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Abstract. In this paper, we construct two verifiable attribute-based encryption 
schemes. One is for a single authority ABE, and the other is for a multi authority 
ABE. Not only our schemes are proved secure as the previous ABE schemes, they 
also provide a verifiable property. Adding the verification property has at least two 
advantages: first, it allows the user to immediately check the correctness of the 
keys which later would be used to decrypt all authorized ciphertexts at any time, 
and second, if the keys pass the verification but the user still does not rightly 
decrypt out the message, something might be wrong with the attributes or 
ciphertexts. We formalize the notion of verifiable attribute-based encryption and 
prove our schemes in our model. 
Keywords: Attribute-Based Encryption, verifiable, multi-authority 
 

1 Introduction 
Identity Based Encryption (IBE), introduced by Shamir [1], is a novel encryption which allows 
users to use any string as their public key (for example, an ID card number or an email address). 
Encrypting messages without access to a public key certificate reduces the load of creating and 
storing certificates. The first provably secure and elegantly designed IBE scheme was given by 
Boneh and Franklin [2], after that, IBE has received a lot of attention. 
To better express identity and allow for a certain amount of error-tolerance, Sahai and Waters 
proposed fuzzy IBE [3], in their scheme, identity is viewed as a set of descriptive attributes, and a 
user with the secret key for the identity ω is able to decrypt a ciphertext encrypted with the public 
key 'ω if and only if ω and 'ω are with a certain distance of each other as judged by some 
metric. 

In the paper [4], Goyal et al. developed a much richer type of attribute-based encryption 
cryptosystem and demonstrated its applications. In their system each ciphertext is labeled by the 
encryptor with a set of descriptive attributes. Each private key is associated with an access 
structure that specifies which type of ciphertexts the key can decrypt. The access policy in their 
work is described by an access tree, which is more general than simple t-out-of-n threshold, and 
thus well suits for fine-grained access control of encrypted data and some other kind of 
applications. 
Both the schemes in [3] and [4] are with single authority, so Chase presented multi-authority ABE 
in [5] to answer an open question in [3], in multi-authority scenario, more than one authority are 
responsible for maintaining one kind of attributes, they operate simultaneously, and handle out 
secret keys for different set of attributes. 

OUR CONTRIBUTIONS: the ideas in fuzzy IBE and its extension GPSW ABE are from 



secret sharing, we could not be sure that all the shares sent by the key generation center are 
consistent (being consistent means the shares can really be used to reconstruct the same secret), 
maybe the key generation center is not that impartial, or something wrong happens in the process 
of creating or the sending period of the information in some secret shares, and in this kind of 
encryption schemes, one key can be used to decrypt many pieces of ciphertext, so changing secret 
sharing [6]with verifiable secret sharing [7]adds a verification property allowing the user to verify 
whether the share is consistent with other shares and whether the key the user got is rightly shared 
from the true secret, which means using the key can decrypt, if not, we require the key generation 
center to resend them, because in many cases, if there do be wrong with the shares, only in the 
middle of the verification, the user can find it, doing this can reduce the meaningless computation 
cost of decrypting with wrong shares, doing this has the second advantage is that if the keys pass 
the verification but the user still does not rightly decrypt out the message, there is a notification 
that something might be wrong with the attributes or ciphertexts., doing this may also potentially 
be used to construct other schemes using verifiable ABE as a building block. Our work makes the 
GPSW ABE be verifiable before reconstructing the secret and check the deciphered text, we also 
realize the same function in the multi-authority ABE which also needs to make sure all the shares 
are right, or else, the user could not decrypt because the sharing among the authorities is not a 
threshold one, all the shares are used in reconstruction. The security of these schemes have not 
been influenced, we only need to make some modifications that computing the values for 
verification to answer the new queries in the proof in [4] and [5] to finish our proof. 

