, g ∈ G, to polynomials
evaluated at a random exponent r ∈ Zp, while conversely in the latter a random group element u
is chosen by the oracle and is raised to polynomials evaluated at fixed exponents x, y ∈ Zp. We
clarify that we call the former the modified -LRSW problem because of syntactic similarity only; we
do not claim any other relation between the two problem. In Section 5, we show that the M-LRSW
is hard in the generic bilinear group model of [9]. This has become a standard way of building
confidence in the hardness of computational problems in groups equipped with bilinear maps.

3 Ordered Multisignatures

Ordered multisignatures (OMS) are a natural extension of the notion of multisignatures [7] in which,
intuitively, a (constant-size) ordered multisignature on a message attests not only to the fact that
some specified group of signers signed it (as in a “plain” multisignature scheme), but also to the
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order in which they signed. Note that such (non-interactive) schemes are “sequential” by nature.
As discussed in the Introduction, potential applications include BGP data-plane security [24] and
security in in-band fault localization [40, 39]. One can easily construct an OMS scheme from any
aggregate signature scheme; however, the benefit of our OMS construction is that it significantly
improves computational efficiency and scalability over existing aggregate signature schemes.

3.1 OMS Schemes and Their Security

Syntax. We formally define the syntax of an OMS scheme.

Definition 3.1 We specify an OMS scheme OMS = (OPg,OKg,OSign,OVf) by four algorithms:

• A parameter generation algorithm OPg that returns some global information I for the scheme.
This algorithm can be run by a trusted third-party or standards bodies.

• A key generation algorithm OKg run by a user that on the input global information I returns
a public-private key-pair (pk, sk) for it.

• A signing algorithm OSign run by a user that on inputs its secret key sk, a message m ∈
{0, 1}∗, an OMS-so-far σ, and a list of i − 1 public keys L = (pk1, . . . ,pki−1). It returns a
new OMS σ′, or ⊥ if the input is deemed invalid.

• A verification algorithm OVf that on inputs a list of public keys (pk1, . . . ,pkn), a message
m, an OMS σ returns a bit.

For consistency, we require that the probability that OVf(Ln,m, σn)⇒ 1 is 1, for all n ∈ N and all
m ∈ {0, 1}∗, where the probability is over the experiment

I
$← OPg ; (pk1, sk1), . . . , (pkn, skn) $← OKg(I)

σ0, L0 ← ε
For i = 1, . . . , n do

σi
$← OSign(ski,m, σi−1, Li−1)

Li ← (pk1, . . . , pki).

We also require that OSign(sk,m, σ, L)⇒⊥ if |L| > 1 and OVf(L,m, σ)⇒ 0 (see below).

Security. We adapt the notion of security for multisignatures first presented in [7] to our context.
Intuitively, a secure OMS scheme, in addition to being secure as a “plain” multisignature scheme,
must enforce an additional unforgeability with respect to the ordering of the signers; it should not be
possible to re-order the positions of honest signers in an OMS, even if all other signers are malicious.
(Note that this also implies that ordered multisignatures cannot be “adversarially combined;” e.g. a
forger who sees two ordered multisignatures on a message m by signers (A,B) and (separately) by
(C,D)f cannot produce a single ordered multisignature on m by signers (A,B,C,D). Security of
plain multisignatures does not prevent this.)

Note that our security model does not capture the natural requirement that an honest user
should only sign at position i in an OMS if there are really currently i − 1 signers in it. (As is
not the case in secure routing protocols, we do not assume that a signer knows a priori its signing
position. Instead, she is to obtain this information from the data transmitted by the previous
signer.) Otherwise, an adversary that modifies data in transit might simply tell the third signer on
the path to sign at the tenth position, and the tenth to sign at the third, for example; the resulting
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OMS is not required to be invalid. The way we ensure this requirement is instead by the syntactic
condition that the signing algorithm in the OMS definition above implicitly must verify validity of
the signature-so-far relative to the other data in its input, in order to confirm the signing position.

Additionally, and similarly to the model of [7], we require users to prove knowledge of their
secret keys during public-key registration with a CA. For simplicity, this is modeled by requiring
an adversary to hand over secret keys of malicious signers. This is known as the registered- or
certified-key model.

Definition 3.2 Let OMS = (OPg,OKg,OSign,OVf) be an OMS scheme. We consider the following
UF-OMS experiment associated to OMS and a forger F with access to an oracle, which runs in
three stages.

Setup: The experiment first runs OPg on random coins to obtain output I and then generates a
challenge key-pair (pk, sk) by running OKg on input I .

Attack: F runs on inputs I, pk. F may query a key registration oracle with a key-pair (pk′, sk′)
and coins c used for key generation, which records pk′ as registered if OKg(I ; c)⇒ (pk′, sk′). (This
is a simplified model of a possibly more-complex key registration protocols with a CA that involves
proofs of knowledge of secret keys.) F also has access to a signing oracle OOSign(sk, ·, ·, ·), which on
inputs m,σ, L returns ⊥ if not all public keys in L are registered and OSign(sk,m, σ, L) otherwise.

Forgery: Eventually, F halts with output a list of public keys L∗ = (pk∗1, . . . ,pk∗n), a message m∗,
and a purported OMS signature σ∗. This output is considered to be a forgery if it holds that (1)
OVf(L∗,m∗, σ∗) = 1, (2) pk∗i∗ = pk for some i∗ ∈ {1, . . . , n}, (3) all public keys in L∗ except pk
are registered, and (4) F did not query m∗, σ′, L′ to its signing oracle where |L′| = i∗ − 1 for any
σ′ ∈ {0, 1}∗.

We define the UF-OMS -advantage AdvUF-OMS
OMS (F ) of F against OMS as the probability that F

outputs a forgery in the above experiment, taken over the coin flips of the parameter generation
algorithm, the oracles, and any by F itself. We say that F outputs lists of length at most nmax if
all its lists of public keys used in calls to its signing oracle have length at most nmax − 1 and that
in its final output (i.e. L∗ above) has length at most nmax.

Remark 3.3 Note that our security model guarantees authenticity of the message signed by an
honest user and her position in an OMS, but not of which specific signers signed before or will sign
after her. For example, it would not correspond to a forgery in our model if some OMS σ on a
message m valid for public keys (pk1, pk2,pk3) of honest signers subsequently sent to a malicious
signer is modified by the latter to some σ′ on m valid for (pk′1,pk2, pk′3), where pk′1,pk′3 belong to
the malicious signer. But this seems to be acceptable in the applications we consider:

• In in-band fault localization [40, 39], reports of packet loss or reordering by a particular router
typically indicate a problem upstream, so a main security property we want is that an honest
router should not appear to a receiver collecting fault statistics to be further upstream than
it actually is — but this does not concern who is upstream from the router.

• In S-BGP data plane security [24], since the previously-authenicated AS paths that a data
packet may travel are known, if such a packet (having been signed and verified by the previous
nodes who have received it to be traveling on an authenticated path) is incorrectly routed to
a malicious node, our security model still ensures the latter cannot modify the packet to then
be accepted by an honest node.
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However, it is beyond the scope of this paper to rigorously analyze the security requirements needed
in these emerging applications (cf. [41]).

3.2 Our OMS Construction and Analysis

The scheme. Our construction extends Boldyreva’s multisignature scheme [7] to suitably encode
in an OMS the ordering of the signers in addition to the message they signed, by using a technique
similar to that of [33]. Our scheme yields a constant-size OMS consisting of 2 group elements
(about 1024 or 474 bits depending on implementation details; see Section 2) and is substantially
more efficient than all existing aggregate signature alternatives. Unlike these alternatives, it requires
essentially constant work (in the number of current signers in the OMS) by a user on both signing
and verification (see below).

Construction 3.4 Let G be a bilinear-group generation algorithm. To it we associate the following
construction:

Global Parameters: The algorithm first runs (p,G,GT , e) $← G and chooses a random generator
g ∈ G and cryptographic hash function H: {0, 1}∗ → G. (The analysis will model the latter as a
random oracle (RO) [6], adjusting security definitions accordingly.) It returns (p,G,GT , e, g,H) as
the global information I for the scheme.

Key Generation: On input I , the algorithm chooses random s, t, u ∈ Zp and returns (S = gs, T =
gt, U = gu) as pk and (s, t, u) as sk.

Signing: On inputs ski,m, σ, L = (pk1, . . . ,pki−1), the algorithm first verifies that OVf(L,m, σ)⇒1
(as defined below) and if not, outputs ⊥. (This step is skipped for a first signer, i.e. if i = 1, for
whom σ is defined as (1G, 1G).) Then it parses σ as (Q,R) and chooses random r ∈ Zp. It computes:
1. R′ ← R · gr
2. X ← (R′)ti+iui
3. Y ← (

∏i−1
j=1 Tj(Uj)

j)r

4. Q′ ← H(m)si ·Q ·X · Y
Finally, it returns (Q′, R′).

Verification: On inputs (pk1, . . . ,pkn),m, σ, the algorithm first checks that all of pk1, . . . ,pkn are
distinct and outputs 0 if not.1 Then if parses σ as (Q,R) and checks if

e(Q, g) ?= e(H(m),
n∏
i=1

Si) · e(
n∏
i=1

Ti(Ui)i, R) .

If so, it outputs 1. If not, it outputs 0. Consistency follows straightforwardly from the properties
of a pairing.

