
ABSTRACT ⎯ A key agreement protocol is a 
cryptographical primitive which allows participants to share a 
common secret key via insecure channel. In particular, a 
multiparty key agreement protocol is a key agreement protocol 
that can manage arbitrary number of participants at once. In 
the security point of view, authentication and forward secrecy 
are the most important requirements in such protocols. One 
interesting problem in key agreement protocols is to construct a 
multiparty key agreement protocol satisfying the above security 
requirements with minimal number of communication rounds 
(i.e. one-round). In literature, there has been no one-round 
multiparty key agreement protocol that satisfies both of 
authentication and forward secrecy. 

In this paper, we present a new multiparty key agreement 
protocol using bilinear map and adopting the key generation 
center. The protocol demands only one–round for arbitrary 
number of participants to share a group key and satisfies both 
authentication and (partial) forward secrecy. 

Keywords⎯Multiparty Key Agreement, Authentication, 
Bilinear Map, Weil Pairing 

I. Introduction 

A key agreement protocol is a cryptographical primitive which 
allows participants to share a common secret key via insecure 
channel. The Diffie–Hellman key agreement protocol [1] in 
1976 is the first practical solution to the key agreement problem. 
After Diffie and Hellman's work, many security requirements 
and various solutions have been discussed and proposed up to 
now.  

The most important requirement for a key agreement protocol 
is authentication of participants involved in the protocol. 
Although the Diffie–Hellman key agreement protocol is very 

simple and efficient without requiring any preparation for the 
protocol, it is seriously vulnerable to the well known man–in–
the–middle–attack and is not sufficient to accomplish the 
purpose of key agreement protocols. The reason is that the 
Diffie–Hellman key agreement allows no authentication of 
participants. Formal definitions of various security requirements 
are given in the next section. 
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In the early days, improving on Diffie-Hellman key agreement 

protocol adopting authentication is mainly researched. MTI 
protocol [2] in 1986 and MQV protocol [3] in 1998 are 
representative results. However, only heuristic security analyses 
are given. After formal security model is proposed by [4], [5] and 
[6], attempts of constructing provably secure key agreement 
protocol are made. Protocol proposed by Jeong, Kats and Lee [7] 
in 2004 is an example of such a key agreement protocol. 
Identity–Based key agreement protocol is another topic which 
attracts one’s attention. Smart [8] and Smart [9] in 2002 
proposed ID-based key agreement protocols modifying MTI key 
agreement protocol using the idea of identity based encryption, 
independently. This works become the basis of other ID-based 
key agreement protocols proposed later. 

On the other hand, multiparty key agreement protocols – key 
agreement protocols which can manage a group containing 
arbitrary number of participants – attract attention and various 
methods to generalize two–party key agreement protocols to 
multiparty protocols have been proposed.  

Ingemarsson, Tang and Wong made a protocol which is 
natural extension of the classical Diffie–Hellman key agreement 
protocol, 1982 [10]. Similarly to the classical DH key agreement, 
this protocol is secure against a passive adversary only. In 1995, 
Burmester and Desmedt [11] proposed a group key agreement 
protocol which reduces round complexity (roughly, the number 
of communication exchanged) remarkably. The modified 
version and the security proof of this protocol is presented in 
2005 by Burmester et al. [12] adopting the formal security model.  
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Bresson, Chevassut and Pointcheval [6], [13], [14] set up the 
formal security model about multiparty key agreement protocol 
and provided protocols which are provably secure authenticated 
group key agreement protocols. Recently, Abdalla, Bresson, 
Chevassut and Pointcheval [15] proposed password–based key 
agreement, i.e. pre–shared (or distributed) password is used to 
authenticate each participant.  

 
In order to measure the efficiency of key agreement protocols, 

the computation complexity, the communication complexity and 
the round complexity are often considered. The computation 
complexity and the communication complexity denote the 
amount of computations of each participant to obtain common 
secret session key and the amount of broadcasted messages of 
each participant to other ones, respectively. A round means one 
broadcasting session in which every participant can cast 
messages to others but all at once. Therefore, in a one round key 
agreement protocol for example, all the messages necessary 
should be cast by participants in parallel. The round complexity 
is simply the number of rounds needed to complete the protocol. 
Minimizing round complexity is very important in designing key 
agreement protocols as well as reducing other complexities. 

To now, there are few one round multiparty key agreement 
protocols proposed and the one proposed by Boyd, Manuel and 
Nieto [16] is the only one which is proved to be secure as an 
implicitly authenticated protocol. The protocol of Boyd et al. is a 
simple combination of a public key encryption system and a 
signature system. However, this protocol does not satisfy 
forward secrecy and explicit key authenticated. Since the 
protocol by Boyd et al. does not satisfy some security 
requirements including forward secrecy, it is not regarded as a 
good enough solution. So it is still open to construct a one round 
multiparty key agreement protocol satisfying enough security 
requirements.  

