
Construction of Universal Designated-Verifier Signatures and
Identity-Based Signatures from Standard Signatures1

Siamak F Shahandshti † Reihaneh Safavi-Naini ‡

† School of Comp. Sci. and Soft. Eng., University of Wollongong, Australia
http://www.uow.edu.au/∼sfs166

‡ Department of Computer Science, University of Calgary, Canada
http://www.cpsc.ucalgary.ca/∼rei

December 12, 2007

Abstract

We give a generic construction of universal designated-verifier signature schemes from a large class C of
signature schemes. Our constructions are comparable in terms of cost and size to their counterparts, while
offering the following two main attractive features: Firstly, our constructions are provably non-delegatable
beside being DV-unforgeable and non-transferable. Secondly, in our constructions, the signer and the des-
ignated verifier can choose different cryptographic settings of their own independently. We also propose
a generic construction of identity-based signature schemes from any signature scheme in C and prove the
construction secure against adaptive chosen message and identity attacks. We discuss possible extensions
of our constructions to universal multi-designated-verifier signatures, hierarchical identity-based signatures,
identity-based universal designated verifier signatures, and identity-based ring signatures from any signature
in C.

Keywords: Designated Verifier Signature, Identity-Based Signature, Digital Signature Schemes, Signature of
Knowledge, Generic Construction

1 Introduction

Universal Designated-Verifier Signatures. Designated verifier proofs and designated verifier signatures
(DVS) were proposed by Jakobsson et al. [JSI96] as proofs and signatures that will only convince a specific
verifier. The idea is that such proofs/signatures can be constructed by both the prover/signer on one hand
and the verifier on the other. When a verifier receives such a proof/signature, since he knows that he has not
constructed it himself, he will be convinced. However the verifier cannot convince a third party by showing him
what he has received, since it could have been the verifier himself who generated the designated proof/signature.

Universal designated-verifier signatures (UDVS) were first proposed by Steinfeld et al. [SBWP03] with the goal
of protecting users’ privacy in certification systems. In such a scheme, a user Alice is issued a signed certificate
by a certificate issuer. Later on, when Alice wishes to send her certificate to a verifier Bob, she uses Bob’s public
key to transform the issuer’s signature into a designated signature for Bob. Bob can verify the issuer’s signature
by verifying the validity of the designated signature. However, since his secret key allows him to construct valid
designated signatures by himself, he is unable to convince a third party that the certificate has been signed by
the issuer. The main difference between a DVS and a UDVS scheme is that in the former, only the signer has
the ability to designate signatures, whereas in the latter, everyone can designate signatures.

In their work, Steinfeld et al. also proposed security definitions for UDVS schemes and a concrete scheme based
on bilinear group pairs [SBWP03]. In [LWB05] Lipmaa et al. argued that the original security definition in

1This is the full version of the article appearing in PKC ′08 with the same title.

1

http://www.uow.edu.au/~sfs166
http://www.cpsc.ucalgary.ca/~rei

[SBWP03] was not sufficient to capture the verifier-designation concept and introduced a new security notion,
called non-delegability. They have shown that in some UDVS schemes including Steinfeld et al’s [SBWP03], the
issuer can delegate his signing ability - with respect to a fixed designated verifier - to a third party, without
revealing his secret key or even enabling the third party to sign with respect to other designated verifiers. They
argue that, in many scenarios, such delegation property is undesirable and must be prevented. An example
of such scenario is when Alice designates university’s signature on her student card to use a certain gym for
students. If the UDVS in use is delegatable, the university will be able to disclose a value so that anyone can
freely issue a designated student card for themselves to use the gym. This value does not enable others to
compute university’s private key and/or sign other documents on behalf of the university. On the other hand,
since the university has not actually issued any fraudulent student cards, it cannot be held responsible for any
malicious activity. These two facts provide enough safety margin for the university to abuse such delegation
ability.

None of the many UDVS schemes proposed to date, except a recent scheme of Huang et al. [HSMW06], has
treated non-delegatability as a security requirement for their scheme. Furthermore, the results of Lipmaa et al.
[LWB05] and later results of Li et al. [LLP05] show that many of the proposed UDVS schemes are delegatable,
including the scheme from [SBWP03] and one of the schemes from [SWP04].

Our Contributions on UDVS. We give a generic construction of secure UDVS scheme from a large class
of signature schemes (satisfying certain properties). We use a definition of security that includes the original
security notions of Steinfled et al, i.e. unforgeability and non-transferability privacy, and also the notion of non-
delegatability inspired by the work of Lipmaa et al. [LWB05] and adapted to UDVS. We define non-delegatability
in terms of a ‘proof of knowledge’ of either a signature on the message or the designated verifier’s secret key.
This definition guarantees that only Alice or Bob can construct valid designated signatures, and hence they are
not able to delegate this ability to others without revealing Alice’s certificate or Bob’s secret key.

To construct non-delegatable UDVS schemes, we will use Jakobsson et al’s original intuition behind the concept
of verifier designation [JSI96]: “Instead of proving Θ, Alice will prove the statement: Either Θ is true, or I am
Bob.” In UDVS schemes, what Alice wants to prove to Bob is the validity of her certificate. Thus, a very natural
construction of a UDVS would simply be the non-interactive version of a proof of the following statement by
Alice: “Either my certificate is valid, or I am Bob.” Such a signature can be constructed in the following steps:
first pick a protocol for proof of knowledge of Alice’s certificate and another for proof of knowledge of Bob’s
secret key, then construct a protocol for proof of knowledge of Alice’s certificate or Bob’s secret key by combining
the two protocols via e.g. techniques of Cramer et al. [CDS94], and at last, make the resulting protocol non-
interactive via e.g. Fiat-Shamir transform [FS86]. In fact, it is intuitively clear that such a construction yields
a secure UDVS scheme, if both of the underlying protocols are honest-verifier zero-knowledge (HVZK) proofs
of knowledge. However, efficient protocols for HVZK proof of knowledge of a signature on a message are only
known for a small group of signature schemes.

We propose a construction of UDVS schemes that works for any combination of a signature in class C of signature
schemes and all verifiers key pairs that belong to a class K, and prove its security in the above sense, in the
Random Oracle Model. The class C of signatures that can be used in our construction includes signature schemes
such as RSA-FDH [BR96], Schnorr [Sch91], modified ElGamal [PS00a], BLS [BLS01], BB [BB04], Cramer-Shoup
[CS00], and both schemes proposed by Camenisch and Lysyanskaya [CL02, CL04]. Class K is the set of all key
pairs for which there exist protocols for HVZK proofs of knowledge of the secret key corresponding to a public
key and includes public and private key pairs of RSA cryptosystem, GQ identification scheme [GQ88], and
discrete-log based public and private key pairs.

Our construction has a number of attractive features. Firstly, it is generic and security proofs guarantee security
of a large class of UDVS schemes obtained from standard signature schemes that are members of the class C.
Note that the only other known non-delegatable UDVS due to Huang et al. [HSMW06] is in fact an instance
of our construction. Secondly, the construction does not limit the signer and the verifier to have ‘compatible’
settings: the construction works for any choice of signer and verifier settings as long as the signature scheme is a
member of class C and the verifier key belongs to the class K. All previous constructions only work for a specific
combination of signature schemes and verifier key pairs.

Identity-Based Signatures. Identity-based cryptography was proposed by Shamir in [Sha84], where he also
proposed an identity-based signature (IBS) scheme. In an IBS scheme, there is an authority with a key pair: a

2

master secret key and a master public key, who generates for each user a user secret key based on the user’s
identity. A user can use its user secret key to sign messages. Signatures can be verified against the identity of
the signer and the master public key.

There are two known generic constructions of IBS. The first is due to Bellare et al. [BNN04], which generalizes
an earlier construction of Dodis et al. [DKXY03]. Bellare et al. define a class of schemes called convertible
(in analogy with trapdoor schemes defined by Dodis et al.) and show how to construct identity-based signature
schemes from signature schemes in this class. They showed that a large number of previously proposed schemes
are in fact instances of their generic construction. However, as noted by the authors, there are some IBS schemes,
including Okamoto’s discrete logarithm based IBS [Oka92] (called OkDL-IBS by Bellare et al.) and a new IBS
scheme proposed in [BNN04] (called BNN-IBS), that are not instances of their generic construction.

The other generic construction is the one of Kurosawa and Heng [KH04]. Their construction requires an efficient
zero-knowledge protocol for proof of knowledge of a signature, which makes their construction applicable to only
a few schemes such as RSA-FDH and BLS.

Our Contributions on IBS. We propose a construction of IBS schemes from any signature in the aforemen-
tioned class C and prove the construction secure against adaptive chosen message and identity attacks. In our
construction, a user secret key is basically a signature of the authority on the user’s identity and an identity-based
signature is generated as follows: the user constructs a proof of knowledge of her secret key (i.e. the authority’s
signature on her identity) and then transforms it into a signature on a message using the Fiat-Shamir trans-
form. For signature schemes with efficient zero-knowledge protocols for proof of knowledge of a signature, our
constructions will become the same as those of Kurosawa and Heng [KH04]. Thus, our constructions can be seen
as a generalization of theirs.

Many previous IBS schemes can be seen as instances of our generic construction such as those of Fiat and
Shamir from [FS86], Guillou and Quisquater from [GQ88], Shamir from [Sha84], pairing-based schemes from
[SOK00, Hes02, CC03, Yi03, BLMQ05, HCW05] and basically all the convertible IBS schemes constructed in
[BNN04]. Both OkDL-IBS and BNN-IBS, which are not captured by generic constructions of Bellare et al, fit as
instances of our generic construction as well. However, all the IBS schemes that we construct are proved secure
in the Random Oracle model (ROM) [BR93], thus ROM-free constructions such as the folklore certificate-based
IBS schemes formalized in [BNN04] and the scheme of Paterson and Schuldt [PS06] are not captured by our
framework.

Further Contributions. Our constructions of UDVS schemes can be naturally extended to (non-delegatable)
universal multi-designated-verifier signatures. Furthermore, we observe that our identity-based constructions
support a nesting-like property in the sense that a user can act as a new key generation authorithy and issue
keys for other users. This fact enables extensions of our IBS constructions to hierarchical identity-based signatures
out of any signature scheme in the class C. We will also point out the possibility of generic construction of (non-
delegatable) identity-based universal designated verifier signatures and identity-based ring signatures from any
signature in C using our techniques.

1.1 Related Work

As mentioned before, UDVS schemes were first proposed by Steinfeld et al. in [SBWP03]. In the same work,
they also proposed security definitions and a concrete scheme based on bilinear group pairs. In a later work, they
proposed extensions of Schnorr and RSA signatures into UDVS schemes [SWP04]. Subsequently, other pairing-
based schemes were proposed in [ZFI05] and [Ver06], and Laguillaumie et al. introduced ‘Random Oracle
free’ constructions [LLQ06]. Besides, many other UDVS schemes with various flavors were constructed (e.g.
interactive [BSS05], multi-verifier [NSM05], identity-based [ZSMC05], with aggregation [MT05], ring [LW06],
and restricted [HSMZ06]).

Our constructions are very close to Goldwasser and Waisbard’s generic constructions of designated confirmer
signatures in [GW04]. They also use protocols for proof of knowledge of a signature as a tool for their construc-
tions. They also present such protocols for a number of signature schemes including Goldwasser-Micali-Rivest

3

[GMR88], Gennaro-Halevi-Rabin [GHR99], and Cramer-Shoup [CS00]. This shows that the above signatures are
in class C.

A highly related area is that of ring signatures. Generic constructions of ring signatures as Fiat-Shamir trans-
formed proofs of knowledge of one-out-of-n secret keys are known for a long time. Our techniques deal with
the very similar but different concept of proofs of knowledge of signatures on known messages. Although proto-
cols for proof of knowldge of a secret key corresponding to a public key are more studied and well-known, the
counterpart field of proof of knowledge of a signature corresponding to a message and a public key has been less
studied independently.

Our ID-based signature is actually an instance of a more general concept, Signatures of Knowledge, recently
redefined and formalized by Chase and Lysyanskaya [CL06]. A signature of knowledge on a message guarantees
that a signer who knows a witness of an NP language has signed the message. Having defined such a signature,
conventional signatures will be an instance of such a generic definition, where a signature guarantees that a
signer who knows the secret key corresponding to a known public key has signed the message. Our ID-based
signature is an instance of a signature of knowledge, in which a signature guarantees that a signer who knows a
signature of the key generating authority on his identity, has signed the message.

Our identity-based signature can also be seen as the signature counterpart of hidden credentials [HBSO03]. In
hidden credentials, Alice encrypts a message in a way that Bob can only decrypt it if he has a certain credential
from Chris, i.e. the credential acts as the decryption key. In our identity-based signatures, Bob receives a
signature which guarantees that an entity who has a certain credential, i.e. the corresponding user secret key,
from Chris, i.e. the key generating authority has signed it.

It is also worth to mention the previous constructions of the identity-based universal deignated verifier signatures
by Zhang et al. [ZSMC05] and universal multi-designated-verifier signatures by Ng et al. [NSM05], which are
unfortunately both delegatable. Our generic constructions of the above schemes, as mentioned before, guarantee
non-delegatability.

2 Preliminaries

2.1 Notation

We use different fonts to denote Algorithms, security notions, and Oracles, respectively. We also denote the
internal state of an algorithm X by StX and the empty string by ε. We will also use a handful of different arrows
to denote different things. These are summarized in Table 1.

Table 1: Notation used in the paper

x← a a is assigned to x x← X (a;O) X with input a and access to

x
N← a a mod N is assigned to x oracle O is run and outputs x

x
$← X x is chosen randomly from X A

a
−−−� B a is sent from A to B

2.2 Proofs of Knowledge

Consider an NP problem P. The set of all the pairs consisting of an instance Ins of P and its corresponding
solution Sol, i.e. (Ins, Sol), form a relation that we call an NP relation. Now, consider an NP relation Rel.
Membership of this relation can be decided in polynomial time. Let Rel be the corresponding membership
deciding algorithm. Then, a pair (Pub, Sec) belongs to Rel if and only if Rel (Pub, Sec). Following the works of
Camenisch and Stadler [CS97a], we will use the following notation for showing a protocol for proof of knowledge

PoK {Sec : Rel (Pub, Sec)} ,

4

where the prover proves knowledge of her secret Sec corresponding to a publicly known Pub, s.t. (Pub, Sec) ∈
Rel. Technically speaking, Sec is the private input to the prover algorithm and Pub is the public input of the
protocol. We will follow the convention that all the secret inputs are collectively denoted by Sec and shown
before the colon (:) and all the remaining variables, functions, sets, etc. appearing after the colon are assumed
to be the public inputs, collectively denoted by Pub.

A public-coin protocol is a protocol in which the verifier chooses all its messages during the protocol run randomly
from publicly-known sets. A three-move public-coin protocol can be written in the so called canonical form as
shown in Figure 1. The prover algorithm in this case will consist of a pair of algorithms, respectively for so-called
committing and responding, denoted by P = (Cmt,Rsp). The verifier algorithm, in turn, will consist of a pair of
algorithms, respectively for so-called challenging and deciding, denoted by V = (Chl,Dcd), where the challenging
algorithm is limited to only drawing a challenge randomly from a publicly-known set, called the challenge space.
As we mentioned before, we will denote by StP the internal state of the prover. The work-flow of the algorithm
is as follows. In the first move, the prover runs the algorithm Cmt to compute the commitment Cmt and sends
it to the verifier. Then the verifier chooses a random challenge Chl from a challenge space ChSp and sends it
back in the second move. The prover will then compute a response Rsp according to the algorithm Rsp based on
the information from the first run and the challenge, and then send Rsp to the verifier. Algorithm Dcd will be
run by the verifier at the end to compute a decision d based on the commitment, the challenge and the response.

