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Abstract. In this paper, we construct two verifiable attribute-based encryption 
(VABE) schemes. One is with a single authority, and the other is with multi 
authorities. Not only our schemes are proved secure as the previous ABE schemes, 
they also provide a verification property. Adding the verification property has a few 
advantages: first, it allows the user to immediately check the correctness of the 
keys, if not, we only need the authority to resend the corresponding shares, 
especially, in multi-authority case, if the key does not pass the check, the user only 
needs to ask the particular authority to resend its own part, without need to go to all 
the authorities, this saves a lot of time when error appears, second, if the keys pass 
the verification but the user still does not rightly decrypt out the message, 
something might be wrong with the attributes or ciphertexts, then, the user has to 
contact with the encryptor. We formalize the notion of VABE and prove our 
schemes in our model. 
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1 Introduction 
Identity Based Encryption (IBE), introduced by Shamir [1], is a novel encryption which allows 
users to use any string as their public key (for example, an ID card number or an email address). 
Encrypting messages without access to a public key certificate reduces the load of creating and 
storing certificates. The first provably secure and elegantly designed IBE scheme was given by 
Boneh and Franklin [2], after that, IBE has received a lot of attention. 

To better express identity and allow for a certain amount of error-tolerance, Sahai and 
Waters proposed fuzzy IBE [3], in their scheme, identity is viewed as a set of descriptive attributes, 
and a user with the secret key for the identity ω is able to decrypt a ciphertext encrypted with the 
public key 'ω if and only if ω and 'ω are with a certain distance of each other as judged by 
some metric. 

In the paper [4], Goyal et al. developed a much richer type of ABE cryptosystem and 
demonstrated its applications. In their system each ciphertext is labeled by the encryptor with a set 
of descriptive attributes. Each private key is associated with an access structure that specifies 
which type of ciphertexts the key can decrypt. The access policy in their work is described by an 
access tree, which is more general than simple t-out-of-n threshold, and thus well suits for 
fine-grained access control of encrypted data and some other kind of applications. 

In the paper [5] and [6], Cheung et al. and Bethencourt et al. respectively constructed a 
ciphertext policy ABE scheme, in which attributes are used to describe a user’s credentials, and a 
party encrypting data determines a policy for who can decrypt. This conception is closer to 



traditional access control methods. 
All ABE schemes mentioned are with single authority, so Chase presented multi-authority 

ABE in [7] to answer an open question in [3], in multi-authority scenario, more than one authority 
are responsible for maintaining one kind of attributes, they operate simultaneously, and handle out 
secret keys for different set of attributes, and the load of the single authority is enormously 
reduced. 

ABE schemes are mostly used in the scenario below: the encryptor creates the ciphertext 
and put it to the public environment, the user who wants to decrypt goes to the authority (below, 
we assume the authority and the key generation center are the same) to ask for his decryption key 
satisfying the policy. Thus, a key of a user would be stored and used many times later.  

Our Contributions: we add a verifiable property to the ABE schemes, the core idea of the 
method is using some trick to change secret sharing [8] in the ABE schemes with verifiable secret 
sharing [9]. Compared to decrypting out the wrong message, this method has at least three 
advantages, especially in the multi-authority case: 

1. If the key does not pass the verification, there must be something wrong with the process 
of generating the key, and we can just ask the authority to resend the corresponding shares, 
without need to repeat the whole process of generating the key.  

2. If the keys pass the verification but the user still does not rightly decrypt out the message, 
there is a explicit notification that something might be wrong with the attributes or ciphertexts, in 
this situation, the user goes to the creator of the ciphertext.  

3. In the case of multi-authority, each authority uses the VABE scheme, if the check does not 
passes in some single authorities, the user does not need to ask all authorities to resend the shares, 
but only needs to ask for the particular authorities to resend the corresponding shares computed by 
those authorities.  

VABE may also potentially be used to construct other schemes as a building block. The 
security of these schemes have not been influenced, we only need to make some modifications 
that computing the values for verification to answer the new queries in the proof in previous ABE 
schemes to finish our security proof. 

The paper is organized as follows: we give out the preliminaries in part 2, and definitions of 
VABE and its security in part 3, then we give a concrete construction with single authority and we 
prove ite security in part 5, we also give out a construction with multi-authorities in part 6, and at 
last, we draw a conclusion in part 7. 
 

