
Faster Group Operations on Special Elliptic

Curves

Huseyin Hisil, Gary Carter, Ed Dawson

Information Security Institute, Queensland University of Technology,

{h.hisil, g.carter, e.dawson}@qut.edu.au

Abstract

This paper is on efficient implementation techniques of Elliptic Curve
Cryptography. We improve group operation timings1 for Hessian and
Jacobi-intersection forms of elliptic curves. In this study, traditional co-
ordinates of these forms are modified to speed up the addition operations.
For the completeness of our study, we also recall the modified Jacobi-
quartic coordinates which benefits from similar optimizations. The oper-
ation counts on the modified coordinates of these forms are as follows:

• Modified Hessian: Doubling 3M+6S, readdition 6M+6S, mixed ad-
dition 5M+6S, addition 6M+6S.

• Modified Jacobi-intersection: Doubling 2M+5S+1D, readdition 11M+
1S+2D, mixed addition 10M+1S+2D, addition 11M+1S+2D.

• Modified Jacobi-quartic: Doubling 3M+4S, readdition 8M+3S+1D,
mixed addition 7M+3S+1D, addition 8M+3S+1D.

We compare various elliptic curve representations with respect to their
performance evaluations for different point multiplication algorithms. We
note that Jacobi-quartics can provide the fastest timings for some S/M and
D/M values in fast point multiplication implementations. We also show
that Hessian form can provide the fastest timings for some S/M and D/M
values when side-channel resistance is required for point multiplication.

Keywords: Elliptic curve arithmetic, unified addition, side channel attacks.

1 Introduction

One of the main challenges in elliptic curve cryptography is to perform scalar
multiplication efficiently under different environment constraints (such as resis-
tance for side channel attacks, bandwidth efficiency, less memory requirement).
In the last decade, much effort has been spent in representing the elliptic curves
in special forms which permit faster point doubling and addition. In particular,

1
M: Field multiplication, S: Field squaring, D: Multiplication by a curve constant.

1

• Chudnovsky and Chudnovsky [1] reported the operation counts for inversion-
free addition and doubling operations for Weierstrass, Hessian, Jacobi-
intersection and Jacobi-quartic forms. Cohen, Miyaji and Ono [2] showed
a faster method in Weierstrass form on Jacobian coordinates. Doche, Icart
and Kohel [3] introduced the fastest doubling2 and tripling in Weierstrass
form on two different families of curves.

• Joye and Quisquater [6], Liardet and Smart [7], Brier and Joye [8], Billet
and Joye [9] showed ways of doing point multiplication to resist side chan-
nel attacks on Hessian, Jacobi-intersection, Weierstrass and Jacobi-quartic
forms, respectively in chronological order.

• Duquesne [10] improved the operation count for the Jacobi-quartic unified
addition formula by extending the traditional coordinates. Here, “unified
addition formula” means a point addition formula that can be used for
point doubling.

• Edwards [11] introduced a new representation of elliptic curves. Bernstein
and Lange [12, 13] showed the importance of this new form for provid-
ing fast arithmetic and side channel resistance. They have also built a
database [4] of explicit formulae that are reported in the literature to-
gether with their own optimizations. Later, Bernstein and Lange [12, 13]
introduced the inverted Edwards coordinates which improve the unified
addition timings for Edwards curves.

This paper is a continuation of an earlier work by the authors in [14]. We
focus our attention on the Hessian and the Jacobi-intersection forms. Our aim
is to determine whether curve arithmetic can be improved for these forms. The
improvements on the addition formulae are obtained from an approach analo-
gous to that of Duquesne’s [10]. The fast doubling formulae are obtained by
choosing alternative polynomial expressions for the coordinates involved in the
doubling formulae. This paper is organized as follows. We provide better oper-
ation counts for Hessian form in Section 2 and for Jacobi-intersection form in
Section 3. We recall some previous results for Jacobi-quartic form [10, 4, 14] in
Section 4. We provide comparisons of various systems and draw our conclusions
in Section 5.

2 Modified Hessian Coordinates

The historical track of the explicit formulae for Hessian form is reported by
Chudnovsky and Chudnovsky [1]. Let K be a field with char(K) > 3. For these
fields, an elliptic curve in Hessian form is defined by E(K): x3 + y3 + 1 = 3dxy
where d3 6= 1. The identity element is the point at infinity. (See [15, 6, 14]).
The inversion-free addition formula is defined as follows. The inputs that set

2With the improvements of Bernstein, Birkner, Lange and Peters [4, 5].

2

Z3 = 0 should be handled separately.

X3 = Y 2

1
X2Z2 −X1Z1Y

2

2

Y3 = X2

1
Y2Z2 − Y1Z1X

2

2

Z3 = Z2

1X2Y2 −X1Y1Z
2

2

We modify the traditional Hessian coordinates by appending new values
denoted by the letters R, S, T, U, V, W . Two points;

(X1: Y1: Z1: R1: S1: T1: U1: V1: W1), (X2: Y2: Z2: R2: S2: T2: U2: V2: W2)

with

R1 ← X2

1 , S1 ← Y 2

1 , T1 ← Z2

1 , U1 ← 2X1Y1, V1 ← 2X1Z1, W1 ← 2Y1Z1,

R2 ← X2

2
, S2 ← Y 2

2
, T2 ← Z2

2
, U2 ← 2X2Y2, V2 ← 2X2Z2, W2 ← 2Y2Z2

can be added as follows.