(StP, Cmt)← Cmt (Sec, Pub) Cmt
−−−�

Chl
$← ChSpChl

�−−−
Rsp← Rsp (StP, Chl) Rsp

−−−�
d← Dcd (Pub, Cmt, Chl,Rsp)

Figure 1: A canonical three-move public-coin protocol for proof of knowledge

Let’s denote the transcript of a protocol run in Figure 1 by Tr = (Cmt, Chl, Rsp). The protocol is said to
have the honest-verifier zero-knowledge property (HVZK from now on) [GMR89], if there exists an algorithm
that is able to simulate transcripts that are indistinguishable from the ones of the real protocol runs without
the knowledge of the secret. The protocol is said to have the special soundness property (SpS from now on) as
described in [CDS94], if there also exists an algorithm that is able to extract the secret from two transcripts of
the protocol with the same commitment and different challenges. We denote these as the following, respectively:

Tr ← TrSim (Pub) and Sec← Ext (Pub, Tr, Tr′) ,

where Tr = (Cmt, Chl, Rsp) and Tr′ = (Cmt′, Chl′, Rsp′) are such that Cmt = Cmt′ but Chl 6= Chl′. A three-
move public-coin protocol with both the HVZK and SpS properties is usually called a Σ protocol. Examples of
Σ protocols for proof of knowledge are the GQ protocol [GQ88] and the Schnorr protocol [Sch91].

2.3 Proofs of Disjunctive Knowledge

Cramer et al. have shown how to extend Σ protocols to witness indistinguishable (WI from now on) Σ protocols
for proving knowledge of (at least) t out of n values using secret sharing schemes [CDS94]. They call such
protocols proofs of partial knowledge. Witness indistinguishability guarantees that even a cheating verifier will
not be able to tell which t-subset of the n values the prover knows. Thus, the transcripts of different runs of the
protocol with different t-subsets as prover input will be indistinguishable from one another.

An instance of such partial proofs of knowledge that we find useful here is a WI proof of knowledge of one out of
two, which we call a proof of disjunctive knowledge. These proofs were also observed by Camenisch and Stadler
[CS97b] for discrete logarithms. In line with the above, we will use the following notation to show such proofs:
to show a protocol for proof of knowledge of a value Sec1 such that Rel1 (Pub1, Sec1) or a value Sec2 such that
Rel2 (Pub2, Sec2), we use the notation

PoK {(Sec1 ∨ Sec2) : Rel1 (Pub1, Sec1) , Rel2 (Pub2, Sec2) } .

5

The Σ protocol for proof of knowledge of Sec1 or Sec2 corresponding to Pub = (Pub1, Pub2) can be constructed in
the canonical form using simple techniques. Both HVZK and SpS properties are also inherited by the constructed
proof of disjunctive knowledge. For specifics refer to Appendix F.

2.4 The Fiat-Shamir Transform

Fiat and Shamir proposed a method for transforming (interactive) three-move public-coin protocols into non-
interactive schemes [FS86]. The idea is to replace the verifier with a hash function and the rationale behind
it is that all the verifier does in such a protocol is providing some sort of unpredictable challenge that can be
mimicked by a Random Oracle hash function. This idea can be applied in two different ways, depending on what
one includes in the hash function argument. One way is to set the challenge as the hash of the concatenation
of the public inputs and the commitment, i.e. Chl ← H (Pub ‖ Cmt). This way we will get a non-interactive
proof of knowledge. If such a transform is applied to the protocol in Figure 1 using the Random Oracle hash
function H : {0, 1}∗ 7→ ChSp, the resulting non-interactive proof scheme will be as in Figure 2, with the
algorithms NIPoK and NIVoK for non-interactive proof and verification of knowledge, respectively. Here, π is a
non-interactive proof that can be verified off-line and publicly. HVZK and SpS properties for non-interactive
proofs are defined similarly to their counterparts for interactive proofs. Pointcheval and Stern’s Forking Lemma
[PS00a] can be used to easily prove in the Random Oracle Model that the Fiat-Shamir construction has both
the HVZK and SpS properties if the original interactive proof has the corresponding properties.

Algorithm NIPoK (Pub, Sec)
(StP, Cmt)← Cmt (Sec, Pub)
Chl← H (Pub ‖ Cmt)
Rsp← Rsp (StP, Chl)
π ← (Cmt, Rsp)
return π

Algorithm NIVoK (Pub, π)
Chl← H (Pub ‖ Cmt)
d← Dcd (Cmt, Chl, Rsp)
return d

Figure 2: The non-interactive proof scheme from applying Fiat-Shamir to the protocol in Figure 1

The other way of applying the Fiat-Shamir method is to set the challenge as the hash of the concatenation of
the public inputs, the commitment, and an arbitrary message m, i.e. Chl← H (Pub ‖ Cmt ‖ m). This will give
us a signature scheme. The resulting signature from applying such a transform to the protocol in Figure 1 using
the Random Oracle hash function H : {0, 1}∗ 7→ ChSp, will be as in Figure 3, with the algorithms Sign and
Verify for signing a message and verification of a candidate signature, respectively. Similarly, σ is a signature that
can be verified publicly. The resulting signature scheme will be existentially unforgeable under chosen message
attack if the original protocol is a Σ protocol [PS00a]. Security of the signature can be also proved assuming
other requirements [OO98] or even weaker requirements on the protocol [AABN02]. We do not get into those
details since we are not going to use those results directly.

Algorithm Sign (Pub, Sec, m)
(StP, Cmt)← Cmt (Sec, Pub)
Chl← H (Pub ‖ Cmt ‖ m)
Rsp← Rsp (StP, Chl)
σ ← (Cmt, Rsp)
return σ

Algorithm Verify (Pub, m, σ)
Chl← H (Pub ‖ Cmt ‖ m)
d← Dcd (Cmt, Chl, Rsp)
return d

Figure 3: The signature scheme from applying Fiat-Shamir to the protocol in Figure 1

The term signature of knowledge has been used in the literature for a transformed proof of knowledge via the
Fiat-Shamir transform, dating back to Camenisch and Stadler’s work on group signatures [CS97a]. Let us also
use the terms signature of knowledge (SoK) for both the NIPoK and Sign algorithms and the term verification of

6

knowledge (VoK) for both the NIVoK and Verify algorithms, resulting from applying Fiat-Shamir transform to a
Σ protocol as mentioned above. Assuming the original protocol to be PoK {Sec : Rel (Pub, Sec)}, we denote the
corresponding SoK and VoK by

SoK {Sec : Rel (Pub, Sec)} 4
= NIPoK (Pub, Sec)

VoK {Sec : Rel (Pub, Sec)} (π)
4
= NIVoK (Pub, π)

SoK {Sec : Rel (Pub, Sec)} (m)
4
= Sign (Pub, Sec, m)

VoK {Sec : Rel (Pub, Sec)} (m,σ)
4
= Verify (Pub, m, σ) .

2.5 On Public-Private Key Pairs

Key pairs are usually generated via a key generation algorithm KeyGen that takes a security parameter as input
and outputs the key pair. It must be hard to compute the secret key corresponding to a given public key. We
call the hard problem of computing the secret key for a given public key for a key pair the underlying problem
of that key pair. Each public key is an instance of the underlying problem and the corresponding secret key is
the corresponding solution. If key pairs are poly-time verifiable, i.e. one can efficiently verify if a given secret
key corresponds to a given public key, the key generation algorithm KeyGen defines an NP relation KeyPair
consisting of all the possible key pairs, i.e.

KeyPairk = {(pk, sk) : (pk, sk)← KeyGen (k)} .

We are interested in key pairs for which there exists a Σ protocol to prove knowledge of a secret key corresponding
to a given public key. Let us call the set of these key pairs K. A Σ protocol for a key pair in K, omitting the
security parameter (where it is clear from the context), can be shown as

PoK {sk : KeyPair (pk, sk)} .

Some key pairs that have Σ protocols as above are listed in Appendix C.1. These include popular key pairs like
the ones of the GQ identification scheme, discrete-log-like key pairs, and key pairs of the RSA cryptosystem. We
will use the term key type to refer to these different types of keys. For instance, we denote the keys for the GQ
identification scheme by the term ‘GQ-type key pairs’.

Note that (Ins, Sol), (Pub, Sec), and (pk, sk) are three ways of showing the same thing, i.e. a member of an NP
relation, depending on how we are looking at the pair. We will use this intuition later to interchange notation
between NP problems, proofs of knowledge and key pairs.

3 Defining the Class C of Signatures

Let SS = SS. (KeyGen,Sign,Verify) be a provably-secure (standard) signature scheme. Security of the scheme,
i.e. its existential unforgeability under chosen message attacks (euf-cma) [GMR88], is based on the hardness of
an underlying problem denoted here by PSS. Let us also denote by PKSp and MSp the public key space (i.e.
the set of all possible public keys) and the message space of a standard signature scheme, respectively. We define
a class C of standard signature schemes as follows.

Definition. C is the set of all signature schemes SS for which there exists a pair of algorithms, Convert and
Retrieve, where Convert gets the public key pk, a message m, and a valid signature σ on the message as input
and converts the signature to a pair σ̃ = (σ̃aux, σ̃pre) called converted signature as follows:

σ̃ = (σ̃aux, σ̃pre)← Convert (pk, m, σ) , such that:

• there exists an algorithm AuxSim such that for every pk ∈ PKSp and m ∈MSp the output of AuxSim (pk, m)
is (information-theoretically) indistinguishable from σ̃aux,

7

• there exists an algorithm Compute that on input the public key pk, a message m, and σ̃aux computes a
description of a one-way function f (·) and an I in the range of f , such that I is the image of σ̃pre under
the one-way function f , i.e. for a converted signature the output of the following algorithm is true.

Algorithm Valid (pk, m, σ̃)
(f, I)← Compute (pk, m, σ̃aux)
d← (f (σ̃pre) = I)
return d

• there exists a Σ protocol for proof of knowledge of a Sec = σ̃pre corresponding to a Pub = (pk, m, σ̃aux)
such that σ̃ is valid with respect to pk and m, i.e. there exist a Σ protocol for the following proof of
knowledge

PoK {σ̃pre : Valid (pk, m, (σ̃aux, σ̃pre))} ,

and for any candidate converted signature satisfying Valid (pk, m, (σ̃aux, σ̃pre)), a valid signature on the message
m can be retrieved via the Retrieve algorithm as follows:

σ ← Retrieve (pk, m, σ̃) .

The definition basically requires that a signature can be bidirectionally transformed to a pair consisting of a
publically-simulatable value σ̃aux and a pre-image of I under the one-way function f , where both I and f are
determined by pk, m, and σ̃aux and knowledge of the pre-image σ̃pre can be proved via a HVZK-PoK protocol
with SpS property. This fact enables a holder of a signature to efficiently prove knowledge of a signature on
a known message to a verifier by first converting it and then revealing the simulatable part of the converted
signature which enables the verifier to determine I and f . Finally, the protocol for proof of knowledge of the
pre-image of I under f is carried out by the two parties. A similar property for signature schemes have been
observed before in the literature, often referred to as the reduction of the proof of knowledge of a signature to
a proof of knowledge of a pre-image under a one-way function (see e.g. [ASW00, CD00, GMY06]). Note that
the fact that any NP relation has a Σ protocol [CDV06] provides protocols for proving knowledge of a signature
for any signature scheme, but such protocols are not necessarily efficient enough for practice. We observe that
even existence of a Σ protocol for a converted version of the signature is enough for our constructions. Such a
protocol is not necessarily HVZK with respect to the signature since it reveals σ̃aux.

We actually need another requirement on the signature scheme to be able to prove our schemes secure. We
require that in the security proof of the signature scheme, two separate algorithms be identifiable: an algorithm
that given an instance Ins of the underlying problem PSS, is able to simulate for the adversary a public key and
signatures on the messages of its choice, and a second algorithm that given a forgery by the adversary (resp. two
forgeries on the same message for schemes with proof of unforgeability based on the Forking Lemma), is able to
calculate the solution Sol to the problem instance. We will call these two algorithms Sim and Cal, respectively.
Since, this is true for all the conventional signature schemes, we do not see it as a real requirement. For more
on this extra requirement, see Appendix C.2.

The definition above may seem too restricting, but many of the signature schemes in use today fall in the class
C. Examples of such schemes are RSA-FDH [BR96], Schnorr [Sch91], Modified ElGamal [PS00a], BLS [BLS01],
BB [BB04], Cramer-Shoup [CS00], Camenisch-Lysyanskaya-02 [CL02], and Camenisch-Lysyanskaya-04 [CL04]
signatures. Appendix C.3 lists the corresponding algorithms for the above signatures and shows why each of
them belong to C.

4 Universal Designated Verifier Signatures

In this section, we first review the definitions of the UDVS scheme and its security. Then we propose our generic
construction of UDVS schemes from any signature scheme in C and prove it secure.

8

4.1 Definition

As mentioned before, a UDVS can be seen as a signature scheme with some extra functionality: a holder of
a signature can designate the signature to a particular verifier, using the verifier’s public key. In this sense, a
UDVS can be described by adding some extra algorithms to the ones needed for description of the underlying
signature scheme. Here, we briefly recall the definitions from Steinfeld et al. [SBWP03]. A UDVS is described
by eight algorithms: a Common Parameter Generation algorithm CPGen that on input 1k, where k is the
security parameter, outputs a string consisting of common parameters cp publicly shared by all users, two Signer
(resp. Verifier) Key Generation algorithms SKeyGen (resp. VKeyGen) that on input a common parameter
string cp, output a secret/public key-pair (sks, pks) (resp. (skv, pkv)) for the signer (resp. verifier), Signing
and Public Verification algorithms Sign and PVer, where the former on input a signing secret key sks and a
message m, outputs a signer’s publicly-verifiable (PV) signature σ and the latter on input signer’s public key
pks and message/PV-signature pair (m,σ), outputs a boolean verification decision, Designation and Designated
Verification algorithms Desig and DVer, where the former on input a signer’s public key pks, a verifier’s public
key pkv, and a message/PV-signature pair (m,σ), outputs a designated-verifier (DV) signature σ̂ and the latter
on input a signer’s public key pks, a verifier’s secret key skv, and a message/DV-signature pair (m, σ̂), outputs
a boolean verification decision, and finally a Verifier Key-Registration VKeyReg algorithm, which is a protocol
between a Key Registration Authority (KRA) and a verifier to register verifier’s public key.

4.2 Security

As mentioned before, Steinfeld et al. identified two security requirements for UDVS schemes: DV-unforgeability
and non-transferability privacy. We also consider a third requirement proposed by Lipmaa et al. called non-
delegatability. Informally and intuitively, DV-unforgeability captures the inability of the adversary to forge
designated signatures for new messages, even if it can have signatures on chosen messages and can verify chosen
pairs of messages and designated signatures, non-transferability privacy captures the inability of the designated
verifier to produce evidence to convince a third party that the message has actually been signed by the signer,
and finally non-delegatability captures the inability of all but either the signature holder or the designated verifier
to generate designated signatures and hence the signature holder and designated verifier’s inability to delegate
their ability to generate designated signatures without revealing their corresponding secrets, i.e. the signature
or the designated verifier secret key.