Thus, an ordered multisignature in our scheme on a message m by n signers with public keys
pk1, . . . ,pkn, respectively, has the form(

H(m)
Pn
i si(g

Pn
i ti+iui)

Pn
i ri , g

Pn
i ri
)
,

where ri is the randomness chosen by the i-th signer.

Security. Intuitively, the following implies that our OMS scheme is secure (in the RO model) if
the CDH is hard relative to its associated bilinear-group generator G.

1This is needed for our security proof, but in all applications we consider repeating signers in the “signature path”
is not needed anyway.
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Theorem 3.5 Let G be a bilinear-group generation algorithm and OMS be the associated OMS
construction given by to Construction 3.4. Suppose there exists a forger F against OMS in the RO
model that makes at most at most qh queries to its hash oracle, at most qs queries to its signing
oracle, and outputs lists of length at most nmax ≥ 1. Then there is an algorithm B against the
CDH relative to G such that

AdvUF-OMS
OMS (F ) ≤ nmaxe(qs + 1) ·AdvCDH

G (B) . (1)

Furthermore, the running-time of B is at most that of A plus τ(G) · O((qh + nmax(qs + 1)), where
τ(G) is the maximum time for an exponentiation in the bilinear groups output by G.

Proof: See Appendix B.

Running-time analysis. In our efficiency analysis, we assume that |G| = 2160, i.e. |p| = 160;
see Section 2. Then, step 1 in the signing algorithm requires one 160-bit exponentiation. (By which
we mean that the bit-length of the exponent here is about 160 bits.) In typical applications, steps
2, 3, and 4 can essentially be executed together in the time of one 3-term multi-exponentiation,
which is faster than computing 1.5 individual exponentiations. This ignores the cost of computing
(we re-name i− 1 as n here for consistency with the below)

∏n
j=1 Tj(Uj)

j in step 3, so let us justify
this. Computing

∏n
j=1(Uj)j requires n O(log n)-bit exponentiations. So, even if n is a hundred,

this is only about the cost of computing three 160-bit exponentiations. (In most applications, n
will be much less.) Thus, signing time will remain dominated by the 3 pairing computations in the
verification call – which can be reduced to the time of about 2.5 individual pairing computations
using a technique of [44]) – and similarly verification requires essentially constant work in the
number of signers in the OMS.

Efficiency comparison with [33]. As noted in the Introduction, one can construct an OMS
scheme from any aggregate signature scheme, basically by having the i-th signer add its signature
on m ‖ i to the aggregate-so-far, where m is the common message. (We also enforce the require-
ment of Definition 3.1 that the signing algorithm of the derived OMS scheme verify validity of the
signature-so-far in case this is not done by the signing algorithm of the aggregate scheme already,
which only affects the comparison with [11] below.) In terms of performance, the best alternative
to our OMS scheme seems to be derived from the “RO version” of the recent aggregate scheme of
Lu et al. [33, Section 3.4], which, for basically the same amount of security and signature size,2

requires an additional n 160-bit exponentiations on both signing and verification (where n is the
number of signers in the aggregate).

Note that while an n-term multi-exponentiation could be used for these, it would require (2n−
2)+2(160−1) multiplications (a 160-bit exponentiation by the square-and-multiply method requires
240 multiplications on average) and thus would only provide a speed-up for relatively small values
of n. Moreover, it would incur an extra 512 · (2n − 1) bits of memory usage. We also stress
that the bases for these n exponentiations vary from aggregate to aggregate. So, regardless of the
computational technique employed, without requiring a prohibitively large amount of memory for
pre-computation (and in fact, routing platforms are quite memory-constrained in the first place)
the cost of computing the n exponentiations will still grow linearly in n. Therefore, the RO version
of [33] scales more poorly and provides less equitable distribution of processing time amongst
signers (e.g. different ASes) as n grows, giving it more limited applicability in real-world deployment
scenarios as compared to our OMS scheme.

2Though [33] claims that if using “asymmetric” pairings, as in e : G1 × G2 → GT , their aggregate signatures can
have length 320 bits, this appears to be an oversight, since their signatures, like ours, would also contain an element
of G2, whose representation, as we mentioned, would actually require much longer bit-length in this case.
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Efficiency comparison with [11, 35]. Aggregate signature length is just 160 bits and signing
is, strictly speaking, more efficient in the aggregate scheme of [11] than in our OMS scheme, but
verification is vastly slower, requiring a linear amount of pairing computations in the number of
signatures in an aggregate, and verifying the aggregate-so-far is needed anyway upon signing in
the derived OMS scheme. (We comment that even if some application of OMS did not require
signers to verify the signature-so-far upon signing, our OMS scheme may still be superior to the
scheme of [11] due to slow verification time in the latter, which may be of particular concern with
denial-of-service attacks on a verifier.) In most routing-based applications, however, a fixed 1024-
bit packet size overhead for signatures is still within reason, and, as discussed in Section 2, some
implementations may reduce this overhead to less than 500 bits, which is even more manageable.

Finally, we observe that the RSA-based aggregate scheme of [35] either requires proofs of knowl-
edge of RSA keys on key-registration or having the signers’ public exponents bigger than their
1024-bit moduli. As for RSA the former are much more expensive than those for discrete log and
are not used in practice, this means that their scheme will similarly require a linear number of such
costly 1024-bit exponentiations on both signing and verification.

4 Identity-Based Sequential Aggregate Signatures

It has been pointed out in numerous works and tested in [50] that aggregate signatures [11, 35, 33],
which allow multiple signers to sign different messages while keeping total signature size constant,
can be used to address route announcement authenticity in S-BGP while significantly reducing
associated bandwidth overhead. According to the proposal, each AS forwarding an update message
should add its signature on the address of the next AS on the route (the latter is to prevent
an unauthorized AS from picking up the path and makes OMS insufficient here), so that route
authenticity can be verified upon receipt of the aggregate.

However, using public-key schemes that necessitate a public-key infrastructure (PKI) dramati-
cally increases set-up and storage or bandwidth overhead of secure networking protocols (the former
if routers are to obtain public keys, which cannot be aggregated, of all parties out-of-band and store
them, and the latter if the public key of each signer in an aggregate is always sent along with the
latter). In the identity-based setting [13], where an arbitrary string can be used as a public key,
most information needed to verify a signature is already included in the transmission anyway, or
can be for almost no appreciable loss in bandwidth. We treat sequential aggregate signatures in
this setting. IBSAS schemes seem well-suited for secure routing applications and in particular for
route attestation in S-BGP, where storage overhead of the protocol is of particular concern [17].
Our construction improves upon the security of previous solutions in this context by removing any
undue restrictions on the signers, making it more useful in practice.

4.1 IBSAS Schemes and Their Security

Syntax. We formally define the syntax of an IBSAS scheme.

Definition 4.1 We specify an identity-based sequential aggregate signature (IBSAS) scheme (cf. [26])
AS = (Setup, KeyDer,Sign,Vf) by four algorithms:

• A setup algorithm Setup initially run by the trusted private-key generator (PKG) to generate
its master public key mpk and corresponding master secret key msk.

• A deterministic private-key derivation algorithm KeyDer run by the PKG on inputs msk, ID
for any user’s identity ID ∈ {0, 1}∗, to generate the private key skID for user ID .
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• A signing algorithm Sign run by a user ID on inputs its secret key skID , a message m ∈ {0, 1}∗,
a list ((ID1,m1), . . . , (ID i−1,mi−1)) of identity-message pairs, an aggregate-so-far σ, to return
a new aggregate signature σ′, or ⊥ to indicate that the input was deemed invalid.

• A verification algorithm Vf that takes as inputs the master public key mpk, a list ((ID1,m1),
. . ., (IDn,mn)) of identity-message pairs, and an IBSAS σ to return a bit.

For consistency, we require that the probability Vf(mpk, Ln, σn)⇒ 1 is 1, for all n ∈ N and all
{(IDi,mi) | 1 ≤ i ≤ n, IDi ∈ {0, 1}∗, mi ∈ {0, 1}∗}, where the probability is over the experiment

(mpk,msk) $← Setup
For all i = 1, . . . , n do

skIDi
$← KeyDer(msk, IDi)

σ0, L0 ← ε
For i = 1, . . . , n do

σi
$← Sign(skIDi ,mi, Li−1, σi−1)

Li ← ((ID1,m1), . . . , (IDi,mi)).

Security. Our notion of security for IBSAS adapts of the notion of security for sequential ag-
gregate signatures presented in [35] to the identity-based setting. It captures the intuition that a
forger who can adaptively (1) obtain signatures of users on messages of its choice to be appended to
an aggregate-so-far and (2) “corrupt” users by requesting their private keys, should not be able to
subsequently “frame” a user as having appended its signature on a message to an aggregate-so-far
which it did not. As discussed previously in [5], it is important here that the forger is able to
adaptively corrupt users, unlike the public-key setting, where wlog it receives a public key for just
one honest user.

Definition 4.2 Let AS = (Setup,KeyDer,Sign,Vf) be an IBSAS scheme. We consider the following
UF-IBSAS experiment associated to AS and a forger F with access to two oracles, which runs in
three stages.

Setup: The experiment first generates a master key-pair (mpk, msk) by running Setup on random
coins.

