
A Lattice-Based Computationally-Efficient Private Information Retrieval
Protocol

(Extended version of WEWORC paper, presented in July 2007, in Bochum, Germany)

Carlos Aguilar-Melchor and Philippe Gaborit

XLIM - Université de Limoges, France Carlos.Aguilar@xlim.fr,Philippe.Gaborit@xlim.fr

Abstract. A PIR scheme is a scheme that allows an user to get an element of a database without
giving any information about what part of the database he is interested in.

In this paper we present a lattice-based PIR scheme, using an NTRU-like approach, in which the
computational cost is a few thousand bit-operations per bit in the database. This improves the protocol
computational performance by two orders of magnitude when compared to existing approaches. Our
scheme has worse communication performance than other existing protocols, but we show that practical
usability of PIR schemes is not as dependent on communication performance as the literature suggests,
and that a trade-off between communication and computation leads to much more versatile schemes.

1 Introduction

The early publications on PIR [1, 2] present schemes that provide information theoretic privacy,
and need a database replicated over different sites. Computationally Private Information Retrieval
schemes were introduced by B. Chor and N. Gilboa [3] in 1997. They reduced the expansion factor
on communications of PIR schemes, by considering computational privacy instead of information
theoretic privacy. By computational privacy we mean that privacy is guaranteed against computa-
tionally bounded attackers. Using the same attacker model, Kushilevitz and Ostrovsky [4], presented
the same year a scheme that provided computational privacy with an expansion factor similar to
the one of Chor and Gilboa but without the need to use a replicated database. In this paper we
will focus on this sort of protocols also known as single-database PIR protocols. Every PIR scheme
that will be presented or cited in the following is a single-database PIR scheme.

Julien P. Stern presented in 1998 a generic construction [5] using group-homomorphic encryption
schemes which led to the first protocols with acceptable communication performance.

One year after Stern’s proposal, Cachin, Micali, and Stadler presented a scheme [6] based on a
new trapdoor predicate that they called the φ-assumption. With this scheme, query size is almost
independent of the number of elements in the database (growth is poly-logarithmic), and even if
the system is not practically implementable1, when database size increases this approach beats
asymptotically all the PIR schemes published before it.

In 2004, there was a rediscovery of Stern’s proposal [7], and a proposition by Lipmaa [8] which is
basically Stern’s construction with the recently discovered length-flexible homomorphic encryption
scheme of Damgärd and Jurik [9]. In his paper Lipmaa twists Stern’s construction, taking profit of
the length-flexible cryptosystem to provide PIR schemes that are both practical and asymptotically
interesting. Lipmaa remarks that using correctly this cryptosystem, it is possible to obtain a linear
growth in the server reply (instead of exponential) when using recursively the PIR scheme. This
greatly improves the versatility of the protocol and leads to an asymptotic behavior much better
than with any of the previous schemes.

1 Queries are too large and the communication rate is too small for almost any application.

1

Recently, the approach initially proposed by Cachin et al. led to a very interesting variation.
In 2005, Gentry and Ramzan presented a scheme [10], which like Lipmaa’s scheme is practical
and presents an asymptotical improvement, even if for many applications Lipmaa’s construction
is better from a communication point of view. In their paper, the authors present a construction
that generalizes the proposal of Cachin et al., and their scheme can be implemented using a slight
variation of the φ-assumption.

The main performance measure used for these schemes is communication cost, disregarding
computational cost. Thereby, current single-database PIR schemes provide almost optimal commu-
nication cost but require the database to use an enormous amount of computational power. This
limits greatly the usability of these schemes, as even high-end servers are unable to generate PIR
replies in a reasonable time for anything but the smallest databases.

In this work we present a lattice-based PIR scheme, using an NTRU-like approach, in which
the computational cost is a few thousand bit-operations per bit in the database. This improves
the protocol computational performance by two orders of magnitude when compared to existing
approaches. Our scheme has communication performance not as good as other existing protocols,
but eventually its far better computational performance permits to make our PIR protocol much
more usable comparing to previously known protocols which are very difficult to use.

2 Basic concepts

We describe a database as a set of n l-bit elements. PIR requests are usually formed of a set of n
query elements, one per each database element. Each of these query elements is combined with the
database element it is associated to, and then the results are combined between them to obtain the
PIR reply.

Because of this common approach, some techniques can be used with all the existing PIR
schemes. In this section we present first how it is possible to adapt any scheme for any database
element size, and second how the recursive usage of PIR schemes leads to much more versatile
protocols. These techniques are not contributions of this paper, but it is important to be aware of
their existence. In particular, in our protocol our query size seems to be linear in the number of
elements of the database. The recursive usage of the protocol as shown in section 2.2 makes possible
to reduce it to O(n1/d) for a parameter d, just as it does for all the other existing PIR schemes.2

2.1 Iterative reply generation

It is straightforward to adapt a single-database PIR protocol to any value of l. For example, if a
given single-database PIR scheme allows to recover one-bit elements from a database, it can also
used to obtain 2-bit elements. When the user sends the PIR request to the database, this one will
operate as follows :

– it generates a PIR reply by using the request over the set of n 1-bit elements formed by the
first bit of each element in the database,

– it generates a second PIR reply by using the same request over the set of n 1-bit elements
formed by the second bit of each element in the database.

