
 Verifiable Attribute-Based Encryption
 Qiang Tang Dongyao Ji
 State Key Lab of Information Security

Graduation University of Chinese Academy of Science
 Beijing 100049

qtang84@gmail.com dyji@gucas.ac.cn
Abstract：In this paper, we construct two verifiable attribute-based
encryption schemes. One is for a single authority ABE, and the other is
for a multi authority ABE. Not only our schemes are proved secure as
the formal schemes, they also provide a verifiable property which allows
the user to check the correctness of the keys immediately he got them
without decrypting out a wrong message.
Keywords：Attribute-based encryption, verifiable, multi authority ABE

1 Introduction
Identity based encryption (IBE), introduced by Shamir [Sha85], is a novel encryption which
allows users to use any string as their public key (for example, an ID card number or an email
address). Encrypting messages without access to a public key certificate reduces the load of
creating and storing certificates. The first provably secure and elegantly designed IBE scheme was
given by Boneh and Franklin [BF01], after that, IBE has received a lot of attention.
To better express identity and allow for a certain amount of error-tolerance, Sahai and Waters
proposed fuzzy IBE [SW05], in their scheme, identity is viewed as a set of descriptive attributes,
and a user with the secret key for the identity ω is able to decrypt a ciphertext encrypted with the
public key 'ω if and only if ω and 'ω are with a certain distance of each other as judged by
some metric.
In the paper [GPSW06], Goyal et al. developed a much richer type of attribute-based encryption
cryptosystem and demonstrated its applications. In their system each ciphertext is labeled by the
encryptor with a set of descriptive attributes. Each private key is associated with an access
structure that specifies which type of ciphertexts the key can decrypt. The access policy in their
work is described by an access tree, which is more general than simple t-out-of-n threshold, and
thus well suits for fine-grained access control of encrypted data and some other kind of
applications.
Both the schemes in [SW05] and [GPSW06] are with single authority, so Chase presented
multi-authority ABE in [Cha07] to answer an open question in [SW05], in multi-authority scenario,
more than one authority are responsible for maintaining one kind of attributes, they operate
simultaneously, and handle out secret keys for different set of attributes.
OUR CONTRIBUTIONS: the ideas in fuzzy IBE and its extension GPSW ABE are from secret
sharing, we could not be sure that all the shares sent by the key generation center are consistent
(being consistent means the shares can be used to reconstruct the same secret), maybe the key
generation center is not that impartial, or something wrong happens in the process of creating or
the sending period of the information is some secret shares, and in this kind of encryption schemes,
one key can be used to decrypt many pieces of ciphertext, so changing secret sharing with
verifiable secret sharing adds a verification property allowing the user to verify whether the share

is consistent with other shares and whether the key the user got is rightly shared from the true
secret which means using the key can decrypt, if not, we require the key generation center to
resend them, doing this can reduce the meaningless computation cost of decrypting with wrong
shares. Our work makes the GPSW ABE be verifiable before reconstructing the secret and check
the deciphered text, we also realize the same function in the multi-authority ABE which also needs
to make sure all the shares are right, or else, the user could not decrypt because the sharing among
the authorities is not a threshold one, all the shares are used in reconstruction. The security of
these schemes have not been influenced, we only need to make some modifications that
computing the values for verification to answer the new queries in the proof in [GPSW06] and
[Cha07] to finish our proof.
CHLLENGES AND OUR METHOD: because the secrets in the sharing schemes in the GPSW
ABE are shared more than one time, we should make sure that there is nothing wrong in every
step of sharing, so it is very difficult to finish all the process of verifying the rightness of the
shares in one step, unless we can compute the equation of the secret and the shares in the leaf
nodes beforehand, thus, we adopt a compromised method that we verify the shares we will use in
the next step, if it’s affirmative, and then, we verify the result for the next step of computing,
repeat until to the top node, if any verification returns “negative”, we stop computing and require
the key generation center to resend the keys.

