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Abstract

This paper is on improving implementation techniques of Elliptic Curve Cryptography.
We introduce new addition formulae for Jacobi-quartic, Edwards, Hessian forms and new
doubling formulae for Jacobi-quartic and Jacobi-intersection forms of elliptic curves. The
new formulae speed up the group operations for each of these forms on suitable coordinate
systems. To show this, a comparison is made in respect to their performance evaluations
with classic point multiplication algorithms using the previous and current operation counts.
The most significant outcomes are obtained from the modified Jacobi-quartic coordinates
which provide the fastest timings1 for most point multiplication strategies and the fastest
unified2 addition which costs 7M+3S+1D. The new unified addition formulae can be used
to provide a natural way to protect against side channel attacks which are based on simple
power analysis (SPA).

Keywords: Efficient elliptic curve arithmetic, unified addition, side channel attack.

1 Introduction

From the advent of elliptic curve cryptosystems, independently by Miller [16] and Koblitz [14] in
mid 80’s to date, the arithmetic of elliptic curves has drawn wide attention from cryptographic
researchers. It is well known that the Weierstrass form provides a general representation for
all elliptic curves. In other words, every elliptic curve (over a field K, char(K) 6= 2, 3) can be
defined by the set of points (xi, yi) satisfying the equation

y2 = x3 + ax + b, a, b ∈ K

together with the point at infinity O. These points exhibit a group structure under an explicitly
defined additive group law. In other words, two points P = (x1, y1) and Q = (x2, y2) can be
added to form a third point R = P + Q = (x3, y3) on the same curve. The negative of the point
P is (x1,−y1). The identity element is the point at infinity O. From this we can define scalar
multiple S of a point P as

S = [k]P = P + P + . . . + P
︸ ︷︷ ︸

k times

.

1
M: The cost of field multiplication, S: The cost of field squaring, D: The cost of multiplication by a curve

constant.
2Valid for doubling i.e. addition of a nontrivial point to itself.

1



Computing k when only P and S are known is believed to be intractable for carefully selected
parameters. This forms the basis of the elliptic curve discrete logarithm problem, which is used
to provide cryptographic security. One of the main challenges in elliptic curve cryptography
is to perform scalar multiplication efficiently under different environment constraints (such as
resistance to side channel attacks, bandwidth efficiency, memory limitations). Scalar multiplica-
tion is often computed using double-and-add methods and its variants, so the group operations
of concern are elliptic curve point addition and doubling.

To obtain faster group operations, other elliptic curve forms have also been considered in the
last two decades by researchers. For security considerations, the selected curves should have a
small cofactor, usually equal to or less than 4. It is possible to find cryptographically interesting
curves which satisfy the security criterion and which can be parameterized by one of the curve
models in Section 2. (See [15, 6, 4] for examples). In this context, here is a short outline of
previous work on which our paper is built.

• Chudnovsky and Chudnovsky [8] reported the operation counts for inversion-free addition
and doubling operations for Weierstrass, Jacobi-quartic, Jacobi-intersection, and Hessian
forms. Cohen, Miyaji and Ono [9] provided better operation counts for Weierstrass form.
Doche, Icart and Kohel [10] introduced the fastest doubling3 and tripling in Weierstrass
form on two special families of curves.

• In chronological order, Joye and Quisquater [13], Liardet and Smart [15], Brier and Joye [7],
Billet and Joye [6] showed ways of doing point multiplication to resist side channel attacks
using Hessian, Jacobi-intersection, Weierstrass and Jacobi-quartic forms, respectively.

• Duquesne [11] improved the operation count for the Jacobi-quartic unified addition formu-
lae in [6] by using an alternative coordinate system. Bernstein and Lange [2, 3] provided
an extended version of these coordinates with better operation counts for S<M. We ex-
tensively use these ideas throughout this paper to obtain faster operation counts for the
new formulae.

• Bernstein and Lange [4] showed the importance of Edwards curves for providing fast arith-
metic and efficient countermeasure to side channel attacks. Later, Bernstein and Lange [5]
introduced the inverted Edwards coordinates which improve timings for Edwards curves
and provide the fastest unified addition known to date. They have built a database [2] of
explicit formulae that are reported in the literature together with their own optimizations.

Here is a collection of some latest operation counts. The new operation counts that appear
in this paper are given in bold. We explain these results in detail in Section 2.

• Modified Jacobi-quartic coordinates: (Unified) addition 7M+3S+1D, readdition 7M+3S+1D,
mixed addition 6M+3S+1D, doubling 2M+5S+1D or 3M+4S.

• Modified Jacobi-intersection coordinates: (Unified) addition 11M+1S+2D, readdition
11M+1S+2D, mixed addition 10M+1S+2D, doubling 2M+5S+1D or 3M+4S.

3With the improvements of Bernstein, Birkner, Lange and Peters in [1].
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• Standard Edwards coordinates: (Dedicated) addition 11M, (unified) addition 10M+1S+1D,
readdition 9M+2S, mixed addition 9M, doubling 3M+4S.

• Inverted Edwards coordinates: (Unified) addition 9M+1S+1D, readdition 9M+1S+1D,
mixed addition 9M or 8M+1S+1D, doubling 3M+4S+1D.

• Modified Hessian coordinates: (Unified) addition 6M+6S or 12M, readdition 6M+6S,
mixed addition 5M+6S, doubling 3M+6S.

The paper is organized as follows. We provide new formulae and better operation counts for
various elliptic curve forms in Section 2. The exceptional cases are explained in Section 3. We
make comparisons of various systems and draw our conclusions in Section 4.

2 Improvements

We omit the operation counts for affine coordinates since these coordinates require field inver-
sions which are relatively expensive compared to the cost of a field multiplication when the
field is finite. The derivations of the new addition formulae especially the ones for Edwards
and Hessian forms are aided by the use of reduction algorithms for rational expressions on the
Maple v.114 computer algebra system. Details of the reduction procedure can be found in [17].
We obtain curve definitions and affine versions of various formulae from [2].

2.1 Jacobi-quartic form

The uses of these curves in cryptology are explained by Chudnovsky and Chudnovsky in [8] and
Billet and Joye in [6]. We follow the descriptions in [2] for our optimizations. Let K be a field
with char(K) 6= 2, 3. An elliptic curve in Jacobi-quartic form is defined by y2 = x4 + 2ax2 + 1
where a ∈ K with a2 6= 1. The identity element is the point (0, 1). The negative of a point
(x, y) is (−x, y). Birational maps between Weierstrass and Jacobi-quartic curves can be found
in [6, 2, 3]. The affine unified addition formulae (explained in [6]) are as follows.