2 Except for the PIR schemes based on the φ-hiding assumption [6, 10].

2

Of course, this can be generalized to elements of any size and schemes allowing to retrieve
chunks of information of arbitrary size. This is possible because the requests generated by the
single-database PIR schemes are almost always independent from the database contents. When
l is larger than the chunk size a scheme allows to retrieve, we will say that the database replies
iteratively until the entire l-bit element is sent.

2.2 Load balancing and recursive usage

If the user sends n query elements and the database a PIR reply, the total communication cost
is O(n). To reduce this cost, it is possible to use a load balancing technique which was originally
presented in the seminal paper about PIR [1]. The idea is to see the n-element database as a
matrix of

√
n lines and

√
n columns each scalar in the matrix being a database element. The user

sends
√
n query elements, one for every column in the matrix, and the database replies iteratively

sending back
√
n PIR replies, one for each line in the matrix. As Figure 1 shows, with such an

approach, the user retrieves a full column of data, containing the element he is interested in with
total communication cost in O(

√
n).

Figure 1. Load balancing. Figure 2. Recursive usage of a PIR scheme.

When representing the database as a matrix, instead of using the load balancing technique, it
is possible to use the PIR scheme recursively as Kushilevitz and Ostrovsky proposed in [4]. The
recursive usage of PIR schemes allows to lower the size of PIR requests while increasing the size
of the PIR reply in a very versatile way. The main idea is that using the load balancing technique
database obtains

√
n PIR replies and each of them can be seen as an element of a virtual database.

The user can therefore send a second query to retrieve one of the replies issued from the load
balancing process.

In figure 2, we go back to the example given in figure 1 : the first recursion results in three PIR
replies that are used as a virtual database for the second recursion. As with the load balancing
technique, when recursion is used the query size shrinks (from O(n) to O(n1/2)), and the reply size
increases.

This approach is much more interesting than the load balancing technique for two reasons. The
first one was not obvious at the time the scheme was proposed, and comes from the fact that some
schemes can implement the recursion in a very efficient way as we will show later. The second reason
is that load balancing may be done just once, representing the database as a matrix. Recursion can
be done as many times as the number of dimensions that the database representation has.

If the database is represented as a cube of size n1/3, the user will send three queries with n1/3

elements each. The database will compute a matrix of n1/3 × n1/3 PIR replies from the first query.
This matrix can be seen as a virtual database and the second query will be used to retrieve one
column of n1/3 PIR replies. This column will also be used as a virtual database of n1/3 elements, and

3

the third query will be used to obtain the PIR reply containing the element the user is interested
in. Generally, if the database is represented by a d-dimension hyper-cube, d recursions are possible.
With such a representation the user will send d requests, each composed of only n1/d residues. This
allows a user to shrink greatly the queries’ size, but the size of the PIR replies increases quickly
(exponentially in most cases) in d. A trade-off must be made, depending on the application the
PIR scheme is used for.

Some PIR schemes [10, 11] do a long pre-computation over the database contents before an-
swering to the PIR queries. Sometimes this pre-computation is mandatory for the scheme to work
properly [10], other times it just brings a performance improvement [11]. When using recursion,
pre-computation cannot be done over the virtual intermediate databases, as they depend on the
users’ first queries, and therefore these two techniques are incompatible. Whenever a scheme has a
phase of pre-computation, we will thus not consider the usage of recursion.

3 Description

3.1 High-level overview of our protocol

The PIR scheme we propose relies on the simple idea of controlled noise addition. The main idea
is to to start from a secret random [N, 2N] matrix M of rank N over a field Z/pZ. This matrix is
used to generate a set of different matrices obtained by multiplication on the left side by invertible
random matrices. These matrices (which can also be seen as lattices by joining pI2N for I2N the
identity 2N × 2N matrix) are disturbed by the user by the introduction of noise in half of the
matrices’ columns to obtain respectively softly disturbed matrices (SDMs) and hardly disturbed
matrices (HDMs).

To obtain an element from the database the user sends a set of SDMs and one HDM. The
database inserts each of its elements in the corresponding matrix with a multiplicative operation
OP and sums all the rows of the resulting matrices to obtain the database reply, a single noisy
vector. Using the unmodified columns of the matrices sent in the request, the user is able to find
the noise associated to the returned noisy vector. If the soft noise multiplied by the total noise
factor (which is proportional to the number of elements in the database) is much smaller than
the hard noise, it can be filtered out and the user can retrieve the information associated to the
noise of the HDM matrix. The scheme uses the same kind of idea that for the lattice-based NTRU
cryptosystem: one considers a vector space over a field Z/pZ where the key idea is to control an
error by keeping it non altered by any modular operation.

