
ABSTRACT ⎯ A key agreement protocol is a
cryptographical primitive which allows participants to share a
common secret key via insecure channel. In particular, a
multiparty key agreement protocol is a key agreement protocol
that can manage arbitrary number of participants at once. In
the security point of view, authentication and forward secrecy
are the most important requirements in such protocols. One
interesting problem in key agreement protocols is to construct a
multiparty key agreement protocol satisfying the above security
requirements with minimal number of communication rounds
(i.e. one-round). In literature, there has been no one-round
multiparty key agreement protocol that satisfies both of
authentication and forward secrecy.

In this paper, we present a new multiparty key agreement
protocol using bilinear map and adopting the key generation
center. The protocol demands only one–round for arbitrary
number of participants to share a group key and satisfies both
authentication and (partial) forward secrecy.

Keywords⎯Multiparty Key Agreement, Authentication,
Bilinear Map, Weil Pairing

I. Introduction

A key agreement protocol is a cryptographical primitive which
allows participants to share a common secret key via insecure
channel. The Diffie–Hellman key agreement protocol [1] in
1976 is the first practical solution to the key agreement problem.
After Diffie and Hellman's work, many security requirements
and various solutions have been discussed and proposed up to
now.

The most important requirement for a key agreement protocol
is authentication of participants involved in the protocol.
Although the Diffie–Hellman key agreement protocol is very

simple and efficient without requiring any preparation for the
protocol, it is seriously vulnerable to the well known man–in–
the–middle–attack and is not sufficient to accomplish the
purpose of key agreement protocols. The reason is that the
Diffie–Hellman key agreement allows no authentication of
participants. Formal definitions of various security requirements
are given in the next section.

Multiparty Key Agreement using Bilinear Map

Nam-Su Jho and Myung-Hwan Kim

In the early days, improving on Diffie-Hellman key agreement

protocol adopting authentication is mainly researched. MTI
protocol [2] in 1986 and MQV protocol [3] in 1998 are
representative results. However, only heuristic security analyses
are given. After formal security model is proposed by [4], [5] and
[6], attempts of constructing provably secure key agreement
protocol are made. Protocol proposed by Jeong, Kats and Lee [7]
in 2004 is an example of such a key agreement protocol.
Identity–Based key agreement protocol is another topic which
attracts one’s attention. Smart [8] and Smart [9] in 2002
proposed ID-based key agreement protocols modifying MTI key
agreement protocol using the idea of identity based encryption,
independently. This works become the basis of other ID-based
key agreement protocols proposed later.

On the other hand, multiparty key agreement protocols – key
agreement protocols which can manage a group containing
arbitrary number of participants – attract attention and various
methods to generalize two–party key agreement protocols to
multiparty protocols have been proposed.

Ingemarsson, Tang and Wong made a protocol which is
natural extension of the classical Diffie–Hellman key agreement
protocol, 1982 [10]. Similarly to the classical DH key agreement,
this protocol is secure against a passive adversary only. In 1995,
Burmester and Desmedt [11] proposed a group key agreement
protocol which reduces round complexity (roughly, the number
of communication exchanged) remarkably. The modified
version and the security proof of this protocol is presented in
2005 by Burmester et al. [12] adopting the formal security model.

. Nam-Su Jho (email: nsjho@etri.re.kr) – Electronics and Telecommunications Research Institute,

Daejeon, Korea.

. Myung-Hwan Kim (email: mhkim@math.snu.ac.kr) – Department of Mathematical Sciences,

Seoul National University, Seoul, Korea.

Bresson, Chevassut and Pointcheval [6], [13], [14] set up the
formal security model about multiparty key agreement protocol
and provided protocols which are provably secure authenticated
group key agreement protocols. Recently, Abdalla, Bresson,
Chevassut and Pointcheval [15] proposed password–based key
agreement, i.e. pre–shared (or distributed) password is used to
authenticate each participant.

In order to measure the efficiency of key agreement protocols,

the computation complexity, the communication complexity and
the round complexity are often considered. The computation
complexity and the communication complexity denote the
amount of computations of each participant to obtain common
secret session key and the amount of broadcasted messages of
each participant to other ones, respectively. A round means one
broadcasting session in which every participant can cast
messages to others but all at once. Therefore, in a one round key
agreement protocol for example, all the messages necessary
should be cast by participants in parallel. The round complexity
is simply the number of rounds needed to complete the protocol.
Minimizing round complexity is very important in designing key
agreement protocols as well as reducing other complexities.

To now, there are few one round multiparty key agreement
protocols proposed and the one proposed by Boyd, Manuel and
Nieto [16] is the only one which is proved to be secure as an
implicitly authenticated protocol. The protocol of Boyd et al. is a
simple combination of a public key encryption system and a
signature system. However, this protocol does not satisfy
forward secrecy and explicit key authenticated. Since the
protocol by Boyd et al. does not satisfy some security
requirements including forward secrecy, it is not regarded as a
good enough solution. So it is still open to construct a one round
multiparty key agreement protocol satisfying enough security
requirements.

