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Abstract

This paper improves implementation techniques of Elliptic Curve Cryptography. We introduce new formulae

and algorithms for the group law on Jacobi quartic, Jacobi intersection, Edwards, and Hessian curves. The

proposed formulae and algorithms can save time in suitable point representations. To support our claims, a

cost comparison is made with classic scalar multiplication algorithms using previous and current operation

counts. Most notably, the best speedup is obtained in the case of Jacobi quartic curves which also lead to one

of the most efficient scalar multiplications benefiting from the proposed 2M+5S+1D (i.e. 2 multiplications, 5

squarings, and 1 multiplication by a curve constant) point doubling and 7M+3S+1D point addition algorithms.

Furthermore, the new addition algorithm provides an efficient way to protect against side channel attacks

which are based on simple power analysis (SPA).

Keywords: Efficient elliptic curve arithmetic, unified addition, side channel attack.

1 Introduction

From the advent of elliptic curve cryptosystems, in-

dependently by Miller (1986) and Koblitz (1987) to

date, the arithmetic of elliptic curves has drawn wide

attention from cryptographic researchers. It is well

known that the Weierstrass model provides a general

parametrization of elliptic curves. In other words, an

elliptic curve over a field K (excluding char(K) =
2, 3) is the set of points (x, y) satisfying the equation

y2 = x3 + ax + b

for some a, b ∈ K where 4a3 + 27b2 6= 0 together

with the point at infinity O. These points exhibit a

group structure under an explicitly defined additive

group law. In other words, two points P = (x1, y1)
and Q = (x2, y2) can be added to form a third point

R = P + Q = (x3, y3) on the same curve. The nega-

tive of the point P is (x1,−y1). The identity element

is the point at infinity O. From this we can define a

scalar multiple S of a point P as

S = [k]P = P + P + . . . + P
︸ ︷︷ ︸

k times

.

Computing k when only P and S are known is be-

lieved to be intractable for carefully selected param-

eters. This forms the basis of the elliptic curve dis-

crete logarithm problem, which is used to provide

cryptographic security.

One of the main challenges in elliptic curve cryp-

tography is to perform scalar multiplication effi-

ciently under different environmental constraints

(such as resistance to side channel attacks, band-

width efficiency, memory limitations). In this paper,

we restrict attention to the optimization of point addi-

tion and point doubling which are vital for the overall

performance of double-and-add type scalar multipli-

cation algorithms.

Elliptic curves can be represented in several differ-

ent ways. To obtain faster group operations, some

other elliptic curve representations have also been

considered in the last two decades. In this context,

we present a short outline of previous work on which

our paper is built.

- Chudnovsky & Chudnovsky (1986) developed

the first inversion-free algorithms and reported

the operation counts for performing arithmetic

on Weierstrass, Jacobi quartic, Jacobi intersec-



tion, and Hessian curves.

- Cohen et al. (1998) provided efficient strategies

for scalar multiplication on Weierstrass curves.

Doche et al. (2006) introduced fast doubling

and tripling algorithms on Weierstrass curves for

two special families. The doubling algorithm in

(Doche et al. 2006) was improved by Bernstein

et al. (2007) for S < M.

- In chronological order, Joye & Quisquater (2001),

Liardet & Smart (2001), Brier & Joye (2002),

Billet & Joye (2003) showed ways of perform-

ing scalar multiplication with resistance to side

channel attacks using Hessian, Jacobi intersec-

tion, Weierstrass and Jacobi quartic forms, re-

spectively.

- Duquesne (2007) proposed a faster algorithm

for computing point addition on Jacobi quartic

curves based on the formulae in (Billet & Joye

2003) by using an alternative coordinate sys-

tem. In (Bernstein & Lange 2007b) and (Bern-

stein & Lange 2007a) a better operation count

for S < M was proposed. Some of the optimiza-

tions in this paper benefit from similar ideas.

- Bernstein & Lange (2007c) introduced Edwards

curves for providing fast arithmetic and efficient

countermeasures to side channel attacks. Later,

Bernstein & Lange (2007d) proposed the in-

verted Edwards coordinates which improve tim-

ings for Edwards curves and provided the fastest

unified addition of that time. Bernstein & Lange

(2007b) have built a database of explicit formu-

lae that are reported in the literature together

with their own optimizations.

For security considerations, the selected curves

should have a small cofactor, typically equal to or

less than 4. It is possible to find cryptographically in-

teresting curves which satisfy the security criterion

and which can be parameterized by one of the curve

models mentioned above. See (Liardet & Smart

2001), (Billet & Joye 2003), and (Bernstein & Lange

2007c) for sample curves.

In this work, we aim to speedup the group oper-

ations for these curves with a final aim of improv-

ing the best timings for various scalar multiplication

algorithms. We extend the literature by introducing

new addition and doubling formulae for various curve

models. An extensive speed comparison is given in

the appendix. From the comparison tables it can

be observed that most of our optimizations achieve

the removal of field multiplications and/or field squar-

ings in comparison to the current literature. In addi-

tion, we provide S-M tradeoffs for the doubling oper-

ations.

In what follows we will frequently use the terms

unified addition, readdition, andmixed addition. Uni-

fied addition means that addition formulae remain

valid when two input points are same, see (Cohen

et al. 2005, Section 29.1.2). Readdition means that

a point addition has already taken place and some

of the previously computed data is cached, see (Co-

hen et al. 1998) or (Bernstein & Lange 2007c, p.40).

Mixed addition means that one of the addends is

given in affine coordinates, see (Cohen et al. 1998).

The paper is organized as follows. We provide new

formulae and better operation counts for various el-

liptic curve forms in Section 2. A naming of different

systems are pointed in Section 3. The exceptional

cases are considered in Section 4. We make compar-

isons of various systems and draw our conclusions in

Section 5.

2 Improvements

In the rest of this paper, we assume K is finite, is of

large size, and char(K) 6= 2, 3. For any elliptic curve

over K we restrict our attention to the K-rational

points. Not all of these assumptions are always nec-

essary. However, they make our investigation eas-

ier. We omit the operation counts for affine coordi-

nates since known formulae for this representation

require field inversions which are very costly in most

implementations compared to field multiplications.

We also omit the cost of additions, subtractions, and

multiplication by very small constants (e.g. 2, 4,

etc.). However, they can be properly counted from

the provided algorithms if they are not negligible.

Some of the derivations in this section are aided

by the use of (Monagan & Pearce 2006) simplifica-

tion algorithms for rational expressions. We also use

computer aid with Maple v.111 computer algebra sys-

tem. We obtain curve definitions and affine versions

of various formulae from (Bernstein & Lange 2007b).

We borrow the notation M, S, and D from (Bernstein

& Lange 2007c).

2.1 Jacobi quartic form

The uses of these curves in cryptology are explained

by Chudnovsky & Chudnovsky (1986) and Billet &

Joye (2003). A Jacobi quartic form elliptic curve over

K is defined by y2 = x4 + 2ax2 + 1 where a ∈ K with

a2 6= 1. Birational maps between Weierstrass and

Jacobi quartic curves can be found in (Billet & Joye

2003), (Bernstein & Lange 2007b), and (Bernstein &

Lange 2007a).

Our main focus in this work is the group law. There-

fore we are interested in explicit formulae which add

1http://www.maplesoft.com
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two points. We use the common notation

(x3, y3) = (x1, y1) + (x2, y2)

which is used in many textbooks. Here (x1, y1) and
(x2, y2) are the addends and (x3, y3) is the sum.

The explicit formulae for the group law on Ja-

cobi quartic form elliptic curves date back to (Jacobi

1829). Even earlier, a formula for computing x3 (see

below in (1)) appears in one of Euler’s works from the

18th century, (Euler 1761). A formula for computing

y3 can be found in (McKean & Moll 1927, p.111). We

will proceed with working on the affine version of the

unified addition formulae in (Billet & Joye 2003) given

by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1y2 + y1x2

1− x2

1
x2

2

,

y3 =
(y1y2 + 2ax1x2)(x

2

1x
2

2 + 1) + 2x1x2(x
2

1 + x2

2)

(1− x2

1
x2

2
)2

.