3.2 Request generation

The scheme will have three global integer parameters: 2N , the dimension of the lattice and special
parameters p and q. The database is described as a set of n l-bit elements, and we note i0 the index
of the database element the user is interested in. To obtain a PIR request, the user will follow:

Protocol 1

1. Note l0 = dlog(n×N)e+ 1 and set q as 22l0 and p as a prime larger than 23l0 .
2. Generate A and B, two random matrices over Z/pZ such that A is invertible, and note M = [A|B].

3. For each i ∈ {1 · · ·N} compute a matrix M
′′
i = [Ai|Bi] by multiplying M by a random invertible matrix Pi.

4

4. Generate the random scrambling matrix ∆ as a N ×N random diagonal matrix over Z/pZ.
5. For each i ∈ {1 · · ·N}\i0 generate the soft noise matrix Di, a N ×N random matrix over {−1, 1}, and compute

the soft disturbed matrix M
′
i = [Ai|Bi +Di∆].

6. Generate Di0 , the hard noise matrix, by:
– generating a soft noise matrix,
– replacing each diagonal term by q.

7. Compute the hard disturbed matrix M
′
i0 = [Ai0 |Bi0 +Di0∆].

8. Choose a random permutation of columns P(·) and compute Mi = P(M
′
i) for i ∈ {1 · · ·n}.

9. Send the ordered set {M1 · · ·Mn} to the database.

3.3 Answer encoding

To answer to the PIR reply the database follows protocol 2. The result is a vector V of dimension
2N over Z/pZ. We will suppose that each element has exactly the number of bits that can be
encoded into a matrix (l0 ×N bits).

Protocol 2

1. Split each database element mi in N l0-bit integers {mi1 · · ·miN}.
2. For each i ∈ {1 · · ·n} construct the vector vi =

PN
j=1mijMij where Mij denotes the j-th row of Mi.

3. Return V =
Pn

j=1 vi

3.4 Information extraction

To extract the information from the database reply, the user will operate in two phases. First he will
recover the noise included in the vector (steps 1 and 2 of protocol 3, and then he will unscramble
and filter out this noise to obtain the information (steps 3 to 5).

Protocol 3

1. Compute the non-permuted noisy vector V
′

= P−1(V).

2. Retrieve E = V
′

D − V
′

UA
−1B, the scrambled noise, V

′
U and V

′
D being resp. the undisturbed and disturbed halves

of V
′
.

3. Compute the unscrambled noise E
′

= E∆−1

4. For each e′j in E
′

= [e′1 · · · e′n], compute e′′j = e′j − ε with ε := e′j%q if e′j%q < q/2 and ε := e′j%q − q else.

5. For each j ∈ {1 · · ·n}, compute mi0j = e
′′
j q
−1.

To recover the noise, the user will first undo the random column permutation (step 1). Then
he will use the N first coordinates of the vector and the initial matrix M to obtain what the N
last coordinates (which have been disturbed) should be without noise. He will use these values to
extract the noise inserted in these coordinates (step 2).

This noise is composed of soft and hard noise, but it cannot be directly filtered because it was
scaled up by the noise scrambling matrix. The user will therefore first eliminate this scrambling
(step 3). He will then filter out the soft noise (step 4), and divide each coordinate by the hard noise
factor to obtain the database sub-elements of mi0 .

5

Extraction correctness :
Noting εijk the (j, k)-th coordinate of Di, the unscrambled error vector coordinates can be expressed
as:

e
′
j =

∑
i∈{1···n}\i0

N∑
k=1

mikεijk +mi0jq,

we will therefore have e
′
j = A+mi0jq with |A| = |

∑
i∈{1···n}\i0

∑N
k=1mikεijk| < 2l0 × n×N and as

n×N ≤ 2l0−1 we obtain |A| < q/2 = 22l0−1. It results that after step 4 the user obtains e
′′
j = mi0jq

for each j ∈ {1 · · ·n}. As mi0j × q < p = 23l0 the user retrieves all of the sub-elements of mi0 at
the end of the extraction.

ut

3.5 A toy example

We give here a toy example of our protocol. Let n = 2, N = 2, l = 6, and i0 = 2. Figure 3 gathers
the operations done for query generation.

Figure 3. Query generation.

The user first sets l0 = dlog(2×2)e+1 = 3, q = 22l0 = 64, and p = 521 > 23l0 . He then generates
A and B, two random 2 × 2 matrices over GF (521), A being invertible. After that he generates
two invertible matrices P1 and P2, the noise scrambling diagonal matrix ∆, one soft noise matrix
D1 and one hard noise matrix D2.