2 Preliminaries
2.1 Bilinear maps

 Let 1G and 2G be two multiplicative cyclic groups of prime order p. Let g be a generator of

1G and e be a bilinear map, 1 1 2:e G G G× → . The bilinear map e has the following properties:

 1. Bilinearity: for all u,v 1G∈ and , pa b Z∈ , we have (,) (,) (,)a b b a abe u v e u v e u v= =

 2. Non-degeneracy: (,) 1e g g ≠ .

 3. Efficiently computable.
2.2 The decisional bilinear Diffie-Hellman (BDH) assumption

 Let a,b,c,z pZ∈ be chosen at random and g be a generator of 1G . The decisional BDH

assumption is that no probabilistic polynomial-time algorithm ℑ can distinguish the tuple

(A= ag , B= bg , C= cg , (,)abce g g) from the tuple (A= ag , B= bg , C= cg , (,)ze g g) with

more than a negligible advantage. The advantage of ℑ is:

| Pr[ℑ (A,B,C, (,)abce g g)=0]-Pr[ℑ (A,B,C, (,)ze g g)=0] |, where the probability is taken over

the random choice of the generator g, the random choice of a,b,c,z in pZ , and the random bits

consumed by ℑ .
2.3 definition of success in verification

 We adopt the definition in [Ped91]and make a little modification, if both of the condition
below are satisfied, then we say the verification is succeed.
 1. If all the shares are right, the user could reconstruct the secret with probability 1, which
means the user could decrypt.

 2. For two authorized sub access structures 1 2andΓ Γ of the original access structure Γ , both

satisfy () 1i γΓ = , then two messages reconstructed from each structure 1s and 2s , we have

1s = 2s .

 [note]: the condition2 means in one round of sharing, every group of authorized shares can
reconstruct the same secret, then further means, all shares come from the same polynomial, here,
this means they also decrypt the right plaintext.
2.4 security model for verifiable ABE

Our security model only need make a little modification of the selective-set model in
[GPSW06],

Init: The adversary declare the set of attributes, γ , that he wishes to be challenged upon.
 Setup: The challenger runs the SETUP algorithm of GPSW ABE and gives the public
parameters to the adversary.
 Phase1: The adversary is allowed to issue queries for verification information and private keys

for many access structure jΓ , where () 1j γΓ ≠ for all j, and the adversary checks the correctness

of the keys.

 Challenge: The adversary submits two equal length messages 0M and 1M . The challenger

flips a random coin b, and encrypts bM withγ . The ciphertext is passed to the adversary.

 Phase2: Phase1 is repeated.
 Guess: The adversary outputs a guess b’ of b.
 The advantage of an adversary ℑ in this game is defined as Pr[b’=b]- 1/2
 This model can be easily extended to handle chosen-ciphertext attacks by allowing for
decryption queries in Phase1 and Phase2, and a scheme secure in this model is also easily be
extended to be secure in chosen-ciphertext model using simulation sound NIZK proofs which
presented in [Sa99]. A GPSW ABE scheme is secure in the selective-set model of security if all
polynomial time adversaries have at most a negligible advantage in the selective-set game.
2.5 Basic algorithms of GPSW ABE
 The GPSW ABE scheme consists of four algorithms:
 SETUP: This is a randomized algorithm that takes no input other than the implicit security
parameter. It outputs the public parameters PK and a master key MK
 ENCRYPTION: This is a randomized algorithm that takes as input a message m, a set of
attributesγ , and the public parameters PK. It outputs the ciphertext E.
 KEY GENERATION: This is a randomized algorithm that takes as input- an access structure
Γ , the master key MK and the public parameter PK. It outputs a decryption key D.
 DECRYPTION: This algorithm takes as input- the ciphertext E that was encrypted under the

set γ of attributes, the decryption key D for access control structure Γ and the public parameter

PK. It outputs the message M if γ ∈Γ (or () 1γΓ =).

2.6 The algorithms of Chase Multi Authority ABE and its security model
 A Multi Authority ABE scheme is composed of K attribute authorities and one central
authority, the scheme uses the following algorithms:
 SETUP: A randomized algorithm which must be run by some trusted part (e.g CA). Takes as
input the security parameter. Outputs a public key, secret key pair for each of the attribute
authorities, and also outputs a system public key and master secret key which will be used by the
central authority.
 ATTRIBUTE KEY GENERATION: A randomized algorithm run by an attribute authority.