2 Preliminaries 
2.1 Bilinear maps 
Let G andG be two multiplicative cyclic groups of prime order p. Let g be a generator of G1 and 
e be a bilinear map,  : . The bilinear map e has the following properties: 
   1. Bilinearity: for all u, v G  anda, b Z , we have , , ,  
   2. Non-degeneracy: ( , ) 1e g g ≠ . 
   3. Efficiently computable. 
2.2 The decisional bilinear Diffie-Hellman (BDH) assumption 
Let a, b, c, z Z be chosen at random and g be a generator of  G1 . The decisional BDH 
assumption is that no probabilistic polynomial-time algorithm ℑ can distinguish the tuple:   



(A= ag , B= bg , C= cg , ( , )abce g g ) from the tuple (A= ag , B= bg , C= cg , ( , )ze g g ) with 
more than a negligible advantage. The advantage of ℑ  is: 
| Pr[ℑ (A,B,C, ( , )abce g g )=0]-Pr[ℑ (A,B,C, ( , )ze g g )=0] |, where the probability is taken 
over the random choice of the generator g, the random choice of a,b,c,z in pZ , and the random 

bits consumed by ℑ . 
 

3 VABE and its security model 
3.1 Definition1: A VABE scheme is a special kind of key policy ABE scheme in which the 
correctness of key could be verified when the user gets the key from the key generation center, it 
includes following basic algorithms: 

SETUP: This is a randomized algorithm that takes no input other than the implicit security 
parameter. It outputs the public parameters PK and a master key MK 
   ENCRYPTION: This is a randomized algorithm that takes as input a message m, the public 
parameters PK, and attributes setγ . It outputs the ciphertext E. 
   KEY GENERATION: This is a randomized algorithm that takes as input the master key MK, 
the public parameter PK and policy (or access structure) Γ. It outputs a decryption key D, and 
verification information V. It is executed by the authority. 
   VERIFICATION: This is a deterministic algorithm that takes V and all public information as 
input, outputs 1 when V passes the check, else outputs 0. 
   DECRYPTION: If VERIFICATION outputs 1, then this algorithm is executed. It takes as 
input- the ciphertext E that was encrypted under the descriptive information D1, the decryption  
key D for Γ and the public parameter PK. It outputs the message M if  (  =1). 
3.2 Definition2: If both of the conditions below are satisfied, then we say the ABE scheme is a 
VABE scheme. 
   1. Assume that K is a PPT algorithm to generate two independent random numbers, K outputs 
different results even with the same input at different times. A is a PPT algorithm taking a node r, a 
parameter k, and attributes setγ as input, to create an authorized sub access structureΓ rooted at 
node r, andΓ satisfies that Γ (γ )=1, B is a PPT algorithm to reconstruct the secret message from  
a given access structure, for any 0k and at anytime, the quantity , , , , : 

1  , , , , , , , ,  
is a negligible function of 0k . 

   2. If all the shares are right, the user could reconstruct the secret with probability 1, which 
means the user could decrypt out the right message.(we assume there is nothing wrong with the 
ciphertext and attributes) 
3.3 security model for VABE 
Our security model adds a verification query to the selective-set model in [4],  

Init: The adversary declare the set of attributes,γ , that he wishes to be challenged upon. 
   Setup: The challenger runs the SETUP algorithm of GPSW ABE in [4] and gives the public 
parameters to the adversary. 
   Phase1: The adversary is allowed to issue queries for verification information and private keys 
for many access structure Γ , where Γ γ 1for all j, and the adversary checks the correctness of 
the keys. 
   Challenge: The adversary submits two equal length messages M andM . The challenger flips 



a random coin b, and encrypts M withγ . The ciphertext is passed to the adversary. 
   Phase2: Phase1 is repeated. 
   Guess: The adversary outputs a guess b’ of b. 
   The advantage of an adversary ℑ in this game is defined as Pr[b’=b]- 1/2 
   This model can be easily extended to handle chosen-ciphertext attacks by allowing for 
decryption queries in Phase1 and Phase2, and a scheme secure in this model is also easily be 
extended to be secure in chosen-ciphertext model using simulation sound NIZK proofs which 
presented in [10]. A GPSW ABE scheme is secure in the selective-set model of security if all 
polynomial time adversaries have at most a negligible advantage in the selective-set game. 
   