X3 ← S1V2 − V1S2, Y3 ← R1W2 −W1R2, Z3 ← T1U2 − U1T2,

R3 ← X2

3
, S3 ← Y 2

3
, T3 ← Z2

3
, U3 ← (X3 + Y3)

2 −R3 − S3,

V3 ← (X3 + Z3)
2 −R3 − T3, W3 ← (Y3 + Z3)

2 − S3 − T3.

The addition for modified Hessian coordinates costs 6M+6S. This improves
on the 12M figure reported in [1] at the cost of some more space requirement.
The mixed addition can be derived by setting Z2 = 1 and storing R2, S2, U2. It
costs 5M+6S. Unlike other special forms, the addition formula does not depend
on the curve parameter. This is certainly an advantage of the Hessian form. If
side channel resistance is necessary, point doubling can be performed as

(Z1: X1: Y1: T1: R1: S1: V1: W1: U1) + (Y1: Z1: X1: S1: T1: R1: W1: U1: V1)

using the addition formula on modified Hessian coordinates. This strategy orig-
inates from Joye and Quisquater [6, p.6].

For speed oriented implementations, there is a perfectly fitting doubling
strategy which requires no additional effort for generating the new coordinates.
The traditional doubling formula can be expressed as follows. Note, this formula
is essentially the same as reported in [1, p.425] (with each coordinate multiplied
by 4).

X3 = (2X1Y1 − 2Y1Z1)(2X1Z1 + 2(X2

1
+ Z2

1
))

Y3 = (2X1Z1 − 2X1Y1)(2Y1Z1 + 2(Y 2

1 + Z2

1))

Z3 = (2Y1Z1 − 2X1Z1)(2X1Y1 + 2(X2

1
+ Y 2

1
))

The point (X1: Y1: Z1: R1: S1: T1: U1: V1: W1) can be added to itself as follows.

X3 ← (U1 −W1)(V1 + 2(R1 + T1)),

3

Y3 ← (V1 − U1)(W1 + 2(S1 + T1)),

Z3 ← (W1 − V1)(U1 + 2(R1 + S1)),

R3 ← X2

3 , S3 ← Y 2

3 , T3 ← Z2

3 , U3 ← (X3 + Y3)
2 −R3 − S3,

V3 ← (X3 + Z3)
2 −R3 − T3, W3 ← (Y3 + Z3)

2 − S3 − T3.

This formula costs 3M+6S. (See [14] for a 7M+1S doubling on the traditional
coordinates). Like the addition formula, the doubling formula also does not
depend on the curve parameter.

One can reduce the number of coordinates without storing V, W and U .
This does not effect doubling, readdition and mixed addition costs. However,
the addition costs 6M+9S in this case.

We comment that it is possible to derive unified addition formulae which
does not require any permutations of the coordinates for performing doubling.
One of such formulae is as follows. (The derivation of the new formula is given
in Appendix-A).

X3 = X1X2(X1Y1Z
2

2
+ X2Y2Z

2

1
− 3dX1Y1X2Y2) + (Y1Y2)

2Z1Z2

Y3 = −Y1Y2(X1Y1Z
2

2 + X2Y2Z
2

1 − 3dX1Y1X2Y2)− (X1X2)
2Z1Z2

Z3 = (X1X2)
3 − (Y1Y2)

3

We again use a modified coordinate system rather than the standard coor-
dinates. Two points;

(X1: Y1: Z1: V1: W1), (X2: Y2: Z2: V2: W2)

with
V1 ← X1Y1, W1 ← Z2

1
, V2 ← X2Y2, W2 ← Z2

2

can be added as follows.

A← X1X2, B ← Y1Y2, C ← ((Z1 + Z2)
2 −W1 −W2)/2,

D ← A2, E ← B2, F ← D + E, G← ((A + B)2 − F)/2,

H ← (V1 + W1)(V2 + W2)− (3d + 1)G− C2,

X3 ← AH + EC, Y3 ← −BH −DC, Z3 ← (A−B)(G + F),

V3 ← X3Y3, W3 ← Z2

3

This strategy costs 9M+6S+1D which is faster than the unified addition in
Weierstrass form in [8, 4]. However, it is slower than all other unified additions
considered in this paper.

4

3 Modified Jacobi-intersection Coordinates

Let K be a field with char(K) 6= 2, 3 and let a ∈ K with a(1−a) 6= 0. An elliptic
curve in Jacobi-intersection form [1, 7, 14] is the set of points which satisfy the
equations s2 + c2 = 1 and as2 + d2 = 1 simultaneously. The identity element
is the point (0, 1, 1). The inversion-free addition formula is defined as follows.
The inputs that set T3 = 0 should be handled separately.

S3 = S1T1C2D2 + C1D1S2T2

C3 = C1T1C2T2 − S1D1S2D2

D3 = D1T1D2T2 − aS1C1S2C2

T3 = T 2

1 C2

2 + D2

1S
2

2

We modify the traditional Jacobi-intersection coordinates by appending new
values denoted by the letters U and V . Two points;

(S1: C1: D1: T1: U1: V1), (S2: C2: D2: T2: U2: V2)

with
U1 ← S1C1, V1 ← D1T1, U2 ← S2C2, V2 ← D2T2

are added as follows.