 
In this paper, we proposed new multiparty key agreement 

protocol, OAK, which requires just one round without 
dependency on the number of participants. The OAK satisfies 
the (partial) forward secrecy and provides the key confirmation 
secrecy. However, the cost of minimizing the round complexity 
is to bring in the trusted key generation center, which is used 
often in ID-based key agreement protocols. A bilinear map 
defined on an elliptic curve [17], [18], [19] is a main building 
block used to construct new protocol. Joux's key agreement [20] 
was the first positive result which used a bilinear map to 
construct application in cryptography. After this work, a bilinear 
map comes into the spotlight and a number of pairing-based 
protocols were proposed 

 
The organization of this paper is as follows: In section 2, we 

summarize security requirements for key agreement protocols 
and security model. In section 3, we will describe the 
construction of our new key agreement protocol OAK. The 
security proof is presented in section 4 and finally the section 5 
concludes this paper. 

II. Security Definitions and Model. 

1. Authentication 

Roughly, authentication of key agreement protocol has two 
aspects, one is authentication of participants and the other is 
authentication of the computed session key.  

A. Implicit Key Authentication 

The implicit key authentication is based on the authentication 
of participants for preventing impersonation (for example man-
in-the-middle) attack. The purpose of the attacker is sharing 
secret session key without detecting of legitimate participants 
by replacing legitimate participant. Thus, generally the attacker 
is not considered to be a malicious participant. The implicit key 
authentication requires that each legitimate participant is 
assured that no other one except for other legitimate 
participants learns the established group key. 

B. Key Confirmation 

Key confirmation is the other aspect of the authentication. A 
key agreement protocol is said to provide key confirmation if 
each participant is assured that the other legitimate participant 
actually has possession of the same secret key to the key 
computed by him/her. In key confirmation security, it must be 
considered the case that the attacker is a malicious participant 
of the protocol. Because it is usually assumed that the attacker 
can control communication channel completely, the attacker 
always can prevent participants from sharing the secret session 
key. So key confirmation considers the case of that key 
agreement protocol is finished with no error detected. 

C. Explicit Key Authentication 

A key agreement protocol satisfying both implicit 
authentication and key confirmation is called an explicit 
authenticated key agreement protocol. 

2. Forward Secrecy 

The basic idea of this security notion is to maintain security 
of current communication sessions from the event which may 
occur in the future. Note that compromised long-term keys 
make the attacker impersonate without detection in the future 

  



protocol runs. 

A. (Partial) Forward Secrecy 

A key agreement protocol is forward secure if the long-term 
secret keys of participants or more are compromised, the 
secrecy of previous session keys is not affected. The word 
‘partial’ means that we assume that the attacker can 
compromise some, but not all, participants. 

B. Perfect Forward Secrecy 

A key agreement protocol is perfect forward secure if the 
long–term secret keys of all participants are compromised, the 
secrecy of previous session keys is not affected.  

C. Weak Forward Secrecy 

A key agreement protocol is weak forward secure if the 
protocol is forward secure against the attacker who can 
compromise only long–term secret keys from participants. 

D. Strong Forward Secrecy 

A key agreement protocol is strong forward secure if the 
protocol is forward secure against the attacker who can 
compromise internal states of participants additionally to long–
term secret keys. Note that this notion is meaningful where 
participants has some reusable data, also called {\it ephemeral 
keys}, in his/her internal memory. It is also assumed that each 
participant can erase ephemeral keys if it will be no longer used, 
so an attacker can compromise some, but not all, ephemeral 
keys used in the past. 

3. Other Security Requirements 

Followings are often referred security requirements: 

A. Known Session Key Secrecy 

A protocol is called satisfying known session key security, if 
the protocol is still secure against the adversary who knows 
some other session keys. In other words, the knowledge about 
some previous session keys gives no help to guess other 
session keys. 

B. No Key-Compromise Impersonation Secrecy 

This means the compromise of a long-term secret key of a 
participant doesn't imply that other participants' secret key is 
compromised. Note that since authentication of participants 
depends on knowledge of long-term secret keys, the adversary 
who compromises a long–term secret key may impersonate the 
compromised participant. However, no key–compromise 

impersonation security guarantees that the attacker cannot 
impersonate other participants except compromised one. 

C. No Key Control Secrecy 

A key agreement protocol satisfying this security notion is 
sometimes called contributory group key agreement. No key 
control security means that shared secret session key must be 
determined by all participants who involved in key agreement 
protocol and no one can enforces some specific value on a 
shared secret session key. 

4. Security Model 

In this section, we describe the formal security model for 
security analysis. This model is following security models of 
Bresson et al. [6] and Dutta et al. [21], [22]. In these models, 
each user in the key agreement protocol is considered as an 
oracle and every interaction of the adversary with users is 
considered as an oracle query. We assume that the adversary 
has the ability of controlling the network completely. 

Let S = {u1, u2, …, ut } be a set of all users. Without loss of 
generality, we can give the unique number to each key 
agreement instance although key agreement instances may 
occur simultaneously. Let Πl be the l-th key agreement instance 
and Sl be the subset of S which contains every user involved in 
the l-th key agreement instance with | Sl | = nl ≤ t. 