DV-Unforgeability. The formal definition of DV-Unforgeability for UDVS schemes comes in Appendix D.
Non-Transferability Privacy. Steinfeld et al. have formalized this property in detail and proposed a
definition capturing the fact that possessing a designated signature does not add to the computational ability of
the designated verifier [SBWP03]. In their formalization, they require that whatever a designated verifier who
has been given a designated signature can leak to a third party (even at the expense of disclosing his secret
key), he would have been able to leak without the designated signature. One can easily see that if designated
signatures are simulatable by the verifier himself then a designated signature adds no computational ability to
the verifier and thus, without going into details of the formal definition for non-transferability privacy, we will
state and use the following lemma to prove our schemes secure.

Lemma 1 A scheme UDVS achieves perfect non-transferability privacy if there exists an efficient forgery algo-
rithm Forge, s.t. for any pairs (sks, pks) and (skv, pkv) generated through key generation algorithms of UDVS
and for any message m, the following two random variables have the same distribution:

Forge (pks, skv, pkv,m) and Desig (pks, pkv,m, Sign (sks,m)) .

Other flavors of non-transferability privacy, i.e. statistical and computational non-transferability privacy can be
analogously achieved by requiring the two distributions to be statistically or computationally indistinguishable,
respectively. Note that there are two main differences between this lemma and Lemma 1 in [SBWP03, p.
531]. Firstly, their lemma is biconditional, but ours is not. We are only using the direction that is pretty
obvious. However, our lemma is a generalization of that direction. They only state their lemma for deterministic
designated signatures, but our lemma is stated for the general (possibly probabilistic) case.

9

Non-Delegatability. Lipmaa et al have defined the non-delegatability property for designated-verifier sig-
natures [LWB05]. As they mention, their definition of κ-non-delegatability basically requires the designated
signature to be a non-interactive proof of knowledge with knowledge error κ of the signer’s or the designated
verifier’s secret key, as per definition of [BG92]. The reason behind such a definition is to guarantee that only
the signer or the designated verifier are able to produce a designated signature, thus preventing them from being
able to delegate their ability without revealing their secret key. Their definition can be easily extended to the
UDVS case. Since in a UDVS scheme, we want only a person who holds a signature or the designated verifier
to be able to produce a designated signature, the definition can be analogously extended to the UDVS case as
follows. κ-non-delegatability for UDVS schemes requires the designated signature to be a non-interactive proof
of knowledge of a signature or the designated verifier’s secret key, with knowledge error κ.

A nice observation by Cramer et al. [CDM00, p. 359], that will help us simplify the non-delegatability proofs
for our constructions, is that a three-move public-coin protocol with SpS property and challenge space ChSp
is a proof of knowledge with knowledge error κ = |ChSp|−1. The non-interactive version of this observation
can be easily seen to hold in the Random Oracle Model using the Forking Lemma. That is, a Fiat-Shamir non-
interactive proof of knowledge (i.e. our NIPoK) with SpS property and challenge space ChSp is a non-interactive
κ-proof of knowledge in the the Random Oracle Model with knowledge error κ = |ChSp|−1. Based on these
observations, we propose the following lemma:

Lemma 2 A scheme UDVS is κ-non-delegatable if a designated signature is a Fiat-Shamir non-interactive proof
of knowledge of a signature or the secret key of the verifier, with SpS property and |ChSp| ≥ 1

κ .

4.3 Construction of UDVS Schemes from Standard Signatures

We show how to extend any signature scheme in class C to a universal designated verifier signature, by combining
it with a key type for the verifier in K. We use the building blocks we introduced before, namely proofs of
disjunctive knowledge and the Fiat-Shamir transforms to construct our UDVS schemes. As mentioned before,
our construction has the distinctive property that the verifier’s key pair type can be chosen independently from
the choice of the signer’s signature. Our construction works for any combination of a signature in class C and a
verifier key pair type in K. Let SS = (KeyGen,Sign,Verify) be a standard signature scheme in class C and KT
be a verifier-chosen key type in K. Denoting the signer- and verifier-related variables respectively by s and v
indexes, the construction can be shown as follows:

• CPGen gets as input 1k, where k is the security parameter, returns cp = 1k as the common parameter. The
signer and the verifiers choose their own signature scheme and key pair types, respectively, i.e.

GUDVS. (SKeyGen,Sign,PVer)
4
= SS. (KeyGen,Sign,Verify) and VKeyGen

4
= KeyGen .

• To designate, the signature-holder first converts the signature and then constructs a signature of disjunctive
knowledge of σ̃pre or the verifier’s secret key. The DV-signature is a pair consisting of σ̃aux and this signature
of knowledge, i.e.

Algorithm GUDVS.Desig (pks, pkv,m, σ)
(σ̃aux, σ̃pre)← Convert (pks,m, σ)
δ ← SoK {(σ̃pre ∨ skv) : Valid (pks,m, (σ̃aux, σ̃pre)) ,Pair (pkv, skv)}
σ̂ ← (σ̃aux, δ)
return σ̂

• To verify the DV-signature, one verifies the validity of the signature of knowledge δ according to the
message, the public keys of the signer and the verifier, and the value σ̃aux provided, i.e.

Algorithm GUDVS.DVer (pks, pkv,m, σ̂)
d← VoK {(σ̃pre ∨ skv) : Valid (pks,m, (σ̃aux, σ̃pre)) ,Pair (pkv, skv)} (δ)
return d

10

An example for an all-RSA-based scheme, which combines RSA-FDH signature and GQ-type verifier keys is
described in Appendix E.

Note that the designated verification algorithm in our construction is public, since from the verifier key pair, only
the public key pkv is sufficient to run the GUDVS.DVer algorithm. In fact, the definition of UDVS schemes does
not require that designated verification should be only executable by the verifier and for instance, the SchUDVS2

and RSAUDVS schemes from [SWP04] have public designated verification schemes. However, some authors
have proposed a notion of privacy of signer identity in UDVS schemes that requires an only-verifier-executable
designated verification [LV04]. In the same work, the authors show that if the designated signature is encrypted
by the designator under an ind-cca encryption and then sent to the verifier, then it will be verifiable only by
the verifier and the scheme will preserve privacy of signer identity.

4.4 Security Analysis for the Construction

DV-Unforgeability. We use the Forking Lemma to prove DV-Unforgeability of our generic UDVS construc-
tion. The Forking Lemma was originally proposed by Pointcheval and Stern [PS00a]. Recently, Bellare and
Neven proposed a general version of the Forking Lemma in [BN06]. We use the results and formulations from
the latter in our proof. For completeness, we have transcribed the general Forking Lemma that we use in Appen-
dix G. Basically, our SoK-type constructions guarantees the ability to extract a signature or the verifier’s secret
key from a DV-forger through forking. The extracted signature or secret key is later used to solve the underlying
problem of the signature scheme or that of the verifier key pair, respectively. Thus, given a successful DV-forger,
we will be able to solve at least one of the above underlying problems and we have the following theorem.

Theorem 1 Let SS be a standard signature in C and PSS be its underlying problem. Also, let KT be a key type
in K and PKT be its underlying problem. The construction GUDVS based on the combination of the signature
SS and the verifier key-type KT is DV-unforgeable if PSS and PKT are both hard.

The proof is given in Appendix A.

Non-Transferability Privacy. Non-transferability privacy for our generic UDVS schemes is due to the very
concept behind our construction. Our designated signatures consist of publicly-simulatable values of σ̃aux and
witness indistinguishable signatures of knowledge of a valid converted signature or the verifier’s secret key, both
forgeable by the designated verifier himself indistinguishably from the real designated signatures. To forge a
designated signature, the verifier will first simulate σ̃aux via the algorithm AuxSim and then, similar to the prover,
he will be able to construct a non-interactive proof of disjunctive knowledge of σ̃pre or the verifier’s secret key
(knowing the latter, of course). The forged designated signature will be consisting of the simulated σ̃aux along
with this signature of knowledge, i.e. we have the following forge algorithm:

Algorithm GUDVS.Forge (pks, skv, pkv,m)
σ̃aux ← AuxSim (pks,m)
δ ← SoK {(σ̃pre ∨ skv) : Valid (pks,m, (σ̃aux, σ̃pre)) ,Pair (pkv, skv)}
σ̂ ← (σ̃aux, δ)
return σ̂

AuxSim’s ability to simulate σ̃aux and witness indistinguishability of the signature of knowledge will together
imply that the output of the algorithm GUDVS.Forge is indistinguishable from real designated signatures. The
existence of AuxSim and a Σ protocol for proof of knowledge of a converted signature is guaranteed if SS belongs
to C. Furthermore, the existence of a Σ protocol for proof of knowledge of the verifier secret key is guaranteed if
KT belongs to K. Thus, GUDVS.Forge will be successful in forging designated signatures for any combination of
a signature in C and a verifier key type in K. Combining this with Lemma 1, we will have the following theorem.

Theorem 2 The construction GUDVS achieves non-transferability privacy for any combination of a signature
in C and a verifier key type in K.

11

Non-Delegatability. As one can notice, the very design of our UDVS construction is naturally geared to
provide non-delegatability through the use of signatures of knowledge. However, to meet the requirements of
Lemma 2, we must first prove that a designated signature in our scheme is a signatures of knowledge of a
signature or the secret key of the verifier with SpS property. All we know now is that a designated signature in
our scheme consists of a σ̃aux and a signature of knowledge of σ̃pre or the secret keys of the verifier with both
HVZK and SpS properties.

One can easily see that a designated signature (σ̃aux, δ) as a signature of knowledge has the SpS property in
the Random Oracle Model. The reason is that two designated signatures with the same first-move message (i.e.
Random Oracle query, which includes σ̃aux along with the commitment) and different challenges (i.e. Random
Oracle responses) will provide two δs with the same commitment and different challenges, which in turn, will
give us the secret, i.e. σ̃pre or skv. If the former is given, then one can retrieve a valid signature by running the
Retrieve algorithm on input (σ̃aux, σ̃pre). Thus, two designated signatures with the same Random Oracle query
and different Random Oracle responses will give us a signature or the verifier’s secret key. Hence, the designated
signature will have the SpS property as well and by Lemma 2 we will have the following theorem:

Theorem 3 The construction GUDVS is κ-non-delegatable for any combination of a signature in C and a verifier
key type in K for which |ChSp| ≥ 1

κ .

Note that although a designated signature is an HVZK signature of knowledge of a σ̃pre or the verifier’s public
key, it is not an HVZK signature of knowledge of a signature or the verifier’s public key, since it reveals σ̃aux

which might include some information about the signature. However, Lemma 2 does not require the designated
signature to have the HVZK property.

4.5 Further Constructions

Our constructions can be easily extended to universal multi-designated-verifier signatures, where a signature is
designated to more than one verifier. This can be done by setting the designated signature to be a one-out-of-
(n + 1) disjunctive signature of knowledge of the (converted) signature and the secret keys of the n verifiers.
Again, these schemes allow the signer and the verifiers to choose their settings independently, thus the verifiers
might have different types of keys.

Similarly, the constructions can be extended to designate more than one signatures at once. This will come
handy in situations where a user wishes to show more than one certificate to a verifier and does not want the
verifier to be able to convince a third party of the validity of her certificate. For instance, consider a situation
where a user must show at least k out of n cetificates to a verifier to obtain a service from the verifier. The user
will construct the designated signature by constructing a (k + 1)-out-of-(n + 1) signature of knowledge of the n
(converted) signatures and the secret key of the verifier. This construction offers an extra privacy property in
that the verifier will not be able to distinguish which k cetificates out of n the user has after seeing a designated
signature.

4.6 Comparison

We compare our constructions with those of [SBWP03, SWP04] as benchmarks. For the comparisons to make
sense, instances of our generic constructions have been chosen which match the signature scheme and verifier
key type of the benchmark schemes. Similar to the comparisons in [SWP04], we count the cost of computing a
product ax · by · cz and O(α) low exponent exponentiations both as equivalent to a single exponentiation. We
also use the same typical parameters for lengths of members of different groups in use, namely 1.024 kb for
DL groups and RSA modules and 0.16 kb for ChSp. To make comparisons even easier, we only consider the
dominant term for the costs of computation assuming that a pairing (pair.) � an exponentiation (exp.) � a
multiplication (mult.) � an addition, with “�” standing for “costs (much) more than”. We also observe that
designation of a certain certificate can be performed in two phases: before choosing the designated verifier and

12

after that. Analogously, designation computations can be carried out in two phases, which we denote respectively
by off-line and on-line phases. An interesting property of our constructions is that cost of the on-line phase of
designation is relatively very low (one multiplication). This makes our constructions desirable for the systems in
which certificates are often needed to be verified by (and hence designated to) multiple different verifiers. Table
2 summarizes our comparisons, with “Typ.” and “NDeleg.” standing for “Typical” and “Non-Delegatability”,
respectively and comparatively more desirable values in bold. As the table shows, our schemes generally have
more (yet comparable) costs of off-line designation and designated verification and result in longer designated
signatures. However, our schemes have less on-line designation cost and achieve provable non-delegatabilty.
Note that our schemes are also (almost) generic and provide the desirable property of signer-verifier setting
independence, as mentioned before.

Table 2: Comparison of Steinfeld et al’s schemes with their corresponding GUDVS counterparts

Scheme Hard problem Desig cost
DVer cost Typ. σ̂ length NDeleg.off-line on-line

DVSBM [SBWP03] BDH none 1 pair. 1 pair. 1.0 kb ✗
GUDVS (BLS+DL) CDH 2 pair. 1 mult. 2 pair. 5.3 kb ✓

SchUDVS1 [SWP04] SDH 1 exp. 1 exp. 1 exp. 2.0 kb ✗
SchUDVS2 [SWP04] DL 2 exp. 1 exp. 2 exp. 1.5 kb ?

GUDVS (Schnorr+DL) DL 4 exp. 1 mult. 3 exp. 5.3 kb ✓

RSAUDVS [SWP04] RSA 1 exp. 2 exp. 2 exp. 11.6 kb ?
GUDVS (RSA-FDH+DL) RSA & DL 2 exp. 1 mult. 2 exp. 4.3 kb ✓

Note that, as a side effect of using the Forking Lemma for proof of security, our security reductions are not tight.
It is possible to get tighter security results using the method proposed by Fischlin [Fis05] instead of Fiat-Shamir
transform to make the interactive proofs non-interactive. However Fischlin’s method will produce much longer
signatures of knowledge.

5 Identity-based Signatures

In this section, we first review the definitions of the IBS scheme and its security. Then we propose our generic
construction of IBS schemes from any signature scheme in C and prove it secure.

5.1 Definition and Security

Identity-based cryptosystems were proposed by Shamir [Sha84] to overcome the problem of lack of public-key
infrastructure which the public-key cryptosystems face. In such systems, public-key certificates are no longer
needed, and the identities of the users are used as their public keys. However, users lose their ability to construct
their own secret keys by themselves and must depend on a key-generation center (KGC) to provide them with
their respective private keys.

An identity-based signature is a tuple of four algorithms as follows: a master key generation algorithm MKeyGen,
which on input a security parameter k outputs a pair of master secret key and master public key (msk,mpk), a
user key generation algorithm UKeyGen, which on input a master secret key msk and a user identity id, outputs
a user secret key usk, a signing algorithm Sign, which on input a user secret key usk and a message m, outputs a
signature σ on the message, and finally a verification algorithm Verify, which on input a master public key mpk,
a user identity id, and a pair (m,σ), outputs a binary decision indicating whether or not σ is a valid signature
on m with respect to mpk and id.