(1)

The identity element is the point (0, 1). The neg-

ative of a point (x, y) is (−x, y). In this section, we

will update the numerator of y3. If the numerator is

designated t then we have

t = (y1y2 + 2ax1x2)(x
2

1x
2

2 + 1) + 2x1x2(x
2

1 + x2

2)

= (y1y2 + 2ax1x2)(x
2

1x
2

2 + 1) + 2x1x2(x
2

1 + x2

2) +

x2

1y
2

2 + 2x1y1x2y2 + y2

1x2

2 − (x1y2 + y1x2)
2.

Using the curve equation y2 = x4 + 2ax2 + 1, we
replace y2

1
with x4

1
+2ax2

1
+1 and y2

2
with x4

2
+2ax2

2
+1.

This yields

t = (y1y2 + 2ax1x2)(x
2

1x
2

2 + 1) + 2x1x2(x
2

1 + x2

2) +

x2

1(x
4

2 + 2ax2

2 + 1) + 2x1y1x2y2 +

x2

2(x
4

1 + 2ax2

1 + 1) − (x1y2 + y1x2)
2.

We obtain the new formula for y3 by organizing the

terms. The new unified addition formulae are given

by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1y2 + y1x2

1− x2

1
x2

2

,

y3 =

(
x1x2 + 1

1− x2

1
x2

2

)2
(
(x2

1 + 1)(x2

2 + 1) +

y1y2 + (2a− 2) x1x2

)
− x2

3 − 1.

(2)

A projective weighted coordinate systems is used

in (Chudnovsky & Chudnovsky 1986) and in (Billet

& Joye 2003) for the elimination of field inversions.

In this system, each point is represented by the

triplet (X : Y : Z) which satisfies the equation Y 2 =
X4+2aX2Z2+Z4 and corresponds to the affine point

(X/Z, Y/Z2) with Z 6= 0. The identity element is

represented by (0: 1: 1). The negative of (X : Y : Z) is
(−X : Y : Z). The new point addition (2) in projective

weighted coordinates then becomes

(X3: Y3: Z3) = (X1: Y1: Z1) + (X2: Y2: Z2)

where

X3 = X1Z1Y2 + Y1X2Z2,

Z3 = Z2

1Z2

2 −X2

1X2

2 ,

Y3 = (X1X2 + Z1Z2)
2((X2

1 + Z2

1 )(X2

2 + Z2

2 ) +

Y1Y2 + (2a− 2)X1Z1X2Z2)−X2

3 − Z2

3 .

(3)

Rather than using the projective weighted coordi-

nates, we use a redundant representation of points

for efficiency purposes. This representation is based

on the work of Duquesne (2007) which is extended in

(Bernstein & Lange 2007a).

We represent a point with Z 6= 0 with

the sextuplet (X : Y : Z: X2: Z2: XZ) and incorpo-

rate this representation with the new point addi-

tion formulae (3). Now, (X1: Y1: Z1: U1: V1: W1) and

(X2: Y2: Z2: U2: V2: W2) with U1 = X2

1
, V1 = Z2

1
, W1 =

X1Z1, U2 = X2
2 , V2 = Z2

2 , W2 = X2Z2 can be added

with the algorithm

A← U1U2, B ← V1V2, C ←W1W2, D ← Y1Y2,

X3 ← (W1 + Y1)(W2 + Y2)− C −D, Z3 ← B −A,

U3 ← X2

3 , V3 ← Z2

3 , F ← A + B + 2 C,

G← (U1 + V1)(U2 + V2) + kC + D, H ← U3 + V3,

Y3 ← FG−H, W3 ← ((X3 + Z3)
2
−H)/2

where k = 2(a − 1). The new unified addition costs

7M + 3S + 1D in the modified coordinates. Assum-

ing that (X2: Y2: Z2: U2: V2: W2) is cached, a readdi-

tion costs 7M + 3S + 1D. A 6M + 3S + 1D mixed ad-

dition can be derived by setting Z2 = 1. We use the

name “modified Jacobi quartic v.2b” to refer to this

coordinate system. Modified Jacobi quartic v.2b uses

the new addition formulae and a 3M + 4S doubling

algorithm proposed by Hisil et al. (2007).

To evaluate the new addition formulae, a similar

algorithm for a less redundant version of modified

Jacobi quartic v.2b which represents points with the

quintuplet (X : Y : Z: U : V ), is also very efficient in

practice. This point representation is proposed in (Hi-

sil et al. 2007). In this system the new unified addi-

tion costs 7M+ 4S + 1D (by computing W1 = ((X1 +
Z1)

2 −U1 −V1)/2 and W2 = ((X2 + Z2)
2 −U2 −V2)/2

on the fly, and not computing W3). Following this

and assuming that (X2: Y2: Z2: U2: V2) is cached, the
readdition costs 7M+ 3S+ 1D with the extra caching

of W2. A 6M + 3S + 1D mixed addition can then be

derived by setting Z2 = 1. We use the name “modi-

fied Jacobi quartic v.2a” to refer to this system. This
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system also uses 3M + 4S doubling algorithm in (Hi-

sil et al. 2007). A comparison of our results with the

literature is given as follows.

Jacobi quartic Addition

(Billet & Joye 2003), (ǫ = 1) 10M+3S+1D

(Duquesne 2007), (ǫ = 1) 9M+2S+1D

(Bernstein & Lange 2007b) 8M+3S+1D

This work (modified v.2a) 7M+4S+1D

This work (modified v.2b) 7M+3S+1D

It is convenient here to note that the 3M+ 4S dou-

bling algorithm in (Hisil et al. 2007) can be easily de-

rived from the new affine addition formulae (2) as fol-

lows. We symbolically input the same points to the

new addition formulae and obtain

(x3, y3) = [2](x1, y1)

where

x3 =
2x1y1

1− x4

1

,

y3 =

(
x2

1 + 1

1− x4

1

)2

(x4

1 + 2ax2

1 + 1 + y2

1)− x2

3 − 1.

(4)

We then replace x4

1
+ 2ax2

1
+ 1 with y2

1
using the

curve equation. This yields

(x3, y3) = [2](x1, y1)

where

x3 =
2x1y1

1− x4

1

y3 = 2

(
y1(x

2

1 + 1)

1− x4

1

)2

− x2

3 − 1

(5)

The point doubling formulae (5) in projective

weighted coordinates are given by

(X3: Y3: Z3) = [2](X1: Y1: Z1)

where

X3 = 2X1Y1Z1,

Z3 = Z4

1 −X4

1 ,

Y3 = 2(Y1(X
2

1 + Z2

1 ))2 −X2

3 − Z2

3 .

(6)

These formulae are advantageous when used with

both versions of the modified coordinates. The point

doubling algorithm for (6) is given by

A← U1 + V1, X3 ← 2Y1W1, Z3 ← A(V1 − U1),

U3 ← X2

3 , V3 ← Z2

3 , B ← U3 + V3,

W3 ← ((X3 + Z3)
2
−B)/2, Y3 ← 2(Y1A)2 −B.

Doubling costs 3M+4S in both versions of the mod-

ified coordinates. See the works (Hisil et al. 2007)

and (Bernstein & Lange 2007b).

Building on similar ideas, it is possible to derive the

following doubling formulae

(x3, y3) = [2](x1, y1)

where

x3 =
2x1y1

1− x4

1

,

y3 = 2

(
y2

1

1− x4

1

)2

− ax2

3 − 1.

(7)

The new doubling formulae in projective weighted

coordinates are given by

(X3: Y3: Z3) = [2](X1: Y1: Z1)

where

X3 = 2X1Y1Z1,

Z3 = Z4

1 −X4

1 ,

Y3 = 2Y 4

1 − aX2

3 − Z2

3 .

