
Precise Zero-Knowledge in Concurrent Setting∗

Ning Ding, Dawu Gu
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, 200240, China

{dingning, dwgu}@sjtu.edu.cn

Abstract

We present a stronger notion of zero-knowledge: precise concurrent zero-knowledge. Our
notion captures the idea that the view of any verifier in concurrent interaction can be recon-
structed in the almost same time (within a constant/polynomial factor). Precise zero-knowledge
in stand-alone setting was introduced by Micali and Pass in STOC’06 (The original work used
the term ”local zero-knowledge”.). Their notion shows that the view of any verifier can be recon-
structed in the almost same time in stand-alone setting. Hence our notion is the generalization
of their notion in concurrent setting.

Furthermore, we propose a ω(log2 n)-round concurrent zero-knowledge argument for NP with
linear precision, which shows that the view of any verifier in concurrent interaction can be re-
constructed by the simulator with linear-time overhead. Our argument is Feige-Lapidot-Shamir
type which consists of a proof-preamble and a proof-body for a modified NP statement. Our
result assumes the restriction of adversarial scheduling the communication that the concurrent
interaction of preambles of all sessions will be scheduled before any proof-body by the adversarial
verifier.

1 Introduction

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff [17]. Their definition
essentially states that an interactive proof of x ∈ L provides zero (additional) knowledge if, for
any efficient verifier V , the view of V in the interaction can be ”indistinguishably reconstructed”
by an efficient simulator S-interacting with no one- on just input x. Since efficiency is formalized
as polynomial-time, a worst-case notion, zero-knowledge too automatically becomes a worst-case
notion. The refinement of [14] calls for a tighter coupling between the expected running-time of
V and that of S: a proof is zero-knowledge with tightness t(·) if there exists a fixed polynomial
p(·) such that the expected running-time of S(x) is upper-bounded by t(|x|) times the expected
running-time of V (x) plus p(|x|).

Micali and Pass [20] argued, however, that such coupling may still be insufficient, even when
the tightness function is a constant and the polynomial p(·) is identically 0. Consider a malicious
verifier V that, on input an instance x ∈ {0, 1}n, takes n10 computational steps with probability 1
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, and n steps the rest of the time. The expected running-time of V is n9, and thus zero-knowledge
with optimal tightness only requires that V be simulated in expected time Ω(n9). [20] thinks that it
is doubtful to take indifference for V to get out and interact with the prover or to stay home and run
S for granted. Since by interacting with P , V will almost always execute n steps of computation,
while (in absence of extra guarantees) running the simulator might always cause him to invest n9

steps of computation. This discussion shows that we need a stronger notion of zero-knowledge.
Hence [20] put forward a stronger notion: precise zero-knowledge ([20] used the term ”local zero-

knowledge”. [21] changed to use the term ”precise zero-knowledge”.). This notion captures the idea
that prover provides a zero-knowledge proof of x ∈ L if the view v of any verifier in an interaction
with the prover about x can be reconstructed in the same time (within a constant/polynomial
factor). Thus, precise zero-knowledge bounds the knowledge of the verifier in terms of its actual
computation.

However, [20] investigated precise zero-knowledge only in stand-alone setting. A more realistic
setting is the concurrent setting. A zero-knowledge protocol is concurrent zero-knowledge if for
every polynomial-time verifier there exists a polynomial-time simulator that can output an indis-
tinguishable view in concurrent execution of the protocol. So concurrent zero-knowledge is also
formalized as a worst-case notion, which also suffers the same problems [20] proposed. Hence a
natural consideration is to generalize precise zero-knowledge from stand-alone setting to concurrent
setting, i.e., the view of the verifier can be re-constructed by the simulator in almost same time in
concurrent setting. This is the very motivation of our work.

1.1 Previous Works

1.1.1 Concurrent zero-knowledge

The notion of concurrent zero knowledge [10] formalizes security in a scenario in which several
verifiers access concurrently a prover and maliciously coordinate their actions so to extract infor-
mation from the prover. In [7] it has been showed that in the black-box model Ω̃(log n) rounds
are necessary for concurrent zero knowledge for non-trivial languages. The first concurrent zero-
knowledge proof system for NP has been given by [25] that showed that O(nε) are sufficient for
any ε > 0. Poly-logarithmic round-complexity was achieved in [19] and, finally, in [23] it is shown
that Ω̃(log n) rounds are sufficient. The proof systems presented in [25][19][23] are black-box zero
knowledge and the round-complexity of the proof system of [23] is almost optimal in view of the
lower bound proved in [7]. Thus unlike the stand-alone case, black-box concurrent zero knowledge
cannot be achieved in a constant number of rounds.

Different models have been presented in which round-efficient black-box concurrent zero knowl-
edge is possible. In [10][11][15] constant-round concurrent zero-knowledge proof systems have been
presented by relaxing the asynchrony of the model or the zero-knowledge property. In [9][6],
constant-round concurrent zero-knowledge proof systems have been presented assuming the ex-
istence of a common reference string or a shared random string (i.e., a trusted third party) while
in [8] a constant-round concurrent zero-knowledge with concurrent soundness argument system is
shown by assuming that there exists a public repository that contains the public keys of the ver-
ifiers. Furthermore, Pass [22]] gave a constant-round concurrent zero-knowledge argument with a
super-polynomial-time simulator. In [1], Barak presented a non-black-box constant-round bounded-
concurrent zero-knowledge argument system. The construction of [1] assumes that the maximum
number of concurrent sessions is known in advance.