(x3, y3) =

(
x1y2 + y1x2

1− x2
1x

2
2

,
(x2

1x
2
2 + 1)(2ax1x2 + y1y2) + 2x1x2(x

2
1 + x2

2)

(1− x2
1x

2
2)

2

)

In this section, we show the derivation of new formulae which produce the same results. In
fact, we only need to change the numerator of y3. If the numerator is designated t then, we have
the following.

t = (x2
1x

2
2 + 1)(2ax1x2 + y1y2) + 2x1x2(x

2
1 + x2

2)

= (x2
1x

2
2 + 1)(2ax1x2 + y1y2) + 2x1x2(x

2
1 + x2

2) + x2
1y

2
2 + 2x1y1x2y2 + y2

1x
2
2 − (x1y2 + y1x2)

2

Using the curve equation, y2 = x4 + 2ax2 + 1, we replace y2
1 with x4

1 + 2ax2
1 + 1 and y2

2 with
x4

2 + 2ax2
2 + 1. Then, we have the following.

t = (x2
1x

2
2 + 1)(2ax1x2 + y1y2) + 2x1x2(x

2
1 + x2

2) +

x2
1(x

4
2 + 2ax2

2 + 1) + 2x1y1x2y2 + (x4
1 + 2ax2

1 + 1)x2
2 − (x1y2 + y1x2)

2

4http://www.maplesoft.com
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We obtain the new formulae for y3 by organizing the terms.

(x3, y3) =

(
x1y2 + y1x2

1− x2
1x

2
2

,

(
x1x2 + 1

1− x2
1x

2
2

)2

(x2
1x

2
2 + 2ax1x2 + 1 + (x1 − x2)

2 + y1y2)− x2
3 − 1

)

The new addition formulae on the Jacobi-quartic coordinates are as follows.

X3 = X1Z1Y2 + Y1X2Z2

Z3 = Z2
1Z2

2 −X2
1X2

2

Y3 = (X1X2 + Z1Z2)
2(X2

1X2
2 + 2aX1X2Z1Z2 + Z2

1Z2
2 +

(X1Z2 −X2Z1)
2 + Y1Y2)−X2

3 − Z2
3

Note, each point is represented by the triplet (Xi:Yi:Zi) which satisfies the equation Y 2 =
X4 +2aX2Z2+Z4 and corresponds to the affine point (Xi/Zi, Yi/Zi

2) with Zi 6= 0. The identity
element is represented by (0: 1: 1). The negative of (Xi:Yi:Zi) is (−Xi:Yi:Zi). This coordinate
system is used in [8, 6]. The new addition formulae are not attractive for the Jacobi-quartic
coordinates. On the other hand, they are suitable for a modified version of the Jacobi-quartic
coordinates where each point is represented by the sextuplet (Xi:Yi:Zi:X

2
i :Z2

i :XiZi). The
idea behind using such coordinates is explained by Duquesne [11] for the addition formulae
in [6]. Regarding the new formulae, (X1:Y1:Z1:U1:V1:W1) and (X2:Y2:Z2:U2:V2:W2) with
U1 = X2

1 , V1 = Z2
1 , W1 = X1Z1, U2 = X2

2 , V2 = Z2
2 , W2 = X2Z2 can be added as follows,

A← U1U2, B ← V1V2, C ←W1W2, D ← Y1Y2,

X3 ← (W1 + Y1)(W2 + Y2)− C −D, Z3 ← B −A, U3 ← X2
3 , V3 ← Z2

3 ,

F ← A + B + 2C, G← (U1 + V1)(U2 + V2) + kC + D, H ← U3 + V3,

Y3 ← FG−H, W3 ← ((X3 + Z3)
2 −H)/2

where k = 2(a−1). The new unified addition costs 7M+3S+1D on the modified Jacobi-quartic
coordinates. This is faster than the 9M+2S+1D algorithm5 in [11] and the 8M+3S+1D algo-
rithm in [2]. Assuming that (X2:Y2:Z2:U2:V2:W2) is cached, the readdition costs 7M+3S+1D.
Then, a 6M+3S+1D mixed addition can be derived by setting Z2 = 1. We use the names
“modified Jacobi-quartic v.1” and “modified Jacobi-quartic v.2b” to refer to this coordinate
system in Section 4. Modified Jacobi-quartic v.1 uses the original formulae in [6]. Modified
Jacobi-quartic v.2b uses the new formulae. Both systems use 3M+4S doubling algorithm in
[12].

To evaluate the new addition formulae, a similar algorithm is beneficial for another version of
the modified Jacobi-quartic coordinates using the quintuplet (Xi:Yi:Zi:Ui:Vi) for representing
the points. Then, the unified addition costs 7M+4S+1D (computing W1 = ((X1 +Z1)

2−U1−
V1)/2 and W2 = ((X2 +Z2)

2−U2−V2)/2 on the fly, and not computing W3). Following this and
assuming that (X2:Y2:Z2:U2:V2) is cached, the readdition costs 7M+3S+1D (with the extra
caching of W2). Then, a 6M+3S+1D mixed addition can be derived by setting Z2 = 1. We

5Using the Jacobi-quartic curves with ǫ = 1 for the unified addition algorithm in [11].
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use the name “modified Jacobi-quartic v.2a” to refer to this system in Section 4. This system
also uses 3M+4S doubling algorithm in [12].

The 3M+4S algorithm formulae described in [12] can be easily derived from the new unified
addition formulae as follows. First, we input the same points to the new addition formulae and
obtain the following,

x3 =
2x1y1

1− x4
1

, y3 =

(
x2

1 + 1

1− x4
1

)2

(x4
1 + 2ax2

1 + 1 + y2
1)− x2

3 − 1.

The doubling formulae in [12] can be derived by replacing x4
1 + 2ax2

1 + 1 with y2
1.

(x3, y3) =

(
2x1y1

1− x4
1

, 2

(
y1(x

2
1 + 1)

1− x4
1

)2

− x2
3 − 1

)

The doubling formulae on the Jacobi-quartic coordinates are as follows.

X3 = 2X1Y1Z1

Z3 = Z4
1 −X4

1

Y3 = 2(Y1(X
2
1 + Z2

1 ))2 −X2
3 − Z2

3

These formulae are suitable to be used with both versions of the modified Jacobi-quartic
coordinates6. (X1:Y1:Z1:U1:V1:W1) can be doubled as follows,

A← U1 + V1, X3 ← 2Y1W1, Z3 ← A(V1 − U1), U3 ← X2
3 ,

V3 ← Z2
3 , B ← U3 + V3, W3 ← ((X3 + Z3)

2 −B)/2, Y3 ← 2(Y1A)2 −B.

Doubling costs 3M+4S on both versions of the modified Jacobi-quartic coordinates. Building
on similar ideas, it is possible to derive the following doubling formulae.

(x3, y3) =

(
2x1y1

1− x4
1

, 2

(
y2
1

1− x4
1

)2

− ax2
3 − 1

)

The new doubling formulae on the Jacobi-quartic coordinates are as follows.