Attack: F runs on input mpk with access to a key-derivation oracle KeyDer(msk, ·) and signing oracle
OSign(·, ·, ·, ·). The first operates according to the above definition of the private-key derivation
algorithm for IBSAS. The second on inputs an identity ID , a message m, a list of identity-message
pairs L = ((ID1,m1), . . . , (ID i−1,mi−1)), and an aggregate-so-far σ, sets skID ← KeyDer(msk, ID)
and returns

Sign(skID ,m, ((ID1,m1), . . . , (ID i−1,mi−1)), σ) .

Forgery: Eventually, F halts with output a list of identity-message pairs L∗ = ((ID∗1,m
∗
1), . . .,

(ID∗n,m
∗
n)) and a purported aggregate signature σ∗. This output is considered to be a forgery if

(1) Vf(mpk, L∗, σ∗)⇒ 1 and (2) there exists some i∗ ∈ {1, . . . , n} such that F did not query ID∗i∗
to its key-derivation oracle and did not query (ID∗i∗ ,m

∗
i∗ , ((ID∗1,m

∗
1), . . . , (ID∗(i∗−1),m

∗
(i∗−1))), σ) to

its signing oracle for any σ ∈ {0, 1}∗.

We define the UF-IBSAS -advantage AdvUF-IBSAS
AS (F ) of F against AS as the probability that F

outputs a forgery in the above experiment, taken over the coin flips of the setup algorithm, the
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oracles, and any by F itself. We say that F outputs lists of length at most nmax if all its lists of
identity-message pairs used in calls to its signing oracle have length at most nmax − 1 and that in
its final output (i.e. L∗ above) has length at most nmax.

Comparison to Previous Definitions. Our definition of security for IBSAS, similarly to that
for public-key sequential aggregate signatures in [35], makes the requirement that a signature
appended to an aggregate cannot be re-used in another aggregate in which the signers and messages
that come before it are different. This requirement is not made in [33], where the signatures in
a sequential aggregate scheme are inherently “unordered.” We also note that this requirement is
not captured in the security model of [26] in the identity-based setting, which however applies to
non-sequential schemes as well.

4.2 Our IBSAS Construction and Analysis

The scheme. We present our IBSAS construction, which is inspired by the recent scheme of [26].
Our scheme yields constant-size aggregate signatures of 3 group elements (about 1536 or 711 bits
depending on implementation details; see Section 2) and is reasonably efficient. In particular,
verifying an aggregate signature in our scheme requires a small constant (in the number of signatures
in an aggregate) amount of pairing computations, though a linear amount of exponentiations. As
we explain below, our construction improves functionality/security over the scheme of [26] by lifting
a “common nonce” restriction that can lead to some attacks on the scheme in practice.

Construction 4.3 Let G be a bilinear-group generation algorithm. To it we associate the following
construction:

Setup: The algorithm first runs G on random coins to obtain output (p,G,GT , e) and chooses a
random generators u, v, g ∈ G, a random α ∈ Zp, and cryptographic hash functions H1 : {0, 1}∗ →
G and H2 : {0, 1}∗ → Z∗p. (The analysis will model these functions as random oracles (ROs) [6],
adjusting security definitions accordingly.) It returns (p,G,GT , e, u, v, g, gα,H1,H2) as the mpk
and α as the msk.

Key Derivation: On inputs msk and ID ∈ {0, 1}∗, the algorithm returns H1(ID)α as skID .

Signing: On inputs skIDi ,mi, L = ((ID1,m1), . . . (ID i−1,mi−1)), σ, the algorithm first parses σ as
(X,Y, Z). (This step is skipped for a first signer, i.e. if i = 1, for whom σ is defined as (1G, 1G,
1G).) It chooses a random r ∈ Zp. Below, for a list ((ID1,m1), . . . , (IDn,mn)) we let si denote the
string ID1‖m1‖ . . . ‖ID i‖mi for all 1 ≤ i ≤ n. The algorithm computes:
1. X ′ ← ur

Qi
l=1 H2(sl) ·H1(ID)α

2. Y ′ ← vr ·H1(ID i)α

Finally, it returns

(X ·X ′, Y 1/H2(si) · Y ′, Z1/H2(si) · gr) .

Above, a term 1/H2(s) for a string s means H2(s)−1 mod p.

Verification: On inputs mpk, ((ID1,m1), . . . , (IDn,mn)), σ, the algorithm first returns 0 if not all
of ID1, . . . , IDn are distinct.3 Then it parses σ as (X,Y, Z) and verification proceeds in two steps.

3This check is needed for security of our scheme but does not constitute a significant restriction because, as
previously mentioned, in all applications we consider repeating signers in an aggregate is unnecessary. Further, in
S-BGP route attestation, repeats in an AS path constitutes a security vulnerability and must not be allowed anyway.
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In the first step, it checks if

e(Y, g) ?= e(v, Z) · e(
n∏
i

H1(ID i)1/(
Qn
j=i+1 H2(sj)), gα) .

If not, the algorithm returns 0. If so, it continues to the next step, where it computes Z ′ ←
Z

Qn
i=1 H2(si) and then checks if

e(X, g) ?= e(Z ′, u) · e(
n∏
i

H1(ID i), gα) .

If not, the algorithm returns 0. If so, the algorithm returns 1. Consistency follows straightforwardly
from the properties of a pairing.

Thus, an aggregate signature in our scheme on messages m1, . . . ,mn by signers ID1, . . . , IDn,
respectively, has the form(

n∏
i

uri
Qi
j=1 H2(sj) ·H1(ID i)α,

n∏
i

(vri ·H1(ID i)α)1/(
Qn
j=i+1 H2(sj)),

n∏
i

gri/(
Qn
j=i+1 H2(sj))

)
,

where ri ∈ Zp is the randomness chosen by the i-th signer ID i.

Remark 4.4 Note that our construction does not perform a verification call in the signing algo-
rithm. This turns out to be important for route attestation in S-BGP. Although in S-BGP all
incoming route attestations eventually need to be verified anyway, this means that the verification
call could be safely delayed (i.e. performed after the current AS has already appended its signature
to the aggregate-so-far and forwarded the result), without losing the security proof for the scheme.
For efficiency reasons, it is desirable to perform such “lazy” verification of these updates [50]. For
comparison, the public-key aggregate signature schemes of [33, 35] both require verification calls
in their signing algorithms, while the scheme of [11] (which however requires a linear number of
pairing computations in the number of signatures in an aggregate for verification) does not.

Security. Intuitively, the following establishes that our IBSAS scheme is secure (in the RO model)
if the M-LRSW is hard relative to its associated bilinear-group generator G.

Theorem 4.5 Let G be a bilinear-group generation algorithm and AS be the associated IBSAS
scheme given by Construction 4.3. Suppose there exists a forger F against AS in the RO model
that make at most qh1 , qh2 queries to its H1,H2 hash oracles, at most qk queries to its key-derivation
oracle, at most qs queries to its signing oracle, and outputs lists of length at most nmax ≥ 1. Then
there is an algorithm B against the M-LRSW relative to G such that

AdvUF-IBSAS
AS (F ) ≤ e(nmax + qk) ·AdvM-LRSW

G (B) +
qh2(qh2 − 1)
2 · 2lmin(G) ,

where lmin(G) is the minimum bit-length of the order p of a bilinear group output by G. Furthermore,
B makes at most qs queries to its M-LRSW oracle and its running-time is at most that of A plus
τ(G) ·O(qh1 + qk + qs) + υ(G) ·O(nmax), where τ(G) is the maximum time for an exponentiation in
a bilinear group output by G and υ(G) is the maximum time for a multiplication in Zp.

Proof: See Appendix C.

Comparison with [26] and design rationale. For comparison, we recall that the recent
identity-based aggregate signature scheme of [26] produces an aggregate signature on messages
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m1, . . . ,mn by signers ID1, . . . , IDn, respectively, of the form(
H3(w)

Pn
i ri ·

n∏
i

H1(0‖ID i)α ·
n∏
i

H1(1‖ID i)αH2(w‖IDi‖mi), g
Pn
i ri

)
;

here the private key of user ID i consists of the pair (H1(0‖ID i)α,H1(1‖ID i)α), H1,H3 : {0, 1}∗ → G
and H2 : {0, 1}∗ → Zp are hash functions, and w is a nonce picked by the first signer. The element
H3(w) provides a “common place” for the signers to “aggregate their randomness;” indeed, [26]
remarks that this seems necessary to enable aggregation of individual signatures. However, for
security, the string w is then required to be a “common nonce” specific to each aggregate, meaning
each of ID1, . . . , IDn need to be sure that they have not used it in any other aggregate before. If any
signer repeats the same w in two different signatures, it becomes simple for an adversary to forge
a signature by that signer on a message of its choosing, via simple linear algebraic attacks in the
exponent (cf. [26, Remark 4]). Unfortunately, this restriction still makes their scheme vulnerable
in practice in a different way. Indeed, typical implementations of the scheme for secure routing
protocols would likely use a time-stamp as w and require signers to check that an aggregate-so-far
has w sufficiently close to the signer’s current clock-time, but then the possibility of maliciously
altering the latter, say by installing a simple virus that can get no information about the secret
key, would introduce potential real-world attacks.

Our IBSAS construction, however, shows that such a “common place” on which to aggregate the
randomness chosen by the signers is not necessary to enable aggregation and is the first such scheme
whose security does not rely on this “common nonce” restriction. To see how this works, first ignore
the Y component of an aggregate in our scheme as well as the first step in the verification algorithm.
Notice that the randomness ri chosen by the i-th signer is used as the exponent on u

Qi
j=1 H2(sj),

which varies across signers. Moreover, since randomness chosen by a signer changes accordingly
across different signatures and is not public, the kind of linear-algebraic attacks mentioned above
no longer work. However, this “simplified” version of our scheme is still not secure. For example,
consider an individual signature by user ID on a message m in this scheme, which looks like(

X = urH2(ID‖m) ·H1(ID)α, Z = gr
)
.