In this paper, we proposed new multiparty key agreement

protocol, OAK, which requires just one round without
dependency on the number of participants. The OAK satisfies
the (partial) forward secrecy and provides the key confirmation
secrecy. However, the cost of minimizing the round complexity
is to bring in the trusted key generation center, which is used
often in ID-based key agreement protocols. A bilinear map
defined on an elliptic curve [17], [18], [19] is a main building
block used to construct new protocol. Joux's key agreement [20]
was the first positive result which used a bilinear map to
construct application in cryptography. After this work, a bilinear
map comes into the spotlight and a number of pairing-based
protocols were proposed

The organization of this paper is as follows: In section 2, we

summarize security requirements for key agreement protocols
and security model. In section 3, we will describe the
construction of our new key agreement protocol OAK. The
security proof is presented in section 4 and finally the section 5
concludes this paper.

II. Security Definitions and Model.

1. Authentication

Roughly, authentication of key agreement protocol has two
aspects, one is authentication of participants and the other is
authentication of the computed session key.

A. Implicit Key Authentication

The implicit key authentication is based on the authentication
of participants for preventing impersonation (for example man-
in-the-middle) attack. The purpose of the attacker is sharing
secret session key without detecting of legitimate participants
by replacing legitimate participant. Thus, generally the attacker
is not considered to be a malicious participant. The implicit key
authentication requires that each legitimate participant is
assured that no other one except for other legitimate
participants learns the established group key.

B. Key Confirmation

Key confirmation is the other aspect of the authentication. A
key agreement protocol is said to provide key confirmation if
each participant is assured that the other legitimate participant
actually has possession of the same secret key to the key
computed by him/her. In key confirmation security, it must be
considered the case that the attacker is a malicious participant
of the protocol. Because it is usually assumed that the attacker
can control communication channel completely, the attacker
always can prevent participants from sharing the secret session
key. So key confirmation considers the case of that key
agreement protocol is finished with no error detected.

C. Explicit Key Authentication

A key agreement protocol satisfying both implicit
authentication and key confirmation is called an explicit
authenticated key agreement protocol.

2. Forward Secrecy

The basic idea of this security notion is to maintain security
of current communication sessions from the event which may
occur in the future. Note that compromised long-term keys
make the attacker impersonate without detection in the future

protocol runs.

A. (Partial) Forward Secrecy

A key agreement protocol is forward secure if the long-term
secret keys of participants or more are compromised, the
secrecy of previous session keys is not affected. The word
‘partial’ means that we assume that the attacker can
compromise some, but not all, participants.

B. Perfect Forward Secrecy

A key agreement protocol is perfect forward secure if the
long–term secret keys of all participants are compromised, the
secrecy of previous session keys is not affected.

C. Weak Forward Secrecy

A key agreement protocol is weak forward secure if the
protocol is forward secure against the attacker who can
compromise only long–term secret keys from participants.

D. Strong Forward Secrecy

A key agreement protocol is strong forward secure if the
protocol is forward secure against the attacker who can
compromise internal states of participants additionally to long–
term secret keys. Note that this notion is meaningful where
participants has some reusable data, also called {\it ephemeral
keys}, in his/her internal memory. It is also assumed that each
participant can erase ephemeral keys if it will be no longer used,
so an attacker can compromise some, but not all, ephemeral
keys used in the past.

3. Other Security Requirements

Followings are often referred security requirements:

A. Known Session Key Secrecy

A protocol is called satisfying known session key security, if
the protocol is still secure against the adversary who knows
some other session keys. In other words, the knowledge about
some previous session keys gives no help to guess other
session keys.

B. No Key-Compromise Impersonation Secrecy

This means the compromise of a long-term secret key of a
participant doesn't imply that other participants' secret key is
compromised. Note that since authentication of participants
depends on knowledge of long-term secret keys, the adversary
who compromises a long–term secret key may impersonate the
compromised participant. However, no key–compromise

impersonation security guarantees that the attacker cannot
impersonate other participants except compromised one.

C. No Key Control Secrecy

A key agreement protocol satisfying this security notion is
sometimes called contributory group key agreement. No key
control security means that shared secret session key must be
determined by all participants who involved in key agreement
protocol and no one can enforces some specific value on a
shared secret session key.

4. Security Model

In this section, we describe the formal security model for
security analysis. This model is following security models of
Bresson et al. [6] and Dutta et al. [21], [22]. In these models,
each user in the key agreement protocol is considered as an
oracle and every interaction of the adversary with users is
considered as an oracle query. We assume that the adversary
has the ability of controlling the network completely.

Let S = {u1, u2, …, ut } be a set of all users. Without loss of
generality, we can give the unique number to each key
agreement instance although key agreement instances may
occur simultaneously. Let Πl be the l-th key agreement instance
and Sl be the subset of S which contains every user involved in
the l-th key agreement instance with | Sl | = nl ≤ t.

More precisely, Πl is the set of instance of users who are in
Sl , let Πl

u be the instance of user u in the l-th session. Ml
u means

the message which is broadcasted by Πl
u and Ml means the

whole message which is broadcasted in the instance Πl. In
other words, Ml is the all messages in the l-th session.

And Kl is the shared secret session key in the l-th session. For
each user ui, ki means the user's long-term secret key and rl,i
means the users ephemeral key, i.e. random nonce used to
share the session key in the l-th session by the user ui.

Followings are oracle queries which are executed by the
adversary:

Eavesdrop(l) : This query models a passive attack, in which
the adversary only eavesdrop messages among the users in Sl.
The reply of this oracle is Ml.

Initiate(Sl) : This query models an active attack in which the

adversary initiates key agreement protocol among the users in
Sl. Sl may be chosen by the adversary or randomly given. The
adversary obtains all messages among the users, i.e. the reply
of this oracle is Ml.