X3 = 2X1Y1Z1

Z3 = Z4
1 −X4

1

Y3 = 2Y 4
1 − aX2

3 − Z2
3

These formulae are again suitable to be used with the modified Jacobi-quartic coordinates.
We name two versions of the modified coordinates as “modified Jacobi-quartic v.3a” and “modi-
fied Jacobi-quartic v3.b” to emphasize the use of the new doubling formulae. (X1:Y1:Z1:U1:V1:W1)
can be doubled as follows,

X3 ← 2Y1W1, Z3 ← (V1 − U1)(V1 + U1), U3 ← X2
3 , V3 ← Z2

3 ,

W3 ← ((X3 + Z3)
2 − U3 − V3)/2, Y3 ← 2Y 4

1 − aU3 − V3.

Doubling costs 2M+5S+1D on both versions of the modified Jacobi-quartic coordinates.

6The adaptation of these formulae to an extended version of the modified Jacobi-quartic coordinates is devel-
oped by Bernstein and Lange in EFD [2, 3].
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2.2 Jacobi-intersection form

The uses of these curves in cryptology are explained by Chudnovsky and Chudnovsky in [8] and
Liardet and Smart in [15]. Let K be a field with char(K) 6= 2, 3. An elliptic curve in Jacobi-
intersection form is the set of points which satisfy the equations s2 + c2 = 1 and as2 + d2 = 1
simultaneously where a ∈ K with a(1 − a) 6= 0. The identity element is the point (0, 1, 1). The
negative of a point (s, c, d) is (−s, c, d). Birational maps to Weierstrass curves can be found in
[15, 2, 3]. The affine unified addition formulae are given as follows.

(s3, c3, d3) =

(
s1c2d2 + c1d1s2

c2
2 + d2

1s
2
2

,
c1c2 − s1d1s2d2

c2
2 + d2

1s
2
2

,
d1d2 − as1c1s2c2

c2
2 + d2

1s
2
2

)

The addition on the standard Jacobi-intersection coordinates is given as follows.

S3 = S1T1C2D2 + C1D1S2T2

C3 = C1T1C2T2 − S1D1S2D2

D3 = D1T1D2T2 − aS1C1S2C2

T3 = D2
1S

2
2 + T 2

1 C2
2

Note, each point is represented by the quadruplet (Si:Ci:Di:Ti) which satisfies the equa-
tions S2 + C2 = T 2 and aS2 + D2 = T 2 simultaneously and corresponds to the affine point
(Si/Ti, Ci/Ti,Di/Ti) with Ti 6= 0. The identity element is represented by (0: 1: 1: 1). The
negative of (Si:Ci:Di:Ti) is (−Si:Ci:Di:Ti). We modify the standard Jacobi-intersection co-
ordinates where each point is represented by the sextuplet, (Si:Ci:Di:Ti:SiCi:DiTi). Then,
(S1:C1:D1:T1:U1:V1) and (S2:C2:D2:T2:U2:V2) with U1 = S1C1, V1 = D1T1, U2 = S2C2, V2 =
D2T2 can be added as follows,

E ← S1D2, F ← C1T2, G← D1S2, H ← T1C2, J ← U1V2, K ← V1U2,

S3 ← (H + F )(E + G)− J −K, C3 ← (H + E)(F −G)− J + K,

D3 ← (V1 − aU1)(U2 + V2) + aJ −K, T3 ← (H + G)2 − 2K, U3 ← S3C3, V3 ← D3T3.

The unified addition costs 11M+1S+2D on the modified Jacobi-intersection coordinates.
This is faster than the 13M+2S+1D algorithm in [15] for the standard Jacobi-intersection coor-
dinates. Assuming that (S2:C2:D2:T2:U2:V2) is cached, the readdition costs 11M+1S+2D.
Then, a 10M+1S+2D mixed addition can be derived by setting T2 = 1. We use the name
“modified Jacobi-intersection” to refer to these results in Section 4.

A similar algorithm can be used for the standard Jacobi-intersection coordinates. Then,
the unified addition costs 13M+1S+2D (computing U1 = S1C1, V1 = D1T1, U2 = S2C2,
V2 = D2T2 on the fly, and not computing U3 and V3). This is also faster than the 13M+2S+1D
algorithm in [15] when D<S. Following this and assuming that (S2:C2:D2:T2) is cached, the
readdition costs 11M+1S+2D (with the extra caching of U2 and V2). Then, a 10M+1S+2D

mixed addition can be derived by setting T2 = 1. We use the name “Jacobi-intersection v.2” to
refer to these results in Section 4.
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Compatible doubling formulae for the modified Jacobi-intersection coordinates can be derived
from the unified addition formulae. First, we input the same points to the original addition
formulae and obtain the following.

(s3, c3, d3) =

(
2s1c1d1

c2
1 + s2

1d
2
1

,
c2
1 − s2

1d
2
1

c2
1 + s2

1d
2
1

,
d2
1 − as2

1c
2
1

c2
1 + s2

1d
2
1

)

Using the defining equations, s2 + c2 = 1 and as2 + d2 = 1, we replace c2
1 with c2

1(as2
1 + d2

1)
(only for the denominators) and s2

1d
2
1 with (1− c2

1)d
2
1.

s3 = (2s1c1d1)/(c
2
1(as2

1 + d2
1) + (1− c2

1)d
2
1)

c3 = (c2
1(as2

1 + d2
1)− (1− c2

1)d
2
1)/(c

2
1(as2

1 + d2
1) + (1− c2

1)d
2
1)

d3 = (d2
1 − as2

1c
2
1)/(c

2
1(as2

1 + d2
1) + (1− c2

1)d
2
1)

This gives an intermediate formula for c3.

(s3, c3, d3) =

(
2s1c1d1

d2
1 + as2

1c
2
1

,
as2

1c
2
1 + 2c2

1d
2
1 − d2

1

d2
1 + as2

1c
2
1

,
d2
1 − as2

1c
2
1

d2
1 + as2

1c
2
1

)

Finally, we replace 2c2
1d

2
1 with 2c2

1(s
2
1 + c2

1 − as2
1) in c3.

s3 = (2s1c1d1)/(as2
1c

2
1 + d2

1)

c3 = (as2
1c

2
1 + 2c2

1(s
2
1 + c2

1 − as2
1)− d2

1)/(as2
1c

2
1 + d2

1)

d3 = (d2
1 − as2

1c
2
1)/(as2

1c
2
1 + d2

1)

The new doubling formulae are as follows.

(s3, c3, d3) =

(
2s1c1d1

d2
1 + as2

1c
2
1

,
−d2

1 − as2
1c

2
1 + 2(s2

1c
2
1 + c4

1)

d2
1 + as2

1c
2
1

,
d2
1 − as2

1c
2
1

d2
1 + as2

1c
2
1

)

The new doubling formulae on the standard Jacobi-intersection coordinates are as follows.