1.1.2 Precise zero-knowledge

The first step towards precision was introduced in [14]. The refinement of [22], aimed at measuring
the ”actual security” of a zero-knowledge proof system, calls for a tighter coupling between the
worst-case running time of verifier and the expected running time of simulator. [18] introduced the
notion of a conservative proof of knowledge that bounds the knowledge of a player in terms of its
expected running time. [20] proposed the notion of precise zero-knowledge in stand-alone setting
and construct some precise stand-alone zero-knowledge protocols for NP using at least ω(1) rounds.

1.2 Our Work

In this paper we generalize the notion of precise zero-knowledge from stand-alone setting to con-
current setting. That is, we present the stronger notion of precise concurrent zero-knowledge. Our
notion captures the idea that the view of any verifier in concurrent interaction with different provers
can be reconstructed by the simulator in the almost same time (within a constant/polynomial fac-
tor). Thus, our notion bounds the knowledge of the verifier in terms of its actual computation in
concurrent interaction.

Following the notion we propose a ω(log2 n)-round concurrent zero-knowledge argument for NP
with linear precision in a timing assumption with respect to the static schedule. Linear precision
means that the view of any verifier in concurrent interaction can be reconstructed by the simulator
with linear-time overhead. The zero-knowledge argument we present relies on the existence of
three-round public-coin zero-knowledge proofs of knowledge for NP without requiring negligible
soundness-error probability, one of which is presented in [5] if we assume the existence of non-
interactive perfectly-binding commitments [4][3]. Our argument is similar to the zero-knowledge
protocols in [25][19][23], which consist of two phases: a preamble and a proof body, but we show a
different construction of the preamble. The timing assumption we are using is that the concurrent
interaction of preambles (excluding the last round) of all sessions will be scheduled before any
proof-body by the adversarial verifier.

The key point on obtaining linear precision for the zero-knowledge argument in this work is our
precise simulator. Actually for any zero-knowledge proof/argument the precision property is full
determined by its simulator. Our simulator can output an indistinguishable view by adopting the
rewinding strategy in [19] and adapting it to out argument to extract witnesses of all sessions. But
the more important and complicated problem we should face is how to obtain (linear) precision
during rewinding. Our simulator also solves the problem by applying the basic idea, i.e., counting
the computational steps by the verifier, presented by Micali and Pass [20] to the rewinding strategy
and thus obtain linear precision.
Comparison with previous works. As shown in [20], any black-box zero-knowledge is not
precise. So all known concurrent black-box zero-knowledge protocols [8][9][10][19][25][23] are not
precise. Furthermore, Barak’s non-black-box bounded-concurrent zero-knowledge [1] is not precise
too, observed by [21]. Hence our protocol is the first one that is provably precise in concurrent
setting (under the timing assumption).

1.3 Guide to The Paper

In Section 2 we present some notations we are using. In Section 3 we state out new notion of precise
concurrent zero-knowledge. In Section 4 we present the concurrent zero-knowledge argument for



NP with linear precision. In Section 5 we provide a (precise) simulator for the argument and in
Section 6 we show why the simulator works in the timing model.

2 Preliminaries

Throughout our paper we use the terms ”Turing machine” and ”algorithm” interchangeably. We
assume familiarity with notions of interactive Turing machines (ITMs for brevity), interactive
proofs/arguments as well as basic notions of computational indistinguishability, next message func-
tions, views etc. See [14] for standard descriptions of these notions.
Concurrent execution. Let (P, V ) be a two-party protocol, V ∗ be any ITM, {(ai, bi)}u

i=1 be a
set of u inputs to the protocol (P, V ). A u-time concurrent execution of (P, V ) coordinated by V ∗

on inputs {(ai, bi)}u
i=1 is the following experiment:

1. Run u independent copies of P with the i’th copy getting ai as input;
2. Provide V ∗ with the b1, · · · , bu;
3. On each step V ∗ outputs a message (i,m). The i’th copy of P is given with the message m.

V ∗ is given the prover’s response.
Counting TM/ITM steps. If M is a probabilistic machine, denote by Mr the deterministic one
obtained by fixing the content of M ’s random tape to r, by STEPSMr(x) the number of computa-
tional steps taken by Mr on input x.

Assume (P, V ) uses q-round prover messages. In u-times concurrent execution of (P, V ), for any
ITM V ∗, denote by v = (x1, · · · , xu, z, (m1,m2, ..., mqu)) the view of V ∗ coordinating u sessions,
where V ∗ is a polynomial-time machine with the auxiliary input z ∈ {0, 1}poly(n) (W.l.o.g assume
V ∗ is deterministic.). Then denote by STEPSV ∗(v) the number of computational steps taken by
V ∗ running on input x1, · · · , xu, the auxiliary input z and letting the j’th message received be mj .
(In counting steps, we assume that an algorithm A, given the code of a second algorithm B and an
input x, can simulate the computation of B on input x with linear-time overhead.)

3 The New Notion

In this section we put forward our new notion of precise concurrent zero-knowledge and give some
remarks on the notion.