Then the user computes M
′′
1 and M

′′
2 multiplying M byP1 and P2. The first of these matrices

is softly disturbed by adding the results of the scrambled soft noise matrix D1∆ to its third and
fourth columns and results in M

′
1. Similarly, M

′
2 is obtained from the addition of the scrambled

hard noise matrix D2∆ to M
′′
2 . Finally the user chooses a random permutation of the four columns

and applies it both to M
′
1 and M

′
2 to obtain the final query {M1,M2}.

6

Figure 4. Reply generation.

The database has two 6-bit elements, each is split in two 3-bit sub-elements. This sub-elements
will be represented as integers in the interval {0 · · · 7} in figure 4. When the database receives the
query {M1,M2}, it multiplies these matrices’ rows by the sub-elements and sends back the sum of
all results.

Figure 5. Information extraction.

Upon reception of the database reply, the user inverts the column permutation (see figure 5).
He then deducts from the first columns the undisturbed vector associated to the database reply
and uses it to recover the scrambled noise. Using ∆−1 he unscrambles the noise and through the
Euclidean algorithm he recovers the databases sub-elements encoded in the answer and reconstructs
mi0 .

4 Security

In our scheme, an attacker able to distinguish between HDMs and SDMs will also be able to
distinguish the different sort of queries, and therefore the users’ privacy will not be preserved.
In this section, we first discuss about the structural security of our scheme, considering whether
or not an attacker is able to break completely the system by retrieving the private data such as
the permutation matrix. To deal with this security we introduce in section 4.1 a new problem,
the Hidden Lattice Problem (HLP). We discuss its relationship with a well known NP-complete

7

problem, the Punctured Code Problem, and evaluate its practical security. Finally, we show that
our scheme’s structural security is equivalent to HLP.

The second security issue we discuss is the distinguishability attack, common to all PIR schemes.
Of course, if one is able to break the Hidden Lattice Problem, and therefore the structural security
of the system, one is also able to distinguish between the HDMs and SDMs forming the queries.
On the other hand, distinguishing HDMs from SDMs may be easier than breaking the structural
security. Therefore, we introduce in section 4.2 a problem related to the distinguishability of HDMs
and SDMs, the Differential Hidden Lattice Problem (DHLP). We show that it is likely to be as
hard as HLP and in particular that lattice based attacks like LLL seem inefficient in that case.

Eventually, in section 4.4 we propose a set of parameters which provide good security and
practical usability.

4.1 Structural security: The Hidden Lattice Problem

Definitions and theoretical security In this section we define a new lattice-based problem on
which the structural security of our scheme relies. We justify the fact that it is very likely a hard
problem by relating it to another, well-known, NP-complete problem.

Definition 1 Hidden Lattice Problem
Let V be a k dimensional vector space of length n over a finite field GF (p) for p a large prime
number. Consider a set of r different random basis {V1 · · ·Vr} of V with Vi = [Vi,1| · · · |Vi,n]. Fix ran-
domly a subset of s columns such that its complementary set S = {j1 · · · jn−s} holds k independent
columns. Choose randomly i0 ∈ {1, · · · , r} and q ∈ GF (p) with 1 � q � p. For each Vi generate
a set of random columns {Ri,1 · · ·Ri,n−k} such that Ri,j is composed of elements in {−rj , rj} (rj
being a random element of GF (p)). For each l ∈ {1, · · · , r} multiply the l-th coordinate of Ri0,l by
q. Disturb each Vi into V ′i by adding these random columns to {Vi,j1 · · ·Vi,jn−k

}.
Deduce from the set of disturbed basis which are the n− k disturbed columns.

A query from our PIR scheme is an instance of HLP with k = s = N , n = 2N , q = 2l0 and
p > 23l0 with l0 = dlog(nDB ×N)e + 1 and nDB the number of elements in the queried database.
The associated assumption for our scheme’s structural security (that may be noted the hidden
lattice assumption or HLA) is that there is no family of circuits with polynomially bounded size in
N and log(p) able to solve these instances of HLP with non-negligible advantage.

Definition 2 Punctured Code Problem (proved NP-complete by Wieschebrink in [12])
Let M be a k×n matrix, H a k×m matrix [of rank k]3 with k ≤ m ≤ n, both over a field K. Does
there exist a non-singular matrix T and a subset S of {1..n} with |S| = n −m such that the code
TMS obtained by the deletion of the columns of S equals the code H ?