Given (X,Z), an adversary could easily produce a forgery (X ′, Z ′) of a signature by ID on a message
m′ of its choice (assuming H2(ID‖m′) is not zero) by settingX ′ ← X and Z ′ ← ZH2(ID‖m)/H2(ID‖m′).
To correct for this, our final scheme adds another component to the signature, namely Y = vr ·
H1(ID)α, which is intended to prevent the above attack by allowing the verifier to detect when the
value of Z above has been so-tampered with (the first step of the verification algorithm).

Further discussion. We caution that the M-LRSW problem we introduce to prove our IBSAS
scheme secure is quite strong and as-yet untested by cryptanalysts. However, in Section 5, we prove
its hardness in the generic bilinear group model of [9]. Intuitively, this result means that breaking
it in practice is likely to nevertheless require a significant new advance in our current understanding
of the appropriate elliptic curve groups in which our scheme can be implemented. We also point
out that, given the “common nonce” restriction in the previous scheme of [26] (which, under this
restriction, is shown to be secure based on CDH) and the potential attacks on that scheme in
practice that can result, it is unclear why one should prefer to use the former, even if one strongly
favors schemes that are “proven secure” based on more standard computational problems.

Extension to hierarchical PKGs. Finally, we sketch how to extend our IBSAS scheme to the
case that the users’ private keys are generated via PKG’s in a hierarchy. (That is, there are multiple
PKGs situated as nodes in a tree, and a user obtains its private key from one of them determined
by the particular application.) This is needed for the S-BGP application (cf. [31]). The extension
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is based on the work of Gentry and Silverberg [27] and goes as follows. Let Pi denote a PKG at a
level i in the hierarchy. In the initial setup, the root PKG P0 will select G,GT , e, u, v, g,H1,H2 as
in the basic scheme and additionally choose another public cryptographic hash function H3. The
scheme will have global parameters G,GT , e, u, v, g,H1,H2,H3, and in addition each Pi will choose
its own random αi ∈ Zp as its secret key and release gαi as its public key. For a PKG Pl below
the root, Pl’s parent will provide it with the value Sl =

∏l
j=1 H3(Pj)αj−1 , where (P1, . . . , Pl) is the

path in the tree from the root PKG P0 to Pl. Pl keeps Sl secret. As the private key for a user ID ,
a PKG Pi will provide skID = Si ·H1(ID)αi (where S0 = 1G by convention).

The signing and verification algorithms of our scheme can then be extended in the straightfor-
ward (though tedious) way. Verifying an aggregate containing a signature of a user ID whose PKG
is Pj requires the verifier to have obtained the public keys of all the PKG’s on the path in the tree
from P0 to Pj . But as long as the hierarchy is not too large, a value ei = e(H3(Pi), gαi−1) for a
PKG Pi can be cached by the verifier, and thus verification does not take much longer than in the
basic scheme. (Recall that if ei is cached, then to compute e(H3(Pi)β, gαi−1) for some β ∈ Zp one
can simply compute eβi . One can also take advantage of “compressed pairings” [45] here.) Security
of the extended scheme wrt forging a secret key of a new PKG essentially follows from the proof
of [27, Theorem 2], with a slight loss in concrete security due to hashing the Pi’s separately to
enable aggregation (cf. [26, Section 4]). Our own security proof wrt forging a new aggregate still
goes through virtually unchanged, as the simulator would play the role of all the PKGs in the
hierarchy and would not need to “program” any values of H3.

5 On the Hardness of M-LRSW

While it would certainly be preferable to prove the security of our IBSAS scheme under the hardness
of a more established computational problem like CDH, given the new functionality that the scheme
provides, this is not always possible. We aim here to more carefully justify our use of the M-
LRSW. The generic group model [46] models an inability of algorithms to use group representation
(i.e. special properties of a group beyond the mere fact that it is a group) in solving a computational
problem. We establish a strong lower bound on the hardness of the M-LRSW in an extension of the
generic group model to the bilinear group setting [9]. This has become a standard way of building
confidence in the hardness of new computational problems in bilinear groups (see e.g. [9, 10]).
Intuitively, it means that breaking the M-LRSW in practice is likely to require a significant new
advance in our current understanding of the appropriate elliptic curve groups in which our IBSAS
scheme can be implemented.

The generic bilinear group model. We briefly recall the model of [9], making only minor
syntactic changes. For simplicity, we fix a bilinear-group generation algorithm G that always outputs
some fixed (p,G,GT , e). Let g, gT be generators of G,GT , respectively. An algorithm A being
executed in the model means that it is run by a corresponding generic bilinear group experiment
that encodes elements of these groups given to A as random strings of length dlog pe via injective
maps ξ, ξT : Zp → {0, 1}dlog pe, where ξ(a) is the encoding of ga and ξT (a) the encoding of (gT )a for
all a ∈ Zp. That is, any group elements in A’s input (its input being that in its usual experiment,
plus 1G), in A’s oracle queries and the responses it gets back, and in A’s output are so-encoded. At
any time-step, A can in particular query one of two group operation oracles for G,GT , respectively,
with encodings γ1, γ2 ∈ {0, 1}dlog pe and a bit b to get back ξ(ξ−1(γ1) · (ξ−1(γ2))−b), where “·”
denotes the corresponding group operation. Likewise, it can query a bilinear map oracle with
encodings γ3, γ4 ∈ {0, 1}dlog pe to get back ξT (e(ξ−1(γ3), ξ−1(γ4))). We use the same notation for
the algorithm’s advantage when executed in the model as for its advantage in its usual experiment.
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Theorem 5.1 Let G be as above. Suppose there is an algorithm A solving the M-LRSW relative
to G in the generic bilinear group model that runs in time at most t and makes at most qs queries
to its oracle. Then we have that

AdvM-LRSW
G (A) ≤

4
(
t+3qs+5

2

)
+ 3

p
.

Proof: See Appendix D.

As (
t+ 3qs + 5

2

)
≤ (t+ 3qs + 5)2 ,

the theorem shows that, asymptotically, an algorithm’s advantage in solving the M-LRSW in the
generic bilinear group model can increase at most quadratically in the work it performs. This
is fairly standard, e.g. for computing discrete logs. In practice, qs corresponds roughly to the
maximum number of signatures that an adversary may see, so could be set to about, say, 230.

6 Conclusions and Open Problems

This work presented two new cryptographic schemes for use in securing several network routing
applications, which we believe to be more attractive in practice than existing alternatives. To
conclude, we point out several interesting open problems in this area. Our results indicate that it
would be useful to devise an identity-based OMS scheme that is more efficient than existing identity-
based aggregate constructions. It also remains an excellent open problem to devise an identity-
based aggregate signature scheme based on a more standard computational problem (e.g. CDH),
but without the limitations of previous constructions. Secondarily, it is important to devise such
schemes secure in the standard model (without random oracles).
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A An “Enhanced” Security Model for IBSAS

In the proceedings version of this paper, we incorrectly claimed a proof that our IBSAS construction
(i.e. Construction 4.3) additionally meets an “enhanced” notion of security for such schemes. This
enhanced definition can be formulated using the following experiment.

Definition A.1 Let AS = (Setup,KeyDer, Sign,Vf) be an IBSAS scheme as defined in Section 4.
An “enhanced” experiment with a forger F with access to two oracles, is as follows:

Setup: The experiment generates a master key-pair via (mpk, msk) $← Setup and gives mpk to F .

Attack: F then runs on input mpk with access to two oracles KeyDer(msk, ·) and OSign(·, ·, ·),
the first of which operates according to the definition of IBSAS. The second on inputs a list of
“current” signer-message pairs ((ID1,m1), . . . , (ID i−1,mi−1)), a list of signer-message pairs “to-
add” ((ID i,mi), . . . , (IDk,mk)), and an aggregate-so-far σ executes:
1. σ′ ← σ
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2. For j = i to k do
σ′

$← Sign(skIDj ,mj , ((ID1,m1), . . . , (IDj−1,mj−1), σ′)
3. Return σ′

Forgery: Eventually, F halts with output a list of pairs of users and messages L∗ = ((ID∗1,m
∗
1), . . .,

(ID∗n,m
∗
n)) and a purported aggregate signature σ∗. This output is considered to be a forgery if

(1) Vf(L∗, σ∗)⇒ 1 and (2) there does not exist an i∗ ∈ {1, . . . , n} such that a valid signature for
((ID∗1,m

∗
1), . . . , (ID∗i∗ ,m

∗
i )) was returned to F by its signing oracle and all of ID∗i∗+1, . . . , ID∗n were

queried by F to its key-derivation oracle. (By convention we assume that a valid signature for the
empty list was always returned to F by its signing oracle.)

Note that a particular “attack” that the enhanced definition considers as a forgery is “sub-
aggregate extraction:” for example, after being given a valid aggregate signature corresponding to
the identity-message list ((ID1,m1), (ID2,m2)) with uncorrupted identities ID1, ID2, an adversary
should not be able to then “extract” an individual signature of ID1 on m1 (even if ID2, but of
course not ID1, is later corrupted). Note that this is not met by a “trivial” aggregate signature
construction of concatenating individual signatures. We are not aware of any concrete application
of the enhanced definition to secure routing. However, we conjecture our IBSAS construction to
meet it, although we are unable to prove it based on the M-LRSW problem we define.