Send(u, Sl, M’l) : This query models an active attack in

which the attacker send messages which can be originated or
modified by the adversary to other user(s). Here, we simplify

this query as following:
• Step1 : The adversary makes a message M’l.
• Step2 : Or the adversary intercepts the message Ml sent to

the user u ∈ Sl and modify to M’l .
• Step3 : The adversary sends M’l to the user u instead.

The reply of this oracle is Ml
u.

KeyGen : This query models an active attack in which the

adversary contacts the KGC to obtain a long–term secret user
key. The reply of this oracle is a long-term secret user key kj.
Note that the KGC never issues same long–term key to two or
more users, i.e. the adversary can obtains kj for the index j
which is never used.

Reveal(l) : This query models the event of leakage of a

particular session key to the adversary. The reply of this oracle
is the session key Kl.

Corrupt(u) : This query models the corruption of the long–

term secret key of the user u. The reply of this oracle is ku. Note
that in OAK the strong corruption is meaningless. So we make
only one corrupt model.

Test(l) : The reply of this oracle is the real session key Kl if

b=1 or a random key Rl if b=0, where b is randomly chosen bit
by the Test oracle. This oracle is used to compute the
adversary's ability to distinguish the real session key from a
random key. The adversary can query this oracle at any time
but only once.

III. New Protocol

1. Signature Scheme

Let k be the security parameter. A digital signature scheme
Σ=(KG, SIGN, VER) consists of the following three algorithms:

• The key generation algorithm KG is a probabilistic
algorithm with an input the security parameter λ and outputs
(e, d) the secret key and public key pair.

• The signing algorithm SIGN is a probabilistic algorithm with
an input the secret key and the message (d, m) outputs the
signature of m, σm.

• The verification algorithm VER is a deterministic algorithm
with an input the triple verification key, message and
signature (e, m, σ), outputs TRUE if the signature is valid or
FALSE otherwise.

The signature scheme Σ = (KG, SIGN, VER) is secure if it is

computationally impossible for any adversary to forge a
signature on any message (existential forgery) even under

adaptive chosen–message attack. In other words, there is no
polynomial time algorithm with an input the public verification
key e outputs (m, σ) which satisfying VER(e, m, σ) = TRUE with
non–negligible probability, even it can query to signing oracle
at any time.

2. Bilinear Map

Assume that G1 and G2 are two cyclic groups of prime order
p and P is a generator of G1, for convenience we’ll denote G1
as an additive group. A map e: G1 × G1 → G2 is a bilinear map
if it satisfies:

• Bilinear: for all P,Q ∈ G1 and a,b ∈ Z, we have
e(aP,bQ) = e(P,Q)ab.

• Non-degenerate: e(P,P) ≠ 1.
By a bilinear group, we mean a group in which the group

operation can be computed efficiently and there exists an
efficiently computable bilinear map as above. Modified Weil
pairing [25] and Tate pairing [26] are the typical examples of
bilinear maps which are defined on elliptic curves.

3. Construction

We now propose the new key agreement protocol which
requires only one round to establish shared session key and
satisfies explicit authentication. In literature there is no one-
round multiparty key agreement protocol which satisfies
explicit authentication.

The One–round Authenticated Key agreement protocol
(OAK) consists of following three algorithms: Setup,
KeyGeneration and KeyAgreement.

A. Setup

Setup is executed by the key generation center KGC which is
assumed to be a trusted party.

• With the security parameter λ, the KGC chooses a prime q
and generates two groups G1 and G2 of order q, where G1
is a bilinear group with a bilinear map e : G1 × G1 → G2.

• The KGC randomly chooses P which is a generator of G1,
α and s from Zq

* and an integer t.
• The KGC publishes G1, G2, e, t, P, αP, α2P, …, αtP as

public information of the protocol. Note that α and s is the
secret information that only the KGC knows.

B. Key Generation

If a participant wants to join the protocol, he/she sends
his/her own information with which the KGC can identify
him/her and his/her own verification key. After identifying
process, the KGC gives the secret key to him/her as followings:

• Assume that each participant u runs KG to obtain a pair of

signing and verification key (du, eu) before the
KeyGeneration process.

• Each participant u is assigned unique identifier I(u) (an
integer between 1 and t) and KGC computes sαI(u)P.

• The KGC gives the secret key sαI(u)P, to the participant u
and publishes the participant's identifier together with the
verification key eu.

C. Key Agreement

It is assumed that each session has a unique session identifier,
the session number l. Let Sl be a set of participants who want to
agree a secret session key in the l-th session.

• Each participant u in Sl randomly chooses ru∈Zp and
broadcasts Mu = {mu,v = ruαt+1-I(v)P | v∈Sl , v≠u} together
with the signature σu = SIGN(du, l | Mu) to all other users.

• Each participant checks message integrity verifying the
signatures. If there is an unverifiable message then
KeyAgreement outputs FAIL and terminates.

• Optionally, each participant may check message
reliability of Mu = {mu,v | v∈Sl , v≠u} by verifying the
equations e(αt+1-I(v')P, mu,v) = e(αt+1-I(v)P, mu,v'). If
KeyAgreement finds some unreliable message, it outputs
FAIL and terminates.

• Each participant u in Sl computes Σv∈Sl rvαt+1-I(u)P and the
secret session key, Kl = e(sαI(u),Σv∈Sl rvαt+1-I(u)P) =
Exp[e(P,P), αt+1s(Σv∈Sl rv)], where Exp[a,b] means ab.