(8)

These formulae are again advantageous when

used with both versions of the modified coordi-

nates. We reproduce both versions of the modified

coordinates with the names “modified Jacobi quar-

tic v.3a” and “modified Jacobi quartic v3.b” to em-

phasize the use of the new doubling formulae to-

gether with the new addition formulae (3). A point

(X1: Y1: Z1: U1: V1: W1) can be doubled with the algo-

rithm

X3 ← 2Y1W1, Z3 ← (V1 − U1)(V1 + U1), U3 ← X2

3 ,

V3 ← Z2

3 , W3 ← ((X3 + Z3)
2
− U3 − V3)/2,

Y3 ← 2Y 4

1 − aU3 − V3.

Doubling costs 2M+5S+1D in both versions of the

modified coordinates. A comparison of our results

with the literature is given as follows. The operation

counts from the first three entries are from (Bernstein

& Lange 2007b).

Jacobi quartic Doubling

Bernstein/Lange “dbl-2007-bl” 1M+9S+1D

Hisil/Carter/Dawson “dbl-2007-hcd” 2M+6S+2D

Feng/Wu “dbl-2007-fw-4” 8S+3D

(Hisil et al. 2007) 3M+4S

This work 2M+5S+1D

For further comparison, see modified Jacobi quar-

tic v.2a, modified Jacobi quartic v2.b, modified Jacobi

quartic v.3a, and modified Jacobi quartic v3.b in the

appendix.
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2.2 Jacobi intersection form

The uses of these curves in cryptology are explained

by Chudnovsky & Chudnovsky (1986) and Liardet &

Smart (2001). The explicit formulae for the group law

date back to (Jacobi 1829). A Jacobi intersection form

elliptic curve over K is defined by

{
s2 + c2 = 1

as2 + d2 = 1

where a ∈ K with a(1 − a) 6= 0. Birational maps

between Weierstrass and Jacobi intersection curves

can be found in (Liardet & Smart 2001), (Bernstein &

Lange 2007b), and (Bernstein & Lange 2007a). Fol-

lowing the notation of (Chudnovsky & Chudnovsky

1986), the affine version of the unified addition for-

mulae are given by

(s3, c3, d3) = (s1, c1, d1) + (s2, c2, d2)

where

s3 =
s1c2d2 + c1d1s2

c2

2
+ d2

1
s2

2

,

c3 =
c1c2 − s1d1s2d2

c2

2
+ d2

1
s2

2

,

d3 =
d1d2 − as1c1s2c2

c2

2
+ d2

1
s2

2

.

(9)

The identity element is the point (0, 1, 1). The neg-

ative of a point (s, c, d) is (−s, c, d). Chudnovsky &

Chudnovsky (1986) use projective homogenous co-

ordinates to eliminate field inversions. In this sys-

tem, each point is represented by the quadruplet

(S: C: D: T ) which satisfies the equations S2 + C2 =
T 2 and aS2 + D2 = T 2 simultaneously and corre-

sponds to the affine point (S/T, C/T, D/T ) with T 6=
0. The identity element is represented by (0: 1: 1: 1).
The negative of (S: C: D: T ) is (−S: C: D: T ). The

point addition (9) in projective homogenous coordi-

nates is given by

(S3: C3: D3: T3) = (S1: C1: D1: T1) + (S2: C2: D2: T2)

where

S3 = S1T1C2D2 + C1D1S2T2,

C3 = C1T1C2T2 − S1D1S2D2,

D3 = D1T1D2T2 − aS1C1S2C2,

T3 = D2

1S2

2 + T 2

1 C2

2 .

(10)

To eliminate several field multiplications, we

modify the homogenous projective coordinates

where each point is represented by the sextuplet,

(S: C: D: T : SC: DT ). The points represented by

(S1: C1: D1: T1: U1: V1) and (S2: C2: D2: T2: U2: V2) with

U1 = S1C1, V1 = D1T1, U2 = S2C2, V2 = D2T2 can be

added with the algorithm

E ← S1D2, F ← C1T2, G← D1S2, H ← T1C2,

J ← U1V2, K ← V1U2,

S3 ← (H + F )(E + G)− J −K,

C3 ← (H + E)(F −G)− J + K,

D3 ← (V1 − aU1)(U2 + V2) + aJ −K,

T3 ← (H + G)2 − 2K, U3 ← S3C3, V3 ← D3T3.

The unified point addition costs 11M + 1S +
2D in the modified coordinates. Assuming that

(S2: C2: D2: T2: U2: V2) is cached, the readdition costs

11M + 1S + 2D. A 10M + 1S + 2D mixed addition is

easily derived by setting T2 = 1. We use the name

“modified Jacobi intersection” to refer to this system.

A similar algorithm can be used for projective ho-

mogenous coordinates. The unified addition costs

13M + 1S + 2D computing U1 = S1C1, V1 = D1T1,

U2 = S2C2, V2 = D2T2 on the fly, and not com-

puting U3 and V3. Following this and assuming

that (S2: C2: D2: T2) is cached, the readdition costs

11M + 1S + 2D with the extra caching of U2 and V2.

A 10M + 1S + 2D mixed addition is then derived by

setting T2 = 1. We use the name “Jacobi intersection

v.2” to refer to this system which uses the new addi-

tion algorithm. A comparison of our results with the

literature is given as follows.

Jacobi intersection Addition

(Chudnovsky & Chudnovsky 1986) 14M+2S+1D

(Liardet & Smart 2001) 13M+2S+1D

This work (projective) 13M+1S+2D

This work (modified) 11M+1S+2D

Efficient doubling formulae for the modified Jacobi

intersection coordinates can be derived starting from

the unified addition formulae (10). We symbolically

input the same points into the original addition for-

mulae and obtain

(s3, c3, d3) = [2](s1, c1, d1)

where

s3 =
2s1c1d1

c2

1
+ s2

1
d2

1

,

c3 =
c2

1 − s2

1d
2

1

c2

1
+ s2

1
d2

1

,

d3 =
d2

1 − as2

1c
2

1

c2

1
+ s2

1
d2

1

.

(11)

Using the defining equations, s2 + c2 = 1 and as2 +
d2 = 1, we replace c2

1
with c2

1
(as2

1
+ d2

1
) (only for the

denominators) and s2

1
d2

1
with (1 − c2

1
)d2

1
. This yields

s3 = (2s1c1d1)/(c
2

1(as2

1 + d2

1) + (1− c2

1)d
2

1),
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c3 = (c2

1(as2

1 + d2

1)− (1− c2

1)d
2

1)/

(c2

1(as2

1 + d2

1) + (1− c2

1)d
2

1),

d3 = (d2

1 − as2

1c
2

1)/(c
2

1(as2

1 + d2

1) + (1− c2

1)d
2

1).

These substitutions give an intermediate formula

for c3 where

s3 = (2s1c1d1)/(d
2

1 + as2

1c
2

1),

c3 = (as2

1c
2

1 + 2c2

1d
2

1 − d2

1)/(d
2

1 + as2

1c
2

1),

d3 = (d2

1 − as2

1c
2

1)/(d
2

1 + as2

1c
2

1).

Finally, we replace 2c2

1
d2

1
with 2c2

1
(s2

1
+ c2

1
− as2

1
) in

c3.

s3 = (2s1c1d1)/(as2

1c
2

1 + d2

1),

c3 = (as2

1c
2

1 + 2c2

1(s
2

1 + c2

1 − as2

1)− d2

1)/(as2

1c
2

1 + d2

1),

d3 = (d2

1 − as2

1c
2

1)/(as2

1c
2

1 + d2

1).

The new following doubling formulae are given by

(s3, c3, d3) = [2](s1, c1, d1)

where

s3 =
2s1c1d1

d2

1
+ as2

1
c2

1

,

c3 =
−d2

1 − as2

1c
2

1 + 2(s2

1c
2

1 + c4

1)

d2

1
+ as2

1
c2

1

,

d3 =
d2

1 − as2

1c
2

1

d2

1
+ as2

1
c2

1

.