More precisely, Πl is the set of instance of users who are in 
Sl , let Πl

u be the instance of user u in the l-th session. Ml
u means 

the message which is broadcasted by Πl
u and Ml means the 

whole message which is broadcasted in the instance Πl. In 
other words, Ml is the all messages in the l-th session. 

And Kl is the shared secret session key in the l-th session. For 
each user ui, ki means the user's long-term secret key and rl,i 
means the users ephemeral key, i.e. random nonce used to 
share the session key in the l-th session by the user ui. 

Followings are oracle queries which are executed by the 
adversary: 

Eavesdrop(l) : This query models a passive attack, in which 
the adversary only eavesdrop messages among the users in Sl. 
The reply of this oracle is Ml.  

 
Initiate(Sl) : This query models an active attack in which the 

adversary initiates key agreement protocol among the users in 
Sl. Sl may be chosen by the adversary or randomly given. The 
adversary obtains all messages among the users, i.e. the reply 
of this oracle is Ml. 

 
Send(u, Sl, M’l) : This query models an active attack in 

which the attacker send messages which can be originated or 
modified by the adversary to other user(s). Here, we simplify 

  



this query as following: 
• Step1 : The adversary makes a message M’l. 
• Step2 : Or the adversary intercepts the message Ml sent to 

the user u ∈ Sl and modify to M’l . 
• Step3 : The adversary sends M’l to the user u instead. 

The reply of this oracle is Ml
u. 

 
KeyGen : This query models an active attack in which the 

adversary contacts the KGC to obtain a long–term secret user 
key. The reply of this oracle is a long-term secret user key kj. 
Note that the KGC never issues same long–term key to two or 
more users, i.e. the adversary can obtains kj for the index j 
which is never used. 

 
Reveal(l) : This query models the event of leakage of a 

particular session key to the adversary. The reply of this oracle 
is the session key Kl. 

 
Corrupt(u) : This query models the corruption of the long–

term secret key of the user u. The reply of this oracle is ku. Note 
that in OAK the strong corruption is meaningless. So we make 
only one corrupt model. 

 
Test(l) : The reply of this oracle is the real session key Kl if 

b=1 or a random key Rl if b=0, where b is randomly chosen bit 
by the Test oracle. This oracle is used to compute the 
adversary's ability to distinguish the real session key from a 
random key. The adversary can query this oracle at any time 
but only once. 

III. New Protocol 

1. Signature Scheme 

Let k be the security parameter. A digital signature scheme 
Σ=(KG, SIGN, VER) consists of the following three algorithms:  

• The key generation algorithm KG is a probabilistic 
algorithm with an input the security parameter λ and outputs 
(e, d) the secret key and public key pair. 

• The signing algorithm SIGN is a probabilistic algorithm with 
an input the secret key and the message (d, m) outputs the 
signature of m, σm. 

• The verification algorithm VER is a deterministic algorithm 
with an input the triple verification key, message and 
signature (e, m, σ), outputs TRUE if the signature is valid or 
FALSE otherwise. 

 
The signature scheme Σ = (KG, SIGN, VER) is secure if it is 

computationally impossible for any adversary to forge a 
signature on any message (existential forgery) even under 

adaptive chosen–message attack. In other words, there is no 
polynomial time algorithm with an input the public verification 
key e outputs (m, σ) which satisfying VER(e, m, σ) = TRUE with 
non–negligible probability, even it can query to signing oracle 
at any time. 

2. Bilinear Map 

Assume that G1 and G2 are two cyclic groups of prime order 
p and P is a generator of G1, for convenience we’ll denote G1 
as an additive group. A map e: G1 × G1 → G2 is a bilinear map 
if it satisfies: 

• Bilinear: for all P,Q ∈ G1 and a,b ∈ Z, we have 
e(aP,bQ) = e(P,Q)ab. 

• Non-degenerate: e(P,P) ≠ 1. 
By a bilinear group, we mean a group in which the group 

operation can be computed efficiently and there exists an 
efficiently computable bilinear map as above. Modified Weil 
pairing [25] and Tate pairing [26] are the typical examples of 
bilinear maps which are defined on elliptic curves. 

3. Construction 

We now propose the new key agreement protocol which 
requires only one round to establish shared session key and 
satisfies explicit authentication. In literature there is no one-
round multiparty key agreement protocol which satisfies 
explicit authentication.  

The One–round Authenticated Key agreement protocol 
(OAK) consists of following three algorithms: Setup, 
KeyGeneration and KeyAgreement. 

A. Setup 

Setup is executed by the key generation center KGC which is 
assumed to be a trusted party. 

• With the security parameter λ, the KGC chooses a prime q 
and generates two groups G1 and G2 of order q, where G1 
is a bilinear group with a bilinear map e : G1 × G1 → G2. 

• The KGC randomly chooses P which is a generator of G1, 
α and s from Zq

* and an integer t. 
• The KGC publishes G1, G2, e, t, P, αP, α2P, …, αtP as 

public information of the protocol. Note that α and s is the 
secret information that only the KGC knows. 