E ← S1D2, F ← C1T2, G← D1S2, H ← T1C2, J ← U1V2, K ← V1U2,

S3 ← (H + F)(E + G)− (J + K), C3 ← (H + E)(F −G)− (J −K),

D3 ← (V1 − aU1)(U2 + V2) + aJ −K, T3 ← (H + G)2 − 2K,

U3 ← S3C3, V3 ← D3T3.

This formula costs 11M+1S+2D which improves on the 13M+2S+1D re-
ported in [7, 4]. The mixed addition can be derived by setting T2 = 1 and storing
U2. It costs 10M+1S+2D as opposed to the previously reported 11M+2S+1D
in [7, 4] and 10M+2S+1D in [14, p.146].

The compatible doubling formula for this addition is different to the doubling
formula explained in [1, 7]. The new doubling formula is as follows. (The
derivation of the new formula is given in Appendix-B).

S3 = 2S1C1D1T1

C3 = −D2

1
T 2

1
− aS2

1
C2

1
+ 2(S2

1
C2

1
+ C4

1
)

D3 = D2

1T
2

1 − aS2

1C2

1

T3 = D2

1
T 2

1
+ aS2

1
C2

1

The point, (S1: C1: D1: T1: U1: V1) can be added to itself as follows.

E ← V 2

1 , F ← U2

1 , G← aF, T3 ← E + G, D3 ← E −G,

C3 ← 2(F +C4

1)−T3, S3 ← (U1 +V1)
2−E−F, U3 ← C3S3, V3 ← D3T3.

This formula costs 2M+5S+1D. The operation count is also the same on the
traditional coordinates however it is only preferable when the curve constant is
small. (i.e. D/M≈0).

5

4 Modified Jacobi-quartic Coordinates

Let K be a field with char(K) 6= 2, 3. An elliptic curve in Jacobi-quartic form [9]
is defined by E(K): y2 = x4 + 2ax2 + 1 where a2 − 1 is nonzero. The identity
element is the point (0, 1). The leading study for the modification of traditional
Jacobi-quartic coordinates was performed by Duquesne [10] followed by an im-
provement in [4]. A fast doubling formula was proposed by the authors [14].
This formula was adapted to the corresponding coordinates for the study by
Bernstein and Lange [4]. For the completeness of this paper we recall the mod-
ified Jacobi-quartic coordinates (with some minor differences). Two points;

(X1: Y1: Z1: U1: V1: W1), (X2: Y2: Z2: U2: V2: W2)

with
U1 ← X2

1
, V1 ← Z2

1
, W1 ← 2X1Z1

U2 ← X2

2 , V2 ← Z2

2 , W2 ← 2X2Z2

can be added as follows. The inputs that set Z3 = 0 should be handled sepa-
rately.

A←W1W2, B ← Y1Y2, C ← V1V2, D ← U1U2,

X3 ← (W1 + Y1)(W2 + Y2)−A−B, Z3 ← 2(C −D),

Y3 ← 2((C + D)(2B + aA) + A((U1 + V1)(U2 + V2)− (C + D))),

U3 ← X2

3
, V3 ← Z2

3
, W3 ← (X3 + Z3)

2 − U3 − V3.

The (unified) addition on modified Jacobi-quartic coordinates costs 8M+3S+1D
as reported in [10, 4]. For a 7M+3S+1D mixed addition see [4, 14]. A point;

(X1: Y1: Z1: U1: V1: W1)

can be added to itself as follows. (The derivation of this formula is given in
Appendix-C).

A← U1 + V1, X3 ← Y1W1, Z3 ← A(V1 − U1), U3 ← X2

3 ,

V3 ← Z2

3
, B ← U3 + V3, W3 ← (X3 + Z3)

2 −B, Y3 ← 2(Y1A)2 −B.

The operation count shows that Jacobi-quartic doubling on modified co-
ordinates costs 3M+4S. One can reduce the number of coordinates without
storing W . This does not effect doubling, readdition and mixed addition costs.
However, the addition costs 8M+4S+1D in this case.

6

5 Conclusion

We improved the latest operation counts for Hessian and Jacobi-intersection
forms by modifying the traditional coordinates. We derived a unified addition
formula for Hessian form and showed that this addition is faster than the unified
addition in Weierstrass form. The speed comparison of point addition formulae
for different forms are given in Figure 1. When compared to the other forms,
6M+6S modified Hessian addition can be the fastest in some cases though it
uses 6 extra variables for storing each point. For instance, in Figure 1 we see;

• If S/M=0.67, modified Hessian addition is faster than all other additions
except the inverted Edwards addition. Modified Hessian addition becomes
the fastest whenever D/M>0.33.

• If S/M=0.8, modified Hessian addition is faster than Edwards, modified
Jacobi-intersection and Weierstrass addition for all D/M values. It is faster
than modified Jacobi-quartic addition when D/M>0.4. It yields the same
complexity with inverted Edwards addition when D/M=1.

If S/M=1, the modified coordinates for Hessian form do not provide any
advantages over the traditional coordinates and it will be slower than Edwards,
inverted Edwards and Jacobi-quartic additions for all D/M values. On the other
hand, a field squaring can be performed faster than a field multiplication in most
environments. For instance a low S/M is reported in [16]. However, the S/M
value may vary depending on the hardware environment and the type of field
reduction modulus used.