S3 = 2S1C1D1T1

C3 = −D2
1T

2
1 − aS2

1C2
1 + 2(S2

1C2
1 + C4

1)

D3 = D2
1T

2
1 − aS2

1C2
1

T3 = D2
1T

2
1 + aS2

1C2
1

(S1:C1:D1:T1:U1:V1) can be doubled as follows,

E ← V 2
1 , F ← U2

1 , G← aF, T3 ← E + G, D3 ← E −G,

C3 ← 2(F + C4
1 )− T3, S3 ← (U1 + V1)

2 − E − F, U3 ← S3C3, V3 ← D3T3.

It is easy to see that point doubling costs 2M+5S+1D both on standard and the modified
Jacobi-intersection coordinates.
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2.3 Edwards form

The uses of these curves in cryptology are introduced by Bernstein and Lange in [4, 1, 5]. Let
K be a field with char(K) 6= 2. An elliptic curve in Edwards form is defined by x2 + y2 =
c2(1 + dx2y2) where c, d ∈ K with cd(1− c4d) 6= 0. The identity element is the point (0, c). The
negative of a point (x, y) is (−x, y). Birational maps between Weierstrass and Edwards curves
can be found in [4]. The affine unified addition formulae are given as follows.

(x3, y3) =

(
x1y2 + y1x2

c(1 + dx1y1x2y2)
,

y1y2 − x1x2

c(1− dx1y1x2y2)

)

We first describe how new addition formulae for Edwards curves can be derived from the
original addition formulae in [4]. We start with the Edwards curve equation x2 + y2 = c2(1 +
dx2y2). Suppose we wish to add (x1, y1) and (x2, y2). Consider the relations obtained by the
curve equation at these two points, i.e., x2

1 +y2
1− c2(1+dx2

1y
2
1) = 0, x2

2 +y2
2− c2(1+dx2

2y
2
2) = 0.

From this, we can express c and d in terms of x1, x2, y1, y2 as follows,

c2 =
x2

1x
2
2y

2
1 − x2

1x
2
2y

2
2 + x2

1y
2
1y

2
2 − x2

2y
2
1y

2
2

x2
1y

2
1 − x2

2y
2
2

, d =
x2

1 − x2
2 + y2

1 − y2
2

x2
1x

2
2y

2
1 − x2

1x
2
2y

2
2 + x2

1y
2
1y

2
2 − x2

2y
2
1y

2
2

.

Substitutions can be made to the original addition formulae to obtain

x3 =
x1y2 + y1x2

1

c

x2

1
x2

2
y2

1
−x2

1
x2

2
y2

2
+x2

1
y2

1
y2

2
−x2

2
y2

1
y2

2

x2

1
y2

1
−x2

2
y2

2

(

1 +
x2

1
−x2

2
+y2

1
−y2

2

x2

1
x2

2
y2

1
−x2

1
x2

2
y2

2
+x2

1
y2

1
y2

2
−x2

2
y2

1
y2

2

x1y1x2y2

) ,

y3 =
y1y2 − x1x2

1

c

x2

1
x2

2
y2

1
−x2

1
x2

2
y2

2
+x2

1
y2

1
y2

2
−x2

2
y2

1
y2

2

x2

1
y2

1
−x2

2
y2

2

(

1−
x2

1
−x2

2
+y2

1
−y2

2

x2

1
x2

2
y2

1
−x2

1
x2

2
y2

2
+x2

1
y2

1
y2

2
−x2

2
y2

1
y2

2

x1y1x2y2

) .

After simplifications, we derive the new addition formulae

(x3, y3) =

(
c(x1y1 + x2y2)

x1x2 + y1y2

,
c(x1y1 − x2y2)

x1y2 − y1x2

)

.

Note, the formula for computing y3 is not defined for (x1, y1) = (x2, y2) and hence not unified.
For this reason, we call the new formulae dedicated addition for Edwards curves. These new
formulae show an interesting fact that dedicated addition on the Edwards curves does not depend
on the curve parameter d. Therefore, arbitrary selections of d do not cause any efficiency loss.

To prevent field inversions that appear in the affine formulae, we represent each point in
standard Edwards coordinates [4]. Each point is represented by the triplet (Xi:Yi:Zi) which
satisfies the projective curve (X2 +Y 2)Z2 = c2(Z4 +dX2Y 2) and corresponds to the affine point
(Xi/Zi, Yi/Zi) with Zi 6= 0. The identity element is represented by (0: 1: 1). The negative of
(Xi:Yi:Zi) is (−Xi:Yi:Zi). The new addition formulae on the standard Edwards coordinates
are as follows,

X3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2
2 + Z2

1X2Y2)

Y3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z
2
2 − Z2

1X2Y2)

Z3 = kZ2
1Z2

2 (X1X2 + Y1Y2)(X1Y2 − Y1X2)

8



where k = 1/c. (X1:Y1:Z1) and (X2:Y2:Z2) can be added as follows,

A← X1Z2, B ← Y1Z2, C ← Z1X2, D ← Z1Y2, E ← AB, F ← CD,

G← E + F, H ← E − F, J ← (A− C)(B + D)−H, K ← (A + D)(B + C)−G,

X3 ← GJ, Y3 ← HK, Z3 ← k JK.

We also investigate the operation counts for the inverted Edwards coordinates in [5]. The
new addition formulae on the inverted Edwards coordinates are as follows.

X3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z
2
2 − Z2

1X2Y2)

Y3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2
2 + Z2

1X2Y2)

Z3 = c(X1Y1Z
2
2 + Z2

1X2Y2)(X1Y1Z
2
2 − Z2

1X2Y2)

Each triplet (Xi:Yi:Zi) satisfies the projective curve (X2 + Y 2)Z2 = c2(X2Y 2 + dZ4) and
corresponds to the affine point (Zi/Xi, Zi/Yi) with XiYi 6= 0. (X1:Y1:Z1) and (X2:Y2:Z2) can
be added as follows,

A← X1Z2, B ← Y1Z2, C ← Z1X2, D ← Z1Y2,

E ← AB, F ← CD, G← E + F, H ← E − F,

X3 ← ((A + D)(B + C)−G)H, Y3 ← ((A− C)(B + D)−H)G, Z3 ← cGH.

We assume c = 1 (see [4, Section 4]). Then, the dedicated addition costs 11M for both
coordinate systems. A 9M mixed addition can be derived by setting Z2 = 1 again for both
coordinate systems. It is more convenient to divide each coordinate of the new formulae by
Z1Z2 (assuming Z1Z2 6= 0) for the readdition on the standard Edwards coordinates. Then, the
readdition of (X2:Y2:Z2) can be performed with the cached values R1 = X2Y2 and R2 = Z2

2 as
follows,

A← X1Y1, B ← Z2
1 , C ← R2A, D ← R1B, E ← (X1 −X2)(Y1 + Y2)−A + R1,

F ← (X1 + Y2)(X2 + Y1)−A−R1, G← ((Z1 + Z2)
2 −B −R2)/2,

X3 ← E(C + D), Y3 ← F (C −D), Z3 ← k EFG.