(12)

The new doubling formulae (12) in projective ho-

mogenous coordinates are given by

(S3: C3: D3: T3) = [2](S1: C1: D1: T1)

where

S3 = 2S1C1D1T1,

C3 = −D2

1T 2

1 − aS2

1C2

1 + 2(S2

1C2

1 + C4

1),

D3 = D2

1T 2

1 − aS2

1C2

1 ,

T3 = D2

1T 2

1 + aS2

1C2

1 .

(13)

Now, (S1: C1: D1: T1: U1: V1) can be doubled with

the algorithm

E ← V 2

1 , F ← U2

1 , G← aF, T3 ← E + G,

D3 ← E −G, C3 ← 2(F + C4

1 )− T3,

S3 ← (U1 + V1)
2
−E − F, U3 ← S3C3, V3 ← D3T3.

It is easy to see that point doubling costs 2M +
5S+1D both on projective homogenous and modified

projective homogenous coordinates. A comparison

of our results with the literature is given as follows.

Jacobi intersection Doubling

(Liardet & Smart 2001) 4M+3S

(Bernstein & Lange 2007b) 3M+4S

This work 2M+5S+1D

2.3 Edwards form

The uses of these curves in cryptology are ex-

plained by Bernstein & Lange (2007c), Bernstein

et al. (2007), and Bernstein & Lange (2007d). An Ed-

wards form elliptic curve over K is defined by x2 +
y2 = c2(1+dx2y2) where c, d ∈ K with cd(1−c4d) 6= 0.
Birational maps between Weierstrass and Edwards

curves are given by (Bernstein & Lange 2007c). The

affine unified addition formulae are given by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1y2 + y1x2

c(1 + dx1y1x2y2)
,

y3 =
y1y2 − x1x2

c(1− dx1y1x2y2)
.

(14)

The identity element is the point (0, c). The neg-

ative of a point (x, y) is (−x, y). We first describe

how new addition formulae for Edwards curves can

be derived from the original addition formulae in

(Bernstein & Lange 2007c). Consider the relations

x2
1 +y2

1 −c2(1+dx2
1y

2
1) = 0, x2

2 +y2
2 −c2(1+dx2

2y
2
2) = 0

obtained from the curve equation. From this, we can

express c and d in terms of x1, x2, y1, y2 as follows.

c2 =
x2

1x
2

2y
2

1 − x2

1x
2

2y
2

2 + x2

1y
2

1y2

2 − x2

2y
2

1y2

2

x2

1
y2

1
− x2

2
y2

2

,

d =
x2

1 − x2

2 + y2

1 − y2

2

x2

1
x2

2
y2

1
− x2

1
x2

2
y2

2
+ x2

1
y2

1
y2

2
− x2

2
y2

1
y2

2

.

Substitutions can be made in the original addition

formulae to obtain

x3 = (x1y2 + y1x2)/((1/c)(x2

1x
2

2y
2

1 − x2

1x
2

2y
2

2 + x2

1y
2

1y2

2 −

x2

2y
2

1y2

2)/(x
2

1y
2

1 − x2

2y
2

2)(1 + (x2

1 − x2

2 + y2

1 − y2

2)/

(x2

1x
2

2y
2

1 − x2

1x
2

2y
2

2 + x2

1y
2

1y2

2 − x2

2y
2

1y2

2)x1y1x2y2)),

y3 = (y1y2 − x1x2)/((1/c)(x2

1x
2

2y
2

1 − x2

1x
2

2y
2

2 + x2

1y
2

1y2

2 −

x2

2y
2

1y2

2)/(x
2

1y
2

1 − x2

2y
2

2)(1− (x2

1 − x2

2 + y2

1 − y2

2)/

(x2

1x
2

2y
2

1 − x2

1x
2

2y
2

2 + x2

1y
2

1y2

2 − x2

2y
2

1y2

2)x1y1x2y2)).

After straightforward simplifications, the new addi-

tion formulae are given by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
c(x1y1 + x2y2)

x1x2 + y1y2

,

y3 =
c(x1y1 − x2y2)

x1y2 − y1x2

.

(15)

Note, the formula for computing y3 is not defined

for (x1, y1) = (x2, y2) and hence this addition is not

unified. For this reason, we call the new formulae

dedicated addition for Edwards curves. These new
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formulae show an interesting fact that dedicated ad-

dition on the Edwards curves does not depend on the

curve parameter d. Therefore, arbitrary selections of
d do not cause any efficiency loss.

Bernstein & Lange (2007c) use homogenous pro-

jective coordinates to prevent field inversions that

appear in the affine formulae. We also represent

each point in projective homogenous coordinates for

the new formulae (15). Each point is represented

by the triplet (X : Y : Z) which satisfies the projective

curve (X2 + Y 2)Z2 = c2(Z4 + dX2Y 2) and corre-

sponds to the affine point (X/Z, Y/Z) with Z 6= 0.
The identity element is represented by (0 : c : 1). The
negative of (X : Y : Z) is (−X : Y : Z). The new addi-

tion formulae in projective homogenous coordinates

are given by

(X3: Y3: Z3) = (X1: Y1: Z1) + (X2: Y2: Z2)

where

X3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2

2 + Z2

1X2Y2),

Y3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z
2

2 − Z2

1X2Y2),

Z3 = kZ2

1Z2

2 (X1X2 + Y1Y2)(X1Y2 − Y1X2)

(16)

with k = 1/c. Now, (X1: Y1: Z1) and (X2: Y2: Z2) can
be added with the algorithm

A← X1Z2, B ← Y1Z2, C ← Z1X2, D← Z1Y2,

E ← AB, F ← CD, G← E + F, H ← E − F,

J ← (A− C)(B + D) −H, K ← (A + D)(B + C)−G,

X3 ← GJ, Y3 ← HK, Z3 ← k JK.

We also investigate the case for inverted Ed-

wards coordinates introduced by Bernstein & Lange

(2007d). In this system, each triplet (X : Y : Z) satis-
fies the curve (X2+Y 2)Z2 = c2(dZ4+X2Y 2) and cor-
responds to the affine point (Z/X, Z/Y ) with XY Z 6=
0. The identity element is represented by the vector

(c, 0, 0). The negative of (X : Y : Z) is (−X : Y : Z). The
new addition formulae (15) in inverted Edwards coor-

dinates are given by

(X3: Y3: Z3) = (X1: Y1: Z1) + (X2: Y2: Z2)

where

X3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z
2

2 − Z2

1X2Y2),

Y3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2

2 + Z2

1X2Y2),

Z3 = c(X1Y1Z
2

2 + Z2

1X2Y2)(X1Y1Z
2

2 − Z2

1X2Y2).

(17)

(X1: Y1: Z1) and (X2: Y2: Z2) can be added with the

algorithm

A← X1Z2, B ← Y1Z2, C ← Z1X2, D← Z1Y2,

E ← AB, F ← CD, G← E + F, H ← E − F,

X3 ← ((A + D)(B + C)−G)H,

Y3 ← ((A− C)(B + D) −H)G, Z3 ← c GH.

A detail to mention is the readdition in projective

homogenous coordinates. At this stage, it is more

convenient to divide each coordinate of the new for-

mulae (16) by Z1Z2. The readdition of (X2: Y2: Z2)
can then be performed with the cached values R1 =
X2Y2 and R2 = Z2

2 using the algorithm

A← X1Y1, B ← Z2

1 , C ← R2A, D← R1B,

E ← (X1 −X2)(Y1 + Y2)− A + R1,

F ← (X1 + Y2)(Y1 + X2)− A−R1,

G← ((Z1 + Z2)
2
−B −R2)/2, X3 ← E(C + D),

Y3 ← F (C −D), Z3 ← k EFG.

In the rest of this section, we assume c = 1. See

(Bernstein & Lange 2007c, Section 4). The dedi-

cated addition then costs 11M for both coordinate

systems. A 9Mmixed addition can be derived by set-

ting Z2 = 1 again for both coordinate systems. The

readdition costs 9M + 2S in projective homogenous

coordinates. A comparison of our results with the lit-

erature is given as follows.