A circuit A able to find the subset S when possible and returning ∅ when this subset doesn’t
exist solves this problem. Reciprocally, if a circuit A′ solves the Punctured Code Problem, it is easy
to simulate a circuit that finds the subset S when possible and returns ∅ when this subset doesn’t
exist. Indeed, deleting one by one the columns of M and querying A′ leads to finding S by a simple
test and trial method. This problem is therefore equivalent to what we will call the Code Puncture
Search Problem.
3 In the problem presented by Wieschebrink the matrices are not necessarily supposed to be of rank k, but the proof

given in his paper remains correct with this constraint.

8

Definition 3 Code Puncture Search Problem
Let H be a k ×m matrix of rank k and M a disturbed k × (m+ s) matrix obtained by multiplying
H by a random non-singular k × k matrix T and by adding to it s random columns in between the
m columns of H.

Deduce from these two matrices which are the s random columns of M .

Equivalence between HLP and our scheme’s structural security The structural security
of our scheme relies on the secrecy of the hidden lattice described by M , the scrambling matrix
∆ and the permutation P(·). Thus, if an attacker is able to break completely our system he will
obtain the secret permutation and therefore solve the corresponding instance of HLP by retrieving
the indexes of the disturbed columns. Conversely, when the indexes of the disturbed columns are
known it is possible to recover a basis of the hidden lattice and the scrambling matrix ∆.

Suppose an adversary knows the N non modified columns, without lack of generality we can
suppose they are the first N columns. Suppose we have 3 disturbed matrices M1,M2 and M3. We
have M1 = P1M + [0|D1∆] and M2 = P2M + [0|D2∆] for P1 and P2 the random matrices used to
construct M1 and M2.

Lemma 1. If an adversary knows the non modified columns he can recover P2P
−1
1 .

Proof. Write M = [A|B]. Since we know that the first N columns are not modified, just comparing
the first N columns of M1 and M2 we recover P1A and P2A an the result follows from the evaluation
of P2A(P1A)−1.

ut
Once P2P

−1
1 is known, the adversary computes S12 = P2P

−1
1 M1 − M2 = [0|P2P

−1
1 D1∆] −

[0|D2∆]. Using the last column of S12 and setting the last column of D1∆ and D2∆ as unknowns
he gets a set of 2N unknowns and N equations. Repeating the same process with M2 and M3 brings
N new unknowns and equations. Finally, repeating this process again with M1 and M3 brings a set
of N new equations and no unknowns, leading the adversary to 3N equations and 3N unknowns,
which can be solved in O(N3) operations. Repeating the same operation for the other columns, the
adversary obtains all the elements of D1∆. As the elements of D1 are in {−1, 1} retrieving ∆ is
straightforward and a basis of the hidden lattice is given by M1 −D1∆.

Practical considerations Notice that for the PIR scheme presented, the initial matrix is a non-
singular N ×N matrix to which N random columns are added. This is a very special situation and
one may try to take advantage of this. The probability that a random N ×N matrix over GF (p) is
singular is close to 1

p , hence taking p with more than 60 bits makes this possibility overwhelmingly
unlikely, and in any case testing matrix singularity until finding one such matrix would cost at least
280 for N = 50. We can therefore suppose that for p and N large enough it is computationally
infeasible to find one. Thus, in the Code Puncture Search Problem if p is large enough, it becomes
impossible to find the set of s columns inserted as for any set S there exists a non-singular matrix
linking MS (and therefore all the corresponding {M ′1S · · ·M ′rS})) to H. This will also be the case
with the Hidden Lattice Problem and the adversary will only be able to test if a given subset is
correct by analyzing the random modifications until finding a set leading to random.

Overall, if an adversary wants to find the undisturbed columns, it has to characterize in some
way the use of {−α,+α}-type noise. This can be done in two ways: through the search for vectors

9

of small norms, but we will see in section 4.3 that it does not seem possible, or analyzing the
inserted randomness for every subset S. The number of subsets of N columns among 2N induces
a search complexity of at least

(
2N
N

)
' 22N possibilities and therefore is computationally unfeasible

for N = 50. Hence for this problem the best attack seems to be exponential. We will see in the
next why lattice based attacks such as LLL seem to be inefficient.

4.2 Distinguishability: The Differential Hidden Lattice Problem

Consider now the following problem related to the distinguishability of queries in our PIR scheme.

Definition 4 Differential Hidden Lattice Problem
Let V be a k dimensional vector space of length n over a finite field GF (p) for p a large prime
number and T1, T2 two different subsets of {1, · · · , r} with t1 and t2 elements. Consider a set of r
different random basis {V1 · · ·Vr} of V with Vi = [Vi,1| · · · |Vi,n]. Fix randomly a subset of s columns
such that its complementary set S = {j1 · · · jn−s} holds k independent columns. Choose randomly
q ∈ GF (p) with 1 � q � p, r ∈ {1, 2} and set T = Tr. For each Vi generate a set of random
columns {Ri,1 · · ·Ri,n−k} such that Ri,j is composed of elements in {−rj , rj} (rj being a random
element of GF (p)). For each l ∈ {1, · · · , r} and each i ∈ T multiply the l-th coordinate of Ri,l by q.
Disturb each Vi into V ′i by adding these random columns to {Vi,j1 · · ·Vi,jn−k

}.
Deduce from T1, T2 and the set of disturbed basis the value of r.