The readdition costs 9M+2S on the standard Edwards coordinates. (See “Edwards v.2”
in Table 1 and Table 2 in the appendix). In fact, the readdition algorithm shows that a mod-
ified version of the standard Edwards coordinates in which the points are represented by the
quintuplet (Xi:Yi:Zi:Z

2
i :XiYi) permits an inversion-free addition in 9M+2S using the same

algorithm. This is faster than the 11M algorithm that we have just described. However, the
3M+4S doubling formulae/algorithm in [4] costs 5M+2S on this coordinate system and also the
mixed addition costs 8M+2S which is slower than the 9M mixed addition given above. There-
fore, we do not consider this case. The new addition and its associated readdition on the inverted
Edwards coordinates are not attractive as they are for the standard Edwards coordinates. On
the other hand, the mixed addition can be used in some cases. (See “Inverted Edwards v.2” in
Table 1 and Table 2 in the appendix).
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2.4 Hessian form

The uses of these curves in cryptology are explained by Chudnovsky and Chudnovsky in [8],
Joye and Quisquater in [13], and Smart in [19]. Let K be a field with char(K) 6= 2, 3. An elliptic
curve in Hessian form is defined by x3 + y3 + 1 = 3dxy where d ∈ K with d3 6= 1. The identity
element is the point at infinity. The negative of a point (x, y) is (y, x). Birational maps between
Weierstrass and Hessian curves can be found in [19, 13, 2, 3]. The addition formulae attributed
to Sylvester in [8, pp.424-425] are as follows.

(x3, y3) =

(
y2
1x2 − y2

2x1

x2y2 − x1y1

,
x2

1y2 − x2
2y1

x2y2 − x1y1

)

The addition formulae on the standard Hessian coordinates are defined as follows (with each
coordinate multiplied by 2).

X3 = 2Y 2
1 X2Z2 − 2X1Z1Y

2
2

Y3 = 2X2
1Y2Z2 − 2Y1Z1X

2
2

Z3 = 2Z2
1X2Y2 − 2X1Y1Z

2
2

Note, each point is represented by the triplet (Xi:Yi:Zi) which satisfies the projective curve
X3 + Y 3 + Z3 = 3dXY Z and corresponds to the affine point (Xi/Zi, Yi/Zi) with Zi 6= 0. The
identity element is represented by (1:−1: 0). The negative of (Xi:Yi:Zi) is (Yi:Xi:Zi). To
gain better operation counts, we modify the standard Hessian coordinates with a more redun-
dant representation of points using the nonuplet, (Xi:Yi:Zi:X

2
i :Y 2

i :Z2
i : 2XiYi: 2XiZi: 2YiZi).

(X1:Y1:Z1:R1:S1:T1:U1:V1:W1) and (X2:Y2:Z2:R2:S2:T2:U2:V2:W2) with R1 = X2
1 , S1 =

Y 2
1 , T1 = Z2

1 , U1 = 2X1Y1, V1 = 2X1Z1, W1 = 2Y1Z1, R2 = X2
2 , S2 = Y 2

2 , T2 = Z2
2 , U2 =

2X2Y2, V2 = 2X2Z2, W2 = 2Y2Z2 can be added as follows,

X3 ← S1V2 − V1S2, Y3 ← R1W2 −W1R2, Z3 ← T1U2 − U1T2,

R3 ← X2
3 , S3 ← Y 2

3 , T3 ← Z2
3 ,

U3 ← (X3 + Y3)
2 −R3 − S3, V3 ← (X3 + Z3)

2 −R3 − T3, W3 ← (Y3 + Z3)
2 − S3 − T3.

The unified addition7 costs 6M+6S on the modified Hessian coordinates. If S<M, this
strategy improves on the 12M figure reported in [8] at the cost of more space. Assuming that
(X2:Y2:Z2:R2:S2:T2:U2:V2:W2) is cached, the readdition costs 6M+6S. Then, a 5M+6S

mixed addition can be derived by setting Z2 = 1. We use the name “modified Hessian” to refer
to these results in Section 4.

A similar algorithm can be used for the standard Hessian coordinates for the readdition and
the mixed addition. Assuming that (X2:Y2:Z2) is cached, the readdition costs 6M+6S (with
the extra caching of R2, S2, T2, U2, V2,W2). Then, a 5M+6S mixed addition can be derived
by setting Z2 = 1. (Also see Hisil, Carter and Dawson [12, pp.146–147]). We use the name
“Hessian v.2” to refer to these results in Section 4.

7Point doubling can be performed as (Z1: X1: Y1: T1: R1: S1: V1: W1: U1) + (Y1: Z1: X1: S1: T1: R1: W1: U1: V1)
using the addition formulae on the modified Hessian coordinates. This strategy originates from Joye and
Quisquater [13, p.6].
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For speed oriented implementations, Sylvester’s doubling formulae are as follows.

(x3, y3) =

(
y1(1− x3

1)

x3
1 − y3

1

,−
x1(1− y3

1)

x3
1 − y3

1

)

When working with the modified coordinates, there exists a doubling strategy which requires
no additional effort for generating the new coordinates. Sylvester’s doubling formulae can be
expressed on the standard Hessian coordinates (with each coordinate multiplied by 4).

X3 = (2X1Y1 − 2Y1Z1)(2X1Z1 + 2(X2
1 + Z2

1 ))

Y3 = (2X1Z1 − 2X1Y1)(2Y1Z1 + 2(Y 2
1 + Z2

1 ))

Z3 = (2Y1Z1 − 2X1Z1)(2X1Y1 + 2(X2
1 + Y 2

1 ))

Then, (X1:Y1:Z1:R1:S1:T1:U1:V1:W1) can be doubled as follows,

X3 ← (U1 −W1)(V1 + 2(R1 + T1)), Y3 ← (V1 − U1)(W1 + 2(S1 + T1)),

Z3 ← (W1 − V1)(U1 + 2(R1 + S1)), R3 ← X2
3 , S3 ← Y 2

3 , T3 ← Z2
3 ,

U3 ← (X3 + Y3)
2 −R3 − S3, V3 ← (X3 + Z3)

2 −R3 − T3, W3 ← (Y3 + Z3)
2 − S3 − T3.

Point doubling costs 3M+6S on both standard and the modified Hessian coordinates. (See
[12] for a 7M+1S algorithm on the standard coordinates).

We comment that it is possible to derive unified addition formulae which do not require
any permutations of the coordinates to perform doubling. Assuming8 x1x2 6= y1y2, we multiply
the numerator and the denominator of Sylvester’s addition formulae for x3 by (x3

1x
3
2 − y3

1y
3
2) to

obtain

x3 =
(x3

1x
3
2 − y3

1y
3
2)(y

2
1x2 − y2

2x1)

(x3
1x

3
2 − y3

1y
3
2)(x2y2 − x1y1)

.