B Proof of Theorem 3.5

We construct a simulator B that on inputs p,G,GT , e, g, ga, gb, runs F to solve the CDH.

The simulator. For simplicity, we assume F always queries messages to its hash oracle prior to
using them in its signing queries and its final output, and that F never repeats a hash query. The
description of the simulator B for the proof is given in Figure 1. In responding to hash queries
of F , using Coron’s technique [21] we have B assign query m a bit (aka. δ-value) δ[m] equal to 1
with probability δ, for some value of 0 ≤ δ ≤ 1 that we optimize later. Intuitively, B hopes that F
never queries a message with δ-value 0 to its signing oracle where the honest signer is at the k∗-th
position in the OMS, but that F ’s forgery contains such a message and that the position of the
honest signer in the forgery is k∗.

Analysis. We first need the following claim.

Claim B.1 On executions of B on which it does not abort, F ’s view (consisting of its input and
answers it receives to its oracle queries) in the simulation provided by B comes from an identical
distribution to that in its real UF-OMS experiment.

Proof: Note that, as in the proof of [33, Theorem 3.1], the “signature reconstruction” technique
used by B to answer signing queries of F provides responses coming from the same distribution as
in the UF-OMS experiment, in particular because the OMS-so-far is verified and re-randomized in
the signing algorithm. In particular, in the case that F makes a signing query m such that δ[m] = 0
but the position of the honest signer in the OMS is some i 6= k∗, our code for B first uses a trick of
Boneh and Boyen [8] to first create the honest signer’s individual component of the OMS with the
correct distribution from F ’s perspective. To see this, we can write the honest signer’s component
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Simulator B(p,G,GT , e, g, ga, gb)

k∗
$← {1, . . . , nmax} ; t, u $← Zp

Initialize arrays K, δ,H,E to everywhere undefined
Run F on inputs (p,G,GT , e, g,H), (ga, (ga)−uk

∗
gt, (ga)u), replying to its oracle queries as follows:

On key registration query (pk′, sk′, c):
If OKg(I ; c)⇒ (pk′, sk′) then

K[pk′]← sk′ ; Return 1
Else return 0
On hash query m:

E[m] $← Zp ; δ[m] δ←{0, 1}
If δ[m] = 1 then H[m]← gE[m] ; Else H[m]← gbgE[m]

Return H[m]
On signing query (mj , σ, L = (pk1, . . . ,pki−1)):
Parse σ as (Q,R) and set it as (1G, 1G) if i = 1
If i > 1 and OVf(mj , σ, L)⇒ 0 or ∃z ∈ {1, . . . , i− 1} such that K[pkz] is undefined

then return ⊥
If δ[mj ] = 0 and i = k∗ then abort

r
$← Zp ; Let K[pkz] = (sz, tz, uz) for all z ∈ {1, . . . , i− 1}

If δ[mj ] = 1 then {
Q′ ← (ga)E[mj ]((ga)−uk

∗
gt(ga)iu)r ; R′ ← gr

Q
′′ ← Q′ ·

∏j−1
k=1(gsk)E[mj ]g(tk+kuk)r

Return (Q′′, R′) }
Else {

Q′ ← (ga)E[mj ](gb)−t/(u(i−k
∗))((ga)−uk

∗
gt(ga)iu)r ; R′ ← gr(gb)1/(u(k

∗−i))

Q
′′ ← Q′ ·

∏j−1
k=1(gbgE[mj ])sk(gr(gb)−1/(u(i−k∗)))(tk+kuk)

Return (Q
′′
, R′) }

Let (L∗ = (pk∗1, . . . ,pk∗n),m∗, σ∗ = (Q∗, R∗)) be the output of F
If L∗, σ∗ is not a forgery (relative to H-values) then return ⊥
Let i∗ ∈ {1, . . . , n} satisfy condition (2) of a forgery
If δ[m∗] = 1 or i∗ 6= k∗ then abort
Let K[pk∗z] = (sz, tz, uz) for all z ∈ {1, . . . , n} such that z 6= i∗

Q← Q∗/(
∏
j 6=i∗(g

bgE[m∗])sj (R∗)tj+juj ) ; Z ← Q/((R∗)t(ga)E[m∗])
Return Z

Figure 1: Simulator B for the proof of Theorem 3.5.

(Q′, R′) in this case as

Q′ = (ga)E[mj ](gb)−t/(u(i−k
∗))((ga)−uk

∗
gt(ga)iu)r

= (ga)E[mj ]g−bt/(u(i−k
∗))(g(i−k∗)augt)r

= (ga)E[mj ]gab(g(i−k∗)augt)r−b/(u(i−k
∗))

= (gbgE[mj ])a(g(i−k∗)augt)r−b/(u(i−k
∗)) ;

R′ = gr(gb)−1/(u(i−k∗))

= gr−b/(u(i−k
∗)) ,
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which, given that r ∈ Zp is chosen randomly by B, indeed comes from the same distribution from
the perspective of F as the response given in its real experiment. Now, it is straightforward to verify
(assuming B does not abort) that B provides F with a view coming from an identical distribution
to that in its real experiment during the rest of the simulation as well.

Observe that from the description of B and using condition (1) of a forgery in Definition 3.2 and
the properties of a pairing, that if on run of B in which it does not abort and in which F produces
a forgery with signature (Q∗, R∗), where R∗ = gr

∗
for some r∗ ∈ Zp, B’s output has the form

gabgE[mj ]a((ga)−uk
∗
gt(ga)k

∗u)r
∗
/((ga)E[mj ](gr

∗
)t) = gabgE[mj ]a((ga)k

∗−k∗gt)r
∗
/((ga)E[mj ](gr

∗
)t)

= gabgE[mj ]a(gt)r
∗
/((ga)E[mj ](gr

∗
)t)

= gab ,

which is a solution to its input CDH problem instance. In light of the above claim, then, we can
wlog consider runs of the CDH game played by B and of the UF-OMS experiment with F using
randomly-chosen coin sequences drawn from a common finite space of coins, such that if F produces
a forgery on a run of its experiment using some chosen sequence of coins from this space, then, on
a run of B using the same coins, the latter provides input and oracle replies to F identical to that
its real UF-OMS experiment and hence outputs a solution to its CDH instance if it does not abort.
Let forge be the event that F produces a forgery when run in its UF-OMS experiment. Let abort
be the probability that B aborts. Then we have the probability AdvCDH

G (B) that B succeeds in
solving the CDH relative to G is bounded as follows:

AdvCDH
G (B) = Pr

[
forge ∧ abort

]
= Pr

[
abort | forge

]
· Pr [ forge ]

= Pr
[
abort | forge

]
·AdvUF-OMS

OMS (F ) .

The probabilities above are taken over the choice of the coin sequence drawn from the common
finite space. The last equality is by definition. To continue the analysis, we make the following
claim.

Claim B.2 We claim that

Pr
[
abort | forge

]
≥ (1/nmax) · (1− δ) · δqs .

Proof: Note that the probability that B aborts seems difficult to analyze directly, because F may
repeat messages in its queries to its signing oracle, which have the same δ-values. Instead, we
analyze it by looking at a run of B and of the UF-OMS experiment with F using the same coin
sequence drawn from the common finite space of coins, on which F outputs a forgery on a message
m∗ in the latter. Let aborts be the event that B aborts when responding to a signing query of F
and abortf be the event that B aborts after F outputs a forgery. Let goodf be the event that B
sets δ[m∗] = 0 and k∗ = i∗, where i∗ is the position of the honest signer in forgery that F outputs
in its experiment when run on the same coin sequence. Then we have

Pr
[
abort | forge

]
= Pr

[
aborts ∧ abortf | forge

]
= Pr

[
aborts ∧ abortf ∧ goodf | forge

]
= Pr

[
abortf | aborts ∧ goodf ∧ forge

]
· Pr

[
aborts ∧ goodf | forge

]
= Pr

[
aborts ∧ goodf | forge

]
. (2)
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For the second equality above, we use the fact that abortf occurs only if goodf does, by definition
of B. For the last, we use that Pr

[
abortf | aborts ∧ goodf ∧ forge

]
= 1, because abortf cannot

occur if goodf does. Now, consider the set of distinct messages S = {m1, . . . ,mk} that F queries
to its signing oracle when executed in its experiment. We assume wlog that m∗ = mk, where m∗

is the message on which F forges. Let badqj be the event that F when executed by B makes a
signing query of the form mj , σ, L = (pk1, . . . ,pkk∗−1) for which the reply is not ⊥. We next claim
the following sequence of inequalities:

Pr
[
aborts ∧ goodf | forge

]
= Pr

 goodf ∧
k∧
j=1

δ[mj ] = 1 ∨ (δ[mj ] = 0 ∧ badqj) | forge


≥ Pr

 goodf ∧ (δ[mk] = 0 ∧ badqk)
k−1∧
j=1

δ[mj ] = 1 | forge


≥ Pr

 goodf ∧
k−1∧
j=1

δ[mj ] = 1 | forge


≥ 1

nmax
· (1− δ) · δk−1

≥ 1
nmax

· (1− δ) · δqs .