Edwards (projective) Addition

(Bernstein & Lange 2007c) 10M+1S+1D

This work 11M

Edwards (projective) Readdition

(Bernstein & Lange 2007c) 10M+1S+1D

This work 9M+2S

Edwards (projective) Mixed addition

(Bernstein & Lange 2007c) 9M+1S+1D

This work 9M

See “Edwards v.2” in Table 1 and Table 2 in the

appendix for further comparison.

In fact, the readdition algorithm shows that a

modified version of the homogenous projective Ed-

wards coordinates in which the points are repre-

sented by the quintuplet (X : Y : Z: Z2: XY ) permits

an inversion-free addition in 9M+ 2S using the same

algorithm. For S < M, this is faster than the 11M al-

gorithm that we have just described. However, the

3M + 4S doubling algorithm in (Bernstein & Lange

2007c) seems to cost 5M+ 2S in this coordinate sys-

tem and also the mixed addition costs 8M+2Swhich

is slower than the 9M mixed addition given above.

Therefore, we do not further consider this system.

The new addition and its associated readdition in

inverted Edwards coordinates are not as advanta-

geous as they are for the homogenous projective Ed-

wards coordinates. On the other hand, the mixed

addition can be used in some cases. A comparison

of the proposed mixed addition with the literature is

given as follows.
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Edwards (inverted) Mixed addition

(Bernstein & Lange 2007d) 8M+1S+1D

This work 9M

See “Inverted Edwards v.2” in Table 1 and Table 2

in the appendix.

We also refer the reader to (Bernstein et al. 2008).

We should note here that our more recent work (Hisil

et al. 2008) which was published before this work,

further improves these operation counts on twisted

Edwards curves.

2.4 Hessian form

The uses of these curves in cryptology are ex-

plained by Chudnovsky & Chudnovsky (1986), Joye

& Quisquater (2001), and Smart (2001). An el-

liptic curve over K in Hessian form is defined by

x3 + y3 + 1 = 3dxy where d ∈ K with d3 6= 1. Bira-
tional maps between Weierstrass and Hessian curves

can be found in (Smart 2001), (Joye & Quisquater

2001), (Bernstein & Lange 2007b), and (Bernstein

& Lange 2007a). The addition formulae attributed

to Sylvester in (Chudnovsky & Chudnovsky 1986,

pp.424-425) are given in (Bernstein & Lange 2007b)

by

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
y2

1x2 − y2

2x1

x2y2 − x1y1

,

y3 =
x2

1y2 − x2

2y1

x2y2 − x1y1

.

(18)

The identity element is the point at infinity. The

negative of a point (x, y) is (y, x). On projective

homogenous coordinates, each point is represented

by the triplet (X : Y : Z) which satisfies the projective

curve X3 + Y 3 + Z3 = 3dXY Z and corresponds to

the affine point (X/Z, Y/Z) with Z 6= 0. The identity

element is represented by (−1: 1: 0). The negative of

(X : Y : Z) is (Y : X : Z). The point addition (22) formu-

lae (with each coordinate multiplied by 2) in projec-

tive homogenous coordinates are given by,

(X3: Y3: Z3) = (X1: Y1: Z1) + (X2: Y2: Z2)

where

X3 = 2Y 2

1 X2Z2 − 2X1Z1Y
2

2 ,

Y3 = 2X2

1Y2Z2 − 2Y1Z1X
2

2 ,

Z3 = 2Z2

1X2Y2 − 2X1Y1Z
2

2 .

(19)

The point addition algorithms in (Chudnovsky &

Chudnovsky 1986) and (Joye & Quisquater 2001) re-

quire 12M. To gain speedup in the case S < M,

we modify projective homogenous coordinates with

a more redundant representation of points using

the nonuplet, (X : Y : Z: X2: Y 2: Z2: 2XY : 2XZ: 2Y Z).
Two distinct points represented by

(X1: Y1: Z1: R1: S1: T1: U1: V1: W1)

and

(X2: Y2: Z2: R2: S2: T2: U2: V2: W2)

with R1 = X2

1
, S1 = Y 2

1
, T1 = Z2

1
, U1 = 2X1Y1, V1 =

2X1Z1, W1 = 2Y1Z1, R2 = X2
2 , S2 = Y 2

2 , T2 = Z2
2 ,

U2 = 2X2Y2, V2 = 2X2Z2, W2 = 2Y2Z2 can be added

with the algorithm

X3 ← S1V2 − V1S2, Y3 ← R1W2 −W1R2,

Z3 ← T1U2 − U1T2, R3 ← X2

3 , S3 ← Y 2

3 , T3 ← Z2

3 ,

U3 ← (X3 + Y3)
2
−R3 − S3,

V3 ← (X3 + Z3)
2
−R3 − T3,

W3 ← (Y3 + Z3)
2
− S3 − T3.

The addition2 costs 6M+6S in the modified Hessian

coordinates. Assuming that

(X2: Y2: Z2: R2: S2: T2: U2: V2: W2)

is cached, the readdition costs 6M + 6S. A 5M + 6S
mixed addition can then be derived by setting Z2 =
1. We use the name “modified Hessian” to refer to

these results in Section 5. A comparison of our re-

sults with the literature is given as follows.

Hessian Addition

(Chudnovsky & Chudnovsky 1986) 12M

(Joye & Quisquater 2001) 12M

This work 6M+6S

A similar algorithm can be used for the homoge-

nous projective coordinates for the readdition and

the mixed addition. Assuming that (X2: Y2: Z2) is

cached, the readdition costs 6M + 6S with the ex-

tra caching of R2, S2, T2, U2, V2, W2. A 5M+ 6Smixed

addition can be derived by setting Z2 = 1. We use

the name “Hessian v.2” to refer to these results in

Section 5. Also see (Hisil et al. 2007, pp.146–147).

For speed oriented implementations, Sylvester’s

doubling formulae are given by

(x3, y3) = [2](x1, y1)

where

x3 =
y1(1− x3

1)

x3

1
− y3

1

,

y3 = −

x1(1− y3

1)

x3

1
− y3

1

.

(20)

2Point doubling can be performed after a suitable permutation

of coordinates as follows (Z1:X1:Y1:T1:R1:S1:V1:W1: U1)+
(Y1:Z1:X1:S1: T1: R1:W1:U1:V1) using the addition formulae

in the modified Hessian coordinates. This strategy which pro-

vides unification of the addition formulae, originates from (Joye

& Quisquater 2001, p.6).
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When working with the modified coordinates, there

exists a doubling strategy which requires no addi-

tional effort for generating the new coordinates. The

doubling formulae (20) (with each coordinate multi-

plied by 4) in projective homogenous coordinates are

given by

X3 = (2X1Y1 − 2Y1Z1)(2X1Z1 + 2(X2

1 + Z2

1 )),

Y3 = (2X1Z1 − 2X1Y1)(2Y1Z1 + 2(Y 2

1 + Z2

1 )),

Z3 = (2Y1Z1 − 2X1Z1)(2X1Y1 + 2(X2

1 + Y 2

1 )).

(21)

Now, (X1: Y1: Z1: R1: S1: T1: U1: V1: W1) can be dou-

bled with the algorithm

X3 ← (U1 −W1)(V1 + 2(R1 + T1)),

Y3 ← (V1 − U1)(W1 + 2(S1 + T1)),

Z3 ← (W1 − V1)(U1 + 2(R1 + S1)), R3 ← X2

3 ,

S3 ← Y 2

3 , T3 ← Z2

3 , U3 ← (X3 + Y3)
2
−R3 − S3,

V3 ← (X3 + Z3)
2
−R3 − T3,

W3 ← (Y3 + Z3)
2
− S3 − T3.

Point doubling costs 3M + 6S in both homogenous

projective and modified projective homogenous co-

ordinates. A comparison of our results with the liter-

ature is given as follows.