B. Key Generation 

If a participant wants to join the protocol, he/she sends 
his/her own information with which the KGC can identify 
him/her and his/her own verification key. After identifying 
process, the KGC gives the secret key to him/her as followings: 

• Assume that each participant u runs KG to obtain a pair of 

  



signing and verification key (du, eu) before the 
KeyGeneration process. 

• Each participant u is assigned unique identifier I(u) (an 
integer between 1 and t) and KGC computes sαI(u)P. 

• The KGC gives the secret key sαI(u)P, to the participant u 
and publishes the participant's identifier together with the 
verification key eu. 

C. Key Agreement 

It is assumed that each session has a unique session identifier, 
the session number l. Let Sl be a set of participants who want to 
agree a secret session key in the l-th session. 

• Each participant u in Sl randomly chooses ru∈Zp and 
broadcasts Mu = {mu,v = ruαt+1-I(v)P | v∈Sl , v≠u} together 
with the signature σu = SIGN(du, l | Mu) to all other users. 

• Each participant checks message integrity verifying the 
signatures. If there is an unverifiable message then 
KeyAgreement outputs FAIL and terminates. 

• Optionally, each participant may check message 
reliability of Mu = {mu,v | v∈Sl , v≠u} by verifying the 
equations e(αt+1-I(v')P, mu,v) = e(αt+1-I(v)P, mu,v'). If 
KeyAgreement finds some unreliable message, it outputs 
FAIL and terminates. 

• Each participant u in Sl computes Σv∈Sl rvαt+1-I(u)P and the 
secret session key, Kl = e(sαI(u),Σv∈Sl rvαt+1-I(u)P) = 
Exp[e(P,P), αt+1s(Σv∈Sl  rv)], where Exp[a,b] means ab. 

• After computing the session key, each user ui erases 
his/her own random nonce ri.  

Note that the protocol adopts the KGC for generating of 
public keys and each user's secret key similarly to ID-based 
key agreement protocols. By necessity, we assume that the 
KGC is trusted. Because the leakage of the secret key of the 
KGC breaks forward secrecy and if the KGC itself is 
compromised then the protocol cannot be guaranteed to be 
secure no longer. Even though the assumption is the cost for 
reducing the round complexity to be optimized, it is somewhat 
expensive and removing this assumption is the next step of this 
work. 

4. Efficiency 

• Rounds: One, regardless to the size of Sl .  
• Communication: Each user broadcasts n-1 elements of G1. 
• Computation: For each user, n scalar multiplications in G1, 

n-1 additions in G1, 1 computation of signature, n-1 
verifications of signatures and 1 bilinear map computation 
are required. 

 
[Remark] Checking reliability of messages is required when 

participants want key confirmation property. Note that message 

reliability can be checked with computing maximum 2(n-2) 
pairing computations and (n-3)n additions in G1. 

 
[Remark] In the viewpoint of computation, this protocol is 

not efficient comparing to other group key agreement protocols. 
The main contribution of this paper is the optimization of 
round complexity satisfying security requirements. 

IV. Security 

1. Assumptions 

A. Discrete Logarithm Assumption 

Let Gen(1λ) be an algorithm which generates a λ-bit prime q 
and a multiplicative group G = <g> of order q. Then the 
discrete logarithm assumption says that for all probabilistic 
polynomial time adversary A,  

Pr[(q,g) ← Gen(1λ); A(q,g,y) = x : gx = y] 

is negligible.  

B. Bilinear Diffie-Hellman Assumption 

Let Gen(1λ) be an algorithm which generates a λ-bit prime q 
and two groups G1 = <P> and G2 of order q, where G1 is a 
bilinear group with a bilinear map e : G1 × G1 → G2. 
Additionally, we assume that the discrete logarithm problems 
(DLP) in both G1 and G2 are hard. The bilinear Diffie-Hellman 
assumption says for all probabilistic polynomial time adversary 
A, 

Pr[(q,P) ← Gen(1λ); A(P,aP,bP,cP) = x:x = e(P,P)abc] 

is negligible. 

C. Bilinear Diffie-Hellman Exponent Assumption 

In 2005, Boneh et al. [23] proposed bilinear Diffie–Hellman 
Exponent (BDHE) assumption to generate an efficient HIBE. 
Later BDHE assumption is used in construction a broadcast 
encryption system [24] and considered as a general assumption 
in a bilinear group. 