Takes as input the authority secret key, the authority’s value kd , a user’s ID, and an access

structure k
CΓ . Output secret key for the user.

 CENTRAL KEY GENERATION: A randomized algorithm run by the central authority. Take
as input the master secret key and a user’s ID and outputs secret for the user.
 ENCRYPTION: A randomized algorithm run by a sender. Takes as input a set of attributes for
each authority, a message, and the system public key. Outputs the ciphertext.
 DECRYPTION: A deterministic algorithm run by a user. Takes as input a ciphertext, which

was encrypted under attribute set cA . Output a message M if k
CΓ (cA)=1 for all authorities k.

 The security model of Chase Multi Authority ABE is almost the same as the model mentioned
before, only some little modifications in the Phase1 are needed. The requirements in Phase1 are
that for each ID, there must be at least one authority k whose access structure denies giving
decryption key for the challenge ciphertext, and the adversary never queries the same authority
twice with the same ID. A multi authority ABE scheme is selective-set secure if there exists a
negligible function ν such that, in the above game any adversary will succeed with probability at
most 1/2+ν (t), t is a parameter.

3 Verifiable version of GPSW Complex Access Structure ABE
3.1 Our construction

We first describe the tree structure used in this scheme, the access tree Γ , each non-leaf node

represents a threshold gate, described by its children and a threshold value, a node x, has xnum

children and a xk threshold value, changing xk can make the node to represent both OR gate

and AND gate. We also define the function parent(x) to return the parent node of x, and index(x)
to return the index of x as a child of its parent. a leaf node x is defined by an attribute att(x).

 Denote by xΓ the subtree rooted at the node x, we compute Γ (γ) in a recursive manner:

 If x is a leaf node, xΓ (γ) returns 1 if and only if att(x) γ∈

 If x is a non-leaf node, evaluate 'x
Γ (γ) for all children x’ of node x, xΓ (γ) returns 1 if

and only if at least xk children returns 1.

 Now we demonstrate the construction as follows:

Let 1G be a bilinear group of prime order p, and let g be a generator of 1G . In addition, let

1 1 2:e G G G× → denote the bilinear map. A security parameter, k, will determine the size of the

groups. We also define the Lagarange coefficient ,i SΔ for pi Z∈ and a set S, of elements in

pZ : , ,
()i S j S j i

x jx
i j∈ ≠

−
Δ =

−∏ . We will associate each attribute with a unique element in
*
pZ .

Setup Define the universe of attributes U= {1, 2, … , n}. Randomly choose 1,..., ,nt t y

from pZ . The published public parameters PK are

| |1
1 | |, ..., , (,)Utt y

UT g T g Y e g g= = = . The master key MK is: 1,..., ,nt t y .

 Encryption (M, γ , PK) To encrypt a message M 2G∈ under a set of attributes γ , choose

a random number s pZ∈ and publish the ciphertext as : E= (γ , E’=M sY , { }s
i i iE T γ∈=).

 Key Generation (Γ , MK) this process shares the secret y in a top-down manner with

Shamir’s threshold secret sharing scheme , for each non leaf node x, we choose a polynomial xq

with degree 1x xd k= − , make the polynomial satisfy ()(0) (())x parent xq q index x= , and

randomly fix other xd points to completely define xq ，then compute xh =
(0)(,) xqe g g and

1.. 1:{ (,) }i

x

a
x i kC e g g = − , { ia } are the non constant coefficients of the polynomial used to

share the secret of the node x. After all the polynomials are decided, for each leaf node x, we give

the following set of secret values D to the user:

(0)x
i

q
t

xD g= , where i= att(x) and

xh =
(0)(,) xqe g g . This process enables the user to decrypt a message encrypted under a set of

attributes γ if and only if Γ (γ) =1.

 Remark: This process can be seen as the secret y is shared as 1,..., ,ky y each iy then is

shared as 1,..,i ity y , and this sharing repeats till the leaf nodes.