Hessian Doubling

(Chudnovsky & Chudnovsky 1986) 6M+3S

(Hisil et al. 2007) 7M+1S

(Hisil et al. 2007) 3M+6S

This work 3M+6S

We comment that it is possible to derive unified

addition formulae which do not require any permuta-

tions of the coordinates to perform doubling. Assum-

ing3 x1x2 6= y1y2, we multiply the numerator and the

denominator of Sylvester’s addition formulae for x3

by (x3

1
x3

2
− y3

1
y3

2
) and obtain

x3 =
(x3

1x
3

2 − y3

1y3

2)(y
2

1x2 − y2

2x1)

(x3

1
x3

2
− y3

1
y3

2
)(x2y2 − x1y1)

.

This yields

x3 = (x1y
2

1(y
3

2 + x3

2)(y
2

2y1 + x2

1x2)−

x2y
2

2(y
3

1 + x3

1)(y
2

1y2 + x2

2x1))/

((x3

1x
3

2 − y3

1y3

2)(x2y2 − x1y1)).

Using the curve equation x2 + y2 + 1 = 3dxy, the
above expression can be rewritten as

x3 = (x1y
2

1(3dx2y2 − 1)(y2

2y1 + x2

1x2)−

x2y
2

2(3dx1y1 − 1)(y2

1y2 + x2

2x1))/

((x3

1x
3

2 − y3

1y3

2)(x2y2 − x1y1)).

3This is equivalent to saying (x1, y1) 6= −(x2, y2). The contrary

case should be handled separately as explained in Section 4.

The numerator can be factorized and cancels with

(x2y2−x1y1) in the denominator, giving the new addi-

tion formulae. The corresponding formula for y3 can

be similarly derived from symmetry. We then have

(x3, y3) = (x1, y1) + (x2, y2)

where

x3 =
x1x2(x1y1 + x2y2 − 3dx1x2y1y2) + y2

1y2

2

x3

1
x3

2
− y3

1
y3

2

,

y3 = −

y1y2(x1y1 + x2y2 − 3dx1x2y1y2) + x2

1x
2

2

x3

1
x3

2
− y3

1
y3

2

.

(22)

The new addition formulae on the projective coor-

dinates are given by

X3 = X1X2(X1Y1Z
2

2 + X2Y2Z
2

1 − 3dX1Y1X2Y2) +

Y 2

1 Z1Y
2

2 Z2,

Y3 = −Y1Y2(X1Y1Z
2

2 + X2Y2Z
2

1 − 3dX1Y1X2Y2)−

X2

1Z1X
2

2Z2,

Z3 = X3

1X3

2 − Y 3

1 Y 3

2 .

We again use a modified version of the stan-

dard coordinates. Two points (X1: Y1: Z1: V1: W1) and
(X2: Y2: Z2: V2: W2) with V1 = X1Y1, W1 = Z2

1 , V2 =
X2Y2, W2 = Z2

2
can be added with the algorithm

A← X1X2, B ← Y1Y2,

C ← ((Z1 + Z2)
2
−W1 −W2)/2, D← A2, E ← B2,

F ← D + E, G← ((A + B)2 − F )/2,

H ← (V1 + W1)(V2 + W2)− (3d + 1)G− C2,

X3 ← AH + EC, Y3 ← −BH −DC,

Z3 ← (A−B)(G + F ), V3 ← X3Y3, W3 ← Z2

3 ,

This strategy costs 9M + 6S + 1D which is faster

than the unified addition in Weierstrass form in (Brier

& Joye 2002). However, it is slower than all other

unified additions considered in this paper. In addi-

tion, doubling, readdition and mixed addition formu-

lae that can be derived from these formulae are not

attractive. Therefore, we omit these formulae from

further comparison with other systems. We are con-

tinuing our search to find other unified addition for-

mulae which can be faster than the proposed formu-

lae.

3 Naming of different systems

The descriptions of systems which are not defined

so far (e.g. Jacobi quartic v.1a), can be found in the

appendix with the references.
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4 Handling exceptional cases

An elliptic curve which can be written in one of these

forms always has points of small order (other than

the identity). The arithmetic of these points can

cause division by zero exceptions when affine formu-

lae are used. These exceptional cases should be han-

dled separately. These cases sometimes require log-

ical checks in the projective representations as well.

Cryptographic applications typically use a large

prime order subgroup in which these points (except

the identity element, O) do not exist. If this is the

case, an implementer only needs to be careful about

the identity element. When the points P and Q are

to be added, a general strategy to handle the excep-

tional cases as follows. Let R be the sum of P and

Q with P 6= Q. Then, R = Q if P = O; R = P if

Q = O; R = O if P = −Q. For all other inputs,

the sum can be computed with the relevant formu-

lae given in Section 2. Restricting attention to a large

prime order subgroup, there are some formulae and

coordinate system combinations which do not cause

any exception. These are Edwards v.1a, v.1b, Ja-

cobi quartic v.1a, v.1b, Jacobi intersection v.1, v.2,

modified Jacobi quartic v.1, v.2a, v.2b, v.3a, v.3b and

modified Jacobi intersection. Note, for Edwards v.1a

and v.1b, the algorithms work for the whole group of

points if d is a nonsquare in K. This result is from

(Bernstein & Lange 2007c). Again restricting atten-

tion to a large prime order subgroup, the systems

which need logical checks are inverted Edwards (as

explained in (Bernstein & Lange 2007d)) v.1, v.2, Ed-

wards v.2, Hessian v.1, v.2, and modified Hessian.

5 Comparison and conclusion

There are several scalar multiplication algorithms

which can benefit from the optimizations in this pa-

per. We only make comparisons for the popular

scalar multiplication strategies using popular elliptic

curve parameterizations. We exclude the cost of the

final conversion to affine coordinates from our esti-

mations.

Resource limited environments. In memory

limited environments (such as smartcards), there

is not enough space for storing precomputation ta-

bles. For these environments, scalar multiplication

with the “Non-adjacent form without precomputa-

tion” method can be a convenient selection. This al-

gorithm requires 1 doubling, 1/3 mixed addition per

scalar bit. The cost estimates are depicted in Table 1.

For example, the best timings for 256-bit scalar

multiplication (S/M = 0.8,D/M ≈ 0) are obtained

by modified Jacobi quartic v.3a and v.3b which costs

approximately 2253M. The same operation requires

approximately 2662M for Weierstrass form (a = −3)
using projective weighted (Jacobian) coordinates.

Some points representations such as the modified

Hessian coordinates require extra storage for repre-

senting each point. This is certainly a disadvantage

for space limited applications. However, the primary

focus is on the performance in some cases where the

processor bandwidth is low.

Speed implementations. This is the most dif-

ficult case in which to state a fair comparison be-

cause the optimum speeds are somewhat dependent

on the choice of the scalar multiplication algorithm.

For instance, Doche/Icart/Kohel-3 curves in (Doche

et al. 2006) have very fast tripling formulae which

can highly benefit from double base number system

scalar multiplication. For double-and-add type scalar

multiplication algorithms, one might expect to gain

the best timing with the system which has the fastest

doubling operation since point doubling is the dom-

inant operation. However, the readdition and the

mixed addition costs also play important roles in the

overall timings. We can roughly state that the fast

systems for S/M = 0.8,D/M ≈ 0 are modified Jacobi

quartics v.1, v.2a, v.2b, v.3a, v.3b, inverted Edwards

v.1a, v.1b, Edwards v.2, and modified Jacobi intersec-

tion. At least, these systems can be very competitive

with the Montgomery ladder which has the fixed cost

of 5M+ 4S+ 1D per scalar bit in (Montgomery 1987)

and 4M + 5S + 3D in (Castryck et al. 2008) for Mont-

gomery curves and 3M+6S+3D in (Gaudry & Lubicz

2008) for Kummer surfaces (the genus 1 case).

To make the comparison easier, we fix the “signed

4-bit sliding windows” scalar multiplication algorithm

analyzed in (Bernstein & Lange 2007c). The al-

gorithm requires 0.98 doublings, 0.17 readditions,

0.025 mixed additions and 0.0035 additions per

scalar bit for 256-bit scalars. We use this analysis

to report current rankings between different systems

in Table 2.