Definition 1 (Precise concurrent zero-knowledge) Let (P, V ) be an interactive proof/argument sys-
tem for a language L = L(R), p : N ×N → N be a monotonically increasing 2-variate polynomial.
We say that (P, V ) is a concurrent zero-knowledge proof/argument with precision p if there exists a
probabilistic algorithm S such that for every probabilistic polynomial-time algorithm V ∗ and every
auxiliary input z ∈ {0, 1}poly(n) and every polynomial g(n) and every list {(xi, yi)}g(n)

i=1 , (xi, yi) ∈ R:
1. The following two ensembles are computationally indistinguishable:

a) The view of V ∗ in a g(n)-time concurrent execution of (P, V ) with inputs {(xi, yi), xi}g(n)
i=1 .

b) S(x1, · · · , xg(n), V
∗, z).

2. For every sufficiently long r ∈ {0, 1}∗, let v be the view generated by Sr on input x1, · · · , xg(n), V
∗, z.

Then STEPSSr(x1,···,xg(n),V
∗,z) ≤ p(max(n, g(n)),STEPSV ∗(v)) .

We refer to S as above as a precise simulator. We also say that (P, V ) has polynomial precision
or linear precision if p(n, u) is a linear function in u.



Remarks.
1. Our definition differs from the standard definition of concurrent zero-knowledge in that we
additionally require that the actual running-time of the simulator is ”close” to the actual running-
time of V ∗ in a true concurrent interaction with different provers.
2. Our definition requires that the simulator is an universal machine. Actually, all known simulators
of zero-knowledge protocols are universal machines. One might weaken the definition by requiring
that for every polynomial-time V ∗ there exists a simulator that can satisfy the two conditions.
3. Our definition allows the simulator to use the code of V ∗. Actually, [20] shows that any black-
box zero-knowledge is not precise zero-knowledge. Hence it manifests an inherent property that
any simulator satisfying our definition must access V ∗ in a non-black-box way.
4. The expression of max(n, g(n)) in condition 2 is used to handle the case that g(n) = o(n). When
g(n) = 1, it means only one session is running, i.e., this is the stand-alone setting. In this case our
definition equals the definition in [20] on computational zero-knowledge. (Besides computational
zero-knowledge, [20] also presented the definitions on perfect/statistical zero-knowledge.)

4 A Concurrent Zero-Knowledge Argument with Linear Precision

In this section we construct a concurrent zero-knowledge argument for NP with linear precision.
Firstly we present some components to be used in the construction of the zero-knowledge argument.
Then we describe the argument.

4.1 Components

4.1.1 Public-coin zero-knowledge proofs of knowledge

Without requiring that soundness error probability is negligible, there exist three-round public-
coin zero-knowledge proofs of knowledge for NP languages. One construction was given in [5] for
Directed Hamiltonian Cycle (DHC) language if assuming the existence of non-interactive perfectly-
binding commitments, some construction of which were given in [4][3]. In the proof for DHC the
prover runs the 1’st round and sends a non-interactive perfectly-binding commitment com to the
verifier. Then the verifier computes a random bit challenge ch in 2’nd round and the prover sends
a response resp for the challenge to the verifier in the 3’rd round. Denote these three messages in
interaction by com, ch and resp. Further, the proof for DHC is special-sound, i.e., for a common
input and com if ch1, resp1 and ch2, resp2 are two different interaction both of which can convince
the verifier, i.e., resp1 and resp2 are right responses, then the extractor of the proof, on input
these messages, can output the witness.

Moreover, for any langue L in NP L can be Levin reduced to DHC. That is, there exist three
polynomial-time functions f, g, h such that if (x, y) ∈ RL, then (f(x), g(x, y)) ∈ RDHC and if
(f(x), z) ∈ RDHC , then (x, h(x, z)) ∈ RL. Actually, Cook-Levin’s proof of NP-completeness of
SAT [24] shows that L can be Levin reduced to SAT that can be Levin reduced to DHC [26].
Then according to the transitivity of Levin reduction, L can be Levin reduced to DHC. Hence we
have that there exists a three-round public-coin zero-knowledge proof of knowledge for L(without
requiring negligible soundness error probability). We also denote the three interactive messages by
com, ch and resp, where ch is just a random bit.



4.1.2 Round-efficient witness-indistinguishable proofs of knowledge

Witness-indistinguishability (WI) was introduced in [13]. Informally, a protocol is witness indistin-
guishable if verifier cannot distinguish between two executions of the protocols which differ in the
specific witness prover is using. Clearly, zero-knowledge protocols are witness-indistinguishable and
[13] shows that WI property can be preserved in concurrent setting. Hence n parallel composition
of the zero-knowledge proof of knowledge for DHC is one construction of round-efficient WI proofs
of knowledge.

4.2 The Zero-Knowledge Argument

Our zero-knowledge argument for NP is similar to the zero-knowledge protocols in [25][19][23],
following the ideas suggested by Feige, Lapidot and Shamir [12]. The protocol consists of a proof-
preamble phase and a proof-body being any ”standard” zero-knowledge proof for a modified NP
statement. The preamble of our argument consists of m = ω(log2 n) rounds for the security param-
eter n. The proof body consists of a round-efficient witness-indistinguishable proof of knowledge
for NP. Thus, the number of rounds is dominated by the preamble.