 Verification（Γ，PK, { xh }, { xC }, D）for leaf node x, after getting { xD }, the user firstly

checks whether e (xD , iT) = xh , and then, verifies

1
() (0) 1 1(()) (()) .. (())(0)(,) (,) (,)

k
parent x parent kx q index x q a index x a index xq

xh e g g e g g e g g
−

−+ + += = =

=
1 ()

() 1
((,))

i
i

k a index x
parent x i

h e g g−

=
∗∏ , k=d (() ()parent xq •), (1) if all the leaf nodes

pass the verification, directly use xh and equation (1) to verify the correctness of the parent

nodes of leaf nodes, then repeats this procedure of checking for the upper nodes, until to the root

node and at last checks whether rh Y= . If in any step of verification fails, the user could stops,

and requires the key generation center for right decryption keys.
 Decryption (E, D) we specify the decryption procedure in a bottom-up manner: Let i= att (x)
 If x is a leaf node, then:

DecryptNode (E, D, x) returns

(0)
(0)(,) (,) (,)

x
i i x

q
t st sq

x ie D E e g g e g g= = if

i γ∈ , otherwise, returns _|_;
If x is a non-leaf node, we recursively compute the DecryptNode (E, D, x), the output of it is

denoted as xF , for all nodes z that are children of x, let xS be an arbitrary xk -sized set of child

nodes z such that zF ≠ _|_, if no such set exists, the function returns _|_, otherwise, we compute:

',
(0)

i Sx

x

x z
z S

F F
Δ

∈

=∏ , where i=index(z), '
xS ={index(z): z xS∈ }

(0)(,) xsqe g g= using Lagarange polynomial interpolation

We can know that, at last when reaching the root node r, we get DecryptNode (E, D, r)=

(,)sy se g g Y= , so if the condition Γ (γ)=1 is satisfied, the user can decrypt.

3.2 The effectiveness and the security proof for the verifiable version of ABE scheme
Theorem1. If all the checks in the verification procedure pass, the verifiable version of GPSW
ABE scheme satisfies the two conditions in 2.3, and the scheme is also secure in the selective-set
model defined in 2.4 under the decisional BDH assumption.
Proof sketch：First, we observe the results about the conditions in2.3. It is easy to prove that the
condition1 is satisfied. Let’s have a look at condition2, the additional information of each leaf is
not the same as the shares in the key generation, but the real secret is y, so in the first step of check

whether e (xD , iT) equals xh to ensure that the very (0)xq in xD is the same as that in xh . The

sharing process is to share y, so the polynomial in each step to finally get xD and xh is the same, if

1 ()
() 1

((,))
i

i
k a index x

x parent x i
h h e g g−

=
= ∗∏ passes, we can be sure that xh is rightly

computed from the polynomial of parent(x), namely, ()(0) (())x parent xq q index x= is rightly

computed from the polynomial, thus, () (0)parent xq is shared without mistakes, while for degree d

polynomial () ()parent xq • , every qualified structure in this level at least contains ()parent xk values,

while () 1parent xk d= + , so these values uniquely decide the polynomial. If from two qualified

sub structure we get different secrets, the difference must be from some level of sharing, then, in
this level of sharing, at least two qualified sets of values from one polynomial reconstruct different

secret, that is a contradiction. And at last, we check rh Y= to ensure the initial secret is the same

as the one in the public key. If all these checks are valid, the initial secret y is rightly shared in
each step to the final pieces of sharing.
 Next, we show the security of our scheme. As in [GPSW06], we use Α the adversary of
attacking the ABE scheme with advantageε to build a simulator Β for solving the DBDH
problem with advantageε /2. The challenger flips a fair binary coinμ , if μ =0, it sets the tuple

(A,B,C,Z)= (, , , (,))a b c abcg g g e g g , else, it sets the tuple (A,B,C,Z)= (, , , (,))a b c zg g g e g g , for

random a,b,c,z. The simulation proceeds as follows:

 Init Β runsΑ , Α chooses the attributes set γ he wishes to attack.

 Setup Β sets the parameter Y=e(A,B)= (,)abe g g , for all i in the universe, if i γ∈ , set

,ir
i iT g r= is randomly chosen from pZ , otherwise, set ,ik

i iT B k= is randomly chosen

from pZ , then Β gives the public parameters to Α

 Phase1 Α makes requests for keys corresponding to access structure 'Γ that '() 1γΓ ≠ . We

define two functions Satpoly and Unsatpoly.