• After computing the session key, each user ui erases
his/her own random nonce ri.

Note that the protocol adopts the KGC for generating of
public keys and each user's secret key similarly to ID-based
key agreement protocols. By necessity, we assume that the
KGC is trusted. Because the leakage of the secret key of the
KGC breaks forward secrecy and if the KGC itself is
compromised then the protocol cannot be guaranteed to be
secure no longer. Even though the assumption is the cost for
reducing the round complexity to be optimized, it is somewhat
expensive and removing this assumption is the next step of this
work.

4. Efficiency

• Rounds: One, regardless to the size of Sl .
• Communication: Each user broadcasts n-1 elements of G1.
• Computation: For each user, n scalar multiplications in G1,

n-1 additions in G1, 1 computation of signature, n-1
verifications of signatures and 1 bilinear map computation
are required.

[Remark] Checking reliability of messages is required when

participants want key confirmation property. Note that message

reliability can be checked with computing maximum 2(n-2)
pairing computations and (n-3)n additions in G1.

[Remark] In the viewpoint of computation, this protocol is

not efficient comparing to other group key agreement protocols.
The main contribution of this paper is the optimization of
round complexity satisfying security requirements.

IV. Security

1. Assumptions

A. Discrete Logarithm Assumption

Let Gen(1λ) be an algorithm which generates a λ-bit prime q
and a multiplicative group G = <g> of order q. Then the
discrete logarithm assumption says that for all probabilistic
polynomial time adversary A,

Pr[(q,g) ← Gen(1λ); A(q,g,y) = x : gx = y]

is negligible.

B. Bilinear Diffie-Hellman Assumption

Let Gen(1λ) be an algorithm which generates a λ-bit prime q
and two groups G1 = <P> and G2 of order q, where G1 is a
bilinear group with a bilinear map e : G1 × G1 → G2.
Additionally, we assume that the discrete logarithm problems
(DLP) in both G1 and G2 are hard. The bilinear Diffie-Hellman
assumption says for all probabilistic polynomial time adversary
A,

Pr[(q,P) ← Gen(1λ); A(P,aP,bP,cP) = x:x = e(P,P)abc]

is negligible.

C. Bilinear Diffie-Hellman Exponent Assumption

In 2005, Boneh et al. [23] proposed bilinear Diffie–Hellman
Exponent (BDHE) assumption to generate an efficient HIBE.
Later BDHE assumption is used in construction a broadcast
encryption system [24] and considered as a general assumption
in a bilinear group.

Let Gen(1λ) be an algorithm which generates a λ-bit prime q
and two groups G1 = <P> and G2 of order q, where G1 is a
bilinear group with a bilinear map e : G1 × G1 → G2.
Additionally, we assume that the discrete logarithm problems
(DLP) in both G1 and G2 are hard. The t-BDHE problem in G1
is stated as follows: given a vector of 2t + 1 elements

(Q, P, αP, α2P, …, αtP, αt+2P, …, α2tP) ∈ G1
2t+1

as input, output Exp[e(P,Q), αt+1] ∈ G2. Note that the input
vector is missing the term αt+1P so that the bilinear map seems

to be of little help in computing the required Exp[e(P,Q), αt+1].
The t-BDHE assumption says that for all probabilistic

polynomial time algorithm A, the probability that

Pr[(q,e,P)←Gen(1λ), Q ←R G1, α ←R Zq
*;

A (Q, P, αP, …, αtP, αt+2P, …, α2tP) = x : x = e(P,Q)t+1]

is negligible.
The decisional version of the t-BDHE problem in G1 is

defined analogously. Let YP,α,t = (αP, …, αtP, αt+2P, …, α2tP). A
probabilistic polynomial time algorithm B that outputs b ∈

{0,1} has advantage ε in solving decision t-BDHE in G1 if

|Pr[B(Q,P,YP,a,t, e(at+1P,Q))=0] - Pr[B(Q,P,YP,a,t, R)=0]| ≥ε
where the probability is over the random choice of generators
P, Q in G1, the random choice of a in Zp

*, the random choice
of R ∈ G2, and the random bits consumed by B.

The decisional t-BDHE assumption holds in G1 if no
probabilistic polynomial time algorithm has non–negligible
advantage in solving the decisional t-BDHE problem in G1

D. Modified Bilinear Diffie–Hellman Exponent Assumption

Generalizing BDHE assumption, we obtain Modified
Bilinear Diffie–Hellman Exponent (MBDHE) assumption.
Security of our system is mainly based on MBDHE
assumption.

Let Gen(1λ) be an algorithm which generates a λ-bit prime q
and two groups G1 = < P > and G2 of order q, where G1 is a
bilinear group with a bilinear map e : G1 × G1 → G2.
Additionally, we assume that the discrete logarithm problems
(DLP) in both G1 and G2 are hard.

Define the t-MBDHE problem in G1 as follows: given a
vector of 2t + 1 elements

as input, output Exp[e(P,Q), αt+1] ∈ G2, where I is an set of
integers such that {1}⊆ I ⊆ {1,2,…, t}. Note that for any 1 ≤
i ≤ t one of αt+iP or α1-iQ is missing in the input vector so that
the bilinear map seems to be of little help in computing the
required Exp[e(P,Q), αt+1] directly.