Let us concentrate now on the preamble. Let x be the statement to be proven in a NP language
L. We use a preamble to start the argument. Let f : {0, 1}n → {0, 1}n be a (non-uniform) one-way
function with the relation RL1 , where (y, x) ∈ RL1 if f(x) = y, characterize the language L1. In
this preamble V chooses a random string c and computes d = f(c) and sends d to prover in the first
round. Denote the three-round public-coin zero-knowledge proof of knowledge for L1 by (P, V )atom.
Also we use com, ch and resp to denote the three round messages of (P, V )atom.

The preamble is the m-time repetition of (P, V )atom and the verifier proves to the prover that
there exists a c such that (d, c) ∈ RL1 in the i’st (P, V )atom. The concurrent zero-knowledge argu-
ment (with linear precision) goes as follows:

Protocol LinPreciConZK
The common input: x ∈ {0, 1}n to be proved in a NP language L.
The private input to prover: w, the witness for x in L.
The preamble
V → P : Verifier randomly chooses a string c and computes d = f(c), and sends d to prover.
V → P : Verifier sends the commitment com1 of the 1’st (P, V )atom to prover.
P → V : Prover randomly chooses a bit challenge ch1 and sends it to verifier.
V → P : Verifier sends a response resp1 and thus completes the 1’st (P, V )atom.

· · · · · ·
V → P : Verifier sends the commitment comm of the m’st (P, V )atom to prover.
P → V : Prover randomly chooses a bit challenge chm and sends it to verifier.
V → P : Verifier sends a response respm and thus completes the m’st (P, V )atom.
The body
P ↔ V : Prover proves to verifier in the round-efficient witness-indistinguishable proof of knowledge
the OR of the following statements:
1. There exists a w such that (x,w) ∈ RL.
2. There exists a c such that (d, c) ∈ RL1 .

Theorem 1 Protocol LinPreciConZK is an interactive argument.



Proof. We show that completeness and computational soundness are satisfied.
Completeness: Straightforward. If (x,w) ∈ RL, the truthful prover can always make the verifier
accepted in the body using the witness w regardless of whatever happened in the preamble.
Computational soundness: Suppose computational soundness doesn’t hold. That is, there exists
a polynomial-sized circuit prover-strategy P ∗ that can cheat V to accept a x /∈ L with non-negligible
probability. We can construct a polynomial-sized circuit R based on P ∗ to find pre-images of the
one-way function f , which contradicts the onewayness of f .

Assume d = f(c) for an unknown random c. The task of R on input d is to compute c.
Let R and P ∗ play protocol LinPreciConZK. For each n assume R is given an auxiliary input
x ∈ {0, 1}n, x /∈ L. Since the preamble is the m-time repetition of (P, V )atom, then we know the
preamble is also zero-knowledge to the prover. R works as follows: Firstly R calls the simulator of
the preamble, on input x, to generate an indistinguishable view, denoted PreambleView. Let P ∗∗

denote P ∗ with x and PreambleView hardwired into. In the following R adopts the honest-verifier
strategy to play the proof body of LinPreciConZK with P ∗∗. If P ∗ can cheat V with probability ε,
then we claim that P ∗∗ can cheat R with probability ε′ such that |ε− ε′| is negligible. (Otherwise
(P ∗∗, R) is a distinguisher for the output of the simulator of the preamble.). Hence R calls the
knowledge extractor of the WI proof of knowledge to find the witness for the OR of the statements
of (1) x is true or (2) P ∗∗ knows c. Since x is not true, we have the extracted witness is the c. Thus,
R succeeds in computing the preimage of d with non-negligible probability, which contradicts the
onewayness of f . Hence computational soundness is satisfied. Thus, this completes the proof.

More naturally, we combine every two adjacent verifier-messages into one verifier-message in
the preamble as follows without hurting completeness and soundness of the protocol.
The preamble’
V → P : Verifier randomly chooses a string c and computes d = f(c), and sends d, to prover. Then
send the commitment com1 of the 1’st (P, V )atom to prover.
P → V : Prover randomly chooses a bit challenge ch1 and sends it to verifier.
V → P : Verifier sends a response resp1, thus completes the 1’st (P, V )atom and sends the commit-
ment com2 of the 2’st (P, V )atom to prover.

· · · · · ·
V → P : Verifier sends a response respm−1, thus completes the m− 1’st (P, V )atom and sends the
commitment comm of the m’st (P, V )atom to prover.
P → V : Prover randomly chooses a bit challenge chm and sends it to verifier.
V → P : Verifier sends a response respm and thus completes the m’st (P, V )atom.

In the following we adopt the natural representation for the preamble. We sometimes call the
verifier round that contains a response and a commitment the verifier-response for concision.

5 The Precise Simulator

In this section we construct a simulator that can provide zero-knowledgeness and linear precision
simultaneously in concurrent setting under our timing assumption.