Let {V ′1 , · · · , V ′nDB
} be a query of our PIR scheme for an element of index i0 and T1, T2 two

different subsets of {1, · · · , nDB} such that t1 = t2 = 1 and i0 ∈ T1 ∪ T2. This query, attached with
T1, T2, is an instance of DHLP with parameters k = s = N , n = 2N , q = 2l0 and p > 23l0 with
l0 = dlog(nDB ×N)e+ 1 and nDB the number of elements in the queried database.

The assumption associated to user privacy in our scheme (that may be noted the differential
hidden lattice assumption or DHLA) is that there exists no family of circuits with polynomially
bounded size in N and log(p) able to solve these instances of DHLP with non-negligible advantage
for any two subsets such that t1 = t2 = 1. Of course DHLP is an easier problem than HLP:

Proposition 1 If an adversary is able to solve HLP with non-negligible advantage he is also is
able to solve DHLP for any t1, and t2 with non-negligible advantage .

This result is straightforward since solving the HLP problem permits to recover the different
perturbations and point out the multiplication by q in the basis corresponding to an index in T1 or
T2.

4.3 Distinguishability: Lattice based attacks

To break user privacy, an attacker just needs to distinguish SDMs from HDMs.
The matrices V ′i forming the query can be obviously seen as [2N,N] codes over GF (p). Mean-

while, since the basic mechanism of our system is to be able to make a difference between an
addition of noise of type {−1, 1} and a greater noise of type {−q, q}, the context of coding theory
is not adapted. Indeed, for linear codes the main tool is the Hamming weight, which makes a dif-
ference only between 0 and elements of GF (p)∗. In our case, we are interested by a more precise
weight, which would make a difference between all the elements of GF (p)∗. The adapted context

10

in our case is hence to consider lattice theory and the Euclidean distance, which permits to reach
this distinguishability between elements.

The explicit link between a matrix over GF (p) and a lattice is made through the well known
Construction A by row concatenating to any matrix over GF (p) a matrix identity times p. From
each matrix V ′i forming the query, we obtain an associated lattice Li, and a distinguishability attack
would consist in pointing out the hard noise lattice Li0 (V ′i0) among the other lattices Li (V ′i).

The main tool for lattice based attacks is the famous LLL algorithm. The general idea is to
characterize a target vector (typically a solution to a problem) as a short vector of a lattice. The
attack is done in two steps:

1. Build a lattice such that a short vector of this lattice is a solution to the problem considered.
2. Run the LLL algorithm to recover the short vector and hence the solution.

In our case, we want to make a difference between HDMs and SDMs applying the same approach.
For instance, by showing that the perturbation of SDMs is made only by elements in {−1, 1} whereas
it contains also elements in {−q, q} for HDMs. We believe that in our case, LLL based attacks are
not applicable since it does not seem possible to characterize a solution of our problem as a shortest
vector. It may be possible to prove that a solution vector belongs to some lattice, but with a norm
higher than the expected norm by the Gaussian heuristic, which makes this characterization and
hence the LLL attack a priori not possible.

In the following we first give two arguments to explain why the norms of our solution vectors
seem difficult to characterize as shortest vectors of associated lattices. Secondly, we examine meth-
ods used for classical lattice cryptanalysis, to show that they do not seem to be applicable in our
case.

An easy obvious false attack At first glance, our problem may seem easy to break by the
following attack, which is not valid in practice since it does not take into account some of the
features of our system.

Suppose indeed that we are given a first N × 2N matrix M1 = [A|B] and then a second matrix
M2 = [HA+R1|HB+R2], such that H is an invertible matrix and the matrix [R1|R2] is a matrix
with only N columns of elements in {−1, 1}. This problem corresponds to the case when the hidden
lattice is known (but not the position of the error columns), and when no scrambling matrix ∆ is
used. In that case, it is possible to recover the position of the error columns by taking the first row
of M2, x = (a′+r1|b′+r2) (with (r1|r2) the first row of [R1|R2]), and building a lattice L formed by
row concatenation of the matrix M1, the first row of M2 and p times an identity matrix. Indeed, it
is then obvious to see that the vector r = (r1|r2) belongs to the lattice L. Using the last column of
H, h, we build the vector y = (hT |−1|0...0) which multiplied by the lattice results in r. The vector
r allows to characterize our solution (it gives the disturbed columns) and, since r is composed only
of elements in {−1, 1}, it is possible to show that this is a shortest vector of L and thus apply LLL
to recover it.