CHLLENGES AND OUR METHOD: because the secrets in the sharing schemes in the 
GPSW ABE are shared more than one time, we should make sure that there is nothing wrong in 
every step of sharing, so it is very difficult to finish all the process of verifying the rightness of the 
shares in one step, unless we can compute the equation of the secret and the shares in the leaf 
nodes beforehand, thus, we adopt a compromised method that we verify the shares we will use in 
the next step, if it’s affirmative, and then, we verify the result for the next step of computing, 
repeat until to the top node, if any step of verification returns “negative”, we stop computing and 
require the key generation center to resend the keys. 
 

2 Preliminaries 
2.1 Bilinear maps 

   Let 1G and 2G be two multiplicative cyclic groups of prime order p. Let g be a generator of 

1G and e be a bilinear map, 1 1 2:e G G G× → . The bilinear map e has the following properties: 

   1. Bilinearity: for all u,v 1G∈ and , pa b Z∈ , we have ( , ) ( , ) ( , )a b b a abe u v e u v e u v= =  

   2. Non-degeneracy: ( , ) 1e g g ≠ . 

   3. Efficiently computable. 
2.2 The decisional bilinear Diffie-Hellman (BDH) assumption 

   Let a,b,c,z pZ∈ be chosen at random and g be a generator of 1G . The decisional BDH 



assumption is that no probabilistic polynomial-time algorithm ℑ can distinguish the tuple  

(A= ag , B= bg , C= cg , ( , )abce g g ) from the tuple (A= ag , B= bg , C= cg , ( , )ze g g ) with 

more than a negligible advantage. The advantage of ℑ  is: 

| Pr[ℑ (A,B,C, ( , )abce g g )=0]-Pr[ℑ (A,B,C, ( , )ze g g )=0] |, where the probability is taken over 

the random choice of the generator g, the random choice of a,b,c,z in pZ , and the random bits 

consumed by ℑ . 
2.3 Definition1:If both of the condition below are satisfied, then we say the attribute-based 
encryption scheme is verified. 
   1. Assume that K is a PPT algorithm to generate two independent random numbers, K outputs 
different results even with the same input at different times. A is a PPT algorithm taking a node r, a 
parameter k, and attributes setγ as input, to create an authorized sub access structureΓ rooted at 
node r, andΓ satisfies that Γ (γ )=1, B is a PPT algorithm to reconstruct the secret message from 
a given access structure, for any 0k and at anytime, the quantity:  

0 1 2 0 1 1 2 2 1 2,( , , , , ) 1 Pr[ , ( ), ( , , ) ( , , ), ( ) ( )]R RAdv A B r k k k K k Ak r Ak r B Bγ γ γ←= − ← Γ ← Γ Γ = Γ  

is a negligible function of 0k . 

   2. If all the shares are right, the user could reconstruct the secret with probability 1, which 
means the user could decrypt out the right message. 
  [note]: the condition1 means in every round of sharing, every group of authorized shares can 
reconstruct the same secret, then further means, all shares come from the same polynomial, here, 
this means they also decrypt out the right plaintext. 
2.4 security model for verifiable ABE 

Our security model only need make a little modification of the selective-set model in [4],  
Init: The adversary declare the set of attributes, γ , that he wishes to be challenged upon. 

   Setup: The challenger runs the SETUP algorithm of GPSW ABE and gives the public 
parameters to the adversary. 
   Phase1: The adversary is allowed to issue queries for verification information and private keys 

for many access structure jΓ , where ( ) 1j γΓ ≠ for all j, and the adversary checks the correctness 

of the keys. 

   Challenge: The adversary submits two equal length messages 0M and 1M . The challenger 

flips a random coin b, and encrypts bM withγ . The ciphertext is passed to the adversary. 