5.1 The High Level Description of The Simulator

The problems the simulator should solve is how to gain the witnesses of all sessions and obtain
linear precision via an efficient rewinding strategy. First of all we adopt the oblivious recursive
rewinding strategy presented by Kilian and Petrank [19] and adapt it to our protocol. Assume that
an adversarial verifier executes g(n) sessions concurrently. We assume that the real prover (and
so also the simulator) always answers immediately. Namely, the adversarial verifier may delay its
answer as it pleases, but the prover answers at once. Thus, we get that the adversarial verifier
V ∗ may schedule an overall number of m · g(n) slots in the preambles. Every slot consists of a
response by the verifier, followed by a challenge by the prover. Note that the last verifier-response
in each preamble is not followed by a prover-challenge, so this verifier-response cannot be included
in any slot. But for concision we still say the overall number of slots are m · g(n). Hence our
timing assumption can be stated more precisely that all these m · g(n) slots (excluding the last
verifier-response) should be scheduled before any body of all sessions.

We consider the m · g(n) slots by their order in time. We will not need to rewind the bodies:
the simulator will behave like the real prover in the bodies. Very briefly, the adapted oblivious
rewinding on the m · g(n) slots is described by the following procedure Schedule(1,m · g(n)).

Procedure Schedule(a, b)
if b− a = 1 then execute slot a and slot b sequently and return.
execute Schedule(a, a+b−1

2 ).
rewind a+b−1

2 → a, i.e., re-execute Schedule(a, a+b−1
2 ).

execute Schedule(a+b+1
2 , b).

rewind b → a+b+1
2 , i.e., re-execute Schedule(a+b+1

2 , b).
return.
End Schedule

[19] showed how to obtain witnesses of all sessions via the above rewinding strategy. But
the more complicated problem is how to obtain precision simultaneously. Micali and Pass [20]
investigated the problem on obtaining precision in stand-alone setting and presented an approach
to solve this problem. Their simulator keeps track of the number of computational steps taken by
verifier in many sub-protocols. Soon after, the simulator will attempt to compute a witness by
rewinding each of the sub-protocol and will abort each such rewinding as soon as verifier’s running-
time exceeds its running-time in the first execution of that very sub-protocol. When they succeed
in extracting a witness in this fashion, it is guaranteed that running-time of the simulator is close
to that of verifier in its first execution.

We apply this idea to the above rewind strategy and make our simulator can solve these problems
simultaneously. Now let us concentrate on the simulation strategy. First of all, there exists an
essential difference between our simulator and one in [19]. That is, when the simulator in [19]
rewinds the verifier, the rewind run is the one that the simulator uses to continue the interaction.
The first run is only used to get information and is then abandoned. But for our simulator the first
run is the one that the simulator uses to continue the interaction. The rewind run is only used to
get information for extraction.

Since we assume that the preambles of all sessions are scheduled before any body proof, we
pay attention to the rewind strategy of preambles in the first. In the following we describe the



simulator’s behavior at the bottom of the recursion, i.e., how the simulator executes two sequent
slots at the bottom of recursion. Assume that the simulation is now entering the interval [a, b].
The run of interval [a, b] will be divided into three cases.

If it is the first (not rewind) run of the interval [a, b] the simulator adopts the honest-prover
strategy to interactive with the verifier. The simulator stores the verifier-responses and prover-
challenges in slot a and slot b respectively and counts the running-time of the verifier on outputting
the verifier-responses. From this fact we know that the simulator uses non-black-box access to the
adversarial verifier since it counts the running-time of verifier, even in a very minimal sense.

If it is the first rewind run of interval [a, b], the prover-challenge of slot a is the rewind entry.
The simulator chooses a random challenge once more and stores it. Recall that the first run is used
to continue the simulation, while the rewind run is used to gather information for extraction. That
is, the prover-challenge in this rewind run will be not used until the point where the simulation
entries a slot which verifier-response is the response for this prover-challenge. The simulator will
use the new prover-challenge for extraction when entering that slot, just like what it will do in slot
b, to be described in the following.

After choosing the prover-challenge in slot a the simulator is about to entry slot b. Before
computing the verifier-response of slot b, the simulator prepares the input messages (view) to
verifier’s next-message function. That is, the simulator gains all prover-messages from the stored
transcript up until the point that the verifier is about to compute the response, but to replace the
prover-challenge chosen in the first run that corresponds to the verifier-response of slot b by the
one chosen in some rewind run of some slot. Actually there must exist a previous slot in which the
simulator chose and stored the random challenge in the rewind, just like what the simulator did
in slot a. Note that up until the point the verifier is about to compute the response the views to
the verifier are same except for the two random prover-challenges in the first run and rewind run
respectively. Also note that by our timing assumption the simulation in preambles only involves the
messages in the preambles in which all prover-messages are public-coin. So V ∗ cannot distinguish
the two views at all.

When computing the verifier-response of slot b, the simulator put the artificial view to the
verifier and use the running-time gathered in the first run to bound the V ∗’s computing. That
is, if the verifier cannot output its response within the running-time, then abort its computing.
Otherwise when the verifier succeeds in outputting its response, if both the two verifier-responses
in the first run and rewind run is an accepting response, the simulator calls the knowledge extractor
of (P, V )atom to extract the witness. In this case we call the rewind run succeeds. In any other case
we call the rewind run fails. Using the running-time gathered in the first run to bound the rewind
run can guarantee that the running-time of the rewind run is no more than that in the first run.

If it is a rewind run, but not the first rewind run, of interval [a, b], we just let the simulator jumps
over the interval [a, b]. Hence every interval will be rewound once, which will result in obtaining
linear precision.