4 A Concrete construction of VABE with single authority 
The ABE scheme we use as a building block is the construction of Goyal et al in [4]. 
We first describe the tree structure used in this scheme, the access tree Γ, each non-leaf node 

represents a threshold gate, described by its children and a threshold value. A node x, has num  
children and a threshold value k . We also define the function parent(x) to return the parent node  
of x, and index(x) to return the index of x as a child of its parent. a leaf node x is defined by an 
attribute att(x). 
   Let Γ  be the sub tree rooted at the node x, we compute Γ γ  in a recursive manner: 
   If x is a leaf node,  returns 1 if and only if att(x) γ∈  
   If x is a non-leaf node, evaluate Γ γ for all children x’ of node x, Γ γ  returns 1 if and 
only if at least k  children returns 1. 
   Now we demonstrate the construction as follows: 

Let G  be a bilinear group of prime order p, and let g be a generator of G . In addition, let 
:  denote the bilinear map. A security parameter, k, will determine the size of the  

groups. We also define the Lagarange coefficient Δ ,S for i Z  and a set S, of elements in Z : 
∆ , ∏ , . We will associate each attribute with a unique element in Z .  

Setup Define the universe of attributes U= {1, 2, … , n}. Randomly choose , . . ,  
from Z . The published public parameters PK are ： 

, … , | | | | , , . The master key MK is: , . . , . 
 Encryption (M, γ, PK)  To encrypt a message M 2G∈  under a set of attributes γ , choose 

a random number s Z  and publish the ciphertext as : , , . 
 Key Generation (Γ, MK)  this process shares the secret y in a top-down manner with 

Shamir’s threshold secret sharing scheme , for each non leaf node x, we choose a polynomial q  
with degree 1 , make the polynomial satisfy 0 ,and 
randomly fix other d points to completely define q ，then compute ,  and 

: , ,.., , {a } are the non constant coefficients of the polynomial q  used to 
share the secret of the node x. After all the polynomials are decided, for each leaf node x, we give 
the following set of secret values D to the user: , / , where i= att(x) and the 
additional values , , and for every other node x, we  h  and  C . This process 
enables the user to decrypt a message encrypted under a set of attributes γ if and only if Γ γ =1.  

Verification（Γ，PK, { h }, { C }, D） for leaf node x, after getting { D }, the user firstly 
checks whether  ,   , and then, verifies ： 

                                            , , 



                       , ..  
                        ∏ ,  

k is the degree of the polynomial  , (1) if all the leaf nodes pass the verification, using 
 h  and equation (1) to verify the correctness of all other nodes level by level, until to the root 
node and at last checks whether  . Assume the check fails at nodes , . . , , if any 
node x ’s ancestor node is in this nodes set, we remove x  from this set, at last, we get , . . , we 
ask the authority to resend the shares of the subtree , . . , . 

 Decryption (E, D) we specify the decryption procedure in a bottom-up manner: Let i= att (x) 
 If x is a leaf node, then:  

DecryptNode (E, D, x) returns  , , ,  if i γ∈ , 

otherwise, returns ; 
If x is a non-leaf node, we recursively compute the DecryptNode (E, D, x), the output of it is 

denoted as F , for all nodes z that are children of x, let S  be an arbitrary k -sized set of child 
nodes z such that F , if no such set exists, the function returns _|_, otherwise, we compute: 

                     ∏ , , where i=index(z), S ={index(z):z} 

  , ,  using Lagrange polynomial interpolation. 
We can know that, at last when reaching the root node r, we get： 

DecryptNode (E, D, r)= , , so if the condition Γ (γ )=1 is satisfied, the user can 
decrypt. 

5 Security proof for the VABE scheme 
Theorem1. The concrete construction of verifiable ABE scheme is verified, which means it 
satisfies the two conditions in 3.2 Definition2, and the scheme is also secure in the selective-set 
model defined in 3.3 under the decisional BDH assumption. 
Proof sketch：First, we observe the condition1 and condition2 in 3.2 definition1.  