We will use Bellare and Neven’s definition for the security of an IBS scheme [BNN04] against existential un-
forgeability under a chosen message and identity attack, denoted by id-euf-cma-attack. This definition comes
in Appendix D.

13

5.2 Generic Construction of IBS and Its Security

In this section we show how to extend any signature in C to an IBS scheme. The idea is to use the key pair
generated for the signature scheme as the master key pair and use the signing algorithm as the user key generation
in the following way: to generate a user secret key for an identity, the identity is signed and the signature on
the identity is given to the user as the user secret key. Now, the user is able to prove her identity, since she can
prove knowledge of a converted signature on her identity. The Fiat-Shamir transform can be used to transform
this proof into a signature scheme. The resulting signature would be an identity-based signature.

The concrete description of the generic construction is as follows. Suppose that the standard signature SS =
(KeyGen,Sign,Verify) is in C. The generic IBS scheme GIBS is constructed as follows:

To generate a master key pair, the KCG runs the key generation algorithm of the signature scheme and outputs
the generated public/secret key pair as the master public/secret key pair. To generate a user key pair, the KCG
simply signs the identity of the user using his master secret key and outputs the generated signature coupled
with the master public key and the identity of the user as the user secret key, i.e.

Algorithm GIBS.MKeyGen (k)
(msk,mpk)← SS.KeyGen (k)
return (msk,mpk)

Algorithm GIBS.UKeyGen (msk, id)
σ ← SS.Sign (msk, id)
usk ← (mpk, id, σ)
return usk

An identity-based signature is constructed as a signature of knowledge of KGC’s signature on the identity of the
signer by first converting corresponding conversion algorithm on input σ (which is contained in the user secret
key of the signer) to obtain (σ̃aux, σ̃pre). Then she constructs a proof of knowledge of σ̃pre and transforms it into
a signature of knowledge on m via the Fiat-Shamir transform. The signature is a pair consisting of σ̃aux and
this signature of knowledge. To verify an identity-based signature σ, one verifies the validity of the signature of
knowledge δ according to the identity of the signer, the master public key, and the value σ̃aux provided, i.e.

Algorithm GIBS.Sign (usk, m)
(σ̃aux, σ̃pre)← Convert (mpk, id, σ)
δ ← SoK {σ̃pre : Valid (mpk, id, (σ̃aux, σ̃pre))} (m)
σ ← (σ̃aux, δ)
return σ

Algorithm IBS.Verify (mpk, id,m, σ)
d← VoK {σ̃pre : Valid (mpk, id, (σ̃aux, σ̃pre))} (m, δ)
return d

As mentioned before, this construction is a generalized version of Kurosawa and Heng’s construction [KH04].
They require a stronger requirement on their signature schemes. It is also worth mentioning similarities between
the idea behind Kurosawa and Heng’s and our constructions and that of Naor’s observation on how to transform
any identity-based encryption to a standard signature scheme [BF01, p. 226]: in both, user secret keys are seen
as the signature of the KGC on the user identity and vice versa. Our constructions can be seen as the other way
of Naor’s observation, i.e. from the non-identity-based world to the identity-based world. A possible result of
combining the two ideas is the construction of identity-based signatures from identity-based encryptions.

We propose the following theorem for the security of our construction. A sketch of the proof is given in Appendix
B.

Theorem 4 Let SS be a standard signature in C and PSS be its underlying problem. The construction GIBS
based on the signature SS is id-euf-cma-secure if PSS is hard.

5.3 Further Constructions

We observe that the above construction of generic IBS schemes has kind of a nesting property, meaning that if
one extends the definition of class C to identity-based signature schemes, then the construction GIBS will belong

14

to the class C itself. This is due the fact that a GIBS signature in the form σ = (σ̃aux, (Cmt, Rsp)) can be
converted to the converted signature bellow:

˜̃σ =
(˜̃σaux, ˜̃σpre

)
= ((σ̃aux, Cmt) , Rsp) .

For all the signatures listed in Appendix C.3, knowledge of Rsp can be proved via a Σ protocol. Hence, for all
the constructions of IBS schemes from these signatures, the GIBS can be nested in the way that an identity based
signer can act as a new KGC for a new user. This enables construction of hierarchical identity-based signature
schemes [GS02].

An extension of our GIBS construction that stems from the nesting property is the construction of identity-based
universal designated verifier signatures (IBUDVS) from any signature in C. In such a scheme, a designator wishes
to designate a certificate signed by an identity-based signer and the designated verifier is also identity-based.
The designated verifier’s secret key is a signature on his identity by the KGC. To designate, the designator will
simply construct a disjunctive proof of knowledge of (a converted version of) her certificate or (a converted
version of) the verifier’s secret key. Proofs of security of the scheme can be constructed by combining the ideas
used to prove the generic UDVS and IBS schemes secure.

Another possible extension of the GIBS schemes is the construction of identity-based ring signatures from any
signature scheme in C. To generate a ring signature, the signer will construct a one-out-of-n signature of
knowledge of the n user secret keys in the chosen ring, where each user secret key is a signature of the KGC on
the corresponding user identity.

6 Concluding Remarks

We have proposed generic constructions of UDVS and IBS schemes for a large class of signatures. Our con-
structions result in schemes with comparable cost and size to those of their counterparts. Our generic UDVS
constructions are provably non-delegatable and also offer a signer-verifier setting independence feature. Many
IBS schemes can be seen as instances of our generic IBS construction. It is possible to use our techniques to
construct generic universal multi-designated-verifier signatures, hierarchical identity-based signatures, identity-
based universal designated verifier signatures, and identity-based ring signatures

Acknowledgments

The authors would like to thank Shaoquan Jiang and the anonymous reviewers of PKC ′08 for fruitful discussions
and comments. The first author extends his thanks to the icore Information Security Lab of the University of
Calgary for hosting him during part of the work.

References

[AABN02] Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From Identification to Sig-
natures via the Fiat-Shamir Transform: Minimizing Assumptions for Security and Forward-Security.
In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
418–433. Springer, 2002. 6

[ASW00] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic Fair Exchange of Digital Signatures.
Selected Areas in Communications, IEEE Journal on, 18(4):593–610, 2000. 8

[BB04] Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles. In Cachin and Camenisch
[CC04], pages 56–73. 2, 8, 30

15

[BDZ04] Feng Bao, Robert H. Deng, and Jianying Zhou, editors. Public Key Cryptography - PKC 2004, 7th
International Workshop on Theory and Practice in Public Key Cryptography, Singapore, March 1-4,
2004, volume 2947 of Lecture Notes in Computer Science. Springer, 2004. 18, 19, 20

[BF01] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil Pairing. In Joe Kil-
ian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer,
2001. 14

[BG92] Mihir Bellare and Oded Goldreich. On Defining Proofs of Knowledge. In Brickell [Bri93], pages
390–420. 10

[BLMQ05] Paulo S. L. M. Barreto, Benôıt Libert, Noel McCullagh, and Jean-Jacques Quisquater. Efficient and
Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps. In Roy [Roy05],
pages 515–532. 3

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil Pairing. In Colin Boyd,
editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer Science, pages 514–532. Springer,
2001. 2, 8, 29

[BN06] Mihir Bellare and Gregory Neven. Multi-Signatures in the Plain Public-Key Model and a General
Forking Lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM Conference on Computer and Communications Security, pages 390–399. ACM, 2006. 11, 20

[BNN04] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security Proofs for Identity-Based
Identification and Signature Schemes. In Cachin and Camenisch [CC04], pages 268–286. 3, 13, 25,
32

[BP02] Mihir Bellare and Adriana Palacio. GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In Moti Yung, editor, CRYPTO,
volume 2442 of Lecture Notes in Computer Science, pages 162–177. Springer, 2002. 25

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In ACM Conference on Computer and Communications Security, pages 62–73,
1993. 3

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures - How to Sign with
RSA and Rabin. In EUROCRYPT, pages 399–416, 1996. 2, 8, 28, 31

[Bri93] Ernest F. Brickell, editor. Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740
of Lecture Notes in Computer Science. Springer, 1993. 16, 19

[BSS05] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Universal Designated Verifier Signature
Proof (or How to Efficiently Prove Knowledge of a Signature). In Roy [Roy05], pages 644–661. 3

[CC03] Jae Choon Cha and Jung Hee Cheon. An Identity-Based Signature from Gap Diffie-Hellman Groups.
In Desmedt [Des02], pages 18–30. 3

[CC04] Christian Cachin and Jan Camenisch, editors. Advances in Cryptology - EUROCRYPT 2004, In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Interlaken,
Switzerland, May 2-6, 2004, Proceedings, volume 3027 of Lecture Notes in Computer Science.
Springer, 2004. 15, 16

[CD00] Jan Camenisch and Ivan Damg̊ard. Verifiable Encryption, Group Encryption, and Their Applica-
tions to Separable Group Signatures and Signature Sharing Schemes. In Tatsuaki Okamoto, editor,
ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pages 331–345. Springer, 2000. 8

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Philip D. MacKenzie. Efficient Zero-Knowledge Proofs of
Knowledge Without Intractability Assumptions. In Imai and Zheng [IZ00], pages 354–372. 10

16

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of Partial Knowledge and Simplified
Design of Witness Hiding Protocols. In Yvo Desmedt, editor, CRYPTO, volume 839 of Lecture Notes
in Computer Science, pages 174–187. Springer, 1994. 2, 5, 34

[CDV06] Dario Catalano, Yevgeniy Dodis, and Ivan Visconti. Mercurial Commitments: Minimal Assumptions
and Efficient Constructions. In Shai Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture
Notes in Computer Science, pages 120–144. Springer, 2006. 8

[CL02] Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient Protocols. In Stelvio
Cimato, Clemente Galdi, and Giuseppe Persiano, editors, SCN, volume 2576 of Lecture Notes in
Computer Science, pages 268–289. Springer, 2002. 2, 8, 30, 31

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anonymous Credentials from Bilinear
Maps. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science,
pages 56–72. Springer, 2004. 2, 8, 31

[CL06] Melissa Chase and Anna Lysyanskaya. On Signatures of Knowledge. In Cynthia Dwork, editor,
CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 78–96. Springer, 2006. 4

[CM07] Jean-Sébastien Coron and Alexander May. Deterministic Polynomial-Time Equivalence of Comput-
ing the RSA Secret Key and Factoring. Journal of Cryptology, 20(1):39–50, 2007. 26

[Cor00] Jean-Sébastien Coron. On the Exact Security of Full Domain Hash. In Mihir Bellare, editor,
CRYPTO, volume 1880 of Lecture Notes in Computer Science, pages 229–235. Springer, 2000. 28

[CS97a] Jan Camenisch and Markus Stadler. Efficient Group Signature Schemes for Large Groups (Extended
Abstract). In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lecture Notes in Computer
Science, pages 410–424. Springer, 1997. 4, 6

[CS97b] Jan Camenisch and Markus Stadler. Proof Systems For General Statements about Discrete Loga-
rithms. Technical Report 260, Dept. of Computer Science, ETH Zurich, Mar 1997. 5

[CS00] Ronald Cramer and Victor Shoup. Signature Schemes Based on the Strong RSA Assumption. ACM
Trans. Inf. Syst. Secur., 3(3):161–185, 2000. 2, 4, 8, 30

[Des02] Yvo Desmedt, editor. Public Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings, volume
2567 of Lecture Notes in Computer Science. Springer, 2002. 16, 17

[DKXY03] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong Key-Insulated Signature
Schemes. In Desmedt [Des02], pages 130–144. 3

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.
IEEE Transactions on Information Theory, 31(4):469–472, 1985. 29

[Fis05] Marc Fischlin. Communication-Efficient Non-interactive Proofs of Knowledge with Online Extrac-
tors. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages
152–168. Springer, 2005. 13

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification and
Signature Problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, 1986. 2, 3, 6

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure Hash-and-Sign Signatures Without the Ran-
dom Oracle. In EUROCRYPT, pages 123–139, 1999. 4, 31

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput., 17(2):281–308, 1988. 4, 7, 31

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM J. Comput., 18(1):186–208, 1989. 5

17

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening Zero-Knowledge Protocols Using
Signatures. J. Cryptology, 19(2):169–209, 2006. 8

[GQ88] Louis C. Guillou and Jean-Jacques Quisquater. A “Paradoxical” Indentity-Based Signature Scheme
Resulting from Zero-Knowledge. In Shafi Goldwasser, editor, CRYPTO, volume 403 of Lecture Notes
in Computer Science, pages 216–231. Springer, 1988. 2, 3, 5, 28, 30, 31

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-Based Cryptography. In Yuliang Zheng, editor,
ASIACRYPT, volume 2501 of Lecture Notes in Computer Science, pages 548–566. Springer, 2002.
15

[GW04] Shafi Goldwasser and Erez Waisbard. Transformation of Digital Signature Schemes into Designated
Confirmer Signature Schemes. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in Computer
Science, pages 77–100. Springer, 2004. 3, 31

[HBSO03] Jason E. Holt, Robert W. Bradshaw, Kent E. Seamons, and Hilarie K. Orman. Hidden Credentials.
In Sushil Jajodia, Pierangela Samarati, and Paul F. Syverson, editors, WPES, pages 1–8. ACM,
2003. 4

[HCW05] Zhenjie Huang, Kefei Chen, and Yumin Wang. Efficient Identity-Based Signatures and Blind Signa-
tures. In Yvo Desmedt, Huaxiong Wang, Yi Mu, and Yongqing Li, editors, CANS, volume 3810 of
Lecture Notes in Computer Science, pages 120–133. Springer, 2005. 3

[Hes02] Florian Hess. Efficient Identity Based Signature Schemes Based on Pairings. In Kaisa Nyberg and
Howard M. Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer
Science, pages 310–324. Springer, 2002. 3

[HSMW06] Xinyi Huang, Willy Susilo, Yi Mu, and Wei Wu. Universal Designated Verifier Signature Without
Delegatability. In Peng Ning, Sihan Qing, and Ninghui Li, editors, ICICS, volume 4307 of Lecture
Notes in Computer Science, pages 479–498. Springer, 2006. 2

[HSMZ06] Xinyi Huang, Willy Susilo, Yi Mu, and Futai Zhang. Restricted Universal Designated Verifier
Signature. In Jianhua Ma, Hai Jin, Laurence Tianruo Yang, and Jeffrey J. P. Tsai, editors, UIC,
volume 4159 of Lecture Notes in Computer Science, pages 874–882. Springer, 2006. 3

[IZ00] Hideki Imai and Yuliang Zheng, editors. Public Key Cryptography, Third International Workshop
on Practice and Theory in Public Key Cryptography, PKC 2000, Melbourne, Victoria, Australia,
January 18-20, 2000, Proceedings, volume 1751 of Lecture Notes in Computer Science. Springer,
2000. 16, 19

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier Proofs and Their
Applications. In EUROCRYPT, pages 143–154, 1996. 1, 2

[KH04] Kaoru Kurosawa and Swee-Huay Heng. From Digital Signature to ID-based Identification/Signature.
In Bao et al. [BDZ04], pages 248–261. 3, 14

[LLP05] Yong Li, Helger Lipmaa, and Dingyi Pei. On Delegatability of Four Designated Verifier Signatures.
In Sihan Qing, Wenbo Mao, Javier Lopez, and Guilin Wang, editors, ICICS, volume 3783 of Lecture
Notes in Computer Science, pages 61–71. Springer, 2005. 2