Let Gen(1λ) be an algorithm which generates a λ-bit prime q 
and two groups G1 = <P> and G2 of order q, where G1 is a 
bilinear group with a bilinear map e : G1 × G1 → G2. 
Additionally, we assume that the discrete logarithm problems 
(DLP) in both G1 and G2 are hard. The t-BDHE problem in G1 
is stated as follows: given a vector of 2t + 1 elements  

( Q, P, αP, α2P, …, αtP, αt+2P, …, α2tP) ∈ G1
2t+1 

as input, output Exp[e(P,Q), αt+1] ∈ G2. Note that the input 
vector is missing the term αt+1P so that the bilinear map seems 

  



to be of little help in computing the required Exp[e(P,Q), αt+1]. 
The t-BDHE assumption says that for all probabilistic 

polynomial time algorithm A, the probability that  

Pr[(q,e,P)←Gen(1λ), Q ←R G1, α ←R Zq
*;    

A (Q, P, αP, …, αtP, αt+2P, …, α2tP) = x : x = e(P,Q)t+1] 

is negligible. 
The decisional version of the t-BDHE problem in G1 is 

defined analogously. Let YP,α,t = (αP, …, αtP, αt+2P, …, α2tP). A 
probabilistic polynomial time algorithm B that outputs b ∈ 

{0,1} has advantage ε in solving decision t-BDHE in G1 if 

|Pr[B(Q,P,YP,a,t, e(at+1P,Q))=0] - Pr[B(Q,P,YP,a,t, R)=0]| ≥ε 
where the probability is over the random choice of generators 
P, Q in G1, the random choice of a in Zp

*, the random choice 
of R ∈ G2, and the random bits consumed by B. 

The decisional t-BDHE assumption holds in G1 if no 
probabilistic polynomial time algorithm has non–negligible 
advantage in solving the decisional t-BDHE problem in G1 

D. Modified Bilinear Diffie–Hellman Exponent Assumption 

Generalizing BDHE assumption, we obtain Modified 
Bilinear Diffie–Hellman Exponent (MBDHE) assumption. 
Security of our system is mainly based on MBDHE 
assumption. 

Let Gen(1λ) be an algorithm which generates a λ-bit prime q 
and two groups G1 = < P > and G2 of order q, where G1 is a 
bilinear group with a bilinear map e : G1 × G1 → G2. 
Additionally, we assume that the discrete logarithm problems 
(DLP) in both G1 and G2 are hard.  

Define the t-MBDHE problem in G1 as follows: given a 
vector of 2t + 1 elements  

 
 

as input, output Exp[e(P,Q), αt+1] ∈ G2, where I is an set of 
integers such that {1}⊆ I ⊆ {1,2,…, t}. Note that for any 1 ≤  
i ≤ t one of αt+iP or α1-iQ is missing in the input vector so that 
the bilinear map seems to be of little help in computing the 
required Exp[e(P,Q), αt+1] directly. 

Note that for I = {1} we have the t-BDHE problem so we 
can consider t-MBDHE problem as a generalization of t-
BDHE problem. Following is an example of an input for t-
MBDHE problem where t=5, I = {1,4}: 

 
 

Let YP,Q,α,t,I = (αP, …, αtP, { αt+I | i which is not in I }, {α1-iQ 
| i ∈ I }). The t-MBDHE assumption says that for all 
probabilistic polynomial time algorithm A and all index set I, 
following probability is negligible. 

Pr[(q,e,P)←Gen(1λ),Q←RG1,α←RZq
*; 

A(P, YP,Q,α,t,I ) = x : x = e(P,Q)t+1] 

The definition of the decisional t-MBDHE assumption is 
similar to that of the decisional t-BDHE assumption. The 
decisional t-BMDHE assumption holds in G1 if for all 
probabilistic polynomial time algorithm B and all index set I, 
the advantage of B  

| Pr[B(P, YP,Q,α,t,I, e(αt+1P,Q)) = 0] - Pr[B(P, YP,Q,α,t,I, R) = 0] | 
is negligible. 

2. Basic Theorems 

To prove the security of proposed OAK protocol, we define 
following adversaries: 

• Ai is a polynomial time algorithm for a fixed integer i (1 ≤ 
i ≤ t) with an input   

 
 
 

outputs TRUE if R = Exp[e(P,Q), rαt+1] or FALSE 
otherwise. Adv(Ai) means the advantage of Ai i.e.  

Adv(Ai) = | Pr[ the answer of Ai is correct ] – 1/2 | 

• AI is a polynomial time algorithm for a fixed set of index           
I ⊆ {1, …, t} with an input 
 

 
 
 
outputs TRUE if R = Exp[e(P,Q), rαt+1] or FALSE 
otherwise. Similarly, Adv(AI) means the advantage of AI. 

• A’I is a polynomial time algorithm for a fixed set of index 
I⊆ {1, …,t} with an input  
 
 
 
 
outputs TRUE if R = Exp[e(P,Q),rαt+1] or FALSE 
otherwise. Similarly, Adv(A’I) means the advantage of A’I. 

 
Theorem 1 
Adv(Ai) is negligible under t-BDHE assumption.  
 
(Proof) Suppose there exists a Ai such that Adv(Ai) ≥ 

1/f(k) ,where f(·) is a polynomial. Then we can make a 
polynomial time algorithm which attacks t-BDHE problem 
with the advantage greater than 1/f(k).  