It is known that in memory limited environments (such as smartcards), there
is not enough space for storing large precomputation tables. For these environ-
ments, point multiplication with non-adjacent form without precomputation
technique is a convenient selection. This algorithm requires 1 doubling and 1/3
mixed addition per key bit. The operation counts for the various systems with
respect to this algorithm are depicted in Table 1.“DBL” stands for doubling.
“mADD” stands for mixed addition. The ratios for each column such as (.5, .67)
are the D/M, S/M values respectively. The rows are sorted with respect to the
column (0, .8) in descending order. Some forms have alternative versions due
to alternative doubling and/or addition formulae for different S/M and D/M
values. The main outcomes are as follows.

• Modified Jacobi-quartic coordinates (which uses our fast doubling for-
mula) provides the fastest timings for

– D/M>0.1 when S/M=0.67,

– D/M>0.2 when S/M=0.8,

– D/M>0.33 when S/M=1.

Bernstein and Lange [12, 13] provide a detailed cost analysis for “signed
4-bit sliding windows” point multiplication algorithm (for 256-bit scalars). The

7

9

10

11

12

13

14

15

16

17

18

0 0.25 0.5 0.75 1

D/M

U
n

if
ie

d
 A

d
d

it
io

n
 C

o
st

 (
1S

=0
.6

7M
)

Edwards
Inverted Edwards
Mod. Hessian v.1
Mod. Hessian v.2
Mod. Jacobi-intersection
Mod. Jacobi-quartic
Weierstrass

9

10

11

12

13

14

15

16

17

18

0 0.25 0.5 0.75 1

D/M

U
n

if
ie

d
 A

d
d

it
io

n
 C

o
st

 (
1S

=0
.8

M
)

Edwards
Inverted Edwards
Mod. Hessian v.1
Mod. Hessian v.2
Mod. Jacobi-intersection
Mod. Jacobi-quartic
Weierstrass

Figure 1: Performance comparison of unified additions for various forms
with different S/M, D/M values. The left figure contains the ratios for
S/M=0.67 and all D/M values. The operation counts are as follows: Edwards
7M+5S+1D, modified Hessian 6M+6S (v.1) or 9M+6S+1D (v.2), inverted Ed-
wards 9M+1S+1D (from [4, 5, 17]), modified Jacobi-intersection 11M+1S+2D,
modified Jacobi-quartic 8M+3S+1D (from [10, 4]), Weierstrass 11M+6S+1D
(from [8, 4]). The right figure contains the ratios for S/M=0.80 and all D/M
values. The operation counts are the same except the Edwards addition which
costs 10M+1S+1D (from [13, 4, 12]) in this case.

8

algorithm requires 0.98 doublings, 0.17 readditions, 0.025 mixed additions and
0.0035 additions per key bit. We use their analysis to report current ranking
between different coordinate systems. The operation counts for the various
systems with respect to this algorithm are depicted in Table 2.“DBL” stands for
doubling. “mADD” stands for mixed addition.“reADD” stands for readdition.
“ADD” stands for addition. The underlined values are the fastest timings. The
rows are sorted with respect to the column (0, .8) in descending order. The
main outcomes are as follows.

• Modified Jacobi-quartic coordinates (which uses our fast doubling for-
mula) provides the fastest timings for

– D/M>0.07 when S/M=0.67,

– D/M>0.12 when S/M=0.8,

– D/M>0.2 when S/M=1.

• If S/M≤0.8 and D/M≈0, performance of the modified Jacobi-intersection
coordinates is very close to the other fastest systems.

To sum up, we provided new coordinate systems for Hessian and Jacobi-
intersection forms. We provided a detailed performance evaluation of various
systems for elliptic curve point multiplication algorithms. We pointed to the
S/M and D/M scenarios where modified Hessian (unified) addition is the fastest.
We also determined when modified Jacobi-quartic form (which uses our doubling
formulae in [14]) provides the fastest timings for speed oriented point multipli-
cations algorithms.

9

M S D M S D M S D 1, 1 1, .8 1, .66 .5, 1 .5, .8 .5, .66 0, 1 0, .8 0, .66

Projective 5 6 1 9 2 0 8.000 6.667 1.000 15.667 14.333 13.400 15.167 13.833 12.900 14.667 13.333 12.400

Projective (a=-3) 7 3 0 9 2 0 10.000 3.667 0.000 13.667 12.933 12.420 13.667 12.933 12.420 13.667 12.933 12.420

Doche/Icart/Kohel-3 2 7 2 10 6 1 5.333 9.000 2.333 16.667 14.867 13.607 15.500 13.700 12.440 14.333 12.533 11.273

Jacobi-quartic v.2 1 9 0 8 3 1 3.667 10.000 0.333 14.000 12.000 10.600 13.833 11.833 10.433 13.667 11.667 10.267

Hessian v.1 7 1 0 10 0 0 10.333 1.000 0.000 11.333 11.133 10.993 11.333 11.133 10.993 11.333 11.133 10.993

Hessian v.3 3 6 0 10 0 0 6.333 6.000 0.000 12.333 11.133 10.293 12.333 11.133 10.293 12.333 11.133 10.293

Hessian v.2 7 1 0 5 6 0 8.667 3.000 0.000 11.667 11.067 10.647 11.667 11.067 10.647 11.667 11.067 10.647

Hessian v.4 3 6 0 5 6 0 4.667 8.000 0.000 12.667 11.067 9.947 12.667 11.067 9.947 12.667 11.067 9.947