[LLQ06] Fabien Laguillaumie, Benôıt Libert, and Jean-Jacques Quisquater. Universal Designated Verifier
Signatures Without Random Oracles or Non-black Box Assumptions. In Roberto De Prisco and
Moti Yung, editors, SCN, volume 4116 of Lecture Notes in Computer Science, pages 63–77. Springer,
2006. 3

[LV04] Fabien Laguillaumie and Damien Vergnaud. Designated Verifier Signatures: Anonymity and Efficient
Construction from Any Bilinear Map. In Carlo Blundo and Stelvio Cimato, editors, SCN, volume
3352 of Lecture Notes in Computer Science, pages 105–119. Springer, 2004. 11

18

[LW06] Jin Li and Yanming Wang. Universal Designated Verifier Ring Signature (Proof) Without Random
Oracles. In Xiaobo Zhou, Oleg Sokolsky, Lu Yan, Eun-Sun Jung, Zili Shao, Yi Mu, Dong Chun Lee,
Daeyoung Kim, Young-Sik Jeong, and Cheng-Zhong Xu, editors, EUC Workshops, volume 4097 of
Lecture Notes in Computer Science, pages 332–341. Springer, 2006. 3

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated Verifier Signature Schemes: Attacks, New
Security Notions and a New Construction. In Lúıs Caires, Giuseppe F. Italiano, Lúıs Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer
Science, pages 459–471. Springer, 2005. 1, 2, 10

[MT05] Akihiro Mihara and Keisuke Tanaka. Universal Designated-Verifier Signature with Aggregation. In
ICITA (2), pages 514–519. IEEE Computer Society, 2005. 3

[NSM05] Ching Yu Ng, Willy Susilo, and Yi Mu. Universal Designated Multi Verifier Signature Schemes. In
ICPADS (2), pages 305–309. IEEE Computer Society, 2005. 3, 4

[Oka92] Tatsuaki Okamoto. Provably Secure and Practical Identification Schemes and Corresponding Sig-
nature Schemes. In Brickell [Bri93], pages 31–53. 3

[OO98] Kazuo Ohta and Tatsuaki Okamoto. On Concrete Security Treatment of Signatures Derived from
Identification. In Hugo Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer
Science, pages 354–369. Springer, 1998. 6

[PS00a] David Pointcheval and Jacques Stern. Security Arguments for Digital Signatures and Blind Signa-
tures. J. Cryptology, 13(3):361–396, 2000. 2, 6, 8, 11, 28, 29

[PS00b] Guillaume Poupard and Jacques Stern. Short Proofs of Knowledge for Factoring. In Imai and Zheng
[IZ00], pages 147–166. 26

[PS06] Kenneth G. Paterson and Jacob C. N. Schuldt. Efficient Identity-Based Signatures Secure in the
Standard Model. In Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP, volume 4058
of Lecture Notes in Computer Science, pages 207–222. Springer, 2006. 3

[Roy05] Bimal K. Roy, editor. Advances in Cryptology - ASIACRYPT 2005, 11th International Conference
on the Theory and Application of Cryptology and Information Security, Chennai, India, December
4-8, 2005, Proceedings, volume 3788 of Lecture Notes in Computer Science. Springer, 2005. 16

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal Designated-Verifier
Signatures. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of Lecture Notes in Computer
Science, pages 523–542. Springer, 2003. 1, 2, 3, 9, 12, 13, 31

[Sch91] Claus-Peter Schnorr. Efficient Signature Generation by Smart Cards. J. Cryptology, 4(3):161–174,
1991. 2, 5, 8, 28, 29, 30, 31

[Sha84] Adi Shamir. Identity-Based Cryptosystems and Signature Schemes. In CRYPTO, pages 47–53, 1984.
2, 3, 13

[SOK00] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing. Sympoium
on Cryptography and Information Security (SCIS), Okinawa, Japan, pages 26–28, January 2000. 3

[SWP04] Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk. Efficient Extension of Standard Schnorr/RSA
Signatures into Universal Designated-Verifier Signatures. In Bao et al. [BDZ04], pages 86–100. 2, 3,
11, 12, 13, 31

[Ver06] Damien Vergnaud. New Extensions of Pairing-Based Signatures into Universal Designated Verifier
Signatures. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP
(2), volume 4052 of Lecture Notes in Computer Science, pages 58–69. Springer, 2006. 3

[Yi03] Xun Yi. An Identity-Based Signature Scheme from the Weil Pairing. Communications Letters,
IEEE, 7(2):76–78, 2003. 3

19

[ZFI05] Rui Zhang, Jun Furukawa, and Hideki Imai. Short Signature and Universal Designated Verifier
Signature Without Random Oracles. In John Ioannidis, Angelos D. Keromytis, and Moti Yung,
editors, ACNS, volume 3531 of Lecture Notes in Computer Science, pages 483–498, 2005. 3

[ZSMC05] Fangguo Zhang, Willy Susilo, Yi Mu, and Xiaofeng Chen. Identity-Based Universal Designated
Verifier Signatures. In Tomoya Enokido, Lu Yan, Bin Xiao, Daeyoung Kim, Yuanshun Dai, and
Laurence Tianruo Yang, editors, EUC Workshops, volume 3823 of Lecture Notes in Computer Sci-
ence, pages 825–834. Springer, 2005. 3, 4

[ZSS04] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An Efficient Signature Scheme from
Bilinear Pairings and Its Applications. In Bao et al. [BDZ04], pages 277–290. 31

A Proof of Theorem 1

Proof. Let GUDVS be a UDVS scheme constructed via our constructions from a signature scheme SS in C and
a verifier key pair type KT in K. Let also the underlying hard problem of the signature scheme be PSS and the
underlying hard problem of the verifier key pair type be PKT . Given a DV-forger A and two instances of the
problems PSS and PKT , we will show that at least one of the problem instances can be solved.

We will show how to construct, given a DV-forger A, two solver algorithms SlvKT and SlvSS for solving PKT and
PSS instances, respectively. We will also show that at least one of these two strategies will succeed in solving its
given instance of the problem, if the DV-forger manages to forge successfully. Given a successful DV-forger A,
SlvKT will succeed only if the forgery produced by the A is of a certain type which is defined by an event. We
also show that SlvSS succeeds if the DV-forger A is successful and another event occurs. Furthermore, we will
show that the events above cover the universe. It follows that, with the above two solvers, given a DV-forger for
GUDVS scheme , at least one of them will solve the associated problem.

We will construct our solvers in a modular way. We will introduce four algorithms SimKT , SimSS, CalKT , and
CalSS and use these four algorithms along with the adversary A and the Bellare-Neven forker algorithm (see
Appendix G) as modules of constructing the two solvers. We will construct the solver SlvKT as follows:

• the simulator algorithm SimKT will run A as a subroutine, simulating the attack environment (inputs and
answers to queries) for A, and obtain a DV-forgery from A,

• the forker algorithm FrkKT will run SimKT as a subroutine, forking inputs to it, and obtain two different
designated signatures from it, and

• the solution calculator algorithm CalKT will run FrkKT as a subroutine and use the two designated signa-
tures output by it to solve the given instance of the problems PKT .

The solver SlvSS is also constructed in a similar way, using algorithms SimSS, FrkSS, and CalSS. The algorithms
SimSS and CalSS, in turn, run the Sim and Cal algorithms of the signature scheme SS, respectively. These
algorithms are defined in Appendixes C.2 and C.3. The forker algorithms are also based on the constructions
of Bellare and Neven [BN06] as discussed in Appendix G. We will describe each module in the following and
discuss how they work and lead to the proof. First we will describe SimKT , FrkKT , and CalKT algorithms, which
are used to construct the algorithm for solving a given PKT problem instance. After a discussion on the success
probability of our solver, we will proceed to introduce our second set of algorithms SimSS, FrkSS, and CalSS,
which are used to construct the algorithm for solving a given PSS problem instance. We will denote the random
oracles used in the signature scheme by HSS and the one used in the Fiat-Shamir transform to build a signature
of knowledge by HFS.

Let us first set some notations. One can see easily from Figures 9 and 2 and our construction that our designated
signatures will be in the form σ̂ = (σ̃pre, δ), where

δ = (Cmt, Rsp) = ((Cmts, Cmtv) , (Chls, Chlv, Rsps, Rspv)) .

20

Furthermore, we have

Chls + Chlv = Chl = HFS (Pub ‖ Cmt) = HFS

(
(Pubs, Pubv) ‖ (Cmts, Cmtv)

)
.

Also note that, following our proof of knowledge notation convention, the notation

δ ← SoK {(σ̃pre ∨ skv) : Valid (pks,m, (σ̃aux, σ̃pre)) ,Pair (pkv, skv)}

implies that
Secs = σ̃pre, Secv = skv, Pubs = (pks,m, σ̃aux) , and Pubv = pkv .

We will use the above notation throughout the proof.

Algorithm SimKT gets a PKT instance Ins and a q-tuple (h1, . . . , hq) as input. It first runs the key generation
algorithm of the corresponding signature to obtain a key pair (sks, pks). Then SimKT runs A with inputs pks

and pkv = Ins. Note that, as we mentioned before, one can see the problem instance Ins as a public key pkv,
for which we are trying to find the solution Sol, i.e. corresponding secret key skv. During its run, A will ask
HSS, HFS, and Sign oracle queries. SimKT simulates the answers as follows:

• answers HSS queries randomly and records the answers.

• answers HFS queries by taking elements of the q-tuple (h1, . . . , hq) consecutively, i.e. answers the first
query with h1, the second with h2 and so on.

• answers Sign queries by running the Sign algorithm of the signature scheme. Note that the signing key
sks is known to SimKT , so there is no need to simulate the signatures.

At last, A outputs a DV-forgery (m, σ̂), where σ̂ = (σ̃aux, δ). SimKT checks whether or not the adversary has
been successful in forging, i.e. checks whether or not the message is new and the DV-forgery is valid by running
the DVer algorithm. If (m, σ̂) passes both tests, denoting δ = ((Cmts, Cmtv) , (Chls, Chlv, Rsps, Rspv)), SimKT

looks up the index J s.t. hJ = Chls +Chlv and outputs (J, (m, σ̂)). In the case that the adversary has not been
successful or no matching index J is found, SimKT outputs (0, ε).

Algorithm FrkKT takes as input a PKT instance Ins. It is defined as the Bellare-Neven forker algorithm in
Appendix G, with input Ins and access to algorithm SimKT , i.e. using the Bellare-Neven notation

FrkKT
4
= FSimKT

(Ins) .

FrkKT outputs either (1, (m, σ̂) , (m′, σ̂′)) or (0, ε, ε), depending on whether the forking has been successful or
not. Note that a successful forking implies same Jth HFS oracle query and different corresponding answers.
Since queries are of the form (Pubs, Pubv) ‖ (Cmts, Cmtv), where Pubs = (pks,m, σ̃aux), the message m is also
part of the Jth query and thus is the same for the two runs of the forked algorithm SimKT , hence m = m′.
Therefore, from now on, we will use m instead of m′.

Algorithm CalKT takes as input a PKT instance Ins. It first runs FrkKT on the same input Ins and obtains
either (1, (m, σ̂) , (m, σ̂′)) or (0, ε, ε). Receiving the former means that forking by FrkKT has been successful, i.e.
J = J ′ and hJ 6= h′J according to the general Forking Lemma. Note that hJ and h′J are the two responses to
the Jth HFS oracle queries in the two runs of the forked algorithm SimKT . Thus hJ = Chl = Chls + Chlv and
h′J = Chl′ = Chl′s + Chl′v. Hence we have the following event:

E
4
= [J = J ′ ∧ Chls + Chlv 6= Chl′s + Chl′v] . (1)

Now, if Chlv 6= Chl′v, then CalKT will simply run the extraction algorithm for the protocol for proof of knowledge
of the verifier’s secret key and get a skv s.t. Pair (pkv, skv). CalKT outputs Sol = skv as the solution to the PKT

problem instance Ins. If Chlv = Chl′v, CalKT declares failure and halts.

A graphical depiction of how modules are wired to interact in our solver is shown in Figure 4. Note that, again,
random oracle queries are not shown in the figure. Let us denote by SlvKT our solver, i.e. the combination of
all our modules: CalKT , FrkKT , and the two instances of SimKT wired together as in Figure 4.

21

(pks, pkv)

CalKT

SimKT A

Ins

Sol

(m, σ̂)

σi

mi

Ins

(m′, σ̂′))

SimKT

(Ins, (h1, . . . , hJ ,

h′
J+1, . . . , h

′
q))

(J ′, (m′, σ̂′))

(Ins, (h1, . . . , hq))

(J, (m, σ̂))

FrkKT

SlvKT

(1, (m, σ̂),

(pks, pkv)

A

(m′, σ̂′)

σi

mi

Figure 4: Mechanism of the proof

Let us calculate the probability that our solver is successful in solving the PKT problem instance Ins. We define
the success probabilities for SimKT and FrkKT similar to acc and frk, respectively, in the general Forking Lemma
(see Appendix G), i.e.

• AdvSimKT (A) (k) is defined as the probability that SimKT ’s first output is not zero, given A, a random
problem instance of size k, and random choices of h1, . . . , hq, and

• AdvFrkKT (SimKT) (k) is defined as the probability that FrkKT ’s first output is one, given SimKT and a
random problem instance of size k.

Now we observe that SimKT succeeds if A succeeds in forging and the forgery uses a queried hash. We know
that the probability that A succeeds without using a queried hash is at most one over the size of the challenge
space. Thus we have

AdvSimKT (A) (k) ≥ Advdv-euf-cma
A(GUDVS) (k)− 1

|ChSp|
.

On the other hand, we have Bellare and Neven’s General Forking Lemma which gives us a lower bound for the
success probability of the forker, i.e. FrkKT , based on the success probability of the simulator, i.e. SimKT . Thus
we will have

AdvFrkKT (SimKT) (k) ≥ AdvSimKT (A) (k) ·
(

AdvSimKT (A) (k)
q

− 1
|ChSp|

)
,

where q is the maximum number of HFS queries A makes. We also see that CalKT is successful if FrkKT succeeds
and Chlv 6= Chl′v. So we get the following:

AdvpKT

CalKT (FrkKT) (k) = Pr [Chlv 6= Chl′v|FrkKT succeeds] ·AdvFrkKT (SimKT) (k) .

Combining the three equations above, and applying the fact that FrkKT succeeds iff E happens, we can compute
the overall probability of success of our solver in solving PKT as follows:

AdvpKT

SlvKT (A) (k) ≥ 1
q
· Pr [Chlv 6= Chl′v|E] ·

·
(

Advdv-euf-cma
A(GUDVS) (k)− 1

|ChSp|

)
·
(

Advdv-euf-cma
A(GUDVS) (k)− 1 + q

|ChSp|

)
.

Assuming that the size of the challenge space is super-logarithmic in the security parameter and the number of
queries the adversary asks is polynomially-bounded in the security parameter, we can neglect the two fractions
with |ChSp| as denominator and simplify the above equation as follows:

AdvpKT

SlvKT (A) (k) ≥ 1
q
· Pr [Chlv 6= Chl′v|E] ·

[
Advdv-euf-cma

A(GUDVS) (k)
]2

. (2)

22

Now we describe the three algorithms SimSS, FrkSS, and CalSS for solving an instance Ins of the underlying
problem of the signature scheme PSS. These modules are again wired together as shown in Figure 4, changing
all the indexes from KT to SS.