The additional information for verification of each leaf are commitments for the coefficients 
of the polynomials used in key generation phase. The real secret is y, but the user can not directly  
get the shares of y, so in the first step of check whether e ( , ) equals h  to ensure that the very 
q 0  in D is the same as that in h . The sharing process is to share y, so the polynomial in each 
step to finally get D and h is the same, if：   
                   ∏ ,                       ( * ) 
passes, we can be sure that h is rightly computed from the polynomial of parent(x), namely, 

0  is rightly computed from that polynomial, thus, q 0 is 
shared without mistakes, while for degree d polynomial  , every qualified structure in 
this level at least contains k  values,  while 1, so any qualified set of  
values uniquely decide the polynomial. Now, let’s check the , , , , in condition1 in 
definition1, if any of this quantity generated by some 0k at some time is non-negligible, it means 
that from two qualified sub structure with the same root node, we get different secrets with a 
non-negligible quantity, and the difference must be from some level of sharing, then, in this level 
of sharing, at least two qualified sets of values reconstruct different secrets, which means at least 
one of them passes the test in (*) but is wrong, assume the node is x, that is, the key generation  
center intentionally or not computes a value a, and satisfying： 

, , ∏ ,  
then the KGC could solve , 0  with a non-negligible quantity, however, it is 



negligible, that is a contradiction, so condition1 is satisfied.  
And at last, we check  to ensure the initial secret is the same as the one in the public 

key. If all these checks are valid, the initial secret y is rightly shared in each step to the final pieces  
of sharing, the user could decrypt, then condition2 is satisfied. 

 
   Next, we show the security of our scheme. As in [4], we use A the adversary of attacking the 
ABE scheme with advantageε to build a simulator B for solving the DBDH problem with 
advantageε /2. The main difference between our proof and the one in [4] is the check query.  

The challenger flips a fair binary coin µ , if =0, it sets the tuple 
(A,B,C,Z)= , , , , ), else, it sets the tuple (A,B,C,Z)= , , , , ),, for 
random a,b,c,z. The simulation proceeds as follows: 
   Init B runs A, Achooses the attributes set γ he wishes to attack. 
   Setup B sets the parameter Y=e(A,B)= , , for all i in the universe, if i γ, set 

, r is randomly chosen from Z , otherwise, set , k  is randomly chosen from  Z , 
then B gives the public parameters to A. 
   Phase1 Α makes requests for keys corresponding to access structure Γ  thatΓ γ 1. We 
define two functions Satpoly and Unsatpoly. 
   Satpoly(Γ , γ, λ ) constructs the polynomials for the sub tree Γ  and Γ γ 1. It first sets up 
a polynomial q  of degree d for the root node x and satisfying  q 0 λ . For each child node 
x’ of x, we defines its polynomial by calling Satpoly(  , ). 
   Unsatpoly(Γ , γ, g ) sets up polynomials for the sub treeΓ and Γ γ =0.For h satisfied 
children nodes, B randomly choose λ  and ensures 0 , for another 

 child nodes, B randomly chooses a valueλ for each, which satisfying 
, then the polynomial q  is decided in this way: .. , B knows 

k=  different value , so Β could compute all , i=1,….  . For the rest unsatisfied 
child nodes, B fixes the value using or direct interpolation. Next, Β defines 
the polynomials for the child nodes recursively as follows, if child node x’ is satisfied, B calls                 
Satpoly(  , ), If child node x’ is unsatisfied, B calls 
Unsatpoly((  , )).  
   The final polynomial Q  bq  , the simulator B then computes all the values needed to 
send toΑ : for leaf node x, i = att(x). 
if i γ, B computes: / / /  
if  i γ, B computes: / / /  
Therefore, the simulator is able to construct the private key for Γ , and the distribution is identical 
to that in the original scheme. Further, for all every node x, B can compute : 

, ,   : , ,.. , ,..   
so all values for verification are ready. A then checks the correctness. 
   Challenge A sends B two messagesM , M . The simulator B flips a coinν ,returns the 
encryption of M , the ciphertext is as: E= (γ , E’= Z, ), Z is from the DBDH 
challenger, if , =0, Z= , . Then, here, Y= , , s=c, 

, therefore, E is a valid encryption. If µ=1, Z=e g, g , E’ will be a random number. 
   Phase2 the simulator repeats phase1 
   Guess Α submits his guess ν for ν, if ν =ν, the simulator B outputs µ =0, otherwise, it 
outputs µ =1. 
   The overall advantage of the simulator in the DBDH game is:  



Pr [ ’= ] -1/2= Pr[ ’= |μ =0].Pr[ =0]+Pr[ ’= | =1]Pr[ =1]-1/2 
=1/2(Pr[ ’= |μ =0]+ Pr[ ’= | =1])-1/2 
=1/2(1/2+ε )+1/2.1/2-1/2=ε /2. 
 