   Phase2: Phase1 is repeated. 
   Guess: The adversary outputs a guess b’ of b. 
   The advantage of an adversary ℑ in this game is defined as Pr[b’=b]- 1/2 
   This model can be easily extended to handle chosen-ciphertext attacks by allowing for 
decryption queries in Phase1 and Phase2, and a scheme secure in this model is also easily be 
extended to be secure in chosen-ciphertext model using simulation sound NIZK proofs which 



presented in [8]. A GPSW ABE scheme is secure in the selective-set model of security if all 
polynomial time adversaries have at most a negligible advantage in the selective-set game. 
2.5 Basic algorithms of GPSW ABE 
   The GPSW ABE scheme consists of four algorithms: 
   SETUP: This is a randomized algorithm that takes no input other than the implicit security 
parameter. It outputs the public parameters PK and a master key MK 
   ENCRYPTION: This is a randomized algorithm that takes as input a message m, a set of 
attributesγ , and the public parameters PK. It outputs the ciphertext E. 
   KEY GENERATION: This is a randomized algorithm that takes as input- an access structure 
Γ , the master key MK and the public parameter PK. It outputs a decryption key D. 
   DECRYPTION: This algorithm takes as input- the ciphertext E that was encrypted under the 
set γ  of attributes, the decryption key D for access control structure Γ and the public parameter 

PK. It outputs the message M if γ ∈Γ (or ( ) 1γΓ = ). 

2.6 The algorithms of Chase Multi Authority ABE and its security model 
   A Multi Authority ABE scheme is composed of K attribute authorities and one central 
authority, the scheme uses the following algorithms: 
   SETUP: A randomized algorithm which must be run by some trusted part (e.g CA). Takes as 
input the security parameter. Outputs a public key, secret key pair for each of the attribute 
authorities, and also outputs a system public key and master secret key which will be used by the 
central authority. 
   ATTRIBUTE KEY GENERATION: A randomized algorithm run by an attribute authority. 

Takes as input the authority secret key, the authority’s value kd , a user’s ID, and an access 

structure k
CΓ . Output secret key for the user. 

   CENTRAL KEY GENERATION: A randomized algorithm run by the central authority. Take 
as input the master secret key and a user’s ID and outputs secret for the user. 
   ENCRYPTION: A randomized algorithm run by a sender. Takes as input a set of attributes for 
each authority, a message, and the system public key. Outputs the ciphertext. 
   DECRYPTION: A deterministic algorithm run by a user. Takes as input a ciphertext, which 

was encrypted under attribute set cA . Output a message M if k
CΓ ( cA )=1 for all authorities k. 

   The security model of Chase Multi Authority ABE is almost the same as the model mentioned 
before, only some little modifications in the Phase1 are needed. The requirements in Phase1 are 
that for each ID, there must be at least one authority k whose access structure denies giving 
decryption key for the challenge ciphertext, and the adversary never queries the same authority 
twice with the same ID. A multi authority ABE scheme is selective-set secure if there exists a 
negligible function ν such that, in the above game any adversary will succeed with probability at 
most 1/2+ν (t), t is a parameter. 
 

3 Verifiable version of GPSW Complex Access Structure ABE  
3.1 Our construction 



We first describe the tree structure used in this scheme, the access tree Γ , each non-leaf node 

represents a threshold gate, described by its children and a threshold value. A node x, has xnum  

children and a threshold value xk , changing xk  can make the node to represent both OR gate and 

AND gate. We also define the function parent(x) to return the parent node of x, and index(x) to 
return the index of x as a child of its parent. a leaf node x is defined by an attribute att(x). 

   Let xΓ be the sub tree rooted at the node x, we compute Γ (γ ) in a recursive manner: 

   If x is a leaf node, xΓ (γ ) returns 1 if and only if att(x) γ∈  

   If x is a non-leaf node, evaluate 'x
Γ ( γ ) for all children x’ of node x, xΓ (γ ) returns 1 if 

and only if at least xk  children returns 1. 

   Now we demonstrate the construction as follows: 

Let 1G  be a bilinear group of prime order p, and let g be a generator of 1G . In addition, let 

1 1 2:e G G G× →  denote the bilinear map. A security parameter, k, will determine the size of the 

groups. We also define the Lagarange coefficient ,i SΔ  for pi Z∈  and a set S, of elements in 

pZ : 
, ,

( )i S j S j i

x jx
i j∈ ≠

−
Δ =

−∏ . We will associate each attribute with a unique element in
*
pZ .  