Algorithm SimSS gets an instance Ins of the problem PSS and a q-tuple (h1, . . . , hq) as input. It first runs the
corresponding verifier key generation algorithm KeyGen to obtain a key pair (skv, pkv). Then SimSS runs the
simulator algorithm Sim of the signature scheme SS on input Ins to get a public key pks for the signature scheme.
It then runs A on input (pks, pkv). A will ask HSS, HFS, and Sign oracle queries. SimSS responds as follows:

• forwards all HSS and Sign oracle queries to the signature simulator Sim and relays the answers given by
Sim back to A.

• answers HFS queries with the q-tuple it is provided with, i.e. answers the first query with h1, the second
with h2 and so on.

If Sim succeeds in simulating the HSS and Sign oracle queries, at last A outputs a DV-forgery (m, σ̂). SimSS

checks whether or not the adversary has been successful in forging, i.e. checks whether or not the message is
new and the DV-forgery is valid by running the DVer algorithm. If (m, σ̂) passes both tests, SimSS looks up the
index J s.t. hJ = Chls + Chlv and outputs (J, (m, σ̂)). In the case that either Sim fails, the adversary fails in
forging a valid forgery, or no matching index J is found, SimSS outputs (0, ε).

Algorithm FrkSS takes as input an instance Ins of the problem PSS. It is defined as the Bellare-Neven forker
algorithm, with input Ins and access to algorithm SimSS, i.e.

FrkSS
4
= FSimSS

(Ins) .

FrkSS outputs either (1, (m, σ̂) , (m′, σ̂′)) or (0, ε, ε). Note that, with a similar reasoning as before, m = m′.

Algorithm CalSS takes as input an instance Ins of the problem PSS. It runs FrkSS on the same input and obtains
either (1, (m, σ̂) , (m, σ̂′)) or (0, ε, ε). Again, receiving the former means that forking by FrkSS has been successful,
i.e. J = J ′ and hJ 6= h′J . Hence we have the same event E as defined in Equation 1. Now, if Chls 6= Chl′s, then
CalSS will simply run the extraction algorithm for the protocol for proof of knowledge of σ̃pre and get a σ̃pre s.t.
Valid

(
pks,m, (σ̃aux, σ̃pre)v

)
. Then it runs the corresponding Retrieve algorithm on input (σ̃aux, σ̃pre) and gets a

valid σ. Now, CalSS feeds (m,σ) to the solution calculator algorithm Cal of the signature scheme SS and gets
the solution Sol for the problem instance Ins of the problem PSS if Cal is successful. If either Chls = Chl′s or
Cal fails, CalSS declares failure and halts.

Let us calculate the probability that our solver is successful in solving the PSS problem instance Ins. We can
define the success probability for SimSS and FrkSS similar to that of SimKT and FrkKT . Notice that SimSS

succeeds if Sim succeeds in simulating, A succeeds in forging, and the forgery uses a queried hash. Thus, with
similar reasonings as before, the success probability of SimSS can be finally written as

AdvSimSS(A) (k) ≥ AdvSim(A) (k) ·
(

Advdv-euf-cma
A(GUDVS) (k)− 1

|ChSp|

)
.

Furthermore, for the success probability of the forker algorithm FrkSS, a similar equation to the one we had in
the first part of the proof holds, i.e.

AdvFrkSS(SimSS) (k) ≥ AdvSimSS(A) (k) ·
(

AdvSimSS(A) (k)
q

− 1
|ChSp|

)
,

where q is the maximum number of HFS queries made by A. We also see that CalSS is successful if FrkSS succeeds
in forking, Chlv 6= Chl′v, and Cal succeeds in solving the problem instance Ins. Now let us define the following
event:

F
4
= [FrkSS succeeds ∧ Chls 6= Chl′s] .

In case of event F, a valid signature σ on the message m can be computed. The probability of obtaining such a
signature can be written as

Pr [F] = Pr [Chls 6= Chl′s|FrkSS succeeds] ·AdvFrkSS(SimSS) (k) .

23

Now, using the notation defined in Appendix C.2, for non-FL-based signatures, we will have the following:

AdvpSS

CalSS(FrkSS)
(k) ≥ AdvCal(Sim) (k) · Pr [F] .

Combining the above equations and with a similar reasoning that lead us to Equation 2 plus the fact that E
happens iff FrkSS succeeds, we get the following for overall probability of success of our solver in solving PSS for
non-FL-based signatures:

AdvpSS

SlvSS
(k) ≥ 1

q
·AdvCal(Sim) ·Pr [Chls 6= Chl′s|E] ·

[
AdvSim(A) (k)

]2 ·
·
(

Advdv-euf-cma
A(GUDVS) (k)− 1

|ChSp|

)
·
(

Advdv-euf-cma
A(GUDVS) (k)− 1 + q

|ChSp| ·AdvSim(A) (k)

)
,

where we also have exploited the fact that AdvSim(A) (k) ≤ 1 to change the last numerator from AdvSim(A) (k)+ q
to 1 + q. Similarly, assuming that the size of the challenge space is super-logarithmic, the number of queries
the adversary asks is polynomially-bounded, and AdvSim(A) (k) is noticeable in the security parameter, we can
simplify the above equation as follows:

AdvpSS

SlvSS
(k) ≥ 1

q
·AdvCal(Sim) ·Pr [Chls 6= Chl′s|E] ·

[
AdvSim(A) (k)

]2 · [Advdv-euf-cma
A(GUDVS) (k)

]2

. (3)

Combining Equations 2 and 3 and applying the fact that

Pr [Chlv 6= Chl′v|E] + Pr [Chls 6= Chl′s|E] ≥ 1 ,

we will get the following result for non-FL-based schemes:

AdvpKT

SimKT (A) (k) +
1

AdvCal(Sim) ·
[
AdvSim(A) (k)

]2 ·AdvpSS

SlvSS(A) (k) ≥ 1
q
·
[
Advdv-euf-cma

A(GUDVS) (k)
]2

.

Thus, as long as the adversary A has a good advantage of forging, we will be able to solve at least one of the
problem instances of PKT or PSS with a good probability. This completes the proof for non-FL-based signatures.

On the other hand, for the FL-based signatures, since another forking is performed to get two valid signatures,
we get the following:

AdvpSS

CalSS(FrkSS)
(k) ≥ AdvCal(Sim) (k) · Pr [F] ·

(
Pr [F]

q
− 1
|RHSS

|

)
,

where RHSS
is the range of the hash function HSS. Again with a similar reasoning, assuming that the size of

the challenge space and the size of RHSS
are both super-logarithmic, the number of queries the adversary asks is

polynomially-bounded, and AdvSim(A) (k) is noticeable in the security parameter, we will get the following final
result for overall probability of success of our solver in solving PSS for FL-based signatures:

AdvpSS

SlvSS
(k) ≥ 1

q3
·AdvCal(Sim) ·

(
Pr [Chls 6= Chl′s|E]

)2 ·
[
AdvSim(A) (k)

]4 · [Advdv-euf-cma
A(GUDVS) (k)

]4

. (4)

Similarly, combining Equations 2 and 4, we will get the following result for FL-based schemes:

AdvpKT

SimKT (A) (k) +
√

q√
AdvCal(Sim) ·

[
AdvSim(A) (k)

]2 ·√AdvpSS

SlvSS(A) (k) ≥ 1
q
·
[
Advdv-euf-cma

A(GUDVS) (k)
]2

,

which again, guarantees a lower band for the probability that our solvers are able to solve at least one of the
two instances of respectively the prroblems PKT and PSS. This completes the proof for FL-based signatures. �

24

B Proof Sketch of Theorem 4

Proof sketch. We will prove that the interactive version of our IBS scheme, denoted by GIBI, is an identity-based
identification scheme secure against impersonation under passive attacks (imp-pa in the sense of [BNN04]). This
will complete the proof since Bellare et al. have shown that any imp-pa-secure IBI is transformed via Fiat-Shamir
to a id-euf-cma-secure IBS scheme [BNN04].

To prove imp-pa security we need to be able to respond to two types of oracle queries: corruption oracle and
conversation oracle queries. For the former, a user secret key for the given identity must be simulated and for
the latter, a transcript of the interaction between a user with a given identity and a verifier. User secret keys can
be simulated via the simulation algorithm for the signature scheme, since user secret keys are simply signatures
on user identities. Transcripts of the interaction between a user with a given identity and a verifier can be
simulated via first simulating the σ̃aux and then simulating a transcript for the proof of knowledge of the σ̃pre

corresponding to the master public key, the identity, and σ̃aux.

At last, the successful impersonator can be used to extract two transcripts with the same σ̃aux and commitment
message and two different challenges and responses to them. This will allow first computing the σ̃pre and then,
knowing both σ̃aux and σ̃pre, computing a forgery for the signature scheme which, in turn, will be given to the
solution calculator algorithm to compute the solution to the given instance of the underlying problem PSS.

Given an instance of the underlying problem PSS, we will run the Sim algorithm on this input. Sim will give us
a pk that we will relay to the adversary as the master public key. The adversary then will start to ask two types
of oracle queries: corruption oracle queries and conversation oracle queries. On a corruption oracle query id, we
will forward id as a signing query to Sim and get the signature σ on it and then forward it along with the master
public key and the input id as the response to the query id (i.e. the user secret key corresponding to id) to the
adversary. On a conversation query id, we will run the AuxSim algorithm on input the master public key and
id and get a simulated σ̃aux. Then we will run the TrSim algorithm for the protocol for proof of knowledge of
σ̃pre on input (mpk, id, σ̃aux) to get a transcript Tr = (Cmt, Chl, Rsp) for that protocol. Then we will give the
adversary the conversation ((Cmt, σ̃aux) , Chl, Rsp) as the response to the query id. For the signature schemes
that use a random oracle in their construction, the adversary will ask HSS queries as well. These queries are also
relayed to Sim algorithm and the response is relayed back to the adversary.

At last, the adversary decides that the first phase is over and outputs a target identity id∗. We will keep
answering the queries as before in the second phase. The adversary will be able to prove knowledge of the user
secret key corresponding to id∗ at this stage. Rewinding the adversary and asking for a new challenge will give
us two transcripts with the same commitment and σ̃∗aux and different challenges and their respective responses.
We will be able to extract a σ̃∗pre corresponding to σ̃∗aux from the same commitment, different challenges, and
their respective responses then, and at last run the Retrieve algorithm on input the master public key, id∗, and
the pair

(
σ̃∗aux, σ̃

∗
pre

)
to get a signature σ∗ on the identity id∗. We will finally run the Cal algorithm on input σ∗

to get the solution to the problem instance.

Let us compute the probability that we will be successful in solving the underlying problem instance. Let us
denote the probability that we are able to successfully simulate the environment for the adversary and the
adversary will give us a suitable forgery by acc. With a similar reasoning to the proof of Theorem 1, we will get

acc (k) ≥ AdvSim(A) (k) ·Advimp-pa
GIBI,A (k) .

Now, applying the Reset Lemma of Bellare and Palacio [BP02] we will get the success probability of computing
two suitable transcripts as follows

res (k) ≥
(

acc (k)− 1
|ChSp|

)2

.

Furthermore, again with a similar reasoning to the proof of Theorem 1, we will be able to calculate the probability
that our solution calculator
mathsfCalSS will be successful in solving the instance of the problem PSS as the following for non-FL-based
schemes:

AdvpSS

CalSS
(k) ≥ AdvCal(Sim) ·res (k) .

25

Combining the above equations, we will get the following final result for the success probability of our solver Slv
of PSS problem instances for non-FL-based schemes:

AdvpSS

Slv (k) ≥ AdvCal(Sim) ·
(

AdvSim(A) (k) ·Advimp-pa
A(GIBI) (k)− 1

|ChSp|

)2

.

This completes the proof for non-FL-based signature schemes.

Furthermore, for FL-based signatures, the probability that the solution calculator will be successful in solving
the instance of the problem PSS can be written as the following:

AdvpSS

CalSS
(k) ≥ AdvCal(Sim) ·

(
res (k)

)2

.

Thus the overall success probability of the solver will be calculated as follows for FL-based signature schemes:

AdvpSS

Slv (k) ≥ AdvCal(Sim) ·
(
AdvSim(A) (k) ·Advimp-pa

A(GIBI) (k)− 1
|ChSp|

)4

.

This completes the proof for FL-based signatures. �

C More on Classes K and C

C.1 Some Key Types in the Class K

There are quite a few different types of key pairs used in cryptographic schemes. Three of the simplest and most
popular types are RSA-type, GQ-type, and DL-type key pairs. The key generation algorithms for these types
of keys are shown in Figure 5. The RSAGen and DLGen algorithms are respectively the prime exponent RSA
parameter generator and the DL parameter generator algorithms that generate system parameters with respect
to the security parameter taken as input.

Algorithm RSAKeyGen (k)
(N, e, d)← RSAGen (k)
sk ← d
pk ← (N, e, d)
return (pk, sk)

Algorithm GQKeyGen (k)
(N, e, d)← RSAGen (k)

sk
$← Z∗

N ; X
N← ske

pk ← (N, e,X)
return (pk, sk)

Algorithm DLKeyGen (k)
(p, g)← DLGen (k)

sk
$← Zp; X ← gsk

pk ← (p, g, X)
return (pk, sk)

Figure 5: GQ- and DL-type key generation algorithms

The underlying problem of the RSA-type keys is finding the private exponent d of an RSA system corresponding
to the values (N, e, d). The authors are not aware of any direct Σ protocols for proof of knowledge of the
private exponent d corresponding to (N, e, d). However, the results of Coron and May [CM07] shows that the
knowledge of the private exponent is equivalent to the knowledge of the factorization of N . Thus, instead of
proving knowledge of d, one can use the existing Σ protocols for proof of knowledge of the factorization of N ,
for example the protocols by Poupard and Stern [PS00b]. Therefore, RSA keys belong to K.

The underlying problem of GQ and DL key types are the RSA and DL problems, respectively. Knowledge of the
secret key corresponding to a public key for these two types of keys can be proved via GQ and Schnorr protocols,
respectively, which are both Σ protocols. So these two types of keys also belong to K.

26

C.2 On Simulatability of Signature Schemes

We require that there exists a pair of algorithms, Sim and Cal, such that given an instance Ins of the underlying
hard problem PSS, Sim is able to simulate a public key for the signature scheme and signatures for arbitrary
chosen messages with a noticeable probability, and given a pair (resp. two pairs) consisting of a new message
and a signature (resp. two signatures) on the message, valid with respect to the simulated public key, Cal is able
to calculate a solution Sol to the problem instance with a noticeable probability.

Intuitively, this property requires that it is possible to simulate the public key and signatures for chosen messages
for the signature scheme, without knowledge of the secret key, with a sufficiently good probability, in a way that
a forgery enables us to solve an instance of a hard problem. This simulation might take place in the Random
Oracle Model though. Proofs of unforgeability for most of the signature schemes, are constructed in a folklore
standard way by first simulating the attack environment for the adversary and then using the adversary’s forgery
to solve a hard problem. These two are the algorithms we are looking for. Note that for a proof in the ROM,
the simulator must also answer A’s random oracle queries as well as its signing oracle queries.