Modified Hessian 3 6 0 5 6 0 4.667 8.000 0.000 12.667 11.067 9.947 12.667 11.067 9.947 12.667 11.067 9.947

Jacobian 1 8 1 7 4 0 3.333 9.333 1.000 13.667 11.800 10.493 13.167 11.300 9.993 12.667 10.800 9.493

Jacobian (a=-3) 3 5 0 7 4 0 5.333 6.333 0.000 11.667 10.400 9.513 11.667 10.400 9.513 11.667 10.400 9.513

Jacobi-quartic v.1 1 7 2 8 3 1 3.667 8.000 2.333 14.000 12.400 11.280 12.833 11.233 10.113 11.667 10.067 8.947

Jacobi-intersection v.1 3 4 0 10 2 1 6.333 4.667 0.333 11.333 10.400 9.747 11.167 10.233 9.580 11.000 10.067 9.413

Jacobi-intersection v.2 2 5 1 10 2 1 5.333 5.667 1.333 12.333 11.200 10.407 11.667 10.533 9.740 11.000 9.867 9.073

Doche/Icart/Kohel-2 2 5 2 8 4 1 4.667 6.333 2.333 13.333 12.067 11.180 12.167 10.900 10.013 11.000 9.733 8.847

Modified Jacobi-intersection 2 5 1 10 1 2 5.333 5.333 1.667 12.333 11.267 10.520 11.500 10.433 9.687 10.667 9.600 8.853

Edwards v.2 3 4 0 6 5 1 5.000 5.667 0.333 11.000 9.867 9.073 10.833 9.700 8.907 10.667 9.533 8.740

Edwards v.1 3 4 0 9 1 1 6.000 4.333 0.333 10.667 9.800 9.193 10.500 9.633 9.027 10.333 9.467 8.860

Modified Jacobi-quartic 3 4 0 7 3 1 5.333 5.000 0.333 10.667 9.667 8.967 10.500 9.500 8.800 10.333 9.333 8.633

Inverted-Edwards 3 4 1 8 1 1 5.667 4.333 1.333 11.333 10.467 9.860 10.667 9.800 9.193 10.000 9.133 8.527

System
NON-ADJACENT FORM WITHOUT PRECOMPUTATION (1 doublings, 0.33 mixed-additions)DBL mADD

Table 1: Point multiplication costs per key bit for “Non-adjacent Form without Precomputation” method.

1
0

M S D M S D M S D M S D M S D 1, 1 1, .8 1, .67 .5, 1 .5, .8 .5, .67 0, 1 0, .8 0, .67

Projective 5 6 1 12 2 0 9 2 0 12 2 0 7.168 6.283 0.982 14.433 13.177 12.339 13.942 12.685 11.848 13.451 12.194 11.357

Projective (a=-3) 7 3 0 12 2 0 9 2 0 12 2 0 9.133 3.336 0.000 12.468 11.801 11.357 12.468 11.801 11.357 12.468 11.801 11.357

Jacobi-quartic v.2 1 9 0 8 3 1 8 3 1 10 3 1 2.543 9.424 0.194 12.161 10.276 9.020 12.064 10.179 8.922 11.967 10.082 8.825

Hessian v.3 3 6 0 12 0 0 10 0 0 12 0 0 5.228 5.895 0.000 11.122 9.943 9.157 11.122 9.943 9.157 11.122 9.943 9.157

Hessian v.1 7 1 0 12 0 0 10 0 0 12 0 0 9.157 0.982 0.000 10.140 9.943 9.812 10.140 9.943 9.812 10.140 9.943 9.812

Hessian v.2 7 1 0 12 0 0 5 6 0 12 0 0 9.034 1.130 0.000 10.164 9.938 9.788 10.164 9.938 9.788 10.164 9.938 9.788

Hessian v.4 3 6 0 12 0 0 5 6 0 12 0 0 5.105 6.042 0.000 11.147 9.938 9.133 11.147 9.938 9.133 11.147 9.938 9.133

Jacobian 1 8 1 10 4 0 7 4 0 11 5 0 2.854 8.639 0.982 12.475 10.748 9.596 11.984 10.256 9.104 11.493 9.765 8.613

Modified Hessian 3 6 0 6 6 0 5 6 0 6 6 0 4.088 7.059 0.000 11.147 9.735 8.794 11.147 9.735 8.794 11.147 9.735 8.794

Doche/Icart/Kohel-3 2 7 2 7 4 1 10 6 1 11 6 1 3.412 7.710 2.159 13.280 11.739 10.711 12.201 10.659 9.631 11.121 9.580 8.552

Jacobian (a=-3) 3 5 0 10 4 0 7 4 0 11 5 0 4.818 5.692 0.000 10.511 9.372 8.613 10.511 9.372 8.613 10.511 9.372 8.613

Doche/Icart/Kohel-2 2 5 2 12 5 1 8 4 1 12 5 1 4.196 5.858 2.159 12.213 11.042 10.261 11.134 9.962 9.181 10.054 8.883 8.102

Jacobi-intersection v.1 3 4 0 11 2 1 10 2 1 13 2 1 5.065 4.318 0.194 9.577 8.714 8.138 9.480 8.617 8.041 9.383 8.520 7.944

Jacobi-quartic v.1 1 7 2 8 3 1 8 3 1 10 3 1 2.543 7.459 2.159 12.161 10.669 9.674 11.081 9.590 8.595 10.002 8.510 7.515