When has finished the recursive rewinding, the simulator plays the bodies of all sessions with the
verifier since we assume all preambles are scheduled before the bodies. In the bodies the simulator
just adopts honest-prover strategy using the witnesses extracted in the rewind to convince the
verifier. If the simulator cannot extract a witness for a session, then it aborts the simulation.



5.2 The Actual Description of The Simulator

We now turn to formally describing the simulator algorithm. The simulator algorithm consists of
two procedures: Schedule and ExecuteSlot. Schedule is the recursive rewind of m · g(n) slots.
At the bottom of recursion, if it is the first (not rewind) run of interval [a, b], Schedule calls
ExecuteSlot to execute slot a and slot b sequently. W.l.o.g assume that every verifier message has
the form of (t,message) where message is the verifier message and t is the number of the session
message belongs to.

Algorithm: The simulator S
Input: x1, · · · , xg(n) ∈ {0, 1}n: the statement to be proved in the i’th session is that xi ∈ L.
V ∗: description of a polynomial-time verifier coordinating an g(n)-time concurrent execution. z ∈
{0, 1}poly(n): the auxiliary input. W.l.o.g assume V ∗ is deterministic. For concision we sometimes
use V ∗ to denote V ∗ with input x1, · · · , xg(n), z.
Initialization: Construct such tables and variables as follows:
InputMsgToVrf: A variable denotes the input messages to V ∗’s next message function.
OutputMsg: A variable denotes V ∗’s output message in a round.
SimMsg: A variable denotes S’s prover-message in a round.
Trans: A table of length q · g(n), where q is the number of rounds of LinPreciConZK. Trans is
used to record the transcript in interaction between S and V ∗. That is, Trans[i] is the i’th round
message, 1 ≤ i ≤ q · g(n), in concurrent interaction. Initial Trans is empty.
VrfMsgRcvOfSes: A table of length of g(n). VrfMsgRcvOfSes[i] records the number of verifier-
responses belonging to session i S received. Initial VrfMsgRcvOfSes is empty.
SrlNumInTransOfSlots: A table of length m · g(n). SrlNumInTransOfSlots[i] is used to store the
serial number of the cell in Trans where the first message of slot i, i.e. V ∗’s response, is stored.
Initial SrlNumInTransOfSlots[i] is 0.
InfoOfSlots: A table of length m ·g(n). InfoOfSlots[i] contains some useful information of slot i,
which consists of six elements: IsRwd, HasBeenRwd, PrvMsgSrlNum, PrvMsgSesNum, VrfMsgSrlNum
and VrfMsgSesNum. IsRwd is a boolean variable. If a run of slot i is a rewind run, put IsRwd=True.
Otherwise put IsRwd=False. HasBeenRwd is also a boolean variable denoting whether or not slot
i has been rewound before. If it has, put HasBeenRwd=True. Otherwise put HasBeenRwd=False.
PrvMsgSrlNum and PrvMsgSesNum denote the serial number of the atomic protocol and session
number which the prover-challenge of slot i belongs to respectively. Analogously, VrfMsgSrlNum
and VrfMsgSesNum denote the serial number of the atomic protocol and session number which the
verifier-response of slot i belongs to respectively. Initial IsRwd=HasBeenRwd=False.
PrvMsgSrlNumInTrans: A two-dimension table of length g(n) × m. PrvMsgSrlNumInTrans[i][j]
records the serial number of the cell in Trans where the prover-challenge of the j’th atomic protocol
of the i’th session is stored.
MsgOfExt: A two-dimension table of length g(n) ×m. MsgOfExt[i][j] contains all information on
witness extraction of the j’th atomic protocol of the i’th session, which consists of eight elements:
com, ch1, resp1, RunTime, ch2, resp2, IsExtSuc and ExtValue. ch1 and resp1 are the messages
in the first run of the j’th atomic protocol of the i’th session. RunTime is the computational steps
by V ∗ to output resp1. ch2 and resp2 are the messages in the rewind run of the atomic proto-
col. If in the rewind run after running RunTime steps V ∗ doesn’t terminate to output resp2, or
ch1 = ch2, or at least one of resp1 and resp2 is not a right response. In this case put the boolean



variable IsExtSuc False. Otherwise put IsExtSuc True and in this case we can call the knowl-
edge extractor of (P, V )atom to compute the witness and let ExtValue denote the extracted witness.

Begin simulation
S Informs V ∗ to start the interaction. Then V ∗ sends the first round message of session t to S.
Store the message in Trans. Set VrfMsgRcvOfSes[t] = 1. The simulator S randomly chooses a bit
ch1, sends ch1 to V ∗ and stores ch1 in Trans. Set com and ch1 of MsgOfExt[t][1] the commitment
in the verifier round and ch1 respectively and set PrvMsgSrlNumInTrans[t][1] the serial number of
cells in Trans where ch1 is stored. Then S starts the procedure Schedule.
Schedule(1,m · g(n)).
In the remainder of simulation, S adopts the honest-prover strategy to play with V ∗ and stores
interaction in Trans. In the proof body of the i’th session S searches a j such that IsExtSuc in
MsgOfExt[i][j] is True. If there doesn’t exist such j, S aborts the remainder simulation. Otherwise,
S uses the ExtVal as the witness to make V ∗ accept the combined statement. At last Trans
contains all prover-messages that are indistinguishable from the view of V ∗ in real interaction but
all common input and the auxiliary input.
End Simulation

Procedure Schedule(a, b)
If b-a=1 then we consider two cases according to values of IsRwd and HasBeenRwd of InfoOfSlots[a].