Setup Define the universe of attributes U= {1, 2, … , n}. Randomly choose 1,..., ,nt t y  

from pZ . The published public parameters PK are ： 

| |1
1 | |, ..., , ( , )Utt y

UT g T g Y e g g= = = . The master key MK is: 1,..., ,nt t y . 

 Encryption (M, γ , PK)  To encrypt a message M 2G∈  under a set of attributes γ , choose 

a random number s pZ∈  and publish the ciphertext as : E= (γ , E’=M sY , { }s
i i iE T γ∈= ). 

 Key Generation (Γ , MK)  this process shares the secret y in a top-down manner with 

Shamir’s threshold secret sharing scheme , for each non leaf node x, we choose a polynomial xq  

with degree 1x xd k= − , make the polynomial satisfy ( )(0) ( ( ))x parent xq q index x= , and 

randomly fix other xd points to completely define xq ，then compute xh =
(0)( , ) xqe g g  and 

1.. 1: { ( , ) }i

x

a
x i kC e g g = − , { ia } are the non constant coefficients of the polynomial 

( )xq i used to share the secret of the node x. After all the polynomials are decided, for each leaf 



node x, we give the following set of secret values D to the user: xΓ ,
( 0 )x iq t

xD g= , where 

i= att(x) and the additional values xh =
(0)( , ) xqe g g . This process enables the user to decrypt a 

message encrypted under a set of attributes γ  if and only if Γ (γ ) =1. 

 Remark: This process can be seen as the secret y is shared as 1,..., ,ky y each iy  then is 

shared as 1, ..,i ity y , and this sharing repeats till the leaf nodes. 

 Verification（Γ，PK, { xh }, { xC }, D） for leaf node x, after getting { xD }, the user firstly 

checks whether  e ( xD , iT ) = xh , and then, verifies ： 

1
( ) (0) 1 1( ( )) ( ( )) .. ( ( ) )(0)( , ) ( , ) ( , )

k
parent x parent kx q index x q a index x a index xq

xh e g g e g g e g g
−

−+ + += = =

= ( )1
1( ) ( ( , ) )

i
ia in d ex xk

ip a ren t xh e g g−
=∗ ∏ , k is the degree of the polynomial 

( ) ( )parent xq • , (1) if all the leaf nodes pass the verification, directly use xh  and equation (1) to 

verify the correctness of the parent nodes of leaf nodes, then repeats this procedure of checking for 

the upper nodes, until to the root node and at last checks whether rh Y= . If any step of 

verification fails, the user should stop, and requires the key generation center for right decryption 
keys. 

 Decryption (E, D) we specify the decryption procedure in a bottom-up manner: Let i= att (x) 
 If x is a leaf node, then:  

DecryptNode (E, D, x) returns
( 0 )

( 0 )( , ) ( , ) ( , )
x

i i x

q
t st sq

x ie D E e g g e g g= =  if 

i γ∈ , otherwise, returns _|_; 
If x is a non-leaf node, we recursively compute the DecryptNode (E, D, x), the output of it is 

denoted as xF , for all nodes z that are children of x, let xS  be an arbitrary xk -sized set of child 

nodes z such that zF ≠ _|_, if no such set exists, the function returns _|_, otherwise, we compute: 

( 0 )',i S x
x z

z S x
F F

Δ

∈
= ∏ ,      where i=index(z), '

xS ={index(z): z xS∈ } 

     
(0)( , ) xsqe g g=  using Lagarange polynomial interpolation 

We can know that, at last when reaching the root node r, we get DecryptNode (E, D, r)= 

( , ) sy se g g Y= , so if the condition Γ (γ )=1 is satisfied, the user can decrypt. 

3.2 The effectiveness and the security proof for the verifiable version of ABE scheme 
Theorem1. If all the checks in the verification procedure pass, the verifiable version of GPSW 
ABE scheme satisfies the two conditions in Definition1, and the scheme is also secure in the 



selective-set model defined in 2.4 under the decisional BDH assumption. 
Proof sketch：First, we observe the condition1 and condition2 in definition1.  