Jacobi-intersection v.2 2 5 1 11 2 1 10 2 1 13 2 1 4.083 5.300 1.177 10.560 9.500 8.793 9.971 8.911 8.205 9.383 8.323 7.616

Edwards v.2 3 4 0 7 5 1 6 5 1 7 5 1 4.282 4.900 0.194 9.376 8.396 7.743 9.279 8.299 7.646 9.182 8.202 7.549

Edwards v.1 3 4 0 10 1 1 9 1 1 10 1 1 4.864 4.124 0.194 9.182 8.357 7.807 9.085 8.260 7.710 8.988 8.163 7.613

Modified Jacobi-intersection 2 5 1 11 1 2 10 1 2 11 1 2 4.076 5.106 1.371 10.553 9.531 8.851 9.867 8.846 8.165 9.182 8.161 7.480

Modified Jacobi-quartic 3 4 0 8 3 1 7 3 1 8 3 1 4.476 4.512 0.194 9.182 8.280 7.678 9.085 8.183 7.581 8.988 8.085 7.484

Inverted-Edwards 3 4 1 9 1 1 8 1 1 9 1 1 4.670 4.124 1.177 9.970 9.146 8.596 9.382 8.557 8.007 8.794 7.969 7.419

System
SIGNED 4-BIT SLIDING WINDOWS (0.98 doublings, 0.17 re-additions, 0.025 mixed-additons, 0.0035 additions)DBL reADD mADD ADD

Table 2: Point multiplication costs per key bit for “Signed 4-bit Sliding Windows” method.

1
1

References

[1] Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by
addition in formal groups and new primality and factorization tests. Adv.
Appl. Math. 7(4) (1986) 385–434

[2] Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation
using mixed coordinates. In: ASIACRYPT, London, UK, Springer-Verlag
(1998) 51–65

[3] Doche, C., Icart, T., Kohel, D.R.: Efficient scalar multiplication by isogeny
decompositions. In: Public Key Cryptography. Volume 3958 of Lecture
Notes in Computer Science., Springer (2006) 191–206

[4] Bernstein, D.J., Lange, T.: Explicit-formulas database, Accessible through:

http://hyperelliptic.org/EFD (2007)

[5] Bernstein, D.J., Birkner, P., Lange, T., Peters, C.: Optimizing double-base
elliptic-curve single-scalar multiplication. In: INDOCRYPT. Volume This
volume of Lecture Notes in Computer Science., Springer (2007)

[6] Joye, M., Quisquater, J.J.: Hessian elliptic curves and side-channel attacks.
In: CHES. Volume 2162 of Lecture Notes in Computer Science., Springer
(2001) 402–410

[7] Liardet, P.Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using
the Jacobi form. In: CHES. Volume 2162 of Lecture Notes in Computer
Science., Springer (2001) 391–401

[8] Brier, E., Joye, M.: Weierstrass elliptic curves and side-channel attacks.
In: PKC, London, UK, Springer-Verlag (2002) 335–345

[9] Billet, O., Joye, M.: The Jacobi model of an elliptic curve and side-channel
analysis. In: AAECC. Volume 2643 of Lecture Notes in Computer Science.,
Springer (2003) 34–42

[10] Duquesne, S.: Improving the arithmetic of elliptic curves in the Jacobi
model. Inf. Process. Lett. 104(3) (2007) 101–105

[11] Edwards, H.M.: A normal form for elliptic curves. Bulletin of the AMS
44(3) (2007) 393–422

[12] Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves.
Cryptology ePrint Archive, Report 2007/286 (2007) http://eprint.iacr.
org/.

[13] Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves.
In: ASIACRYPT. Volume 4833 of Lecture Notes in Computer Science.,
Berlin Heidelberg, Springer-Verlag (2007) 29–50

12

[14] Hisil, H., Carter, G., Dawson, E.: New formulae for efficient elliptic curve
arithmetic. In: INDOCRYPT. Volume 4859 of Lecture Notes in Computer
Science., Springer (2007) 138–151

[15] Smart, N.P.: The Hessian form of an elliptic curve. In: CHES. Volume
2162 of Lecture Notes in Computer Science., Springer (2001) 118–125

[16] Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In Yung,
M., Dodis, Y., Kiayias, A., Malkin, T., eds.: Public Key Cryptography.
Volume 3958 of Lecture Notes in Computer Science., Springer (2006) 207–
228

[17] Bernstein, D.J., Lange, T.: Inverted edwards coordinates. Cryptology
ePrint Archive, Report 2007/410 (2007) http://eprint.iacr.org/.

APPENDIX-A

We give a step by step derivation of 9M+6S+1D unified addition formula for
Hessian form. The unified addition formula can be derived from the “chord-
and-tangent” rule however it is easier to explain the procedure if we use the
Cauchy-Sylvester formula which is as follows.

X3 = Y 2

1
X2Z2 −X1Z1Y

2

2

Y3 = X2

1
Y2Z2 − Y1Z1X

2

2

Z3 = Z2

1X2Y2 −X1Y1Z
2

2

Note, it is enough to work with the coordinates X3 and Z3. It is easy to
derive Y3 via the symmetry involved in the curve equation x3 + y3 + 1 = 3dxy.

Step1: Multiply each coordinate with (X1X2)
3− (Y1Y2)

3 assuming (X1X2)
3 6=

(Y1Y2)
3.