Variations on this toy attack: the system in practice In practice, our scheme cannot be
attacked like this for two reasons.

First, when multiplying the inserted noise by a scrambling matrix ∆ (a diagonal matrix with
non null elements), it is possible to do the same attack but this time the resulting vector r is not

11

composed anymore with elements in {−1, 1} but with random elements of GF (p)∗. This makes
r impossible to characterize as a shortest vector since it has, on the average and with strong
probability (exponentially close to 1), no reason to be a shortest vector. Indeed, the non null
elements δi of ∆ are random, and having zeros on half of the coordinates and random elements on
the second half is not enough to be a shortest vector.

Second, for this previous attack, we considered two matrices M1 and M2 such that M1 cor-
responded to the hidden lattice (the lattice with no perturbation), and M2 corresponded to a
disturbed matrix. In practice, one has two disturbed matrices M1 = [HA + R1|HB + R2] and
M2 = [H ′A + R′1|H ′B + R′2] (we do not consider the scrambling matrix ∆ for this example) for
H and H ′ two random invertible matrices and, [R1|R2] and [R′1|R′2] defined as previously. Let us
adopt the same approach than for our obvious previous attack. Consider a lattice L built from M1,
the first row of M2, x = (a′+r′1|b′+r′2) and p times an identity matrix. As for the previous case, we
want to recover a vector of type (r′1|r′2). To be able to vanish (a′|b′) in x as in the obvious attack,
this time rather than multiplying by the last column of H, we multiply by the last column h of
H ′H−1. The issue in this case, is that doing this we also add a term coming from the [R1|R2], and
get a vector y = (r′1 + hT .R1|r′2 + hT .R2). This vector is of the same type as before but pertubated
by h (coming from the product of random matrices H ′ and H−1), R1 and R2. Eventually, even if the
vector y may have some coordinates set to zero, the remaining coordinates are random elements of
GF (p)∗ because of the action of h (which is a random vector), and hence y cannot be characterized
as a shortest vector.

Comparison with previously known lattice based attacks We have shown why lattice based
attacks are very unlikely in our case. Although for lack of space we do not go into details, an exam-
ination of the lattices used for attack by LLL different lattice based cryptosystem, like Knapsack,
GGH or NTRU (see [13] for a very nice survey) show that all previoulsy known approaches do not
work for our system. In particular a Knapsack like type attack with a lattice of as the one in Figure
3, cannot work since there is no linear relation between the SDMs and HDMs, when it is the case
for the target solution vector searched for the Knapsack lattice (see [13] for details).

LK =

26666666664

1 0 · · · 0 −a1
an

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 · · · 0 1
−an−1

an

y1 y2 · · · yn−1 yn

37777777775
LPIR =

2666666666666666666666666666664

1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

SDM1

· · ·
SDMr

p 0 · · · · · · · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · 0 p

3777777777777777777777777777775

Figure 6. The knapsack lattice and an equivalent construction for our scheme

12

4.4 Proposed parameters

For practical use we propose as parameters, l0 = 20 (3l0 = 60), and N = 50. The parameter N = 50
implies a complexity of more than 2100 operations to retrieve the 50 non modified columns. Taking
l0 = 20 permits to make out of reach the search for non invertible submatrices of Mi (which is
not in itself an attack but a first step in the direction of a potential attack). We propose to choose
p = 260 + 325. Notice that such a choice (a power of 2 plus a small integer) may also be used
to fasten the computation of modular multiplication as for elliptic curves. A weak estimation of
the number of elements which can be handled by such parameters is n ≤ nmax = 2l0

50 ' 20000.
Increasing l0 linearly results in an exponential growth of nmax (one billion elements for l0 = 36)
and therefore for any reasonable size of n this parameter does not need major changes.

5 Performance comparison

Computational performance comparison is very simple. For Lipmaa’s scheme, if k = 1024, the
computational cost is roughly of one 2048-bit modular multiplication per bit in the database. For
Gentry and Ramzan’s scheme, the cost is a little bit lower, a 1365-bit modular multiplication per
bit. For the given parameters, in our scheme the cost is one hundred additions of sixty bits per bit
in the database.

Our dual Opteron 248 server can compute 2×105 2048-bit modular multiplications, and 4×105

1365-bit modular multiplications per second. By considering a 64 bits processor at 4 GHz, which
can perform 4× 109 × 64 operations per second our scheme can deal with roughly 4× 107 bits per
second which is two orders of magnitude larger than Gentry and Ramzan’s scheme.

As we already said in the introduction, in order to answer a query in a PIR scheme, the database
must process all of its entries. Therefore, in an n element database, n bits must be processed to deal
with one single bit of the element the user is interested in. The throughput a database will be able
to generate will therefore be 2× 105/n bits/s with Lipmaa’s scheme 4× 105/n bits/s with Gentry
and Ramzan’s scheme and 4 × 107/n with our scheme. Even for databases with a small number
of elements this results on small throughputs. For example, for n = 1000 we obtain respectively
200bits/s, 400bits/s and 40Kbits/s. Given today’s available bandwidths, having a small expansion
factor or not over this throughput values is secondary.