The additional information for verification of each leaf are commitments for the coefficients 
of the polynomials used in key generation phase, and the real secret is y, so in the first step of 

check whether e ( xD , iT ) equals xh to ensure that the very (0)xq in xD is the same as that in xh . 

The sharing process is to share y, so the polynomial in each step to finally get xD and xh is the 

same, if  
1 ( )

( ) 1
( ( , ) )

i
i

k a index x
x parent x i

h h e g g−

=
= ∗∏ -----------( * ) passes, we can be 

sure that xh is rightly computed from the polynomial of parent(x), namely, 

( )(0) ( ( ))x parent xq q index x= is rightly computed from that polynomial, thus, ( ) (0)parent xq is 

shared without mistakes, while for degree d polynomial ( ) ( )parent xq • , every qualified structure in 

this level at least contains ( )parent xk  values,  while ( ) 1parent xk d= + , so any qualified set of 

values uniquely decide the polynomial. Now, let’s check the 0( , , , , )Adv A B r kγ in condition1 in 

definition1, if any of this quantity generated by some 0k at some time is non-negligible, it means 
that from two qualified sub structure with the same root node, we get different secrets with a 
non-negligible quantity, and the difference must be from some level of sharing, then, in this level 
of sharing, at least two qualified sets of values reconstruct different secrets, which means at least 
one of them passes the test in (*) but is wrong, assume the node is x, that is, the key generation 
center intentionally or not computes a value a, and satisfying： 

 
1(0) ( )

( ) 1
( , ) ( , ) ( ( , ) )

i
x i

kq aa index x
parent x i

Q e g g e g g h e g g−

=
= = = ∗∏ , then the 

KGC could solve ( , )log (0)e g g xQ a q= −  with a non-negligible quantity, however, it is 

negligible, that is a contradiction, so condition1 is satisfied.  

And at last, we check rh Y= to ensure the initial secret is the same as the one in the public 

key. If all these checks are valid, the initial secret y is rightly shared in each step to the final pieces 
of sharing, the user could decrypt, then condition2 is satisfied. 
   Next, we show the security of our scheme. As in [4], we use Α the adversary of attacking the 
ABE scheme with advantageε to build a simulator Β for solving the DBDH problem with 
advantage ε /2. The challenger flips a fair binary coin μ , if μ =0, it sets the tuple 

(A,B,C,Z)= ( , , , ( , ) )a b c abcg g g e g g , else, it sets the tuple (A,B,C,Z)= ( , , , ( , ) )a b c zg g g e g g , for 

random a,b,c,z. The simulation proceeds as follows: 

   Init Β runsΑ , Α chooses the attributes set γ he wishes to attack. 

   Setup Β sets the parameter Y=e(A,B)= ( , )abe g g , for all i in the universe, if i γ∈ , set 



,ir
i iT g r= is randomly chosen from pZ , otherwise, set ,ik

i iT B k= is randomly chosen 

from pZ , then Β gives the public parameters to Α  

   Phase1 Α makes requests for keys corresponding to access structure 'Γ that '( ) 1γΓ ≠ . We 

define two functions Satpoly and Unsatpoly. 

   Satpoly( , ,x xγ λΓ ) constructs the polynomials for the sub tree xΓ and ( ) 1x γΓ = . It first sets 

up a polynomial xq of degree xd for the root node x and satisfying (0)x xq λ= . For each child 

node x’ of x, we defines its polynomial by calling Satpoly( ' , , ( ( '))x xq index xγΓ ). 

   Unsatpoly( , , x
x g λγΓ ) sets up polynomials for the sub tree xΓ and ( ) 0x γΓ = . For 

unsatisfied root node x, it has xnum children, xk as its gate threshold value, and the degree xd of 

the polynomial ( )xq i for node x is 1xk − , because x is unsatisfied, so only xh child nodes of x are 

satisfied, x xh d≤ .Β randomly choose yλ and ensures (0) ( ( ))y x yq q index y λ= = , as Β does 

not know xλ andΒ has to make sure that (0)x xq λ= , Β can only share the known xg λ
, so for 

another x xd h− child nodes, Β randomly choose a value zλ for each, which satisfying 