X3 = ((X1X2)
3 − (Y1Y2)

3)(Y 2

1
X2Z2 −X1Z1Y

2

2
)

Z3 = ((X1X2)
3 − (Y1Y2)

3)(Z2

1X2Y2 −X1Y1Z
2

2)

Step2: The quantity (3dX1X2Y
3

1 Y 3

2 Z1Z2−3dX1X2Y
3

1 Y 3

2 Z1Z2)+(X3

1X2Y
2

1 Y 3

2 Z2−

X3

1
X2Y

2

1
Y 3

2
Z2) + (X1X

3

2
Y 3

1
Y 2

2
Z1−X1X

3

2
Y 3

1
Y 2

2
Z1) is obviously zero. Add it to

X3.

X3 = ((X1X2)
3 − (Y1Y2)

3)(Y 2

1
X2Z2 −X1Z1Y

2

2
) +

3dX1X2Y
3

1 Y 3

2 Z1Z2 − 3dX1X2Y
3

1 Y 3

2 Z1Z2 +

X3

1
X2Y

2

1
Y 3

2
Z2 −X3

1
X2Y

2

1
Y 3

2
Z2 +

X1X
3

2
Y 3

1
Y 2

2
Z1 −X1X

3

2
Y 3

1
Y 2

2
Z1

Z3 = ((X1X2)
3 − (Y1Y2)

3)(Z2

1X2Y2 −X1Y1Z
2

2)

13

Step3: Rearrange the terms in X3 as follows.

X3 = X1X
3

2Y 2

2 Z1(3dX1Y1Z1 −X3

1 − Y 3

1) +

X2Y
2

1
Y 3

2
Z2(3dX1Y1Z1 −X3

1
− Y 3

1
)−

X1Y
3

1 Y 2

2 Z1(3dX2Y2Z2 −X3

2 − Y 3

2)−

X3

1
X2Y

2

1
Z2(3dX2Y2Z2 −X3

2
− Y 3

2
) +

3dX3

1X2

2Y 2

1 Y2Z
2

2 − 3dX2

1X3

2Y1Y
2

2 Z2

1

Z3 = ((X1X2)
3 − (Y1Y2)

3)(Z2

1
X2Y2 −X1Y1Z

2

2
)

Step4: Using the projective curve equation replace (3dX1Y1Z1 −X3

1
− Y 3

1
) by

Z3

1 and replace (3dX2Y2Z2 −X3

2 − Y 3

2) by Z3

2 .

X3 = X1X
3

2
Y 2

2
Z4

1
+ X2Y

2

1
Y 3

2
Z3

1
Z2 − 3dX2

1
X3

2
Y1Y

2

2
Z2

1
−

X1Y
3

1 Y 2

2 Z1Z
3

2 −X3

1X2Y
2

1 Z4

2 + 3dX3

1X2

2Y 2

1 Y2Z
2

2

Z3 = ((X1X2)
3 − (Y1Y2)

3)(Z2

1
X2Y2 −X1Y1Z

2

2
)

Step5: Factorize X3 over the base field.

X3 = (X1X
2

2Y2Z
2

1 + X2

1X2Y1Z
2

2 + Y 2

1 Y 2

2 Z1Z2 − 3dX2

1X2

2Y1Y2) ·

(Z2

1
X2Y2 −X1Y1Z

2

2
)

Z3 = ((X1X2)
3 − (Y1Y2)

3)(Z2

1X2Y2 −X1Y1Z
2

2)

Step6: Divide each coordinate to (Z2

1
X2Y2 −X1Y1Z

2

2
) which is assumed to be

nonzero.

X3 = X1X
2

2Y2Z
2

1 + X2

1X2Y1Z
2

2 + Y 2

1 Y 2

2 Z1Z2 − 3dX2

1X2

2Y1Y2

Z3 = (X1X2)
3 − (Y1Y2)

3

Step7: Generate Y3 from the symmetry.

X3 = X1X
2

2
Y2Z

2

1
+ X2

1
X2Y1Z

2

2
+ Y 2

1
Y 2

2
Z1Z2 − 3dX2

1
X2

2
Y1Y2

Y3 −Y1Y
2

2
X2Z

2

1
−X1Z

2

2
Y 2

1
Y2 −X2

1
X2

2
Z1Z2 + 3dX1X2Y

2

1
Y 2

2

Z3 = (X1X2)
3 − (Y1Y2)

3

Step8: Rearrange terms in X3 and Y3. This gives the unified addition formula
for Hessian form.

X3 = X1X2(X1Y1Z
2

2
+ X2Y2Z

2

1
− 3dX1Y1X2Y2) + (Y1Y2)

2Z1Z2

Y3 = −Y1Y2(X1Y1Z
2

2
+ X2Y2Z

2

1
− 3dX1Y1X2Y2)− (X1X2)

2Z1Z2

Z3 = (X1X2)
3 − (Y1Y2)

3

We explain the derivation in projective model. Of course, an analogous
derivation can be done in the affine model. In that case, one will find the

14

following affine formula for Hessian addition.

x3 =
−x2

1
x2

2
− x1y

2

1
y2 − x2y1y

2

2
+ 3dx1x2y

2

1
y2

2

x3
1
x3

2
− y3

1
y3
2

y3 =
x2

1
x2y1 + x1x

2

2
y2 − 3dx2

1
x2

2
y1y2 + y2

1
y2

2

x3

1
x3

2
− y3

1
y3

2

APPENDIX-B

We give a step by step derivation of 2M+5S+1D doubling formula for Jacobi-
quartic form. The original formula, described by Liardet and Smart [7], is as
follows.