Note that for I = {1} we have the t-BDHE problem so we
can consider t-MBDHE problem as a generalization of t-
BDHE problem. Following is an example of an input for t-
MBDHE problem where t=5, I = {1,4}:

Let YP,Q,α,t,I = (αP, …, αtP, { αt+I | i which is not in I }, {α1-iQ
| i ∈ I }). The t-MBDHE assumption says that for all
probabilistic polynomial time algorithm A and all index set I,
following probability is negligible.

Pr[(q,e,P)←Gen(1λ),Q←RG1,α←RZq
*;

A(P, YP,Q,α,t,I) = x : x = e(P,Q)t+1]

The definition of the decisional t-MBDHE assumption is
similar to that of the decisional t-BDHE assumption. The
decisional t-BMDHE assumption holds in G1 if for all
probabilistic polynomial time algorithm B and all index set I,
the advantage of B

| Pr[B(P, YP,Q,α,t,I, e(αt+1P,Q)) = 0] - Pr[B(P, YP,Q,α,t,I, R) = 0] |
is negligible.

2. Basic Theorems

To prove the security of proposed OAK protocol, we define
following adversaries:

• Ai is a polynomial time algorithm for a fixed integer i (1 ≤
i ≤ t) with an input

outputs TRUE if R = Exp[e(P,Q), rαt+1] or FALSE
otherwise. Adv(Ai) means the advantage of Ai i.e.

Adv(Ai) = | Pr[the answer of Ai is correct] – 1/2 |

• AI is a polynomial time algorithm for a fixed set of index
I ⊆ {1, …, t} with an input

outputs TRUE if R = Exp[e(P,Q), rαt+1] or FALSE
otherwise. Similarly, Adv(AI) means the advantage of AI.

• A’I is a polynomial time algorithm for a fixed set of index
I⊆ {1, …,t} with an input

outputs TRUE if R = Exp[e(P,Q),rαt+1] or FALSE
otherwise. Similarly, Adv(A’I) means the advantage of A’I.

Theorem 1
Adv(Ai) is negligible under t-BDHE assumption.

(Proof) Suppose there exists a Ai such that Adv(Ai) ≥

1/f(k) ,where f(·) is a polynomial. Then we can make a
polynomial time algorithm which attacks t-BDHE problem
with the advantage greater than 1/f(k).

B is an adversary who wants to attack t-BDHE problem. So
B is given a problem instance:

(Q, αP, α2P, …, αtP, αt+2P, …, α2tP),R
B chooses random r and computes

rαt-iP, rαt-i+1P, …, rαtP, rαt+2P, …, rα2t+1-iP.
Note that i is an integer between 1 and t so all of above can be
computed from the input for B and chosen r. Then B gives A
the following input:

Finally, B outputs TRUE if A outputs TRUE or FALSE
otherwise.

Now we compute the advantage of B with above attack.
With an input described above A can distinguish R from
Exp[e(P,Q), rαt-iαi] = Exp[e(P,Q), rαt+1] with the advantage
greater than 1/f(k). Because in this attack the advantage of B is
same to the advantage of A, Adv(B) is also greater than 1/f(k).
So, Adv(Ai) must be negligible under t-BDHE assumption. □

Theorem 2
Adv(AI) is negligible under t-MBDHE assumption.

(Proof) With similar arguments, we can prove this theorem.

Suppose that there exists a polynomial time algorithm A with
an index set I ⊆ {1, …, t}. Then we can construct a
polynomial time algorithm B which attacks t-MBDHE
problem with I' := {i-x+1| i ∈ I}, where x is the smallest
element of I.

For a given input

B randomly chooses r and computes following

Note that rαt+1-x+iP is in fact r times αt+i'P and αx-iQ is exactly
same to α1-i'Q. B outputs TRUE if A outputs TRUE or FALSE
otherwise. Since the advantage of B is same to the advantage of
AI , Adv(AI) cannot be less than 1/f(k) for any polynomial f(·)
under t-MBDHE assumption. □

Theorem 3
If Adv(AI) is negligible, then Adv(A’I) is negligible under

BDH assumption.

(Proof) To prove this theorem we need to define new

adversary.
• A0 is a polynomial time algorithm with an input (P, aP,

bP, cP, e(P, P)acs, R) which distinguish R from e(P, P)abs.
Let Adv(A0) be the advantage of A0.

Step 1: Under the BDH assumption, Adv(A0) is negligible.
Suppose that there exists a polynomial time algorithm A0

with Adv(A0) is non-negligible. We can make following
polynomial time algorithm B which attacks BDH problem with
the non-negligible advantage.

From the input (P, aP, bP, cP, R), B choose random r and
computes rP and e(aP,cP)r = e(P, P)acr. B gives (P, aP, bP, rP,
e(P, P)arc, R) to A as an input. Then A distinguish R from e(P,
P)abc with non–negligible advantage. This is contradiction to
the BDH assumption.

Step 2: With the assumption of Adv(AI) is negligible (let

Adv(AI) = εI), Adv(AI’) is also negligible.
Suppose that there exists a polynomial time algorithm AI’

with non-negligible advantage. Then we can construct A0 with
non-negligible advantage. With an input (P, aP, bP, cP, e(P,
P)acs, R), A0 chooses random x and computes followings:

and gives it as input to A’I.