Case 1 of IsRwd=False and HasBeenRwd=False: It means this is the first run of interval [a, b].
Then execute slot a and slot b sequently. ExecuteSlot(a). ExecuteSlot(b).

Case 2 of IsRwd=True and HasBeenRwd=False: It means this is the first rewind run of [a, b].
Set HasBeenRwd=True. S randomly chooses a bit, denoted cha, and obtains PrvMsgSrlNum
and PrvMsgSesNum from InfoOfSlots[a]. Put ch2 of MsgOfExt[PrvMsgSesNum][PrvMsgSrlNum]
cha.

Also S obtains VrfMsgSrlNum and VrfMsgSesNum of slot b from InfoOfSlots[b] and
thus gains com2 and RunTime of MsgOfExt[VrfMsgSesNum][VrfMsgSrlNum]. Let k be
PrvMsgSrlNumInTrans[VrfMsgSesNum][VrfMsgSrlNum].

Let chb be ch2 of MsgOfExt[VrfMsgSesNum][VrfMsgSrlNum], j = SrlNumInTransOfSlots[b].
Let InputMsgToVrf be the prover-messages in Trans from the 1’st cell to the j − 1’st
cell and then replace the k

2 ’th element in InputMsgToVrf by chb.
Compute (t, OutputMsg) ← V ∗(InputMsgToVrf) within the time RunTime. If V ∗ cannot

finish computing, then put resp2 of MsgOfExt[t][VrfMsgSrlNum] ⊥. Otherwise set resp2

the verifier-response in OutputMsg. If ch1 6= ch2, and both resp1 and resp2 is a right
response, S calls the extractor of (P, V )atom, on input xt, com, ch1, resp1, ch2, resp2, to
compute the witness. At last S sets ExtVal and IsExtSuc of MsgOfExt[t][VrfMsgSrlNum]
the witness and True respectively.

Else, i.e., b− a 6= 1
Schedule(a, a+b−1

2 ). Schedule(a, a+b−1
2 ).

Schedule(a+b+1
2 , b). Schedule(a+b+1

2 , b).
End Schedule

Procedure ExecuteSlot(i)
Set IsRwd of InfoOfSlots[i] True.



Let InputMsgToVrf be all prover-messages in Trans. Compute (t, OutputMsg) ← V ∗(InputMsgToVrf)
and counts the running-time of V ∗. Store OutputMsg in Trans and increase VrfMsgRcvOfSes[t] by
1. S, on input OutputMsg, computes the next prover message, denoted SimMsg. Store SimMsg in
Trans.

Put SrlNumInTransOfSlots[i] the number of cells used in Trans. Set j = VrfMsgRcvOfSes[t].
Put resp1 of MsgOfExt[t][j] the verifier-response in OutputMsg. Let VrfMsgSrlNum and VrfMsgSesNum
of InfoOfSlots[i] be j and t respectively. Put RunTime of MsgOfExt[t][j] the counted running-time.
If SimMsg is still a prover-challenge of an atomic protocol, then let PrvMsgSrlNumInTrans[t][j+1] be
SrlNumInTransOfSlots[i]+1. Also set PrvMsgSrlNum and PrvMsgSesNum of InfoOfSlots[i] j + 1
and t respectively. Set com and ch1 of MsgOfExt[t][j + 1] the verifier-commitment in OutputMsg
and SimMsg respectively.
End ExecuteSlot

6 Why The Simulator Works

Since Theorem 1 has shown that LinPreciConZK is an interactive argument, we only need to
show that the simulator S satisfies definition 1. That is, we should explain (1) that the outputs
generated by the simulator S are computationally indistinguishable from the view of V ∗ in real
interaction and (2) that there exists a monotonically increasing 2-variate polynomial p(·, ·) such
that for v = Sr(x1, · · · , xg(n), V

∗, z) STEPSSr(x1,···,xg(n),V
∗,z) ≤ p(max(x, g(n)),STEPSV ∗(v)).

(1). As shown in [25][19][23], the ability of extracting witnesses of the simulator implies that the
simulator can generate an indistinguishable view. Hence the main goal of this part is to show that
the simulator S can extract witnesses for all sessions with very high probability. So in the following
we will analyze the probability of extracting witnesses of S. Before presenting the details, we refer
to the notion of a rewind that may solve a proof, introduced in [19] firstly.

Definition 2 (A rewind that may solve a proof [19]) We say that a rewind (l → k) may solve a
proof Π if the following four conditions hold:

1. Exactly two rounds of the preamble of Π take place during round slots k, k + 1, · · · , l,
2. The first round of Π takes place at a round slot i < k,
3. The last round of Π takes place at a round slot j > l, and
4. The first round of Π appears in the first half the rewind interval (l → k) and the second

round of Π appears in the second half of the rewind interval (l → k).

This notion captures a necessary condition that a rewind is the smallest rewind that has a
chance of extracting a witness. Note that Π has two rounds in the same half, then there is a
dominated interval that may solve Π. This the reason for condition 4 of the definition.