With our improvements, either modified Jacobi

quartic v.2b or v.3b provides the fastest timings for

almost all S/M and D/M values. For example, 256-

bit scalar multiplication (S/M = 0.8, D/M ≈ 0)
costs approximately 1970M for modified Jacobi quar-

tic v.3a, v.3b. The same operation requires approx-

imately 2399M for Weierstrass form (a = −3) using
projective weighted (Jacobian) coordinates.

Side channel attacks. Targeting the embed-

ded implementations, we fix the “Non-adjacent form

without precomputation with SPA protection" scalar

multiplication algorithm. This is almost the same as

using the “Non-adjacent form without precomputa-

tion” method with the difference that unified addi-

tion is used for both point doubling and point addi-

tion. This strategy hides the side channel informa-

tion from the attacker who needs more samplings

10



and statistical tools for a successful attack. See Co-

hen et al. (2005, Section 29.1.2) as a general refer-

ence. This algorithm invokes 4/3 unified additions

per scalar bit. The modified coordinates for Hessian

and Jacobi intersection forms are only useful here.

The 7M+ 3S+ 1D unified addition of modified Jacobi

quartic v.2b, v.3b is the fastest among all other uni-

fied additions. The cost estimates for various sys-

tems are depicted in Table 3.

For example, 256-bit scalar multiplication (S/M =
0.8,D/M ≈ 0) costs approximately 3208M for mod-

ified Jacobi quartic v.2b, v.3b. The same operation

requires approximately 5257M for Weierstrass form

(a = −3) using homogenous projective coordinates.
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A Appendix

The appendix is composed of three tables. The un-

derlined values are the fastest timings in that col-

umn. The rows are sorted with respect to the column

(D = 0,S = 0.8M) in descending order. “REG" stands

for the number of coordinates in each system. “DBL",

“mADD", “reADD", “ADD", and “uADD" stand for the

costs of doubling, mixed addition, readdition, addi-

tion and unified addition, respectively. Some forms

have alternative versions due to alternative opera-

tion counts for different S/M and D/M values. It is

possible to include more versions due to the rich-

ness of current formulae and algorithms. On the

other hand, this will decrease readability of the ta-

bles. Therefore, we only provide the most significant

cases. The references for the comparisons are;

- Doche/Icart/Kohel-2; all operations from (Doche

et al. 2006) and (Bernstein & Lange 2007b). The

appearance of (Bernstein & Lange 2007b) is to

emphasize that faster algorithms are available

and are obtained from this database. This is the

same for other items in the list.

- Edwards; all operations for v.1a, v.1b, and dou-

bling for v.2 from (Bernstein & Lange 2007c).

- Hessian; doubling for v.1, v.2 from (Hisil et al.

2007), readdition, mixed addition, and addition

for v.1, addition for v.2 from (Chudnovsky &

Chudnovsky 1986).

- Inverted Edwards; all operations for v.1 and dou-

bling, readdition and addition for v.2 from (Bern-

stein & Lange 2007d).

- Jacobian (a = −3) and Jacobian; all operations

from (Chudnovsky & Chudnovsky 1986), (Cohen

et al. 1998), and (Bernstein & Lange 2007b).

- Jacobi intersection; doubling, addition, readdi-

tion, from (Liardet & Smart 2001) and (Bernstein

& Lange 2007b), mixed addition from (Hisil et al.

2007).

- Jacobi quartic; doubling and addition for v.1a,

v.1b from (Billet & Joye 2003), (Duquesne 2007),

and (Bernstein & Lange 2007b). We note that

the 2M+6S+2D doubling formulae/algorithm by

Hisil, Dawson and Carter reported in (Bernstein

& Lange 2007b) cost 1M+ 7S+ 2D if the coordi-

nate X3 is computed as (X1Z1+Y1)
2−(X1Z1)

2−
Y 2

1 . Jacobi quartic; readdition, mixed addition

from (Billet & Joye 2003), (Duquesne 2007), and

(Bernstein & Lange 2007b).

- Modified Jacobi quartic; doubling for v.1, v.2a,

v.2b (Hisil et al. 2007) and (Bernstein & Lange

2007b), readdition, mixed-addition, and addition

for v.1 from (Duquesne 2007) and (Bernstein &

Lange 2007b).

- Projective (a = −3) and Projective; doubling,

readdition, mixed addition and addition for

(Chudnovsky & Chudnovsky 1986) and (Bern-

stein & Lange 2007b), unified addition from

(Brier & Joye 2002) and (Bernstein & Lange

2007b).

The rest of the operation counts are from this pa-

per and they are given in bold type in Table 1, Ta-

ble 2, and Table 3.
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Table 1: Point multiplication cost estimates (inM) per scalar bit of the scalar for “Non-adjacent form without precomputation" method. The underlined

values are the fastest timing estimates in that column. The rows are sorted with respect to the column (D = 0,S = 0.8M) in descending order. The new

operation counts are given in bold.

M S D M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 5 6 1 9 2 0 15.667 14.333 13.467 15.167 13.833 12.967 14.667 13.333 12.467

Projective (a=-3) 3 7 3 0 9 2 0 13.667 12.933 12.457 13.667 12.933 12.457 13.667 12.933 12.457

Jacobi-quartic v.1a 3 1 9 0 7 3 1 13.667 11.667 10.367 13.500 11.500 10.200 13.333 11.333 10.033

Hessian v.1 3 7 1 0 10 0 0 11.333 11.133 11.003 11.333 11.133 11.003 11.333 11.133 11.003

Hessian v.2 3 3 6 0 5 6 0 12.667 11.067 10.027 12.667 11.067 10.027 12.667 11.067 10.027

Modified Hessian 9 3 6 0 5 6 0 12.667 11.067 10.027 12.667 11.067 10.027 12.667 11.067 10.027

Jacobian 3 1 8 1 7 4 0 13.667 11.800 10.587 13.167 11.300 10.087 12.667 10.800 9.587

Jacobian (a=-3) 3 3 5 0 7 4 0 11.667 10.400 9.577 11.667 10.400 9.577 11.667 10.400 9.577

Jacobi-intersection v.1 4 3 4 0 10 2 1 11.333 10.400 9.793 11.167 10.233 9.627 11.000 10.067 9.460

Jacobi-quartic v.1b 3 1 7 2 7 3 1 13.667 12.067 11.027 12.500 10.900 9.860 11.333 9.733 8.693

Doche/Icart/Kohel-2 4 2 5 2 8 4 1 13.333 12.067 11.243 12.167 10.900 10.077 11.000 9.733 8.910

Jacobi-intersection v.2 4 2 5 1 10 1 2 12.333 11.267 10.573 11.500 10.433 9.740 10.667 9.600 8.907

Modified Jacobi-intersection 6 2 5 1 10 1 2 12.333 11.267 10.573 11.500 10.433 9.740 10.667 9.600 8.907

Edwards v.1b 3 3 4 0 6 5 1 11.000 9.867 9.130 10.833 9.700 8.963 10.667 9.533 8.797

Edwards v.1a 3 3 4 0 9 1 1 10.667 9.800 9.237 10.500 9.633 9.070 10.333 9.467 8.903

Modified Jacobi-quartic v.1 6 3 4 0 7 3 1 10.667 9.667 9.017 10.500 9.500 8.850 10.333 9.333 8.683

Inverted Edwards v.2 3 3 4 1 9 0 0 11.000 10.200 9.680 10.500 9.700 9.180 10.000 9.200 8.680

Edwards v.2 3 3 4 0 9 0 0 10.000 9.200 8.680 10.000 9.200 8.680 10.000 9.200 8.680

Inverted Edwards v.1 3 3 4 1 8 1 1 11.333 10.467 9.903 10.667 9.800 9.237 10.000 9.133 8.570

Modified Jacobi-quartic v.2a 5 3 4 0 6 3 1 10.333 9.333 8.683 10.167 9.167 8.517 10.000 9.000 8.350

Modified Jacobi-quartic v.2b 6 3 4 0 6 3 1 10.333 9.333 8.683 10.167 9.167 8.517 10.000 9.000 8.350

Modified Jacobi-quartic v.3a 5 2 5 1 6 3 1 11.333 10.133 9.353 10.667 9.467 8.687 10.000 8.800 8.020
Modified Jacobi-quartic v.3b 6 2 5 1 6 3 1 11.333 10.133 9.353 10.667 9.467 8.687 10.000 8.800 8.020

1 DBL, 1 / 3 mADD per bit

System

DBL mADD

R
E

G

1
3



Table 2: Point multiplication cost estimates (in M) per scalar bit of the scalar for “Signed 4-bit Sliding Windows" method with 256 bit scalars. The

underlined values are the fastest timing estimates in that column. The rows are sorted with respect to the column (D = 0,S = 0.8M) in descending

order. The new operation counts are given in bold.