Above, the first equation is just by the definition of B. The next follows by dropping events in
disjunctions. For the third, we use the fact that if goodf occurs and B sets all δ-values except
δ[m∗] to 1, then badk (where m∗ = mk) cannot occur. This is because, by definition of a forgery
in Definition 3.2, F does not make a signing query of the form m∗, σ, L = (pk1, . . . ,pki∗−1) on the
run of its experiment and hence on the run of B, because the latter provides the same input and
oracle replies to F as the former in this case when run on the same coins. The fourth follows from
the fact that all B always sets k∗ and any δ-values independently of each other and of F . Finally,
the last uses 1 ≤ k ≤ qs and 0 ≤ δ ≤ 1. Substituting the last inequality into equation (2) above
proves the claim.

Using the above claim, we now have

AdvCDH
G (B) ≥ (1/nmax) · (1− δ) · δqs ·AdvUF-OMS

OMS (F ) . (3)

To finish the analysis, let us define for 0 ≤ δ ≤ 1 the function

f(δ) def= δqs · (1− δ) .

It is not hard to see that f is maximized at δOPT = qs/(qs + 1), at which f(δOPT) ≥ 1/(e(qs + 1)).
Setting δ to δOPT in the description of B and substituting the above for f(δ) in equation (3), then
re-arranging terms, gives equation (1) in Theorem 3.5.

Finally, to justify the running-time analysis of B, we take into account our convention to
include in the running-time of F that of its overlying experiment. B’s extra work is one additional
exponentiation on each hash query F makes, as well as an additional number of exponentiations
linear in the number signers in the OMS (of which there are at most nmax) on each signing query
and on a forgery. This gives at most τ(G) ·O(qh + nmax(qs + 1)) extra work for B as desired.
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Simulator BO
M-LRSW
g,u,v,a,b (p,G,GT , e, g, u, v, ga, gb)

Initialize arrays E, δ,H1,H2 to everywhere undefined
Run F on input p,G,GT , e, u, v, g, ga,H1,H2, replying to its oracle queries as follows:

On H1-query ID :

E[ID ] $← Zp ; δ[ID ] δ←{0, 1}
If δ[ID ] = 1 then H1[ID ]← gE[ID ] ; Else H1[ID ]← gbgE[ID ]

Return H1[ID ]
On H2-query x:

H2[x] $← Z∗p ; Return H2[x]
On signing query (ID i,mi, ((ID1,m1), . . . , (ID i−1,mi−1)), σ):
Parse σ as (X,Y, Z) and set it as (1G, 1G, 1G) if i = 1
π ←

∏i
j=1 H2[sj ]

If δ[ID i] = 0 then {
(X ′, Y ′, Z ′) $← OM-LRSW

g,u,v,a,b (π)
X ′ ← X ′ · (ga)E[IDi] ; Y ′ ← Y ′ · (ga)E[IDi]

X ← X · (X ′) ; Y ← Y 1/H2[si] · Y ′ ; Z ← Z1/H2[si] · Z ′ }
Else {

r
$← Zp ; X ← X · uπr(ga)E[IDi]

Y ← Y 1/H2[si] · vr(ga)E[IDi]

Z ← Z1/H2[si] · gr }
Return (X,Y, Z)
On key derivation query ID :
If δ[ID ] = 0 then abort ; Else return (ga)E[ID ]

Let (L∗ = ((ID∗1,m
∗
1), . . . , (ID∗n,m

∗
n)), σ∗) be the output of F

If L∗, σ∗ is not a forgery (relative to H1,H2-values) then return ⊥
Let i∗ ∈ {1, . . . , n} satisfy condition (2) of a forgery
If δ[ID∗i ] = 1 or there exists δ[ID i′ ] = 0 for some 1 ≤ i′ 6= i∗ ≤ n then abort
Parse σ∗ as (X,Y, Z) and let s∗i denote the string ID∗1‖m∗1‖ . . . ‖ID∗i ‖m∗i for all 1 ≤ i ≤ n
For all 1 ≤ j 6= i∗ ≤ n do

X ← X/(ga)E[IDj ] ; Y ← Y/(ga)E[IDj ]/(
Qn
l=j+1 H2[s∗l ])

X ← X/(ga)E[IDi∗ ] ; Y ← Y (
Qn
l=i∗+1 H2[s∗l ])/(ga)E[IDi∗ ] ; Z ← Z(

Qn
l=i∗+1 H2[s∗l ])

ρ←
∏i∗

l=1 H2[s∗l ] ; Return (ρ,X, Y, Z)

Figure 2: Simulator B for the proof of Theorem 4.5.

C Proof of Theorem 4.5

We construct a simulator B that runs F in order to solve the M-LRSW. Recall that B gets input
p,G,GT , e, g, u, v, ga, gb, as well as access to an associated oracle OM-LRSW

g,u,v,a,b (·) that on input k ∈ Zp
executes

If k = 0 then return ⊥
r

$← Zp
Return (ukrgab, vrgab, gr).
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B wants to output (k′, uk
′xgab, vxgab, gx) for some k′ ∈ Zp it does not query to its oracle and any

x ∈ Zp of its choice.

The simulator. We assume wlog that F never repeats a query to its H1 and H2 hash ora-
cles. Under some further simplifying assumptions on F given below, the description of B is given
in Figure 2. In responding to F ’s queries to its H1-oracle, using Coron’s technique [21] we have
B assign H1-query ID a bit (aka. δ-value) δ[ID ] equal to 1 with some probability 0 ≤ δ ≤ 1 that
we optimize later. Moreover, in B’s code, we assume for simplicity that when F makes a signing
query ID i,mi, ((ID1,m1), . . . , (ID i−1,mi−1)), σ, it has previously queried identity IDk to its H1-
oracle for all k ∈ {1, . . . , j}; similarly, on F ’s final output L∗ = ((ID∗1,m

∗
1), . . . , (ID∗n,m

∗
n)), σ∗, we

assume wlog it has queried identity IDk to its H1-oracle for all k ∈ {1, . . . , n} and string sj for all
j ∈ {1, . . . , n} to its H2-oracle. Intuitively, B hopes that F does not ask for the secret key of any
ID i with δi = 0 but exactly one such identity occurs in its forgery.

Analysis. For the analysis, let collide be the event that B outputs (ρ,X, Y, Z) such that it has
previously queried ρ to its M-LRSW oracle, let forge be the event that F produces a forgery
according to Definition 4.2 when executed by B, and let abort be the event that B aborts. (We
emphasize that forge is defined with respect to an execution of the simulator B here, unlike in
the proof of Theorem 3.5 in Appendix B.) We claim that the probability AdvM-LRSW

G (B) that B
succeeds in solving the M-LRSW relative to G is bounded as follows:

AdvM-LRSW
G (B) ≥ Pr

[
forge ∧ collide ∧ abort

]
= Pr

[
(forge ∧ collide) | abort

]
· Pr

[
abort

]
= Pr

[
(forge− collide) | abort

]
· Pr

[
abort

]
=

(
Pr
[
forge | abort

]
− Pr

[
collide | abort

])
· Pr

[
abort

]
. (4)

To see the first inequality above, consider a run of B in which it does not abort, and suppose F ’s
output L∗ = ((ID∗1,m

∗
1), . . . , (ID∗n,m

∗
n)), σ∗ when executed by B is a forgery. Let i∗ ∈ {1, . . . , nmax}

satisfy condition (2) of a forgery. By condition (1) and the properties of a pairing, we then know
that B’s output has the formρ, n∏

j=1

uz
Qj
l=1 H2[s∗l ] · gab,

n∏
j=1

vz
Qn
l=i∗+1 H2[s∗l ]/

Qn
l=j+1 H2[s∗l ] · gab,

n∏
j=1

gz
Qn
l=i∗+1 H2[s∗l ]/

Qn
l=j+1 H2[s∗l ]

 ,

for some z ∈ Zp unknown to B, where ρ =
∏i∗

j=1 H2[s∗j ]. Now, letting

x = z

n∑
j=1

·

 n∏
l=i∗+1

H2[s∗l ] /
n∏

l=j+1

H2[s∗l ]

 ,

we have the equality

xρ = x

i∗∏
j=1

H2[s∗l ] = z

n∑
j=1

·
j∏
l=1

H2[s∗l ] .

Notice that the last term is equal to the exponent on u in the second component of B’s output
above. So, the output is a solution to the M-LRSW (meaning causes the M-LRSW game to output
1) if B did not previously query ρ to its M-LRSW oracle, i.e. collide did not occur. This gives us
the first inequality. To lower-bound the last line, we use the following claims.
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Claim C.1 We claim that

Pr
[
abort

]
≥ δqk(1− δ)δnmax−1 .

Proof: Let abortk be the event that F makes key-derivation query ID i such that δi = 0. Let abortf
be the event that B aborts after F outputs a forgery, meaning L∗ = ((ID∗1,m

∗
1), . . . , (ID∗n,m

∗
n)), σ∗,

where i∗ ∈ {1, . . . , n} satisfies condition (2) of a forgery, has either δi∗ = 1 or δj = 0 for some
1 ≤ j 6= i∗ ≤ n. Let t = #j ∈ {1, . . . , n} such that F queried ID∗j to its key-derivation oracle.
Then we claim that

Pr
[
abort

]
= Pr

[
abortk ∧ abortf

]
= Pr

[
abortk

]
· Pr

[
abortf | abortk

]
≥ δqk · Pr

[
abortf | abortk

]
= δqk · (1− δ) · 1t · δn−1−t

≥ δqk · (1− δ) · δnmax−1 .