This can be rearranged as follows

x3 =
x1y

2
1(y

3
2 + x3

2)(y
2
2y1 + x2

1x2)− x2y
2
2(y

3
1 + x3

1)(y
2
1y2 + x2

2x1)

(x3
1x

3
2 − y3

1y
3
2)(x2y2 − x1y1)

.

Using the curve equation x2 + y2 + 1 = 3dxy, the above expression can be rewritten as

x3 =
x1y

2
1(3dx2y2 − 1)(y2

2y1 + x2
1x2)− x2y

2
2(3dx1y1 − 1)(y2

1y2 + x2
2x1)

(x3
1x

3
2 − y3

1y
3
2)(x2y2 − x1y1)

.

The numerator can be factorized and cancels with (x2y2 − x1y1) in the denominator, giving
the new addition formulae. The corresponding formula for y3 can be similarly derived from
symmetry.

(x3, y3) =

(
x1x2(x1y1 + x2y2 − 3dx1x2y1y2) + y2

1y
2
2

x3
1x

3
2 − y3

1y
3
2

,−
y1y2(x1y1 + x2y2 − 3dx1x2y1y2) + x2

1x
2
2

x3
1x

3
2 − y3

1y
3
2

)

8This is equivalent to saying (x1, y1) 6= −(x2, y2). The contrary case should be handled separately as explained
in Section 3.
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The new addition formulae on the standard Hessian coordinates are defined as follows.

X3 = X1X2(X1Y1Z
2
2 + X2Y2Z

2
1 − 3dX1Y1X2Y2) + Y 2

1 Z1Y
2
2 Z2

Y3 = −Y1Y2(X1Y1Z
2
2 + X2Y2Z

2
1 − 3dX1Y1X2Y2)−X2

1Z1X
2
2Z2

Z3 = X3
1X3

2 − Y 3
1 Y 3

2

We again use a modified version of the standard coordinates. Two points (X1:Y1:Z1:V1:W1)
and (X2:Y2:Z2:V2:W2) with V1 = X1Y1, W1 = Z2

1 , V2 = X2Y2, W2 = Z2
2 can be added as

follows,

A← X1X2, B ← Y1Y2, C ← ((Z1 + Z2)
2 −W1 −W2)/2, D ← A2, E ← B2,

F ← D + E, G← ((A + B)2 − F )/2, H ← (V1 + W1)(V2 + W2)− (3d + 1)G − C2,

X3 ← AH + EC, Y3 ← −BH −DC, Z3 ← (A−B)(G + F ), V3 ← X3Y3, W3 ← Z2
3 .

This strategy costs 9M+6S+1D which is faster than the unified addition in Weierstrass
form in [7, 2]. However, it is slower than all other unified additions considered in this paper.
In addition, doubling, readdition and mixed addition formulae that can be derived from these
formulae are not attractive. Therefore, we omit these formulae from further comparison with
other systems.

3 Handling Exceptional Cases

An elliptic curve which can be written in one of these forms always has points of small order
(other than the identity) and the arithmetic of these points can cause division by zero exceptions
depending on the formulae and the coordinate system in use. Cryptographic applications use a
large prime order subgroup in which these points (except the identity element, O) do not exist.
At this stage, an implementer only needs to be careful about the identity element. When the
points P and Q are to be added, a general strategy to handle the exceptional cases is as follows.
Let R be the sum of P and Q. Then, R = Q if P = O; R = P if Q = O; R = O if P = −Q.
For all other inputs, the sum can be computed with the relevant formulae given in Section 2. In
this context, there are some formulae and coordinate system combinations which do not cause
exceptions. These are Edwards v.1a, v.1b, v.2, Jacobi-quartic v.1, v.2, Jacobi-intersection v.1,
v.2, modified Jacobi-quartic v.1, v.2a, v.2b, v.3a, v.3b and modified Jacobi-intersection. The
ones which need exception handling are inverted Edwards (as explained in [5]) v.1, v.2, Hessian
v.1, v.2, and modified Hessian. The descriptions and the references for the systems which are
not defined so far can be found in the appendix.

4 Comparison and Conclusion

There are several point multiplication algorithms which can benefit from the optimizations in this
paper. We only make comparisons for the popular point multiplication strategies between known
elliptic curve forms/families. We exclude the cost of the final inversion to affine coordinates for
point multiplication.
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Resource limited environments. In memory limited environments (such as smartcards),
there is not enough space for storing precomputation tables. For these environments, point
multiplication with the “Non-adjacent form without precomputation” algorithm is a convenient
selection. This algorithm requires 1 doubling, 1/3 mixed addition per bit. The cost estimates are
depicted in Table 1. For example, the best timings for 256-bit scalar multiplication (S/M=0.8,
D/M≈0) are obtained by the modified Jacobi-quartic v.3a and v.3b which costs 2246M. The
previous best was set by the inverted Edwards v.1 [5] which requires 2331M for the same example.

Speed implementations. This is the most difficult case in which to state a fair comparison
because the optimum speeds are somewhat dependent on the choice of the scalar multiplication
algorithm. For instance, Doche/Icart/Kohel-3 curves [10] have very fast tripling formulae which
can highly benefit from double base number system based point multiplication. For double-
and-add type point multiplication algorithms, one might expect to gain the best timing with
the system which has the fastest doubling operation since point doubling is the dominating
operation. However, the readdition and the mixed addition costs also play important roles in
the overall timings. We can roughly state that the fast systems (S/M=0.8, D/M≈0) are the
modified Jacobi-quartics v.1, v.2a, v.2b, v.3a, v.3b, inverted Edwards v.1a, v.1b, Edwards v.2,
and modified Jacobi-intersection. At least, these systems can be faster than the Montgomery
ladder [18] which has the fixed cost of 4M+5S+1D per key bit. To make the comparison
easier, we fix the algorithm to the “signed 4-bit sliding windows” scalar multiplication algorithm
analyzed in [4]. The algorithm requires 0.98 doublings, 0.17 readditions, 0.025 mixed additions
and 0.0035 additions per bit (for 256-bit scalars). We use this analysis to report current rankings
between different systems in Table 2. With our improvements, the modified Jacobi-quartic v.3a,
v.3b provides the fastest timings for almost all S/M and D/M values. For example, 256-bit
scalar multiplication (S/M=0.8, D/M≈0) costs around 1970M for the modified Jacobi-quartic
v.3a, v.3b. The previous best was set by the inverted Edwards v.1 which require 2040M for the
same example.