M S D M S D M S D M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 5 6 1 12 2 0 9 2 0 12 2 0 14.433 13.177 12.360 13.942 12.685 11.869 13.451 12.194 11.377

Projective (a=-3) 3 7 3 0 12 2 0 9 2 0 12 2 0 12.468 11.801 11.368 12.468 11.801 11.368 12.468 11.801 11.368

Jacobi-quartic v.1a 3 1 9 0 8 3 1 7 3 1 10 3 1 12.136 10.251 9.026 12.039 10.154 8.929 11.942 10.057 8.832

Hessian v.1 3 7 1 0 12 0 0 10 0 0 12 0 0 10.140 9.943 9.816 10.140 9.943 9.816 10.140 9.943 9.816

Jacobian 3 1 8 1 10 4 0 7 4 0 11 5 0 12.475 10.748 9.624 11.984 10.256 9.133 11.493 9.765 8.642

Hessian v.2 3 3 6 0 6 6 0 5 6 0 12 0 0 11.147 9.739 8.824 11.147 9.739 8.824 11.147 9.739 8.824

Modified Hessian 9 3 6 0 6 6 0 5 6 0 6 6 0 11.147 9.735 8.817 11.147 9.735 8.817 11.147 9.735 8.817

Jacobian (a=-3) 3 3 5 0 10 4 0 7 4 0 11 5 0 10.511 9.372 8.632 10.511 9.372 8.632 10.511 9.372 8.632

Doche/Icart/Kohel-2 4 2 5 2 12 5 1 8 4 1 12 5 1 12.213 11.042 10.280 11.134 9.962 9.201 10.054 8.883 8.121

Jacobi-intersection v.1 4 3 4 0 11 2 1 10 2 1 13 2 1 9.577 8.714 8.152 9.480 8.617 8.055 9.383 8.520 7.958

Jacobi-quartic v.1b 3 1 7 2 8 3 1 7 3 1 10 3 1 12.136 10.644 9.675 11.057 9.565 8.595 9.977 8.485 7.516

Edwards v.1b 3 3 4 0 7 5 1 6 5 1 7 5 1 9.376 8.396 7.759 9.279 8.299 7.662 9.182 8.202 7.565

Jacobi-intersection v.2 4 2 5 1 11 1 2 10 1 2 13 1 2 10.560 9.539 8.875 9.874 8.853 8.189 9.189 8.168 7.504

Edwards v.1a 3 3 4 0 10 1 1 9 1 1 10 1 1 9.182 8.357 7.821 9.085 8.260 7.724 8.988 8.163 7.627

Modified Jacobi-intersection 6 2 5 1 11 1 2 10 1 2 11 1 2 10.553 9.531 8.868 9.867 8.846 8.182 9.182 8.161 7.497

Edwards v.2 3 3 4 0 9 2 0 9 0 0 11 0 0 8.963 8.111 7.557 8.963 8.111 7.557 8.963 8.111 7.557

Modified Jacobi-quartic v.1 6 3 4 0 8 3 1 7 3 1 8 3 1 9.182 8.280 7.693 9.085 8.183 7.596 8.988 8.085 7.499

Inverted Edwards v.2 3 3 4 1 9 1 1 9 0 0 9 1 1 9.946 9.126 8.593 9.370 8.550 8.017 8.794 7.974 7.441

Inverted Edwards v.1 3 3 4 1 9 1 1 8 1 1 9 1 1 9.970 9.146 8.609 9.382 8.557 8.021 8.794 7.969 7.433

Modified Jacobi-quartic v.2a 5 3 4 0 7 3 1 6 3 1 7 4 1 8.991 8.088 7.501 8.894 7.991 7.404 8.797 7.894 7.307

Modified Jacobi-quartic v.2b 6 3 4 0 7 3 1 6 3 1 7 3 1 8.988 8.085 7.499 8.891 7.988 7.402 8.794 7.891 7.305

Modified Jacobi-quartic v.3a 5 2 5 1 7 3 1 6 3 1 7 4 1 9.974 8.874 8.159 9.386 8.286 7.571 8.797 7.698 6.983

Modified Jacobi-quartic v.3b 6 2 5 1 7 3 1 6 3 1 7 3 1 9.970 8.871 8.157 9.382 8.283 7.569 8.794 7.695 6.981

0.98 DBL, 0.17 reADD, 0.025 mADD, 0.0035 ADD per bit

System

DBL reADD mADD ADD

R
E

G

1
4



Table 3: Point multiplication cost estimates (in M) per scalar bit of the scalar for “Non-adjacent form without precomputation with SPA protection"

method. The underlined values are the fastest timing estimates in that column. The rows are sorted with respect to the column (D = 0,S = 0.8M) in

descending order. The new operation counts are given in bold.

M S D
D=M
S=M

D=M
S=0.8M

D=M
S=0.67M

D=0.5M
S=M

D=0.5M
S=0.8M

D=0.5M
S=0.67M

D=0
S=M

D=0
S=0.8M

D=0
S=0.67M

Projective 3 11 6 1 24.000 22.400 21.360 23.333 21.733 20.693 22.667 21.067 20.027

Projective (a=-1) 3 13 3 0 21.333 20.533 20.013 21.333 20.533 20.013 21.333 20.533 20.013

Jacobi-intersection v.1 4 13 2 1 21.333 20.800 20.453 20.667 20.133 19.787 20.000 19.467 19.120

Jacobi-intersection v.2 4 13 1 2 21.333 21.067 20.893 20.000 19.733 19.560 18.667 18.400 18.227

Jacobi-quartic v.1a, v.1b 3 10 3 1 18.667 17.867 17.347 18.000 17.200 16.680 17.333 16.533 16.013

Hessian v.1, v.2 3 12 0 0 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000 16.000

Modified Jacobi-intersection 6 11 1 2 18.667 18.400 18.227 17.333 17.067 16.893 16.000 15.733 15.560

Edwards v.1b 3 7 5 1 17.333 16.000 15.133 16.667 15.333 14.467 16.000 14.667 13.800

Edwards v.1a 3 10 1 1 16.000 15.733 15.560 15.333 15.067 14.893 14.667 14.400 14.227

Modified Hessian 9 6 6 0 16.000 14.400 13.360 16.000 14.400 13.360 16.000 14.400 13.360

Modified Jacobi-quartic v.1 6 8 3 1 16.000 15.200 14.680 15.333 14.533 14.013 14.667 13.867 13.347

Modified Jacobi-quartic v.2a, v.3a 5 7 4 1 16.000 14.933 14.240 15.333 14.267 13.573 14.667 13.600 12.907

Inverted Edwards v.1 3 9 1 1 14.667 14.400 14.227 14.000 13.733 13.560 13.333 13.067 12.893

Modified Jacobi-quartic v.2b, v.3b 6 7 3 1 14.667 13.867 13.347 14.000 13.200 12.680 13.333 12.533 12.013

4 / 3 uADD per bit

System

uADD

R
E

G

1
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