B is an adversary who wants to attack t-BDHE problem. So 
B is given a problem instance:  

  



(Q, αP, α2P, …, αtP, αt+2P, …, α2tP),R 
B chooses random r and computes  

rαt-iP, rαt-i+1P, …, rαtP, rαt+2P, …, rα2t+1-iP. 
Note that i is an integer between 1 and t so all of above can be 
computed from the input for B and chosen r. Then B gives A  
the following input:  
 
 
 
Finally, B outputs TRUE if A outputs TRUE or FALSE 
otherwise. 

Now we compute the advantage of B with above attack. 
With an input described above A can distinguish R from 
Exp[e(P,Q), rαt-iαi] = Exp[e(P,Q), rαt+1] with the advantage 
greater than 1/f(k). Because in this attack the advantage of B is 
same to the advantage of A, Adv(B) is also greater than 1/f(k). 
So, Adv(Ai) must be negligible under t-BDHE assumption.  □ 

 
Theorem 2 
Adv(AI) is negligible under t-MBDHE assumption. 
 
(Proof) With similar arguments, we can prove this theorem. 

Suppose that there exists a polynomial time algorithm A with 
an index set     I ⊆ {1, …, t}. Then we can construct a 
polynomial time algorithm B which attacks t-MBDHE 
problem with I' := {i-x+1| i ∈ I}, where x is the smallest 
element of I.  

For a given input  
 
 
 

B randomly chooses r and computes following 
 
 
 
Note that rαt+1-x+iP is in fact r times αt+i'P and αx-iQ is exactly 
same to α1-i'Q. B outputs TRUE if A outputs TRUE or FALSE 
otherwise. Since the advantage of B is same to the advantage of 
AI , Adv(AI) cannot be less than 1/f(k) for any polynomial f(·) 
under t-MBDHE assumption.                         □ 

 
Theorem 3 
If Adv(AI) is negligible, then Adv(A’I) is negligible under 

BDH assumption.  
 
(Proof) To prove this theorem we need to define new 

adversary.  
• A0 is a polynomial time algorithm with an input (P, aP, 

bP, cP, e(P, P)acs, R) which distinguish R from e(P, P)abs. 
Let Adv(A0) be the advantage of A0. 

 
Step 1: Under the BDH assumption, Adv(A0) is negligible. 
Suppose that there exists a polynomial time algorithm A0 

with Adv(A0) is non-negligible. We can make following 
polynomial time algorithm B which attacks BDH problem with 
the non-negligible advantage. 

From the input (P, aP, bP, cP, R), B choose random r and 
computes rP and e(aP,cP)r = e(P, P)acr. B gives (P, aP, bP, rP, 
e(P, P)arc, R) to A as an input. Then A distinguish R from e(P, 
P)abc with non–negligible advantage. This is contradiction to 
the BDH assumption. 

 
Step 2: With the assumption of Adv(AI) is negligible (let 

Adv(AI) = εI), Adv(AI’) is also negligible. 
Suppose that there exists a polynomial time algorithm AI’ 

with non-negligible advantage. Then we can construct A0 with 
non-negligible advantage. With an input (P, aP, bP, cP, e(P, 
P)acs, R), A0 chooses random x and computes followings: 
 
 
 
 
and gives it as input to A’I. 

Note that e(P, P)acs is not a proper input. But, from the 
Theorem2, A’I cannot distinguish this input from a proper one. 
Therefore, A’I works ordinarily and finally distinguishes R 
from e(P, P)abs with non–negligible probability. This is 
contradiction to the result of Step1 above. Therefore, Theorem3 
is proved.                                        □ 

3. Forward Secrecy 

Theorem 4 
The proposed key agreement protocol, OAK, satisfies 

(partial) forward secrecy against the strong corruption.  
 
In OAK, each user erases the random exponent after 

computing the session key. It is can be done because the 
random exponent is never reused in the future. And the 
adversary cannot obtain any more information from the strong 
corruption. So we can assume that the reply of Corrupt query 
is just the long-term key of participant. 

 
To prove the forward secrecy, we consider following attack 

scenario: The adversary Af chooses a user u and do Corrupt(u) 
query. After that, Af chooses the session index l which satisfies 
the condition that u is contained in Sl. Af do Test(l) query to 
obtain the challenge. The challenge is Kl if the random bit b 
chosen by Test oracle is 1 or Rl otherwise. In this attack, the 
purpose of the adversary is to distinguish the shared session 

  



key Kl from a randomly chosen Rl with the same length which 
are the reply of the oracle Testl. The Af is allowed to query to 
Eavesdrop, Initiate, KeyGen, Reveal and Send oracles freely at 
any time. Note that Reveal(l) query is trivially forbidden. 

In this attack model, we may ignore Initiate and Send 
queries. Since the reply of these oracles are information 
theoretically independent to Kl and gives no help to distinguish 
the Kl. Except Eavesdrop(l), Eavesdrop queries are also helpless. 
Here, to ignore Eavesdrop queries, we assume that the 
adversary knows Ml already.  Since the reply of the Reveal 
can be duplicated by the Af with randomly chosen exponent, 
we include one reply of Reveal as an input of Af. 