 Satpoly(, ,x xγ λΓ) constructs the polynomials for the sub tree xΓ and () 1x γΓ = . It first sets

up a polynomial xq of degree xd for the root node x and satisfying (0)x xq λ= . For each child

node x’ of x, we defines its polynomial by calling Satpoly(' , , (('))x xq index xγΓ).

 Unsatpoly(, , x
x gλγΓ) sets up polynomials for the sub tree xΓ and () 0x γΓ = . For

unsatisfied root node x, it has xnum children, xk as its gate threshold value, and the degree xd of

the polynomial ()xq i for node x is 1xk − , because x is unsatisfied, so only xh child nodes of x are

satisfied, Β randomly choose yλ and ensures (0) (())y x yq q index y λ= = , as Β does not

know xλ andΒ has to make sure that (0)x xq λ= , Β can only share the known
xgλ

, so for

another x xd h− child nodes, Β randomly choose a value zλ for each, which satisfying

(())x zq index zg gλ= , then the polynomial ()xq i is decided in this way:

1() .. k
x kq a a x a xg g + + +=i

, Β knows k= xd different value
()xq ig , so Β could

compute all iag i=1,… xd . For the rest unsatisfied child nodes, Β fixes the value using

(())xz q index zg gλ = or direct interpolation. Next, Β defines the polynomials for the child

nodes recursively as follows, if child node x’ is satisfied, Β calls Satpoly (' , , (('))x xq index xγΓ)

If child node x’ is unsatisfied, Β calls Unsatpoly(
(('))

' , , xq index x
x gγΓ).

 Notice that, for each node x, if x is satisfied, then, (0)xq is known, if x is unsatisfied, at least

(0)xqg and
()xqg •

are known. Furthermore, the construction satisfies (0)rq a= . The final

polynomial () ()x xQ bq=i i , the simulator Β then computes all the values needed to send to Α :

for leaf node x, i = att(x), if i γ∈ ,Β computes xD =
(0) (0) (0)x i x i x iq r bq r Q tB g g= = ,

if i γ∉ , Β computes xD =
(0) (0) (0)x i x i x iq k bq bk Q tg g g= = . Therefore, the simulator

is able to construct the private key for 'Γ , and the distribution is identical to that in the original

scheme. Further, for all every node x, Β can compute xh =
(0) (0)(,) (,)x xq Qe B g e g g= ,

and 1.. 1 1.. 1:{ (,)} { (,) }i i

x x

a ba
x i k i kC e B g e g g= − = −= , so all values for verification are

ready. Α then checks the correctness.

 Challenge Α sends Β two messages 0 1,M M . The simulator Β flips a coinν ,returns the

encryption of Mν , the ciphertext is as: E= (γ , E’= Mν Z, { }ir
i iE C γ∈=), Z is from the

DBDH challenger, if μ =0, Z= (,)abce g g . Then, here, Y= (,)abe g g , s=c,

()i ir r c s
i iE C g T= = = , therefore, E is a valid encryption. If μ =1, Z= (,)ze g g ,E’ will be

a random number.
 Phase2 the simulator repeats phase1

 Guess Α submits his guess 'ν forν , if 'ν =ν , the simulator Β outputs 'μ =0, otherwise,

it outputs 'μ =1.

 The overall advantage of the simulator in the DBDH game is:
Pr [μ ’=μ] -1/2= Pr[μ ’=μ |μ =0].Pr[μ =0]+Pr[μ ’=μ |μ =1]Pr[μ =1]-1/2

=1/2(Pr[μ ’=μ |μ =0]+ Pr[μ ’=μ |μ =1])-1/2
=1/2(1/2+ε)+1/2.1/2-1/2=ε /2.

4 Verifiable version of Chase Multi-Authority ABE
4.1 our construction
 Chase gives out a Multi-Authority ABE scheme in [Cha07] that to solve the problem Sahai
and Waters left in their paper that more than one authority manipulate user’s attributes, for
example, different apartment of a company to handle the attributes related to its own apartment, if
all apartments’ requirement are satisfied, the user could then decrypt. The method used in the
fuzzy ABE can also be used in GPSW ABE, so we take an abstract form of sub function to
represent single authority ABE.
 The details are as follows:

 Init Fix prime order group G, 1G , bilinear map 1 1 2:e G G G× → , and generator g G∈ .