( ( ) )x zq in d e x zg g λ= , then the polynomial ( )xq i is decided in this way: 

1( ) .. k
x kq a a x a xg g + + +=i

, Β  knows k= xd different value
( )xq ig , so Β could 

compute all iag i=1,… xd . For the rest unsatisfied child nodes, Β fixes the value using 

( ( ))xz q index zg gλ = or direct interpolation. Next, Β defines the polynomials for the child 

nodes recursively as follows, if child node x’ is satisfied, Β calls Satpoly ( ' , , ( ( '))x xq index xγΓ ) 

If child node x’ is unsatisfied, Β calls Unsatpoly(
( ( '))

' , , xq index x
x gγΓ ).  

   Notice that, for each node x, if x is satisfied, then, (0)xq is known, if x is unsatisfied, at least 

(0)xqg and
( )xqg •

are known. Furthermore, the construction satisfies (0)rq a= . The final 

polynomial ( ) ( )x xQ bq=i i , the simulator Β then computes all the values needed to send to Α : 



for leaf node x, i = att(x), if i γ∈ ,Β computes xD =
(0) (0 ) (0 )x i x i x iq r bq r Q tB g g= = , 

if i γ∉ , Β computes xD =
(0 ) (0 ) (0 )x i x i x iq k bq bk Q tg g g= = . Therefore, the simulator 

is able to construct the private key for 'Γ , and the distribution is identical to that in the original 

scheme. Further, for all every node x, Β can compute xh =
( 0 ) ( 0 )( , ) ( , )x xq Qe B g e g g= , 

and 1.. 1 1.. 1: { ( , )} { ( , ) }i i

x x

a ba
x i k i kC e B g e g g= − = −= , so all values for verification are 

ready. Α then checks the correctness. 

   Challenge Α sends Β two messages 0 1,M M . The simulator Β flips a coinν ,returns the 

encryption of Mν , the ciphertext is as: E= (γ , E’= Mν Z, { }ir
i iE C γ∈= ), Z is from the 

DBDH challenger, if μ =0, Z= ( , )abce g g . Then, here, Y= ( , )abe g g , s=c, 

( )i ir r c s
i iE C g T= = = , therefore, E is a valid encryption. If μ =1, Z= ( , )ze g g ,E’ will be 

a random number. 
   Phase2 the simulator repeats phase1 

   Guess Α submits his guess 'ν forν , if 'ν =ν , the simulator Β outputs 'μ =0, otherwise, 

it outputs 'μ =1. 

   The overall advantage of the simulator in the DBDH game is:  
Pr [μ ’=μ ] -1/2= Pr[μ ’=μ |μ =0].Pr[μ =0]+Pr[μ ’=μ |μ =1]Pr[μ =1]-1/2 

=1/2(Pr[μ ’=μ |μ =0]+ Pr[μ ’=μ |μ =1])-1/2 
=1/2(1/2+ε )+1/2.1/2-1/2=ε /2. 

4 Verifiable version of Chase Multi-Authority ABE 
4.1 our construction 
   Chase gives out a Multi-Authority ABE scheme in [5] that to solve the problem Sahai and 
Waters left in their paper that more than one authority manipulate user’s attributes, for example, 
different apartment of a company handles the attributes related to its own apartment, if all 
apartments’ requirement are satisfied, the user could then decrypt. The method used in the fuzzy 
ABE can also be used in GPSW ABE, so we take an abstract form of sub function to represent 
single authority ABE. 
   The details are as follows: 

   Init Fix prime order group G, 1G , bilinear map 1 1 2:e G G G× → , and generator g G∈ . 

Choose seeds 1,..., ks s  for all authorities, also randomly choose 0 , 1.. , 1..,{ }k i k K i n qy t Z= = ∈ . 

System public key 0
0 ( , ) yY e g g= . 



   Attribute Authority k  

Authority Secret Key ks , ,1 ,...k k nt t  

Authority Public Key ,1 ,...k k nT T where ,
,

k it
k iT g=  

Secret Key for User u: Let , ( )
kk u sy F u= .  