Note that e(P, P)acs is not a proper input. But, from the
Theorem2, A’I cannot distinguish this input from a proper one.
Therefore, A’I works ordinarily and finally distinguishes R
from e(P, P)abs with non–negligible probability. This is
contradiction to the result of Step1 above. Therefore, Theorem3
is proved. □

3. Forward Secrecy

Theorem 4
The proposed key agreement protocol, OAK, satisfies

(partial) forward secrecy against the strong corruption.

In OAK, each user erases the random exponent after

computing the session key. It is can be done because the
random exponent is never reused in the future. And the
adversary cannot obtain any more information from the strong
corruption. So we can assume that the reply of Corrupt query
is just the long-term key of participant.

To prove the forward secrecy, we consider following attack

scenario: The adversary Af chooses a user u and do Corrupt(u)
query. After that, Af chooses the session index l which satisfies
the condition that u is contained in Sl. Af do Test(l) query to
obtain the challenge. The challenge is Kl if the random bit b
chosen by Test oracle is 1 or Rl otherwise. In this attack, the
purpose of the adversary is to distinguish the shared session

key Kl from a randomly chosen Rl with the same length which
are the reply of the oracle Testl. The Af is allowed to query to
Eavesdrop, Initiate, KeyGen, Reveal and Send oracles freely at
any time. Note that Reveal(l) query is trivially forbidden.

In this attack model, we may ignore Initiate and Send
queries. Since the reply of these oracles are information
theoretically independent to Kl and gives no help to distinguish
the Kl. Except Eavesdrop(l), Eavesdrop queries are also helpless.
Here, to ignore Eavesdrop queries, we assume that the
adversary knows Ml already. Since the reply of the Reveal
can be duplicated by the Af with randomly chosen exponent,
we include one reply of Reveal as an input of Af.

Lemma 5
Let ri be the random exponent of u = ui used in the session l

to share the session key Kl. Then the probability of Af to
distinguish Kl from Rl is same to the probability of Af to
distinguish Exp[e(P, P), sαt+1ri] from R'l, where Rl and R'l are
randomly chosen elements from G2.

(Proof) It is trivial since that if Af knows sαiP then Af can

compute Exp[e(P, P), sαt+1rj] for j ≠ i and j ∈ Sl from Ml and
sαiP. So distinguishing Kl is equivalent to distinguishing
Exp[e(P, P), sαt+1ri] = Kl / Πj≠I Exp[e(P, P), sαt+1rj] □

From this lemma, we can summarize Af as a polynomial

time algorithm with the inputs: the public information
αP, α2P, …, αtP,

a reply of the Eavesdrop(l) query
{ riαjP | j ∈ Sl, i ≠ j},

a long-term key
sαiP

from the Corrupt(i) query, replies of KeyGen queries
{ sαjP | for j which is not in Sl }

a reply from the Reveal query
{ r'αjP | j ∈ Sl , i ≠ j }, Exp[e(P, P), r'sαt+1],

and a challenge Rl from the Test oracle. Therefore, Af is exactly
same to the A'I defined in the section IV–2.

Theorems in the section IV–2 say that Af cannot distinguish
Kl from Rl under t-MBDHE and BDH assumptions. Note that
if we restrict A not to query KeyGen query then OAK is
forward secure under t-BDHE and BDE assumptions.

[Remark] The OAK does not satisfy perfect forward

secrecy. Since the adversary can compute previous session
keys with two long-term secret keys assigned to the
participants who are involved to share the session key.

The authenticity of OAK is guaranteed by following two
theorems :

Theorem 6
The OAK is an implicit authenticated key agreement

protocol under the t-MBDHE and BDH assumptions.

Theorem 7
The OAK satisfies key confirmation security under the

unforgeability of the signature scheme.

To prove the Theorem6, we consider the adversary Aa who

wants to learn a session key Kl without participating in Sl.
The Aa chooses the user set Sl and do Initiate(Sl) query to

obtain the reply Ml. After that Aa do Test(l) query, the purpose
of the Aa is to distinguish the session key Kl form the random
challenge Rl which is the reply of Test(l). Aa can do any other
queries freely in any time except Corrupt and Reveal(l) queries.
Since we assumed that the signature scheme is unforgeable and
the Aa is not a member of Sl , the Aa cannot success Send
queries with non-negligible probability. So we can ignore Send
queries. Since the reply of the Reveal can be duplicated by the
Aa with randomly chosen exponent, we include one reply of
Reveal as an input of Aa.

We can summarize the Aa as a polynomial time algorithm
with the inputs: the public information

αP, α2P, …, αtP,
a reply of the query Initiate(l)

{ riαjP | i,j ∈Sl , i ≠ j },
replies of KeyGen queries

{ sαjP | for j which is not in Sl },
replies from the Reveal queries and a challenge Rl from Test
oracle.

Therefore, Aa is a polynomial time algorithm with input

and replies of Reveal queries to distinguish Exp[e(P, P), sαt+1
(r1 + r2 +…+ rn)] from Rl. And let A1 be a polynomial time
algorithm with an input

and replies of Reveal queries to distinguish Exp[e(P, P), sαt+1r1]
from R'l .

Lemma 8 4. Authenticity
There exists a polynomial adversary A1 with non-negligible

advantage if there exists a polynomial time adversary Aa with
non-negligible advantage.