Choose seeds 1,..., ks s for all authorities, also randomly choose 0 , 1.. , 1..,{ }k i k K i n qy t Z= = ∈ .

System public key 0
0 (,) yY e g g= .

 Attribute Authority k

Authority Secret Key ks , ,1 ,...k k nt t

Authority Public Key ,1 ,...k k nT T where
,

,
k it

k iT g=

Secret Key for User u: Let , ()
kk u sy F u= .

To use a single authority verifiable ABE scheme as sub function with ,k uy as its secret input

to provide user with{ }xD .

Central Authority

Central Authority Secret Key ks for all authorities k, 0y

Secret Key for User u: Let , ()
kk u sy F u= for all k, Secret Key:

0 ,0
()

K
k uk

y y
CAD g =

−∑= , CA also constructs a table, storing information related to the

secret of each authority, and publish the table, the table has K+1 columns and the row is labeled by

user identification u, in each row, the CA put
,

, (,) k uy
k uY e g g= k is from 1 to K, the

last one in a row is
0 ,0

()(,)
K

k uk
y y

CAY e g g =
−∑= , once a new user makes a query for

decryption key, the CA add a new row to the table.

 Encryption for Attribute set CA Choose random s from qZ . E= 0
sY m , s

CAE g= ,

, , ,
{ } k

C

s
k i k i i A k

E T
∈ ∀

=

 Verification: After getting the { }xD from each authority, the user verifies as in 3.2, and in the

last step of verification, take the value in the table to compare, if passes for all authorities, check

an equation in the row labeled by his user identification 0 1

K
CA kk

Y Y Y
=

= ∗∏ , if this also passes,

then the key the user got is a right one which could be used to decrypt.
Decryption: For each authority k, the authorized user could interpolate to reconstruct

,
, (,) k usy

k uY e g g= , compute (,)s
CA CA CAY e E D= . Combine all these values to

obtain 0 1

Ks s s
CA kk

Y Y Y
=

= ∗∏ . Then decrypt to get m.

4.2 The effectiveness and security proof
Theorem2. If all the checks pass, the verifiable version of Multi Authority ABE scheme satisfies
the two conditions in 2.3, and based on the DBDH assumption, the scheme is secure in the
selective-set model defined in 2.5.
Proof sketch: the proof of this theorem is very similar to the proof of theorem1,
First, checks the two conditions in 2.3, at each authority, the verification makes sure that the
sharing process is correct, and the checks in the table ensures all the shares of the authorities are

rightly shared by the CA from the top secret 0y , the rest is the same as the proof of theorem1.

Next, the security proof only needs a few modifications of the original proof in [Cha07], and the
modification method is like that in the proof in theorem1, just adding the verification information
when answering the queries.

5 Conclusions and Open Problems
We present a verifiable version of ABE scheme which allows the user checks the correctness

of the key, using to decrypt all qualified ciphertext, he got from the authority, doing this kind of
verification reduces the trust of the authority, it is helpful when some error happens in creating or

sending the secret, and it results in eliminates meaningless cost of decryption.
The verification algorithm of our scheme is not efficient enough, for the first scheme in our

paper, if anyone can design a verification algorithm only computing in one step, it will be an
elegant optimization.
References
[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proc. of

CRYPTO 1984, volume 196, LNCS, 47-53. Springer
[BF01] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing. In

Proc. of CRYPTO 2001, volume 2139, LNCS, 213-229. Springer
[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proc. of

EUROCRYPT 2005, volume 3494, LNCS, 457-473. Springer
[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based

encryption for fine-grained access control of encrypted data. In Proc. of CCS06, 89-98,
New York, ACM Press

[Cha07] Melissa Chase. Multi-Authority Attribute-Based Encryption In TCC07, volume 4392,
LNCS, 515-534. Springer

[Ped91] Torben Pryds Pederson. Non-interactive and Information-theoretic Secure Verifiable
Secret Sharing. In Proc. of CRYPTO 1991, volume 576, LNCS, 129-140, Springer