To use a single authority verifiable ABE scheme as sub function with ,k uy  as its secret input 

to provide user with{ }xD . 

Central Authority 

Central Authority Secret Key ks  for all authorities k, 0y  

Secret Key for User u: Let , ( )
kk u sy F u= for all k, Secret Key: 

0 ,0
( )

K
k uk

y y
C AD g =

− ∑= , at the same time, CA constructs a table, storing information 

related to the secret of each authority, and publish the table, the table has K+1 columns and the 

row is labeled by user identification u, in each row, the CA put ,
, ( , ) k uy

k uY e g g= k is from 1 

to K, the last one in a row is 0 ,0
( )( , )

K
k uk

y y
CAY e g g =

−∑= , once a new user makes a query for 

decryption key, the CA adds a new row to the table. 

 Encryption for Attribute set CA  Choose random s from qZ . E= 0
sY m , s

CAE g= , 

, , ,
{ } k

C

s
k i k i i A k

E T
∈ ∀

=  

 Verification: After getting the { }xD from each authority, the user verifies as in 3.2, and in the 

last step of verification, take the value in the table to compare, if passes for all authorities, check 

an equation in the row labeled by his user identification 0 1

K
CA kk

Y Y Y
=

= ∗∏ , if this also passes, 

then the key the user got is a right one which could be used to decrypt. 
Decryption: For each authority k, the authorized user could interpolate to reconstruct  

,
, ( , ) k usy

k uY e g g= , compute ( , )s
CA CA CAY e E D= . Combine all these values to 

obtain 0 1

Ks s s
CA kk

Y Y Y
=

= ∗∏ . Then decrypt to get m. 

4.2 The effectiveness and security proof 
Theorem2. If all the checks pass, the verifiable version of Multi Authority ABE scheme satisfies 
the two conditions in 2.3, and based on the DBDH assumption, the scheme is secure in the 
selective-set model defined in 2.5. 
Proof sketch: the proof of this theorem is very similar to the proof of theorem1,  



First, checks the two conditions in 2.3, at each authority, the verification makes sure that the 
sharing process is correct, and the checks in the table ensures all the shares of the authorities are 

rightly shared by the CA from the top secret 0y , the rest is the same as the proof of theorem1. 

Next, the security proof only needs a few modifications of the original proof in [5], and the 
modification method is like that in the proof in theorem1, just adding the verification information 
when answering the queries. 

5 Conclusions and Open Problems 
We present a verifiable version of ABE scheme which allows the user checks the correctness 

of the key, using to decrypt all qualified ciphertext, he got from the authority, doing this kind of 
verification reduces the trust of the authority, it is helpful when some error happens in creating or 
sending the secret, it results in eliminates meaningless cost of decryption and it potentially can be 
useful when as a building block in other schemes. 

The verification algorithm of our scheme is not efficient enough, for the first scheme in our 
paper, if anyone can design a verification algorithm only computing in one step, it will be an 
elegant optimization.   

References 
[1] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proc. of CRYPTO84,  

volume 196, LNCS, 47-53. Springer, 1984 
[2] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing. In Proc. of  

CRYPTO01, volume 2139, LNCS, 213-229. Springer, 2001 
[3] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proc. of  EUROCRYPT 05,  

volume 3494, LNCS, 457-473. Springer, 2005 
[4] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for  

fine-grained access control of encrypted data. In Proc. of CCS06, 89-98, New York, ACM  
Press, 2006 

[5] Melissa Chase. Multi-Authority Attribute-Based Encryption In TCC07, volume 4392, LNCS,  
515-534. Springer, 2007 

[6] Adi Shamir. How to share a secret. Communications of the ACM, volume22, 612-613, 1979 
[7] Torben Pryds Pederson. Non-interactive and Information-theoretic Secure Verifiable Secret  

Sharing. In Proc. of CRYPTO 1991, volume 576, LNCS, 129-140, Springer, 1991 
[8] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext  

security. In Proc. of EUROCRYPT99, volume 3494, LNCS, 457-473 Springer, 1999 