(Proof) We suppose that there exits a polynomial time

algorithm Aa. Then for given input

A1 chooses r2, r3, …, rn randomly and computes other vectors
{r2αt+1-j | j∈S, j ≠ i2}, …, {rnαt+1-j | j∈S, j ≠ in }. A1 can compute
Exp[e(P, P), sαt+1r2], …, Exp[e(P, P), sαt+1rn] trivially.
Therefore A1 can set Rl = R'l ·Exp[e(P, P), sαt+1r2] ··· Exp[e(P,
P), sαt+1rn]. And input

to Aa. Because Aa can distinguish Exp[e(P, P), sαt+1(r1 + r2 + …
+ rn)] from Rl with non-negligible advantage A1 also can
distinguish Exp[e(P, P), sαt+1r1] from R'l with same advantage.
It is the end of proof of the above lemma. □

Now, consider the adversary A2 which is a polynomial time

algorithm with input

to distinguish Exp[e(P, P), sαt+1r] from Rl. Note that for A2 the
Reveal queries are not allowed.

Lemma 9
There exists a polynomial adversary A2 with non-negligible

advantage if there exists a polynomial time adversary A1 with
non-negligible advantage.

(Proof) To prove this lemma, it is sufficient to show the A2

can simulate Reveal queries from A1. Note that the reply of
Reveal query can be constructed using public keys, a secret key
which can be obtained from KeyGen query and randomly
chosen exponent. □

From the result of section IV-2 and above lemmas the

Theorem6 is proved under the t-MBDHE and BDH
assumptions. Note that the A2 is exactly same to A'I in section
IV-2.

To prove the Theorem7, we define a proper form of the

message for the index set S as { rαiP | i∈S } first. It means that

the message vector is obtained by multiplying a random
exponent to the vector consists public keys with the index i∈S,
i.e. {αiP | i∈S }. Note that if the message sent from each
participant has proper form, each participant obtains same
secret session key. And messages are forced to satisfy the
proper form, because that if one of messages has non-proper
form the key agreement protocol halts. Therefore, to disturb
participants from sharing the session key, although the
adversary is a malicious participant, is impossible.

Trivially, if the adversary intercepts a message and discards it
then no key agreement protocol achieves key confirmation
security. So we do not consider such an adversary here.

The Theorem6 and the Theorem7 imply that the OAK is a

explicit key agreement protocol.

5. Other Security Requirements

Security analyses about Known Session Key Secrecy, No
Key-Compromise Impersonation Secrecy and No Key Control
Secrecy are omitted here. Those are presented in the appendix.

V. Conclusion

A key agreement protocol is a cryptographical primitive
which allows participants to share a common secret key via
insecure channel. One interesting problem which is still
unsolved in key agreement is to construct an one-round
multiparty key agreement protocol satisfying various security
requirements. In this paper, we present a new multiparty key
agreement protocol using bilinear map and adopting the key
generation center. The protocol demands only one–round for
arbitrary number of participants to share a group key and
satisfies both authentication and (partial) forward secrecy.

References

[1] W. Diffie and M. Hellman, “New Directions in
Cryptography”, IEEE Transaction on Information Theory, IT-
22(6), 1976, pp. 644-654.

[2] T. Matsumoto, Y. Takashima and H. Imai, “On Seeking
Smart Public-key Distribution Systems”, Transactions of the
IECE of Japan, E69, 1986, pp. 99-106

[3] L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone,
An Efficient Protocol for Authenticated Key Agreement,
Technical Report CORR 98-05, Department of C & O,
University of Waterloo, 1998.

[4] M. Bellare and P. Rogaway, “Entity Authentication and
Key Distribution}, LNCS 773, Proc. CRYPTO '93, 1993, pp.
232-249.

[5] M. Bellare and P. Rogaway, “Random Oracles are

Practical : A Paradigm for Designing Efficient Protocols”, Proc.
ACM CCS '93, 1993, pp. 62-73.

[6] E. Bresson, O. Chevassut and D. Pointcheval, “Dynamic
Group Diffie-Hellman Key Exchange under Standard
Assumptions”, LNCS 2332, Proc. Eurocrypt '02, 2002, pp.
321-336.

[7] I. R. Jeong, J. Kats and D. H. Lee, “One-round protocols
for Two-Party Authenticated Key Exchange”, LNCS 3089,
Proc. ACNS '04, 2004, pp. 220-232.

[8] N. P. Smart, “An Identity-based Authenticated Key
Agreement Protocol Based on the Weil Pairing”, Electronic
Letters, 38, 2002, pp. 630-632.

[9] M.. Scott, “Authenticated ID-based Key Exchange and
Remote Log-in with Insecure Token and PIN Number”,
Cryptology ePrint Archive, http://eprint.iacr.org/2002/164,
2002.

[10] I. Ingemarsson, D. T. Tang and C. K. Wong, “A
Conference Key Distribution System”, IEEE Transaction on
Information Theory 28(5), 1982, pp. 714-720.

[11] M. Burmester and Y. Desmedt, “A Secure and Efficient
Conference Key Distribution System”, LNCS 950, Proc.
Eurocrypt '94, 1995, pp.275-286.

[12] M. Burmester and Y. Desmedt, “ A Secure and Scalable
Group Key Exchange System”, In Information Processing
Letters, 94(3), 2005, pp. 137-143.

[13] E. Bresson, O. Chevassut and D. Pointcheval,
“Provably Authenticated Group Diffie-Hellman Key Exchange
– The Dynamic Case”, LNCS 2248, Proc. Asiacrypt '01, 2001,
pp. 290-309.