Scheme d=1 d=2
Query Download Bandwidth Usage Query Download Bandwidth Usage

size time time exp. factor percentage time size time exp. factor percentage

Lipmaa 2Mb 2s 33h 2 0.002% 162Kb 0,16s 33h 3 0.003%

Gentry and Ramzan 3Kb ' 0s 17h 4 0.016% 3Kb ' 0s 17h 4 0.016%

Ours 300Mb 5min 10min 6 1.2% 19Mb 19s 10min 36 7.2%

Figure 7. Query and download times.

Figure 7 presents the query and download times as well as the bandwidth usage for retrieving
a three Mbytes file (for example an mp3 song) from a one thousand elements database. The user is
supposed to have a 20 Mbits/s download and 1 Mbit/s upload digital subscriber line to the Internet.
Without recursion (parameter d = 1), sending the query takes five minutes with our scheme and is
almost immediate with the previous protocols. However, the downloading phase is just ten minutes

13

long with our scheme while it takes many hours with the other ones. Thus, queries are larger with
our protocol and take more time to be sent, but the download phase is so much reduced that this
issue is negligible. If recursion is used (d = 2), sending the query takes only 19 seconds but the
bandwidth usage is increased from 1.2% to 7.2%.

Note that even if the download expansion factors for our scheme are large, bandwidth usage
is reasonable. This usage is larger than with the previous schemes but remains small when com-
pared with today’s available bandwidths. Note also, that even if the download expansion factor of
Lipmaa’s scheme (resp. Gentry and Ramzan’s scheme) was 1000 (resp. 200) the bandwidth usage
for these schemes will be of 1%. Indeed, these protocols use very little bandwidth because they are
so (computationally) costly that even a high-end server cannot generate a significant bandwidth.
Having small expansion factors with so low throughputs is almost useless in practice. Number the-
ory based schemes are close to an optimal communication cost with an expansion factor close to
1, but their relative slowness for the reply generation makes them almost unpractical when the
lattice-based approach presents a real potential for many applications.

References

1. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private Information Retrieval. In: IEEE Symposium on
Foundations of Computer Science (FOCS). (1995) 41–50

2. Ambainis, A.: Upper Bound on Communication Complexity of Private Information Retrieval. In: ICALP. (1997)
401–407

3. Chor, B., Gilboa, N.: Computationally Private Information Retrieval (Extended Abstract). In: STOC. (1997)
304–313

4. Kushilevitz, E., Ostrovsky, R.: Replication Is Not Needed: Single Database, Computationally-Private Information
Retrieval (extended abstract). In: FOCS: IEEE Symposium on Foundations of Computer Science (FOCS). (1997)
364–373

5. Stern, J.P.: A New Efficient All-Or-Nothing Disclosure of Secrets Protocol. In Ohta, K., Pei, D., eds.: ASI-
ACRYPT. Volume 1514 of Lecture Notes in Computer Science., Springer (1998) 357–371

6. Cachin, C., Micali, S., Stadler, M.: Computationally Private Information Retrieval with Polylogarithmic Com-
munication. In: EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT. (1999) 402–414

7. Chang, Y.C.: Single Database Private Information Retrieval with Logarithmic Communication. In: ACISP:
Information Security and Privacy: Australasian Conference. (2004) 50–61

8. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In Zhou, J., Lopez, J., Deng,
R.H., Bao, F., eds.: ISC. Volume 3650 of Lecture Notes in Computer Science., Springer (2005) 314–328

9. Damg̊ard, I., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Applications. In: ACISP 2003. (2003)
350–364

10. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Communication Rate. In:
ICALP: Annual International Colloquium on Automata, Languages and Programming. (2005) 803–815

11. Asonov, D., Freytag, J.C.: Almost optimal private information retrieval. In Dingledine, R., Syverson, P.F., eds.:
Privacy Enhancing Technologies. Volume 2482 of Lecture Notes in Computer Science., Springer (2002) 209–223

12. Wieschebrink, C.: Two NP-complete Problems in Coding Theory with an Application in Code Based Cryptog-
raphy. In: 2006 IEEE International Symposium on Information Theory. (2006) 1733–1737

13. Phong Q. Nguyen and Jacques Stern: The two faces of lattices in cryptology. In: Cryptography and Lattices,
International Conference, CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers. Volume 2146
of Lecture Notes in Computer Science., Springer (2001) 146–180

14. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: The 8th Information Security
Conference (ISC’05). Volume 3650 of Lecture Notes in Computer Science., Springer-Verlag (2005) 314–328

14