 
Lemma 5 
Let ri be the random exponent of u = ui used in the session l 

to share the session key Kl. Then the probability of Af to 
distinguish Kl from Rl is same to the probability of Af to 
distinguish Exp[e(P, P), sαt+1ri] from R'l, where Rl and R'l are 
randomly chosen elements from G2. 

 
(Proof) It is trivial since that if Af knows sαiP then Af can 

compute Exp[e(P, P), sαt+1rj] for j ≠ i and j ∈ Sl from Ml and 
sαiP. So distinguishing Kl is equivalent to distinguishing 
Exp[e(P, P), sαt+1ri] = Kl / Πj≠I Exp[e(P, P), sαt+1rj]         □ 

           
From this lemma, we can summarize Af as a polynomial 

time algorithm with the inputs: the public information  
αP, α2P, …, αtP, 

a reply of the Eavesdrop(l) query 
{ riαjP | j ∈ Sl, i ≠ j}, 

a long-term key  
sαiP 

from the Corrupt(i) query, replies of KeyGen queries  
{ sαjP | for j which is not in Sl } 

a reply from the Reveal query  
{ r'αjP | j ∈ Sl , i ≠ j }, Exp[e(P, P), r'sαt+1], 

and a challenge Rl from the Test oracle. Therefore, Af is exactly 
same to the A'I defined in the section IV–2.  

Theorems in the section IV–2 say that Af cannot distinguish 
Kl from Rl under t-MBDHE and BDH assumptions. Note that 
if we restrict A not to query KeyGen query then OAK is 
forward secure under t-BDHE and BDE assumptions. 

 
[Remark] The OAK does not satisfy perfect forward 

secrecy. Since the adversary can compute previous session 
keys with two long-term secret keys assigned to the 
participants who are involved to share the session key.  

The authenticity of OAK is guaranteed by following two 
theorems : 

 
Theorem 6  
The OAK is an implicit authenticated key agreement 

protocol under the t-MBDHE and BDH assumptions.  
 
Theorem 7   
The OAK satisfies key confirmation security under the 

unforgeability of the signature scheme. 
 
To prove the Theorem6, we consider the adversary Aa who 

wants to learn a session key Kl without participating in Sl. 
The Aa chooses the user set Sl and do Initiate(Sl) query to 

obtain the reply Ml. After that Aa do Test(l) query, the purpose 
of the Aa is to distinguish the session key Kl form the random 
challenge Rl which is the reply of Test(l). Aa can do any other 
queries freely in any time except Corrupt and Reveal(l) queries. 
Since we assumed that the signature scheme is unforgeable and 
the Aa is not a member of Sl , the Aa cannot success Send 
queries with non-negligible probability. So we can ignore Send 
queries. Since the reply of the Reveal can be duplicated by the 
Aa with randomly chosen exponent, we include one reply of 
Reveal as an input of Aa. 

We can summarize the Aa as a polynomial time algorithm 
with the inputs: the public information  

αP, α2P, …, αtP, 
a reply of the query Initiate(l) 

{ riαjP | i,j ∈Sl , i ≠ j }, 
replies of KeyGen queries  

{ sαjP | for j which is not in Sl }, 
replies from the Reveal queries and a challenge Rl from Test 
oracle. 

Therefore, Aa is a polynomial time algorithm with input 
 
 
 
 
 
and replies of Reveal queries to distinguish Exp[e(P, P), sαt+1 
(r1 + r2 +…+ rn)] from Rl. And let A1 be a polynomial time 
algorithm with an input  
 
 
 
and replies of Reveal queries to distinguish Exp[e(P, P), sαt+1r1] 
from R'l . 

 
Lemma 8 4. Authenticity  
There exists a polynomial adversary A1 with non-negligible 

  



advantage if there exists a polynomial time adversary Aa with 
non-negligible advantage. 

 
(Proof) We suppose that there exits a polynomial time 

algorithm Aa. Then for given input  
 
 
 
A1 chooses r2, r3, …, rn randomly and computes other vectors 
{r2αt+1-j | j∈S, j ≠ i2}, …, {rnαt+1-j | j∈S, j ≠ in }. A1 can compute 
Exp[e(P, P), sαt+1r2], …, Exp[e(P, P), sαt+1rn] trivially. 
Therefore A1 can set Rl = R'l ·Exp[e(P, P), sαt+1r2] ··· Exp[e(P, 
P), sαt+1rn]. And input  
 
 
 
 
 
 
to Aa. Because Aa can distinguish Exp[e(P, P), sαt+1(r1 + r2 + … 
+ rn)] from Rl with non-negligible advantage A1 also can 
distinguish Exp[e(P, P), sαt+1r1] from R'l with same advantage. 
It is the end of proof of the above lemma.                □ 

 
Now, consider the adversary A2 which is a polynomial time 

algorithm with input  
 
 
 
to distinguish Exp[e(P, P), sαt+1r] from Rl. Note that for A2 the 
Reveal queries are not allowed. 

 
Lemma 9 
There exists a polynomial adversary A2 with non-negligible 

advantage if there exists a polynomial time adversary A1 with 
non-negligible advantage. 