[14] E. Bresson and D. Catalano, “Constant Round
Authenticated Group Key Agreement via Distributed
Computing”, LNCS 2947, Proc. PKC '04, 2004, pp. 115-129.

[15] M. Abdalla, E. Bresson, O. Chevassut and D.
Pointcheval, “Password-based Group Key Exchange in a
Constant Number of Rounds”, LNCS 3958, Proc. PKC '06,
2006, pp. 427-442

[16] C. Boyd, J. Manuel and G. Nieto, “Round-optimal
Contributory Conference Key Agreement”, LNCS 2567, Proc.
PKC '03, 2003, pp.161-174.

[17] G. Frey, M. Müller and H. Rück, “ The Tate Pairing and
the Discrete Logarithm Applied to Elliptic Curve
Cryptosystems”, IEEE Transaction on Information Theory Vol.
45, 1999, pp. 1717-1718.

[18] S. Lang, Elliptic Functions, Addison-Wesley, Reading,
1973..

[19] J. Silverman, The arithmetic of elliptic curve, Springer-
Verlag, 1986.

[20] A. Joux, “One Round Protocol for Tripartite Diffie-
Hellman”, LNCS 1838, Proc. ANTS 4, 2000, pp. 385-394.

[21] R. Dutta and R. Barua, “Constant Round Dynamic

Group Key Agreement”, LNCS 3650, Proc. ISC '05, 2005, pp.
74-88.

[22] R. Dutta and R. Barua. “Overview of Key Agreement
Protocols”, Cryptology ePrint Archive, http://eprint.iacr.org/2005
/289, 2005.

[23] D. Boneh, X. Boyen and E. Goh, “ Hierarchical Identity
Based Encryption with Constant Size Ciphertext”, LNCS 3494,
Proc. Eurocrypt '05, 2005, pp. 440-456.

[24] D. Boneh, C. Gentry and B. Waters, “Collusion
Resistant Broadcast Encryption with Short Ciphertexts and
Private Keys, LNCS 3621, Proc. CRYPTO '05, 2005, pp. 258-
275.

[25] D. Boneh and M. Franklin, “Identity-Based Encryption
from the Weil Pairing”, LNCS 2139, Proc. CRYPTO '01, 2001,
pp. 213-229.

[26] P. S. L. M. Barreto, H. Y. Kim and M. Scott, “Efficient
Algorithms for Pairing-Based Cryptosystems”, LNCS 2442,
Proc. CRYPTO '02, 2002, pp. 354-368.

Appendix

1. Known Session Key Secrecy

This security requirement is guaranteed by proof of the
Theorem6. Note that in proving the Theorem6, we assume that
the adversary Aa can query Reveal freely. This means that there
is no adversary who can distinguish the given session key from
a random key although the adversary knows many other
session keys.

2. No Key-Compromise Impersonation Secrecy

Remind that no key-compromise impersonation security
means the adversary who knows a long-term private key of a
participant u cannot impersonate u', for u ≠ u'. Basically, the
security against impersonation attack is based on the security of
the signature scheme used. Here we claim that even in the case
of the adversary can forge the signature of other users, the
adversary cannot success the impersonation attack.

Because that if an adversary cannot success impersonation
attack to one user then trivially the adversary cannot success
impersonation attack to a set of users, we will consider an
impersonation attack to one user. Consider the adversary who
acts as followings: Aim chooses a target user u and executes
Initiate(Sl) query on the index set Sl which contains u. The
purpose of Aim is sharing the same key with u by sending
modified messages to u.

Let u = u1 and Sl = { u1, u2, …, un }. And suppose that the
message to u from Aim is

Assume that Aim successfully forges all signatures of these
messages. After u receives these messages u chooses r and
sends { r·Exp[α,t+1-i2]·P, …, r·Exp[α,t+1-in]·P } to Aim. And u
computes the session key Exp[e(P, P), rsαt+1] · Πj=2, …, n
Exp[e(P,mj,1), sαi] Because mj,1 are all chosen by Aim, we can
assume that Aim can compute Exp[e(P,mj,1), sαi] easily. At last
the problem is reduced to whether Aim can distinguish Exp[e(P,
P), rsαt+1] from a random with the inputs { r·Exp[α,t+1-i2]·P,
…, r·Exp[α,t+1-in]·P } and the replies of some oracle queries.

Note that Aim is same to A2 in the section IV-4. From the
result of the section \ref{groundwork} we can deduce the Aim
cannot distinguish this with non-negligible advantage.

From the security of signature scheme, if the adversary is not
in the Sl, he cannot make a change of the session key. So we
assume that the adversary is a malicious user in the set Sl who
want to make the session key a certain value R.

Because the adversary Ac cannot change the random
exponent which is chosen by other users, only possible
scenario is following: Ac initiates key agreement protocol
among the set Sl which is selected by Ac, using Initiate(Sl)$
query. After receiving all messages from other users, let u2, …,
un, Ac chooses random r satisfying

Exp[e(P, P), rsαt+1] = R / Πj = 2, …, n Exp[e(P, P), rjsαt+1].
So, we can summarize this as a problem that for given R, R'
whether the Ac can choose r satisfying Rr = R' or not. As you
know this is an instance of the DLP problem. So it is not
possible that Ac can control the session key for a certain fixed
value R with non-negligible advantage.

3. No Key Control Secrecy