Now consider two types of signatures depending on whether or not their security proof is based on the Forking
Lemma. If the security proof of SS is not based on Forking Lemma (non-FL-based signature from now on),
then only one forgery is enough for the Cal algorithm to compute the solution Sol. However, if the security
proof of SS is based on Forking Lemma (FL-based signature from now on), then Cal will need two signatures on
the same message to be able to calculate the solution to the hard problem. Let us denote by by AdvSim(A) (k)
the probability that the Sim succeeds in simulating the attack environment for A and gets a suitable forgery
(definition of suitable is case-dependent). Let us also denote by AdvCal(Sim) (k) the probability that given one
(respectively two for FL-based schemes) valid signature(s) on a message, Cal succeeds in computing the solution
Sol for the problem instance Ins given to Sim.

A depiction of the mechanism of the proof for these two types of schemes is shown in Figure 6. Note that
random oracle queries are not shown in this figure. As one can follow the order of events in Figure 6 from top
to bottom, for a non-FL-based scheme, first the problem instance Ins is given to Cal as input. The public key
pk and answers σi to signing oracle queries mi are then simulated by Sim. The forgery (m,σ) which is output
by the adversary A is then used by Cal to calculate a solution Sol for the problem instance. For FL-based
schemes, a forker algorithm Frk is introduced which runs the simulator and the adversary two times, ordering
the simulator to use different values as responses to the adversary’s random oracle queries each time. Then the
two signatures are given to the Cal that calculates and outputs Sol. For more details, see the General Forking
Lemma in Appendix G.

Cal Sim A

Ins

Sol (m,σ)

σi

mi

pkIns

(m,σ)

Cal

Sim A

Ins

Sol

(m,σ)

σi

mi

pk
Ins

(m′, σ′))

Sim A

(m′, σ′)

σi

mi

pk
(Ins, (h1, . . . , hJ ,

h′
J+1, . . . , h

′
q))

(J ′, (m′, σ′))

(Ins, (h1, . . . , hq))

(J, (m,σ))

Frk

Slv

Slv

(1, (m,σ),

Figure 6: Mechanism of Proofs of Unforgeability for Non-FL-Based (left) and FL-Based Signatures (right)

Let us also denote by Slv the combination of Cal and Sim for the case of non-FL-based signatures and the
combination of Cal, Frk, and the two instances of Sim for the case of FL-based signatures. Using the notation

27

defined above, we will have the following results respectively for the non-FL-based and FL-based schemes:

AdvpSS

Slv (k) ≥ AdvCal(Sim) (k) ·AdvSim(A) (k) , and

AdvpSS

Slv (k) ≥ AdvCal(Sim) (k) ·AdvSim(A) (k) ·
(

AdvSim(A) (k)− 1
|ChSp|

)
.

C.3 Some Signatures in the Class C

RSA-FDH Signature: The Full-Domain Hash RSA signature scheme was proposed and proved secure by
Bellare and Rogaway [BR96]. The key pairs are of the forms pk = (N, e) and sk = d, where ed = 1 mod ϕ (N)
and N is an RSA modulus. A valid signature σ satisfies the verification equation σe = H (m) mod N . The
signature is the pre-image itself and no auxiliary information σ̃aux is required to carry out the proof, thus we
have the following algorithms:

(ε, σ)← Convert (pk, m, σ) and σ̃pre ← Retrieve (pk, m, σ̃) .

Simulation of σ̃aux = ε is trivial. The verification equation suggests the following one-way function and image:

f (x) = xe mod N and I = H (m) .

Hence, σ̃pre = σ is the eth RSA root of I and knowledge of σ̃pre can be proved via the GQ protocol [GQ88]
which is a Σ protocol. Thus, RSA-FDH has the first property.

One can easily see that the second property also holds for RSA-FDH. The security proof by Coron [Cor00] can be
easily seen to have two separable parts as bellow: given an RSA problem instance Ins = (N, e,X), the simulator
simulates the public key as pks = (N, e,X), answers to hash queries of mi as either X · re

i mod N or re
i mod N

for a random ri, and answers to sign queries on mi as ri. Given a forgery (m∗, σ∗), the simulator first finds the
corresponding i so that mi = m∗ and then checks whether or not m∗ hash query has been answered by X · re

i

mod N or not and sends the forgery to the solution calculator if positive. The solution calculator calculates
Sol = σ∗/ri mod N as the solution to Ins. According to [Cor00] the above simulator will be successful in
simulating and getting a suitable forgery with probability 1

exp(1)·qs
and the solution calculator will be successful

in solving the problem instance with probability 1, given a suitable forgery.

Schnorr Signature: Schnorr proposed the scheme for use in smart cards [Sch91] and Pointcheval and Stern
proved the scheme secure [PS00a]. The key pairs are of the forms pk = (p, q, g, h) and sk = x, where h = gx. A
valid signature is of the form σ = (c, z) for a random c ∈ Zq s.t. the verification equation c = H (gz · h−c,m) is
satisfied. Signatures can be converted and retrieved as follows:(

gz · h−c, z
)
← Convert (pk, m, σ) and (H (σ̃aux,m) , σ̃pre)← Retrieve (pk, m, σ̃) .

Since c is chosen randomly, σ̃aux = gz · h−c is uniformly distributed and can be simulated by just picking a
uniformly random element of Zq. The verification equation can be rewritten as

gσ̃pre = σ̃aux · hH(σ̃aux,m), where σ̃pre = z .

Therefore, we will have the following one-way function and image:

f (x) = gx and I = σ̃aux · hH(σ̃aux,m) .

Hence, σ̃pre is the discrete logarithm of I in base g and knowledge of σ̃pre can be proved via the Schnorr protocol
[Sch91] which is a Σ protocol. Thus, the first property is satisfied.

The second property can also easily be seen to hold for Schnorr. Since Schnorr is also a signature of knowledge
constructed via Fiat-Shamir transform, signatures can be easily simulated in the Random Oracle Model. Given
an instance pk = (p, q, g, h), one simulates a signature on mi by picking two random elements c and z in Zq

and sets σi = (c, z) and also answers hash oracle queries consistent with c = H (gz · h−c,m). Using the Forking
Lemma, one can get two forgeries on the same message from an adversary and given two forgeries on the same

28

message, the solution calculator can easily compute the discrete logarithm of h in base g. This observation
is basically the same as that of Pointcheval and Stern on the simulatability of the Schnorr signatures [PS00a,
Section 3.2.2]. The probability of the simulation success and that of the solving DL given two signatures on the
same message are both 1.

Modified ElGamal Signature: ElGamal signature scheme was proposed by ElGamal [ElG85]. A slightly-
modified version was proposed and proved secure by Pointcheval and Stern [PS00a]. The key pairs are of the
forms pk = (p, g, h) and sk = x, where h = gx. A signature is of the form σ = (r, s) for a random r ∈ Z∗

p−1 s.t.
the verification equatioon gH(m,r) = hrrs is satisfied. Signatures can be converted and retrieved as follows:

(r, s)← Convert (pk, m, σ) and (σ̃aux, σ̃pre)← Retrieve (pk, m, σ̃) .

Since σ̃aux = r is uniformly distributed, it can be simulated by just picking a uniformly random element of Z∗
p−1.

The verification equation can be rewritten as

rσ̃pre = gH(m,σ̃aux)/hσ̃aux , where σ̃pre = s .

Therefore, we will have the following one-way function and image:

f (x) = σ̃x
aux and I = gH(m,σ̃aux)/hσ̃aux .

Hence, σ̃pre = s is the discrete logarithm of I in base r and knowledge of σ̃pre can be proved via the Schnorr
protocol [Sch91] which is a Σ protocol. Thus, Modified ElGamal has the first property.

The results of Pointcheval and Stern show that the second property also holds for Modified ElGamal. They
have proved that For α-hard prime numbers, the signer can be simulated with an indistinguishable distribution
[PS00a, Lemma 6] and that given two signatures on the same message the solution calculator can find a solution
for the discrete logarithm problem instance with α-hard prime modulus in polynomial time [PS00a, Theorem 6].
These two results show that Modified ElGamal has the second property.

BLS Signature: The BLS signature was proposed and proved secure by Boneh et al. [BLS01]. The key
pairs are of the forms pk = (q, g, e, y) and sk = x, where y = gx. A valid signature σ satisfies the equation
e (σ, g) = e (H (m) , y). Signatures can be converted and retrieved as follows:

(σz, z)← Convert (pk, m, σ) where z
$← Z∗

q and σ̃1/σ̃pre
aux ← Retrieve (pk, m, σ̃) .

Since z is chosen randomly, σ̃aux = σz is uniformly distributed and can be simulated by just picking a uniformly
random element of Z∗

q . The verification equation can be rewritten as

e (H (m) , y)σ̃pre = e (σ̃aux, g) , where σ̃pre = z .

Therefore, we will have the following one-way function and image:

f (x) = e (H (m) , y)x and I = e (σ̃aux, g) .

Hence, σ̃pre is the discrete logarithm of I in base e (H (m) , y) and knowledge of σ̃pre can be proved via the
Schnorr protocol [Sch91] which is a Σ protocol. Thus, the first property holds for BLS.

The proposed proof of unforgeability by Boneh et al. shows that the second property also holds for BLS. Basically,
given a CDH problem instance Ins = (q, e, g,X, ḡ), the simulator simulates the public key as pks = (q, e, g,X),
answers to hash queries of mi as either either ḡ · gri or gri for a random ri, and answers to sign queries on mi

as Xri . Given a forgery (m∗, σ∗), the solution calculator first finds the corresponding i so that mi = m∗ and
then checks whether or not m∗ hash query has been answered by ḡ · gri mod N or not and sends the forgery to
the solution calculator if positive. The solution calculator calculates Sol = σ∗/Xri mod N as the solution to
Ins. According to [BLS01] the above simulator will be successful in simulating and getting a suitable forgery
with probability 1

2·exp(1)·qs
and the solution calculator will be successful in solving the problem instance with

probability 1, given a suitable forgery.

29

BB Signature: The BB signature was proposed and proved secure by Boneh and Boyen [BB04]. The key pairs
are of the forms pk = (q, g, e, u1, u2) and sk = (x, y), where u1 = gx and u2 = gy. A signature is of the form
σ = (δ, l) for a random l ∈ Z∗

q that satisfies the equation e
(
δ, u1g

mul
2

)
= e (g, g). Signatures can be converted

and retrieved as follows:

((δz, l) , z)← Convert (pk, m, σ) where z
$← Z∗

q and
(
δ̃1/z, l

)
← Retrieve

(
pk, m,

((
δ̃, l

)
, z

))
.

Since both l and z are chosen randomly, σ̃aux =
(
δ̃, l

)
= (δz, l) is uniformly distributed and can be simulated by

just picking two uniformly random elements of Z∗
q . The verification equation can be rewritten as

e
(
δ̃, u1g

mul
2

)
= e (g, g)σ̃pre , where σ̃pre = z .

Therefore, we will have the following one-way function and image:

f (x) = e (g, g)x and I = e
(
δ̃, u1g

mul
2

)
.

Hence, σ̃pre is the discrete logarithm of I in base e (g, g) and knowledge of σ̃pre can be proved via the Schnorr
protocol [Sch91] which is a Σ protocol. Thus, BB has the first property. One can examine that the second
property also holds for BB (see [BB04]).

Cramer-Shoup Signature: The Cramer-Shoup signature was proposed and proved secure by Cramer and
Shoup [CS00]. The key pairs are of the forms pk = (n, h, x, e′) and sk = (p, q), where n = pq is an RSA modulus,
h and x are random quadratic residues mod n, and e′ is prime. A signature is of the form σ = (e, y, y′) for a
random prime e and a random quadratic residue y′. A valid signature satisfies the equation

x = ye · h−H(x′) mod n, where x′ = (y′)e′ · h−H(m) mod n .

Signatures can be converted and retrieved trivially as follows:

((e, y′) , y)← Convert (pk, m, σ) and (e, y, y′)← Retrieve (pk, m, ((e, y′) , y)) .

Since both e and y′ are chosen randomly, σ̃aux = (e, y′) is uniformly distributed and can be simulated by just
picking two uniformly random elements from the corresponding sets. The verification equation can be rewritten
as

σ̃e
pre = x · h

−H

�
(y′)e′ ·h−H(m)

�
mod n, where σ̃pre = y .

Therefore, we will have the following one-way function and image:

f (x) = xe and I = x · h
−H

�
(y′)e′ ·h−H(m)

�
.

Hence, σ̃pre is the eth RSA root of I mod n and knowledge of σ̃pre can be proved via the GQ protocol [GQ88]
which is a Σ protocol. Thus, Cramer-Shoup has the first property. One can examine that the second property
also holds for the scheme (see [CS00]).

Camenisch-Lysyanskaya-02 Signature: The CL02 signature was proposed and proved secure by Camenisch
and Lysyanskaya [CL02]. The key pairs are of the forms pk = (n, a, b, c) and sk = (p, q), where n = pq is an
RSA modulus and a, b, and c are random quadratic residues mod n. A signature is of the form σ = (e, s, v) for
a random prime e and a random s. A valid signature satisfies the equation

ve = aH(m) · bs · c mod n .

Signatures can be converted and retrieved trivially as follows:

((e, s) , v)← Convert (pk, m, σ) and (e, s, v)← Retrieve (pk, m, ((e, s) , v)) .

30

Since both e and s are chosen randomly, σ̃aux = (e, s) is uniformly distributed and can be simulated by just
picking two uniformly random elements from the corresponding sets. The verification equation suggests the
following one-way function and image:

f (x) = xe and I = aH(m) · bs · c .

Hence, σ̃pre = v is the eth RSA root of I mod n and knowledge of σ̃pre can be proved via the GQ protocol
[GQ88] which is a Σ protocol. Thus, CL02 has the first property. One can examine that the second property
also holds for the scheme (see [CL02]).

Camenisch-Lysyanskaya-04 Signature: The CL04 signature was proposed and proved secure by Camenisch
and Lysyanskaya [CL04]. The key pairs are of the forms pk = (q, G,G′, g, g′, e,X, Y) and sk = (x, y), where
G = 〈g〉 and G′ = 〈g′〉 are two groups of prime size q, e : G × G 7→ G′ is a pairing, X = gx, and Y = gy. A
signature is of the form σ = (a, b, c) for a random a ∈ G and a valid signature satisfies the equations

e (a, Y) = e (g, b) and e (X, a) · [e (X, b)]H(m) = e (g, c) .

Signatures can be converted and retrieved as follows:

((a, b, cr) , r)← Convert (pk, m, σ) where r
$← Z∗

q and
(
a, b, c̃1/r

)
← Retrieve (pk, m, ((a, b, c̃) , r)) .

Since r are chosen randomly, c̃ = cr is a random element of G. Furthermore, a and b are both random in G
with the restriction that e (a, Y) = e (g, b). Thus, σ̃aux = (a, b, c̃) can be simulated by just picking two uniformly
random elements z ∈ Z∗

q and c̃ ∈ G and then setting a = gz and b = Y z, since we will then have e (a, Y) = e (g, b).
The verification equations can be rewritten as

e (a, Y) = e (g, b) and
[
e (X, a) · [e (X, b)]H(m)

]r

= e (g, c̃) .

Therefore, we will have the following one-way function and image:

f (x) =
[
e (X, a) · [e (X, b)]H(m)

]x

and I = e (g, c̃) .