S3 = 2S1C1D1T1

C3 = −S2

1D2

1 + C2

1T 2

1

D3 = S2

1
D2

1
− C2

1
T 2

1
+ 2C2

1
D2

1

T3 = S2

1D2

1 + C2

1T 2

1

Step1: Using the defining equations S2

1
+C2

1
= T 2

1
and aS2

1
+D2

1
= T 2

1
, replace

all instances of S2
1D2

1 with (T 2
1 − C2

1)D2
1 and C2

1T 2
1 with C2

1 (aS2
1 + D2

1).

S3 = 2S1C1D1T1

C3 = −(T 2

1 − C2

1)D2

1 + C2

1 (aS2

1 + D2

1)

D3 = (T 2

1
− C2

1
)D2

1
− C2

1
(aS2

1
+ D2

1
) + 2C2

1
D2

1

T3 = (T 2

1
− C2

1
)D2

1
+ C2

1
(aS2

1
+ D2

1
)

Step2: Replace the term 2C2

1D2

1 with 2C2

1 (S2

1 + C2

1 − aS2

1).

S3 = 2S1C1D1T1

C3 = −D2

1T
2

1 + aS2

1C2

1 + 2C2

1 (S2

1 + C2

1 − aS2

1)

D3 = D2

1
T 2

1
− aS2

1
C2

1

T3 = D2

1T
2

1 + aS2

1C2

1

Step3: Rearrange terms. This gives the desired doubling formula.

S3 = 2S1C1D1T1

C3 = −D2

1
T 2

1
− aS2

1
C2

1
+ 2(S2

1
C2

1
+ C4

1
)

D3 = D2

1T
2

1 − aS2

1C2

1

T3 = D2

1
T 2

1
+ aS2

1
C2

1

The corresponding affine formula for Jacobi-intersection doubling is as fol-
lows.

s3 =
2s1c1d1

d2

1
+ as2

1
c2

1

15

c3 =
2c4

1 + 2s2
1c

2
1 − d2

1 − as2
1c

2
1

d2

1
+ as2

1
c2

1

d3 =
d2

1
− as2

1
c2

1

d2

1
+ as2

1
c2

1

APPENDIX-C

We give a step by step derivation of 3M+4S doubling formula for Jacobi-quartic
form. The original formula, described by Billet and Joye [9], is as follows.

X3 = 2X1Y1Z1

Y3 = 2aX2

1Z6

1 + 4X4

1Z4

1 + Y 2

1 Z4

1 + 2aX6

1Z2

1 + X4

1Y 2

1

Z3 = Z4

1
−X4

1

Step1: Modify the point (X3: Y3: Z3) to (−X3: Y3:−Z3). These two points
correspond to the same affine point.

X3 = −2X1Y1Z1

Y3 = 2aX2

1Z6

1 + 4X4

1Z4

1 + Y 2

1 Z4

1 + 2aX6

1Z2

1 + X4

1Y 2

1

Z3 = X4

1
− Z4

1

Step2: Organize X3 and Z3. Here, Y3 should be computed after X3 and Z3.

X3 = Y1((X
2

1
+ Z2

1
))− Y1(X1 + Z1)

2

Z3 = (X2

1
+ Z2

1
)(X2

1
− Z2

1
)

Y3 = 2aX2

1Z6

1 + 4X4

1Z4

1 + Y 2

1 Z4

1 + 2aX6

1Z2

1 + X4

1Y 2

1

Step3: Use the curve equation, Y 2

1
= X4

1
+ 2aX2

1
Z2

1
+ Z4

1
, to find a suitable

polynomial representation for Y3.

X3 = Y1((X
2

1
+ Z2

1
))− Y1(X1 + Z1)

2

Z3 = (X2

1 + Z2

1)(X2

1 − Z2

1)

Y3 = 2aX2

1Z6

1 + 4X4

1Z4

1 + Y 2

1 Z4

1 + 2aX6

1Z2

1 + X4

1Y 2

1

= 2aX2

1
Z6

1
+ 4X4

1
Z4

1
+ 2aX6

1
Z2

1
+ (X4

1
+ Z4

1
)Y 2

1

≡ 2aX2

1Z6

1 + 4X4

1Z4

1 + 2aX6

1Z2

1 + (X4

1 + Z4

1)(Z4

1 + 2aX2

1Z2

1 + X4

1)

≡ Z8

1
+ 4aX2

1
Z6

1
+ 6X4

1
Z4

1
+ 4aX6

1
Z2

1
+ X8

1

≡ 2(Y1Z
2

1 + X2

1Y1)
2 − (Z8

1 − 2X4

1Z4

1 + X8

1)− (4X2

1Y 2

1 Z2

1)

≡ 2(Y1(X
2

1
+ Z2

1
))2 −X2

3
− Z2

3

16

The corresponding affine formula for Jacobi-quartic doubling is as follows.

x3 =
−2x1y1

x4
1
− 1

y3 =
2(y1(x

2

1
+ 1))2 − (−2x1y1)

2 − (x4

1
− 1)2

(x4

1
− 1)2

17