Side channel attacks. Targeting the embedded implementations, we take the “Non-
adjacent form without precomputation with SPA protection” scalar multiplication algorithm into
our consideration. This is almost the same as using the “Non-adjacent form without precom-
putation” algorithm with the difference that unified addition formulae is used for both point
doubling and point addition. This strategy hides the side channel information from the attacker
who needs more samplings and statistical tools for a successful attack. This algorithm invokes
4/3 unified additions per bit. The modified coordinates for Hessian and Jacobi-intersection
forms are only useful here. The 7M+3S+1D unified addition of the modified Jacobi-quartic
v.2b, v.3b is the fastest among all other unified additions. The cost estimates for various systems
are depicted in Table 3. For example, 256-bit scalar multiplication (S/M=0.8, D/M≈0) costs
3208M for the modified Jacobi-quartic v.2b, v.3b. The same operation requires 3345M for the
inverted Edwards v.1, v.2 (previous fastest) and 5256M for the Weierstrass form (a=-3) using
the standard projective coordinates. Modified Jacobi-quartic v.2b and v3.b are 64% faster than
the Weierstrass form in this context. The speedup varies between 45% and 67% depending on
the S/M and D/M values present. We should note that the Montgomery ladder [18] is still the
fastest for defeating the SPA attacks.

Future directions. Many of these operation counts may be subject to further development.
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For instance, the lazy reduction possibilities and the total memory requirements of the new
algorithms have not been determined yet. In addition, there are curve models which are not
studied in this paper, which may provide improvements. Furthermore, similar ideas might also
apply to the low characteristic and/or higher genus curves. Therefore, there is still much room
for research on this topic.
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A Appendix

The appendix is composed of three tables. The underlined values are the fastest timings in that
column. The rows are sorted with respect to the column (D=0, S=0.8M) in descending order.
“REG” stands for the number of coordinates in each system. “DBL”, “mADD”, “reADD”,
“ADD”, and “uADD” stands for the costs of doubling, mixed addition, readdition, addition and
unified addition, respectively. Some forms have alternative versions due to alternative operation
counts for different S/M and D/M values. It is possible to include more versions due to the
richness of current formulae and algorithms. On the other hand, this will decrease readability
of the tables. Therefore, we only provide the most significant cases. The references for the
comparisons are;

• Doche/Icart/Kohel-2; all operations from [10, 2]. The appearance of [2] is to emphasize
that better operation counts are available and is obtained from this database. This is the
same for other dot items,

• Edwards; all operations for v.1a, v.1b, and doubling for v.2 from [4],

• Hessian; doubling for v.1, v.2 from [12], readdition, mixed addition, and addition for v.1,
addition for v.2 from [8],

• Inverted Edwards; all operations for v.1 and doubling, readdition and addition for v.2 from
[5],

• Jacobian (a = −3) and Jacobian; all operations from [8, 9, 2],

• Jacobi-intersection; doubling, addition, readdition, from [15, 2], mixed addition from [12],
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• Jacobi-quartic; doubling9, readdition, mixed addition10 and addition for v.1a, v.1b from
[6, 11, 2],

• Modified Jacobi-quartic doubling for v.1, v.2a, v.2b [12, 2], readdition, mixed-addition,
and addition for v.1 from [11, 2],

• Projective (a = −3) and Projective doubling, readdition, mixed addition and addition for
[8, 2], unified addition from [7, 2].

The rest are from this paper and they are highlighted in the tables.

9The 2M+6S+2D doubling formulae/algorithm by Hisil, Dawson and Carter reported in [2] cost 1M+7S+2D
if the coordinate X3 is computed as (X1Z1 + Y1)

2 − (X1Z1)
2 − Y 2

1 .
10The mixed addition costs 7M+3S+1D on the Jacobi-quartic coordinates when Z2 = 1 for the 8M+3S+1D

readdition algorithm in [11, 2].
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Table 1: Point multiplication cost estimates per bit for “Non-adjacent form without precomputation” method.

M S D M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 5 6 1 9 2 0 15.667 14.333 13.467 15.167 13.833 12.967 14.667 13.333 12.467

Projective (a=-3) 3 7 3 0 9 2 0 13.667 12.933 12.457 13.667 12.933 12.457 13.667 12.933 12.457

Jacobi-quartic v.1a 3 1 9 0 7 3 1 13.667 11.667 10.367 13.500 11.500 10.200 13.333 11.333 10.033

Hessian v.1 3 7 1 0 10 0 0 11.333 11.133 11.003 11.333 11.133 11.003 11.333 11.133 11.003

Hessian v.2 3 3 6 0 5 6 0 12.667 11.067 10.027 12.667 11.067 10.027 12.667 11.067 10.027

Modified Hessian 9 3 6 0 5 6 0 12.667 11.067 10.027 12.667 11.067 10.027 12.667 11.067 10.027

Jacobian 3 1 8 1 7 4 0 13.667 11.800 10.587 13.167 11.300 10.087 12.667 10.800 9.587

Jacobian (a=-3) 3 3 5 0 7 4 0 11.667 10.400 9.577 11.667 10.400 9.577 11.667 10.400 9.577

Jacobi-intersection v.1 4 3 4 0 10 2 1 11.333 10.400 9.793 11.167 10.233 9.627 11.000 10.067 9.460

Jacobi-quartic v.1b 3 1 7 2 7 3 1 13.667 12.067 11.027 12.500 10.900 9.860 11.333 9.733 8.693

Doche/Icart/Kohel-2 4 2 5 2 8 4 1 13.333 12.067 11.243 12.167 10.900 10.077 11.000 9.733 8.910

Jacobi-intersection v.2 4 2 5 1 10 1 2 12.333 11.267 10.573 11.500 10.433 9.740 10.667 9.600 8.907

Modified Jacobi-intersection 6 2 5 1 10 1 2 12.333 11.267 10.573 11.500 10.433 9.740 10.667 9.600 8.907

Edwards v.1b 3 3 4 0 6 5 1 11.000 9.867 9.130 10.833 9.700 8.963 10.667 9.533 8.797

Edwards v.1a 3 3 4 0 9 1 1 10.667 9.800 9.237 10.500 9.633 9.070 10.333 9.467 8.903

Modified Jacobi-quartic v.1 6 3 4 0 7 3 1 10.667 9.667 9.017 10.500 9.500 8.850 10.333 9.333 8.683

Inverted Edwards v.2 3 3 4 1 9 0 0 11.000 10.200 9.680 10.500 9.700 9.180 10.000 9.200 8.680

Edwards v.2 3 3 4 0 9 0 0 10.000 9.200 8.680 10.000 9.200 8.680 10.000 9.200 8.680

Inverted Edwards v.1 3 3 4 1 8 1 1 11.333 10.467 9.903 10.667 9.800 9.237 10.000 9.133 8.570

Modified Jacobi-quartic v.2a 5 3 4 0 6 3 1 10.333 9.333 8.683 10.167 9.167 8.517 10.000 9.000 8.350

Modified Jacobi-quartic v.2b 6 3 4 0 6 3 1 10.333 9.333 8.683 10.167 9.167 8.517 10.000 9.000 8.350

Modified Jacobi-quartic v.3a 5 2 5 1 6 3 1 11.333 10.133 9.353 10.667 9.467 8.687 10.000 8.800 8.020
Modified Jacobi-quartic v.3b 6 2 5 1 6 3 1 11.333 10.133 9.353 10.667 9.467 8.687 10.000 8.800 8.020

1 DBL, 1 / 3 mADD per bit

System

DBL mADD

R
E

G
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Table 2: Point multiplication cost estimates per bit for “Signed 4-bit Sliding Windows” method.