Lemma 1 [19]. For any schedule of k copies of the proof preambles (in the mk round slots), if a
preamble of a specific proof Π completes in round l, then there are at least

⌈
m

log(mk)+1

⌉
− 2 rewind

intervals that complete by round l and that may solve Π.

For a specific proof Π of g(n) sessions, let us compute the probability that a rewind that may
solve Π fails to solve it. Actually, it is not always the case that a proof is always solved in a rewind



that may solve it. There are two reasons. One reason is that V ∗ may sometimes abort to give a
right response. The other one is that even though V ∗ wants to give right responses in both the first
run and rewind run, there is no sufficient time for V ∗ to output the response in the rewind run.
Note that if V ∗ chooses not to send a right response in the first run, we take for granted that the
proof is solved since in this case the real prover will abort the interaction immediately. Further,
if V ∗ chooses to give right responses in both the first run and rewind run and V ∗ can finish the
computing within the running-time gathered in the first run, then it is clearly that Π is solved. In
other cases the rewind may solve Π fails to solve it.

Now let us compute the probability that Π is solved in the rewind may solve it in the case that
V ∗ chooses to give right responses in both the first run and rewind run. Assume S sends a random
bit ch to V ∗ and obtains the V ∗’s response within a running-time, denoted RunTime, in the first
run of the rewind may solve Π. In the rewind run S send a random bit ch’ to V ∗ once more. If
ch’=ch, then the the rewind fails. If ch’6=ch, V ∗ may still fail to output a response because V ∗

needs more time than RunTime to finish the computing. However, we have that if S chooses ch’
and sends it to V ∗ in the first run and sends ch to V ∗ in the rewind run, then V ∗ has enough time
to output two responses for ch’ and ch respectively. Note that the views to V ∗ in the first run
and rewind run, up until the point that V ∗ is about to send its response, are same except for ch’
and ch. And further, by the timing assumption all prover-messages are public-coin, so V ∗ cannot
distinguish the two views at all. Hence for the rewind the probability V ∗ can finish its computing
is 1

2 conditioned that ch’6=ch which happens with probability 1
2 . In a word, a rewind may solve Π

solves it with probability 1
4 in this case.

Suppose V ∗ chooses not to send a right response in a run with probability α. From the above
analysis we have that a rewind may solve the proof solves it with probability α+ 1

4(1−α)(1−α) ≥ 1
4 .

By Lemma 1 there are at least
⌈

m
log(m·g(n))+1

⌉
− 2 rewind intervals that may solve Π. Hence using

m = ω(log2 n), we get that there are at least ω(log2 n)
log g(n)+log m = ω(log n) rewinds in which Π may be

solved. Now because there are no more than 3
4 probability of a proof not being solved during any of

these rewinds, and all of them are disjoint, we have that with probability at most (3
4)ω(log n) = ε(n)

the proof is not solved during any rewind, where ε(n) is a negligible function. Now using the union
bound we get there is only negligible probability that any proof is not solved at all. Hence as shown
in [25][19][23], the simulated view is indistinguishable from the view in real interaction of all sessions.

(2). Assume the running-time of V ∗ on the view v is STEPSV ∗(v). The goal of this part is to
provide an upper-bound for the running-time of S in computing v and obtaining witnesses during
the simulation. Firstly we consider the running-time of S in the preambles. According to the
description of S, we have that each interval at the bottom of recursion runs twice, in which one
is the first run and the other one is the first rewind run. For the j’th atomic protocol of the
i’th session, denote the computational steps by V ∗ in the verifier round to output its response
in the first run by RunTimeij . Note that actually all computing of V ∗ in simulation is run by
S. Denote by l the linear-time overhead for S simulating V ∗. Then the running-time of S in
simulating V ∗ in the recursive rewinding is no more than 2l multiplied by the sum of all RunTimeij ,
1 ≤ i ≤ g(n), 1 ≤ j ≤ m. Moreover, we know that the running-time of S not spending in simulating
V ∗ in the preambles is a polynomial, denoted p1(n)g(n).

In the body phases S doesn’t rewind V ∗ and the running-time of S in the WI proofs of knowledge
is also a polynomial, denoted p2(n)g(n). And it is obvious that the sum of all RunTimeij , 1 ≤ i ≤



g(n), 1 ≤ j ≤ m is less than STEPSV ∗(v). Hence we have that STEPSSr(x1, · · · , xg(n), V
∗, z) ≤

p1(n)g(n) + p2(n)g(n) + 2l ·∑ RunTimeij , 1 ≤ i ≤ g(n), 1 ≤ j ≤ m.
Hence, STEPSSr(x1, · · · , xg(n), V

∗, z) ≤ p1(n)g(n) + p2(n)g(n) + 2l · STEPSV ∗(v). Therefore,
there is a monotonically increasing 2-variate polynomial p(n, u) that is linear in u such that

STEPSSr(x1, · · · , xg(n), V
∗, z) ≤ p(max(n, g(n)),STEPSV ∗(v))

The linear precision is obtained. Thus we have Theorem 2.

Theorem 2 Protocol LinPreciConZK is a concurrent zero-knowledge argument with linear preci-
sion (under the timing assumption).
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