To see the third line, note that when F makes a key-derivation query ID i it has no information
about δi, which is 1 with probability δ (and recall that qk is an upper-bound on the number of key-
derivation queries F makes). The fourth line follows from the fact that F has no information about
δ∗i corresponding to ID∗i∗ in the forgery, which is 0 with probability (1 − δ), because by definition
of a forgery in Definition 4.2 F did not make query ID i∗ to its key-derivation oracle. Moreover,
consider ID∗j for each 1 ≤ j 6= i∗ ≤ n. If F did not query IDj to its key-derivation oracle, then
it has no information about δj , which is 1 with probability δ, whereas if F did query IDj to its
key-derivation oracle then δj = 1 (because if δj = 0 then B would have aborted already on key-
derivation query IDj). This justifies the fourth inequality above. For the last, we use 0 ≤ δ ≤ 1
and 1 ≤ n− 1 ≤ nmax − 1.

Claim C.2 We claim that

Pr
[
forge | abort

]
= AdvUF-IBSAS

AS (F ) .

Proof: To see this, we can consider runs of the M-LRSW game played by B and of the UF-IBSAS
experiment with F using randomly-chosen coin sequences drawn from a common finite space of
coins. Imagine a new game where we first run B using a randomly-chosen coin sequence from
this space and then run the UF-IBSAS experiment with F using the same coins. Note that on
executions of B where it does not abort, F ’s view in the simulation comes from a distribution
identical to that in its real experiment. So, the probability of forge given that abort does not occur
is the same as the probability that F outputs a forgery when run its experiment in the new game
given that B did not abort in the game, which is clearly just AdvUF-IBSAS

AS (F ) as desired.

Claim C.3 We claim that

Pr
[
collide | abort

]
≤ qh2(qh2 − 1)

2p
.

Proof: Note that collide can only happen if F outputs a forgery and B does not abort. On
such an execution of B, by condition (2) of a forgery we know that F did not make a query
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(ID∗i ,m
∗
i , ((ID∗1,m

∗
1), . . . , (ID∗i∗−1,m

∗
i∗−1)), σ′) for any σ′ ∈ {0, 1}∗ to its signing oracle. So, ac-

cording to B’s code for responding to F ’s signing queries, collide can occur just if some value
π =

∏j
l=1 H2(sl) queried by B to its M-LRSW oracle is such that π = ρ, for a sequence (s1, . . . , sj) 6=

(s∗1, . . . , s
∗
i∗) corresponding to a query of F to its signing oracle (i.e. s1‖ · · · ‖sj 6= s∗1‖ · · · ‖s∗i∗).

Call a sequence (q1, . . . , qk) of queries made by F to its H2-oracle for k ≥ 1 valid if it satisfies
qi = qi−1‖ai for some string ai = bi‖ci and all 1 ≤ i ≤ k, where a0 is the empty string, bi is
an identity and ci is a message. In particular (s1, . . . , sj) above must be valid. If we think of∏k
l=1 H2(sl) as the hash value of (s1, . . . , sk), the condition that all hash values of valid sequences

are different implies collide does not occur. Notice that two valid sequences cannot be “mixed”
to create a new valid sequence, namely, a sequence (s1, . . . , si−1, s

′
i, si+1, . . . , sk) from two valid

sequences (s1, s2, . . . , sk) and (s′1, s
′
2, . . . , s

′
k) is not valid unless the condition s′i = si is met (which

also implies s′j = sj for 1 ≤ j ≤ i). So each query of F to its H2-oracle introduces at most one new
valid sequence. Thus, there are at most qh2 valid sequences in total and the probability of collide
is upper-bounded by the birthday bound:

Pr
[
collide | abort

]
≤ Pr[C1 ∨ C2 ∨ · · · ∨ Cqh2

]
≤ Pr[C1] + Pr[C2] + · · · + Pr[Cqh2

]

≤ 0
p

+
1
p

+ · · · +
qh2 − 1
p

=
1 + 2 + 3 + · · · + (qh2 − 1)

p

=
qh2(qh2 − 1)

2p
,

where Ci is the event that the hash value of the i-th valid sequence defined during execution of F
collides with one of the previous ones.

Plugging the previous claims into equation (4), we now have

AdvM-LRSW
G (B) ≥

(
AdvUF-IBSAS

AS (F ) − qh2(qh2 − 1)
2p

)
· δqk(1− δ)δnmax−1 . (5)

To complete the analysis, let us define the function

f(δ) def= δqk(1− δ)δnmax−1

= δnmax+qk−1(1− δ) .

Denoting the exponent nmax + qk − 1 by z, it is not hard to see that f is maximized at δOPT =
z/(z + 1), for which we have f(δOPT) ≥ 1/(e(z + 1)) = 1/(e(nmax + qk)). Setting δ to δOPT in
the code for B and substituting the above for f(δ) in (5) then re-arranging the inequality yields
equation (2) in Theorem 4.5.

Finally, to justify our running-time analysis of B, recall our convention to include in the running-
time of F that of its overlying experiment. There is constant overhead for B in answering H2 hash
oracle queries and the time for one exponentiation in G on answering H1 and key-derivation queries
of F . On each signing query, B’s overhead is at most a constant number of exponentiations in
G. After a forgery, B’s overhead is at most a linear number of exponentiations in G and (by re-
using computation) a linear number of multiplications in Zp in the number of signers in the forged
aggregate signature, of which there are at most nmax. Summing, this is at most τ(G) ·O(qh1 + qk +
qs) + τ(G) ·O(nmax) +υ(G) ·O(nmax) extra overhead for B. Moreover, the number of oracle queries
made by B to its M-LRSW oracle is at most qs, counting one for each signing query of F .
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Simulator B(G,GT , e, g) :
Maintain lists L,LT of ordered pairs (h, ξ[h]),

where h ∈ Zp[X,Y,Ru, Rv, R1, . . . , Rqs ] and ξ[h] ∈ {0, 1}dlog pe

ctr ← 0 ; ξ[1], ξ[Ru], ξ[Rv], ξ[X], ξ[Y ] $← {0, 1}dlog pe

Initialize L as ((1, ξ[1]), (Ru, ξ[Ru]), (Rv, ξ[Rv]), (X, ξ[X]), (Y, ξ[Y ])) (and LT as empty)
Run A on input p, ξ[1], ξ[Ru], ξ[Rv], ξ[X], ξ[Y ], replying to its oracle queries as follows:

On G-operation query (ξ[a1], ξ[a2], b): /* a1, a2 ∈ Zp[X,Y,Ru, Rv, R1, . . . , Rqs ] */
f ← a1 + (−1)ba2

If (f, ξ[f ]) ∈ L for some ξ[f ] ∈ {0, 1}dlog pe then return ξ[f ]

Else ξ[f ] $← {0, 1}dlog pe ; Add (f, ξ[f ]) to L ; Return ξ[f ]
On GT -operation query (ξT [a1], ξT [a2], b): /* a1, a2 ∈ Zp[X,Y,Ru, Rv, R1, . . . , Rqs ] */
f ← a1 + (−1)ba2

If (f, ξT [f ]) ∈ LT for some ξT [f ] ∈ {0, 1}dlog pe then return ξT [f ]

Else ξT,f
$← {0, 1}dlog pe ; Add (f, ξT,f ) to LT ; Return ξT [f ]

On pairing query (ξ[a1], ξ[a2]): /* a1, a2 ∈ Zp[X,Y,Ru, Rv, R1, . . . , Rqs ] */
f ← a1 · a2

If (f, ξT [f ]) ∈ LT for some ξT [f ] ∈ {0, 1}dlog pe then return ξT [f ]

Else ξT [f ] $← {0, 1}dlog pe ; Add (f, ξT [f ]) to LT ; Return ξ[g]
On OM-LRSW

g,u,v,x,y query α: /* α ∈ Zp */
If α = 0 return ⊥
ctr ← ctr + 1 ; f1 ← αRctrRu +XY ; f2 ← RctrRv +XY ; f3 ← Rctr
For q = 1 to 3 do

If (fq, ξ[fq]) /∈ L for some ξ[fq] ∈ {0, 1}dlog pe then

ξ[fq]
$← {0, 1}dlog pe ; Add (fq, ξ[fq]) to L

Return (ξ[f1], ξ[f2], ξ[f3])
Let (α∗, ξ[fi], ξ[fj ], ξ[fk]) be the output of A

x, y, ru, rv, r1, . . . , rqs
$← Zp

If there exist (f, ξ[f ]), (f ′, ξ[f ′]) ∈ L or
(fT , ξT [fT ]), (g′T , ξT [g′T ]) ∈ LT such that

f(x, y, ru, rv, r1, . . . , rqs) = f ′(x, y, ru, rv, r1, . . . , rqs) but ξ[f ] 6= ξ[f ′]
or fT (x, y, ru, rv, r1, . . . , rqs) = f ′T (x, y, ru, rv, r1, . . . , rqs) but ξT [fT ] 6= ξT [f ′T ] then abort

Else f ′j = Rvfk +XY ; f ′i = α∗Rufk +XY

If α∗ was not queried to OM-LRSW
g,u,v,x,y but

fi(x, y, ru, rv, r1, . . . , rqs) = f ′i(x, y, ru, rv, r1, . . . , rqs) and
fj(x, y, ru, rv, r1, . . . , rqs) = f ′j(x, y, ru, rv, r1, . . . , rqs) then return 1 ; Else return 0

Figure 3: Simulator B for the proof of Theorem 5.1.