M S D M S D M S D M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 5 6 1 12 2 0 9 2 0 12 2 0 14.433 13.177 12.360 13.942 12.685 11.869 13.451 12.194 11.377

Projective (a=-3) 3 7 3 0 12 2 0 9 2 0 12 2 0 12.468 11.801 11.368 12.468 11.801 11.368 12.468 11.801 11.368

Jacobi-quartic v.1a 3 1 9 0 8 3 1 7 3 1 10 3 1 12.136 10.251 9.026 12.039 10.154 8.929 11.942 10.057 8.832

Hessian v.1 3 7 1 0 12 0 0 10 0 0 12 0 0 10.140 9.943 9.816 10.140 9.943 9.816 10.140 9.943 9.816

Jacobian 3 1 8 1 10 4 0 7 4 0 11 5 0 12.475 10.748 9.624 11.984 10.256 9.133 11.493 9.765 8.642

Hessian v.2 3 3 6 0 6 6 0 5 6 0 12 0 0 11.147 9.739 8.824 11.147 9.739 8.824 11.147 9.739 8.824

Modified Hessian 9 3 6 0 6 6 0 5 6 0 6 6 0 11.147 9.735 8.817 11.147 9.735 8.817 11.147 9.735 8.817

Jacobian (a=-3) 3 3 5 0 10 4 0 7 4 0 11 5 0 10.511 9.372 8.632 10.511 9.372 8.632 10.511 9.372 8.632

Doche/Icart/Kohel-2 4 2 5 2 12 5 1 8 4 1 12 5 1 12.213 11.042 10.280 11.134 9.962 9.201 10.054 8.883 8.121

Jacobi-intersection v.1 4 3 4 0 11 2 1 10 2 1 13 2 1 9.577 8.714 8.152 9.480 8.617 8.055 9.383 8.520 7.958

Jacobi-quartic v.1b 3 1 7 2 8 3 1 7 3 1 10 3 1 12.136 10.644 9.675 11.057 9.565 8.595 9.977 8.485 7.516

Edwards v.1b 3 3 4 0 7 5 1 6 5 1 7 5 1 9.376 8.396 7.759 9.279 8.299 7.662 9.182 8.202 7.565

Jacobi-intersection v.2 4 2 5 1 11 1 2 10 1 2 13 1 2 10.560 9.539 8.875 9.874 8.853 8.189 9.189 8.168 7.504

Edwards v.1a 3 3 4 0 10 1 1 9 1 1 10 1 1 9.182 8.357 7.821 9.085 8.260 7.724 8.988 8.163 7.627

Modified Jacobi-intersection 6 2 5 1 11 1 2 10 1 2 11 1 2 10.553 9.531 8.868 9.867 8.846 8.182 9.182 8.161 7.497

Edwards v.2 3 3 4 0 9 2 0 9 0 0 11 0 0 8.963 8.111 7.557 8.963 8.111 7.557 8.963 8.111 7.557

Modified Jacobi-quartic v.1 6 3 4 0 8 3 1 7 3 1 8 3 1 9.182 8.280 7.693 9.085 8.183 7.596 8.988 8.085 7.499

Inverted Edwards v.2 3 3 4 1 9 1 1 9 0 0 9 1 1 9.946 9.126 8.593 9.370 8.550 8.017 8.794 7.974 7.441

Inverted Edwards v.1 3 3 4 1 9 1 1 8 1 1 9 1 1 9.970 9.146 8.609 9.382 8.557 8.021 8.794 7.969 7.433

Modified Jacobi-quartic v.2a 5 3 4 0 7 3 1 6 3 1 7 4 1 8.991 8.088 7.501 8.894 7.991 7.404 8.797 7.894 7.307

Modified Jacobi-quartic v.2b 6 3 4 0 7 3 1 6 3 1 7 3 1 8.988 8.085 7.499 8.891 7.988 7.402 8.794 7.891 7.305

Modified Jacobi-quartic v.3a 5 2 5 1 7 3 1 6 3 1 7 4 1 9.974 8.874 8.159 9.386 8.286 7.571 8.797 7.698 6.983

Modified Jacobi-quartic v.3b 6 2 5 1 7 3 1 6 3 1 7 3 1 9.970 8.871 8.157 9.382 8.283 7.569 8.794 7.695 6.981

0.98 DBL, 0.17 reADD, 0.025 mADD, 0.0035 ADD per bit

System

DBL reADD mADD ADD

R
E

G
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Table 3: Point multiplication cost estimates per bit for “Non-adjacent form without precomputation with SPA protection”
algorithm.

M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 11 6 1 24.000 22.400 21.360 23.333 21.733 20.693 22.667 21.067 20.027

Projective (a=-1) 3 13 3 0 21.333 20.533 20.013 21.333 20.533 20.013 21.333 20.533 20.013

Jacobi-intersection v.1 4 13 2 1 21.333 20.800 20.453 20.667 20.133 19.787 20.000 19.467 19.120

Jacobi-intersection v.2 4 13 1 2 21.333 21.067 20.893 20.000 19.733 19.560 18.667 18.400 18.227

Jacobi-quartic v.1a, v.1b 3 10 3 1 18.667 17.867 17.347 18.000 17.200 16.680 17.333 16.533 16.013

Hessian v.1, v.2 3 12 0 0 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

Modified Jacobi-intersection 6 11 1 2 18.667 18.400 18.227 17.333 17.067 16.893 16.000 15.733 15.560

Edwards v.1b 3 7 5 1 17.333 16.000 15.133 16.667 15.333 14.467 16.000 14.667 13.800

Edwards v.1a 3 10 1 1 16.000 15.733 15.560 15.333 15.067 14.893 14.667 14.400 14.227

Modified Hessian 9 6 6 0 16.000 14.400 13.360 16.000 14.400 13.360 16.000 14.400 13.360

Modified Jacobi-quartic v.1 6 8 3 1 16.000 15.200 14.680 15.333 14.533 14.013 14.667 13.867 13.347

Modified Jacobi-quartic v.2a, v.3a 5 7 4 1 16.000 14.933 14.240 15.333 14.267 13.573 14.667 13.600 12.907

Inverted Edwards v.1 3 9 1 1 14.667 14.400 14.227 14.000 13.733 13.560 13.333 13.067 12.893

Modified Jacobi-quartic v.2b, v.3b 6 7 3 1 14.667 13.867 13.347 14.000 13.200 12.680 13.333 12.533 12.013

4 / 3 uADD per bit

System

uADD

R
E

G
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