 
(Proof) To prove this lemma, it is sufficient to show the A2 

can simulate Reveal queries from A1. Note that the reply of 
Reveal query can be constructed using public keys, a secret key 
which can be obtained from KeyGen query and randomly 
chosen exponent.                                  □ 

 
From the result of section IV-2 and above lemmas the 

Theorem6 is proved under the t-MBDHE and BDH 
assumptions. Note that the A2 is exactly same to A'I in section 
IV-2. 

 
To prove the Theorem7, we define a proper form of the 

message for the index set S as { rαiP | i∈S } first. It means that 

the message vector is obtained by multiplying a random 
exponent to the vector consists public keys with the index i∈S, 
i.e. {αiP | i∈S }. Note that if the message sent from each 
participant has proper form, each participant obtains same 
secret session key. And messages are forced to satisfy the 
proper form, because that if one of messages has non-proper 
form the key agreement protocol halts. Therefore, to disturb 
participants from sharing the session key, although the 
adversary is a malicious participant, is impossible. 

Trivially, if the adversary intercepts a message and discards it 
then no key agreement protocol achieves key confirmation 
security. So we do not consider such an adversary here. 

 
The Theorem6 and the Theorem7 imply that the OAK is a 

explicit key agreement protocol.  

5. Other Security Requirements 

Security analyses about Known Session Key Secrecy, No 
Key-Compromise Impersonation Secrecy and No Key Control 
Secrecy are omitted here. Those are presented in the appendix.  

V. Conclusion 

A key agreement protocol is a cryptographical primitive 
which allows participants to share a common secret key via 
insecure channel. One interesting problem which is still 
unsolved in key agreement is to construct an one-round 
multiparty key agreement protocol satisfying various security 
requirements. In this paper, we present a new multiparty key 
agreement protocol using bilinear map and adopting the key 
generation center. The protocol demands only one–round for 
arbitrary number of participants to share a group key and 
satisfies both authentication and (partial) forward secrecy. 
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Appendix 

1. Known Session Key Secrecy 

This security requirement is guaranteed by proof of the 
Theorem6. Note that in proving the Theorem6, we assume that 
the adversary Aa can query Reveal freely. This means that there 
is no adversary who can distinguish the given session key from 
a random key although the adversary knows many other 
session keys. 

2. No Key-Compromise Impersonation Secrecy 

Remind that no key-compromise impersonation security 
means the adversary who knows a long-term private key of a 
participant u cannot impersonate u', for u ≠ u'. Basically, the 
security against impersonation attack is based on the security of 
the signature scheme used. Here we claim that even in the case 
of the adversary can forge the signature of other users, the 
adversary cannot success the impersonation attack. 

Because that if an adversary cannot success impersonation 
attack to one user then trivially the adversary cannot success 
impersonation attack to a set of users, we will consider an 
impersonation attack to one user. Consider the adversary who 
acts as followings: Aim chooses a target user u and executes 
Initiate(Sl) query on the index set Sl which contains u. The 
purpose of Aim is sharing the same key with u by sending 
modified messages to u. 

Let u = u1 and Sl = { u1, u2, …, un }. And suppose that the 
message to u from Aim is 
 
 
 
 
 
Assume that Aim successfully forges all signatures of these 
messages. After u receives these messages u chooses r and 
sends { r·Exp[α,t+1-i2]·P, …, r·Exp[α,t+1-in]·P } to Aim. And u 
computes the session key Exp[e(P, P), rsαt+1] · Πj=2, …, n 
Exp[e(P,mj,1), sαi] Because mj,1 are all chosen by Aim, we can 
assume that Aim can compute Exp[e(P,mj,1), sαi] easily. At last 
the problem is reduced to whether Aim can distinguish Exp[e(P, 
P), rsαt+1] from a random with the inputs { r·Exp[α,t+1-i2]·P, 
…, r·Exp[α,t+1-in]·P } and the replies of some oracle queries. 

Note that Aim is same to A2 in the section IV-4. From the 
result of the section \ref{groundwork} we can deduce the Aim 
cannot distinguish this with non-negligible advantage.  

From the security of signature scheme, if the adversary is not 
in the Sl, he cannot make a change of the session key. So we 
assume that the adversary is a malicious user in the set Sl who 
want to make the session key a certain value R. 

Because the adversary Ac cannot change the random 
exponent which is chosen by other users, only possible 
scenario is following: Ac initiates key agreement protocol 
among the set Sl which is selected by Ac, using Initiate(Sl)$ 
query. After receiving all messages from other users, let u2, …, 
un, Ac chooses random r satisfying  

Exp[e(P, P), rsαt+1] = R / Πj = 2, …, n Exp[e(P, P), rjsαt+1].  
So, we can summarize this as a problem that for given R, R' 
whether the Ac can choose r satisfying Rr = R' or not. As you 
know this is an instance of the DLP problem. So it is not 
possible that Ac can control the session key for a certain fixed 
value R with non-negligible advantage. 

3. No Key Control Secrecy 

  