D Proof of Theorem 5.1

We construct a simulator B that on input (p,G,GT , e) runs A and tries to simulate for it its
corresponding generic bilinear group experiment. We stress that B does not do so in order to
solve any computational problem itself; rather, we construct B such that we are able to bound the
advantage of A in solving the M-LRSW in its generic bilinear group experiment by bounding the
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success probability of A in solving the M-LRSW when executed by B.

The simulator. Consider the simulator B given in Figure 3, which runs A. Intuitively, B inter-
nally represents (the discrete logs of) group elements in G,GT as multivariate (actually, multilinear)
polynomials, in indeterminates corresponding to what are randomly-chosen elements of Zp in the
generic bilinear group experiment with A. Analogously to in the latter, these polynomials are en-
coded as random strings (stored in arrays ξ, ξT ) before being given to A. We assume wlog that all
such encodings in A’s oracle queries and in its final output are “legitimate” encodings of elements
in the appropriate group, where by legitimate we mean that they were previously received by A
either as part of its input or in response to one of its previous queries. As a consequence, in B’s
code we write components of F ’s oracle queries and its output like ξ[h] for some polynomial h, with
it being understood that B can find h by scanning the array for ξ[h].

Analysis. We first make the following claim.

Claim D.1 On runs of B on which it does not abort, A’s view in the simulation provided by B
comes a distribution identical to that in its generic bilinear group experiment.

Proof: We want to show when B does not abort, the encodings of group elements given to A
in the simulation provided by B come from an identical distribution as in the generic bilinear
group experiment with A. Here we re-name the encoding functions in the generic bilinear group
experiment with A as ξ′, ξ′T . Consider the map φ : Zp[X,Y,Ru, Rv, R1, . . . , Rqs ] → Zp given by
q → q(x, y, ru, rv, r1, . . . , rqs) for all such polynomials q, which in particular maps polynomials
encoded by B via its arrays ξ, ξT to integers in Zp.

In the case that B does not abort, we can view φ as mapping the polynomials encoded by B to
the discrete logs of group elements encoded in the generic bilinear group experiment with A, in the
sense that their images under φ take the same distribution as the latter. To see this, first observe
that the image of each indeterminate under φ takes the same distribution as the corresponding
discrete logs in Zp randomly chosen by the generic bilinear group experiment with A. So, when
B performs addition (on answering A’s group operation queries in G,GT ) and multiplication (on
answering A’s pairing queries) of two polynomials, the real experiment could equivalently perform
addition and multiplication of their images under φ. But φ is a ring homomorphism. So, when B
provides A with an encoding ξ[f + g] or ξT [f · g] for polynomials f, g, the real experiment provides
ξ′(φ(f) + φ(g)) = ξ′(φ(f + g)) and similarly in the second case. Now if B does not abort then φ
is restricted here to polynomials on which it is injective, so in this case the images under φ of the
polynomials encoded by A indeed take an identical distribution as the discrete logs encoded by the
real experiment.

The claim now follows by the fact that values of ξ, ξT and of ξ′, ξ′T both take independent random
strings in {0, 1}dlog pe.

For the analysis, let us consider executions of B and of the generic bilinear group experiment with
A using randomly-chosen coin sequences drawn from a common finite space of coins. Let abort be
the event that B aborts during the simulation, let success denote the event that A when executed in
its generic bilinear group experiment outputs a valid solution to the M-LRSW problem (i.e. causing
its experiment to return 1) and, as usual, let B⇒ 1 be the event that B outputs 1. We claim that
the probability AdvM-LRSW

G (A) that A solves the M-LRSW problem in its generic bilinear group
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experiment is bounded as follows:

AdvM-LRSW
G (A) ≤ Pr

[
success | abort

]
· Pr

[
abort

]
+ Pr [ success | abort ] · Pr [ abort ]

≤ Pr
[
success | abort

]
· Pr

[
abort

]
+ Pr [ abort ]

≤ Pr
[
B⇒ 1 | abort

]
+ Pr [ abort ] . (6)

Note that the probabilities here are taken over the choice of the coin sequence used both for
execution of B and the experiment. The third inequality follows from the above claim and the
description of B. Since, on an execution of B for which abort does not occur, B returns 1 just when
A would solve the M-LRSW in its real experiment, according to the definition of f ′j , f

′
i in B’s code

and the mapping φ in the above proof. It remains to bound the probabilities in this last inequality.
We do so via the following two claims. However, we first need to recall the following fact, which
follows from the Schwartz-Zippel Lemma [43].

Fact D.2 Fix a non-zero polynomial f ∈ Zp[X1, . . . , Xk] of total degree d. Then the probability
that f(x1, . . . xk) = 0 when x1, . . . , xk ∈ Zp are chosen independently at random is at most d/p.

Note that a polynomial equality g1 = g2 can be rewritten as g1 − g2 = 0. Thus, when evaluating
g1, g2 at randomly chosen points, the probability that the former equality holds is the same as the
latter, so, assuming g1 6= g2, we can apply above fact to bound the probability of the former, with
g1 − g2 playing the role of f . Moreover, in this case the total degree of g1 − g2 is bounded by the
maximum of the total degree of either. We use this observation repeatedly below.

Claim D.3 The probability of abort is bounded as

Pr[abort] ≤
4
(
t+3qs+5

2

)
p

.

Proof: Notice that, during execution of B, polynomials initially present in L and those later added
by B as a result of queries made by A to its M-LRSW oracle have total degree at most 2. Moreover,
A’s making a group operation query in G causes B to add a linear combination of such polynomials
to L, so in fact this bound applies to all polynomials in L. On the other hand, if A makes a pairing
query then B multiplies two polynomials in L and puts the result, which has total degree at most
4, into LT . A’s making a group operation query in GT similarly causes B to add to LT only a
linear combination of polynomials already in LT , hence all polynomials in LT have total degree at
most 4.

Now, at the end of B’s execution there are at most γ + 3qs + 5 polynomials in the two lists
combined, where γ is the total number of queries A has made to its group operation oracles and its
pairing oracles. We can now apply Fact D.2 to the first “If” check in the abort condition, namely
f(x, y, ru, rv, r1, . . . , rqs) = f ′(x, y, ru, rv, r1, . . . , rqs) where f 6= f ′, and similarly to the second “If”
check. Namely, an instance of the former holds with probability at most 2/p, and the latter with
at most 4/p. Taking the maximum here and a union bound over all pairs of polynomials in the
lists combined yields the claim.

Claim D.4 We claim that

Pr
[
B⇒ 1 | abort

]
≤ 3

p
.
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Proof: Note that B can only output 1 if it does not abort, so consider such an execution of
B. Consider first the equality fj(x, y, ru, rv, r1, . . . , rqs) = f ′j(x, y, ru, rv, r1, . . . , rqs) in B’s code,
which must hold in order for B to return 1. Initially, let us suppose that fj 6= f ′j . Then, since
f ′j = Rvfk+XY by construction where fk is in L, and we have previously seen that all polynomials
in L have total degree at most two, f ′j has total degree at most 3. So by Fact D.2 the above equality
holds with probability at most 3/p, and the claim follows.

Thus, for the remainder of the proof, we assume that fj = f ′j . We next want to show that
f ′i 6= fi. We first claim that the polynomial fk can then be written as a sum Rl + β, for some
l ∈ {1, . . . , qs} and some β ∈ Zp (we assume for simplicity that qs ≥ 1). This follows from the fact
that the polynomial f ′j = Rvfk + XY must be in the list L (because fj is, and we are assuming
fj = f ′j), as follows. Notice from the code of B that the polynomials 1, Ru, Rv, X, Y as well as
αcRuRc + XY,RvRc + XY,Rc for all c ∈ {1, . . . , qs}, where αc ∈ Zp is the first component of
the c-th query made by A to its M-LRSW oracle, together form a basis for the vector space of
polynomials spanned by polynomials in L, which only contains polynomials in this span. But
having fk of the above form, so that we may write f ′j = RvRl + βRv +XY , is the only way that f ′j
can be in this span and hence in L, since the only basis polynomials containing Rv are RvRc +XY
for all c ∈ {1, . . . , qs} and Rv itself.

Now, this means f ′i has the form α∗Ru(Rl + β) + XY = βRu + α∗RuRl + XY for some α∗ ∈ Zp
that was not queried by A to its M-LRSW oracle. Considering again the basis given above for the
vector space of polynomials spanned by polynomials in L, we see that no such polynomial can be
in L, because if it were then (βRu +α∗RuRl +XY )− βRu = α∗RuRl +XY would be in the span,
which is it clearly not because f ′i is not divisible by αlRuRl + XY (using the fact that α∗ 6= αl,
since αl was queried by A to its oracle and α∗ was not), and no other basis polynomial contains
an RuRl term. Therefore f ′i 6= fi as desired, since fi is in L. Thus fi has total degree at most
2, and since f ′i = α∗Rufk + XY by construction where fk is in L, f ′i has total degree at most 3.
So fi(x, y, ru, rv, r1, . . . , rqs) = f ′i(x, y, ru, rv, r1, . . . , rqs), which must hold for B to output 1, holds
with probability at most 3/p by Fact D.2, and the claim follows.

Finally, plugging the previous two claims into (6) above and then combining terms gives equation (2)
in Theorem 5.1 as desired.
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