6 VABE with Multi-Authorities 
VABE is much more useful in multi-authority environment, if any mistake is detected; user only 
needs to communicate with the particular authority, if there is no verification algorithm, he has to 
contact with all authorities. We give a concrete construction, taking the trick in [7]. 
6.1 The algorithms of Multi Authority VABE and security model 
A Multi Authority ABE scheme is composed of K attribute authorities and one central authority, 
the scheme uses the following algorithms: 
   SETUP: A randomized algorithm which must be run by some trusted part (e.g CA). Takes as 
input the security parameter. Outputs a public key, secret key pair for each of the attribute 
authorities, and also outputs a system public key and master secret key which will be used by the 
central authority. 
   ATTRIBUTE KEY GENERATION: A randomized algorithm run by an attribute authority. 
Takes as input the authority secret key, the authority’s value d , a user’s ID, and an access 
structure Γ . Output secret key for the user. 
   CENTRAL KEY GENERATION: A randomized algorithm run by the central authority. Take 
as input the master secret key and a user’s ID and outputs secret for the user. 
   ENCRYPTION: A randomized algorithm run by a sender. Takes as input a set of attributes for 
each authority, a message, and the system public key. Outputs the ciphertext. 
   VERIFICATION: A deterministic algorithm run by a user. Takes all public information and 
verification information as input. Outputs 1 if all checks pass, or else outputs 0. 
   DECRYPTION: If verification outputs 1, this deterministic algorithm is run by a user. Takes as 
input a ciphertext, which was encrypted under attribute set A . Output a message M if         
Γ  (A )=1 for all authorities k. 
   The security model only adds a verification query in each single authority and the central 
authority to the model in [7]. 
6.2 concrete construction 
   Setup Fix prime order group G, G , bilinear map : , and generator g G . 
Choose seeds s , . . s  for all authorities, also randomly choose   , , ,.. , ,.. . 
System public key , . 
   Attribute Authority k  

Authority Secret Key  , , . . , ,  
Authority Public Key , , . . , where , ,  
Secret Key for User u: Let  , .  
To use a single authority verifiable ABE scheme as sub function with   y ,  as its secret input 

to provide user with  D . 
Central Authority 
Central Authority Secret Key s  for all authorities k, y  
Secret Key for User u: Let  , .for all k, Secret Key: ∑ , , at the  

same time, CA constructs a table, storing information related to the secret of each authority, and 
publish the table, the table has K+1 columns and the row is labeled by user identification u, in 



each row, the CA put , , , ,
,
k is from 1 to K, the last one in a row is 

, ∑ , , once a new user makes a query for decryption key, the CA adds a new row to 
the table. 
   Encryption for Attribute set A  Choose random s from . E= ,  , 
 and     , ,  ,  

Verification: After getting the D from each authority, the user verifies as in 3.2, if any 
mistake is detected within a authority’s shares, the user asks the authority to resend the 
corresponding shares without need to contact with other authorities, and in the last step of 
verification, take the value in the table to compare, if passes for all authorities, check an equation 
in the row labeled by his user identification ∏ , if this also passes, then the key 
the user got is a right one which could be used to decrypt. 

Decryption: For each authority k, the authorized user could interpolate to reconstruct  

, , , , compute , . Combine all these values to obtain  
∏  . Then decrypt to get m. 
6.3 The security proof for VABE with multi-authority 
Theorem2. If all the checks pass, the Multi Authority Verifiable ABE scheme satisfies the two 
conditions in 3.2, and based on the DBDH assumption, the scheme is secure in the selective-set 
model defined in 4.1. 
Proof sketch: the proof of this theorem is very similar to the proof of theorem1,  
First, checks the two conditions in 2.3, at each authority, the verification makes sure that the 
sharing process is correct, this part is the same as in the proof in Theorem1, and then, checks in 
the table ensures all the shares of the authorities are rightly shared by the CA from the top 
secret y . 
Next, the security proof only needs a few modifications of the original proof in [7], and the 
modification method is like that in the proof in theorem1, computing the verification information 
when emulating the oracle, to answer the new queries. 
 

7 Conclusions 
We introduce the definition of VABE, which allows the user checks the correctness of the key, 
using to decrypt all qualified ciphertext, doing this kind of verification reduces the trust of the 
authority, it is helpful when some error happens in creating or sending the secret, especially in 
multi-authority scenario, and it may potentially be useful as a building block to construct other 
kinds of cryptographic application. We make a proper security model for it, and give two concept 
constructions of VABE schemes with a single authority and multi authorities respectively, and 
prove their security under the model.  
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