Hence, σ̃pre = r is the discrete logarithm of I in base e (X, a) · [e (X, b)]H(m) and knowledge of σ̃pre can be proved
via the Schnorr protocol [Sch91] which is a Σ protocol. Note that CL04 signatures can be randomized by just
raising to a random power and if the signature is randomized before the construction of the proof then we will
get a Σ protocol for proof of knowledge of a signature (instead of that of σ̃pre). Such protocol would be similar
to the protocol described in [CL04] with the slight difference that in our case, the message is also known to the
verifier. Thus, CL04 has the first property. One can examine that the second property also holds for the scheme
(see [CL04]).

Other Signatures: As mentioned before, Goldwasser and Waisbard’s results in [GW04] show that both
Goldwasser-Micali-Rivest [GMR88] and Gennaro-Halevi-Rabin [GHR99] are also in C. Many other pairing-based
schemes can also be easily seen to be in C, for instance the signature scheme proposed in [ZSS04]. However,
there exist some schemes that does not seem to belong to C, or at least does not seem to admit to efficient
protocols, e.g. the PSS signature scheme from [BR96].

D Formal Definition of Security for UDVS and IBS Schemes

DV-Unforgeability of UDVS Schemes. In the unforgeability game, as per original definition by Steinfeld
et al. [SBWP03] and the strengthened version in a later work [SWP04], the adversary is given the security
parameter, the signer’s as well as the verifier’s public keys, and oracle access to sign any message as well as to
verify any pair of message and designated signature. The adversary’s goal is to forge a designated signature
on a new message, i.e. on a message that has not been queried to the signing oracle. Formally, an experiment
is defined for a UDVS scheme UVDS and a forger F with access to the signing oracle Sign and designated

31

Experiment Exptdv-euf-cma
F(UVDS) (k)

cp← CPGen
(
1k

)
;M ← ∅

(sks, pks)← SKeyGen (cp)
(skv, pkv)← VKeyGen (cp)
(m, σ̂)← F

(
1k, pks, pkv;Sign(·),DVer(·, ·)

)
if (DVer (pks, skv,m, σ̂) = 1 ∧m /∈M)
then return 1 else return 0

Oracle Sign(m)
σ ← Sign(sks,m)
M ←M ∪ {m}
return σ

Oracle DVer(m, σ̂)
return DVer(pks, skv,m, σ̂)

Figure 7: dv-euf-cma experiment and oracles

verification oracle DVer as in Figure 7. The advantage of F in attacking UDVS in a dv-euf-cma attack is
defined as:

Advdv-euf-cma
F(UVDS) (k)

4
= Pr

[
Exptdv-euf-cma

F(UVDS) (k) = 1
]

.

A UDVS is said to be dv-euf-cma-secure if no poly-time attacker can get an advantage non-negligible in k, in
a dv-euf-cma attack against it.

ID-Unforgeability for IBS Schemes. We recall Bellare and Neven’s definition of IBS security [BNN04]
against existential unforgeability under a chosen message and identity attack, denoted here by id-euf-cma-
security. The adversary has the ability to initialize and corrupt users beside its ability to obtain signatures on
chosen messages and identities. Formally, an experiment with corresponding initialization oracle Init, signing
oracle Sign, and corruption oracle Corr is defined as in Figure 8. The advantage of F in attacking IBS in an

Experiment Exptid-euf-cma
F(IBS) (k)

(mpk, msk)← MKeyGen
(
1k

)
;HU ← ∅ ;CU ← ∅

(S, m, σ)← F
(
1k,mpk; Init(·),Sign(·, ·), Corr(·)

)
if (S ∈ HU ∧ Verify (mpk, S,m, σ) = 1 ∧m /∈M [S])
then return 1 else return 0

Oracle Init(id)
if id ∈ CU ∪HU

then return ⊥
usk [id]← UKeyGen(msk, id)
M [id]← ∅
HU ← HU ∪ {id}
return 1

Oracle Sign(S, m)
if S /∈ HU

then return ⊥
σ ← Sign(usk [S] ,m)
M [S]←M [S] ∪ {m}
return σ

Oracle Corr(id)
if id /∈ HU

then return ⊥
CU ← CU ∪ {id}
HU ← HU\ {id}
return usk [id]

Figure 8: id-euf-cma experiment and oracles

id-euf-cma attack is defined as:

Advid-euf-cma
IBS,F (k)

4
= Pr

[
Exptid-euf-cma

F(IBS) (k) = 1
]

.

A UDVS is said to be id-euf-cma-secure if no poly-time attacker can get an advantage non-negligible in k, in
an id-euf-cma attack against it.

E Example GUDVS Construction

RSA-based UDVS assuming RSA-FDH signature scheme for the signer and registered GQ-type public key for
the verifier:

32

• CPGen simply returns 1k as the common parameter.

• VKeyGen is defined as key generation for the GQ protocol, i.e.

skv = xv
$← Z∗

Nv
and pkv = (Nv, ev, Xv) , where Xv = xev

v .

• SKeyGen, Sign and PVer are defined as in RSA-FDH signature, i.e.

sks = d, pks = (Ns, es) , and σ = H1 (m)d
.

• To designate, the signature-holder calculates the DV-signature as follows:

σ̂ ← SoK {(σ ∨ xv) : σes = H1 (m) mod Ns , xev
v = Xv mod Nv} ,

which stands for the following computations:

ys
$← Z∗

Ns
, Cmts

Ns← yes
s

Chlv
$← {0, 1}`(k)

, Rspv
$← Z∗

Nv
, Cmtv

Nv← Rspev
v /XChlv

v

Chl← H2 (pks, pkv,H1 (m) , Cmts, Cmtv)

Chls
2`(k)

← Chl − Chlv, Rsps
Ns← ys · σChls

σ̂ ← ((Cmts, Cmtv) , (Chls, Chlv, Rsps, Rspv))

• To verify the designated signature, one checks if all the following equations hold

Cmts =
Rspes

s

H1 (m)Chls
and Cmtv =

Rspev
v

XChlv
v

and Chls + Chlv = H2 (pks, pkv,H1 (m) , Cmts, Cmtv) .

F More on Proofs of Disjunctive Knowledge

Using the canonical form, the Σ protocol for proof of knowledge of Sec1 or Sec2 corresponding to Pub =
(Pub1, Pub2) can be constructed as in Figure 9, assuming wlog. that the prover knows Sec1.

Algorithm Cmt (Sec1, Pub)
(St1, Cmt1)← Cmt1 (Sec1, Pub1)
(Cmt2, Chl2, Rsp2)← TrSim2 (Pub2)
StP ← (St1, Chl2, Rsp2)
Cmt← (Cmt1, Cmt2)
return (StP, Cmt) Cmt

−−−�
Chl

$← ChSpChl
�−−−

Algorithm Rsp (StP, Chl)
Chl1 ← Chl − Chl2
Rsp1 ← Rsp1 (St1, Chl1)
Rsp← (Chl1, Chl2, Rsp1, Rsp2)
return Rsp

Rsp
−−−�

Algorithm Dcd (Pub, Cmt, Chl,Rsp)
d0 ← (Chl = Chl1 + Chl2)
d1 ← Dcd1 (Cmt1, Chl1, Rsp1)
d2 ← Dcd2 (Cmt2, Chl2, Rsp2)
d← d0 ∧ d1 ∧ d2

return d

Figure 9: A canonical Σ protocol for proof of disjunctive knowledge

One can easily see that both HVZK and SpS properties are inherited by the constructed proof of disjunctive
knowledge. The algorithms for transcript simulation and secret extraction for the protocol in Figure 9 can be
constructed as in Figure 10. Again, we assume that Tr and Tr′ are such that Cmt = Cmt′ (i.e. (Cmt1, Cmt2) =

33

Algorithm TrSim (Pub)
(Cmt1, Chl1, Rsp1)← TrSim1 (Pub1)
(Cmt2, Chl2, Rsp2)← TrSim2 (Pub2)
Cmt← (Cmt1, Cmt2)
Chl← Chl1 + Chl2
Rsp← (Chl1, Chl2, Rsp1, Rsp2)
Tr ← (Cmt, Chl, Rsp)
return Tr

Algorithm Ext (Pub, Tr, Tr′)
Tr1 ← (Cmt1, Chl1, Rsp1)
Tr′1 ← (Cmt′1, Chl′1, Rsp′1)
Tr2 ← (Cmt2, Chl2, Rsp2)
Tr′2 ← (Cmt′2, Chl′2, Rsp′2)
if Chl1 6= Chl′1 then

Sec1 ← Ext1 (Pub1, T r1, T r′1)
if Chl2 6= Chl′2 then

Sec2 ← Ext2 (Pub2, T r2, T r′2)
return (Sec1, Sec2)

Figure 10: Transcript simulation and extraction algorithms for the construction in Figure 9

(Cmt′1, Cmt′2)) but Chl 6= Chl′. Note that assuming Chl 6= Chl′ implies that at least one of the conditions in
the extraction algorithm in Figure 10 is correct, thus at least one of the secrets are successfully extracted.

The GQ and Schnorr protocols are respectively for proof of knowledge of RSA roots and discrete logarithms.
Following the above convention, we show a GQ protocol for proof of knowledge of the eth RSA root x of X mod
N by

PoK {x : xe = X mod N} ,

in which Sec = x and Pub = (N, e,X). Furthermore, a Schnorr protocol for proof of knowledge of the discrete
logarithm x of X in base g and mod p can be denoted by

PoK {x : gx = X mod p} ,

in which Sec = x and Pub = (p, g, X).

Cramer et al’s results can be applied to both the GQ and the Schnorr protocols for proving RSA roots and
discrete logarithms, respectively. This means that a WI proof of disjunctive knowledge of two RSA roots, i.e.

PoK {(x1 ∨ x2) : xe1
1 = X1 mod N1 , xe2

2 = X2 mod N2 } ,

or a WI proof of disjunctive knowledge of two discrete logarithms, i.e.

PoK {(x1 ∨ x2) : gx1
1 = X1 mod p1 , gx2

2 = X2 mod p2 } ,

can be constructed.

As also remarked by Cramer et al. [CDS94, as a remark on the main theorem], one can observe that their results
will still hold even if different protocols are mixed and matched together as long as their respective challenge
spaces are the same (and possibly even if they are different). Witness indistinguishability, honest-verifier zero
knowledge property, and special soundness property for the resulting construction can be proved using similar
techniques to Cramer et al’s proofs. Thus, as an example, a WI proof of knowledge of a discrete logarithm or
an RSA root, i.e.

PoK {(x1 ∨ x2) : xe
1 = X1 mod N , gx2 = X2 mod p }

can be constructed as well. Note that both GQ and Schnorr protcols have the same challenge space.

Example Proving knowledge of an x1 s.t. xe
1 = X1 mod N or an x2 s.t. gx2 = X2 mod p, i.e.

PoK {(x1 ∨ x2) : xe
1 = X1 mod N , gx2 = X2 mod p }

can be constructed as follows. The public keys of the two systems are denoted by pk1 = (N, e,X1) and pk2 =
(p, g, X2). There are, of course, two different descriptions of the prover’s algorithm, based on whether P knows
x1 or x2. Let us define pk = (pk1, pk2). In the following, we give the two descriptions:

34

1. description for the case where P knows x1:

Algorithm Cmt (x1, pk)

y1
$← Z∗

N , Cmt1
N← ye

1

Chl2
$← {0, 1}`(k)

, Rsp2
$← Zp

Cmt2
p← gRsp2/XChl2

2

Cmt← (Cmt1, Cmt2)
StP ← ((x1, y1, N) , Chl2, Rsp2)
return (StP, Cmt)

Algorithm Rsp (StP, Chl)

Chl1
2`(k)

← Chl − Chl2

Rsp1
N← y1 · xChl1

1

Rsp← (Chl1, Chl2, Rsp1, Rsp2)
return Rsp

Cmt
−−−�

Chl
�−−−

Rsp
−−−�

Algorithm Chl (pk, Cmt)

Chl
$← {0, 1}`(k)

StV ← (pk, Cmt,Chl)
return (StV, Chl)

Algorithm Dcd (StV, Rsp)

d0 ← (Chl
2`(k)

= Chl1 + Chl2)
d1 ← (Rspe

1
N= Cmt1 ·XChl1

1)
d2 ← (gRsp2

p
= Cmt2 ·XChl2

2)
d← d0 ∧ d1 ∧ d2

return d

2. description for the case where P knows x2:

Algorithm Cmt (x2, pk)

Chl1
$← {0, 1}`(k)

, Rsp1
$← Z∗

N

Cmt1
N← Rspe

1/XChl1
1

y2
$← Zp, Cmt2

p← gy2

Cmt← (Cmt1, Cmt2)
StP ← (Chl1, Rsp1, (x2, y2, p))
return (StP, Cmt)

Algorithm Rsp (StP, Chl)

Chl2
2`(k)

← Chl − Chl1
Rsp2

p← y2 + Chl2 · x2

Rsp← (Chl1, Chl2, Rsp1, Rsp2)
return Rsp

Cmt
−−−�

Chl
�−−−

Rsp
−−−�

Algorithm Chl (pk, Cmt)

Chl
$← {0, 1}`(k)

StV ← (pk, Cmt,Chl)
return (StV, Chl)

Algorithm Dcd (StV, Rsp)

d0 ← (Chl
2`(k)

= Chl1 + Chl2)
d1 ← (Rspe

1
N= Cmt1 ·XChl1

1)
d2 ← (gRsp2

p
= Cmt2 ·XChl2

2)
d← d0 ∧ d1 ∧ d2

return d

As one can see, the verifiers’ sides of the protocols are the same. In fact, from the verifier’s perspective, both
protocols are the same and he cannot find out if the prover knows x1 or x2.

G Bellare and Neven’s General Forking Lemma

Lemma 3 Let q ≥ 1 and H be a set such that |H| ≥ 2. Let A be a randomized algorithm that has two outputs,
the first of which is an integer in {0, 1, . . . , q}. Let also Coins be the set of all possible coins for A. We define
the accepting probability of A with respect to an input generator IG as follows

acc
4
= Pr

[
J ≥ 1 : x← IG;h1, . . . , hq

$← H; (J, σ)← A (x, h1, . . . , hq)
]

.

35

The forker FA is defined as follows

Algorithm FA (x)

ρ
$← Coins; h1, . . . , hq

$← H
(J, σ)← A (x, h1, . . . , hq; ρ)
if J = 0 then return (0, ε, ε)

h′J , . . . , h′q
$← H

(J ′, σ′)← A
(
x, h1, . . . , hJ−1, h

′
J , . . . , h′q; ρ

)
if (J = J ′ and hJ 6= h′J) then return (1, σ, σ′)
else return (0, ε, ε)

We also define the success probability of the forker FA with respect to an input generator IG as follows

frk
4
= Pr [b ≥ 1 : x← IG; (b, σ, σ′)← FA (x)] .

Then we have

frk ≥ acc ·
(

acc

q
− 1
|H|

)
.

36

	Introduction
	Related Work

	Preliminaries
	Notation
	Proofs of Knowledge
	Proofs of Disjunctive Knowledge
	The Fiat-Shamir Transform
	On Public-Private Key Pairs

	Defining the Class C of Signatures
	Universal Designated Verifier Signatures
	Definition
	Security
	Construction of UDVS Schemes from Standard Signatures
	Security Analysis for the Construction
	Further Constructions
	Comparison

	Identity-based Signatures
	Definition and Security
	Generic Construction of IBS and Its Security
	Further Constructions

	Concluding Remarks
	Proof of Theorem 1
	Proof Sketch of Theorem 4
	More on Classes K and C
	Some Key Types in the Class K
	On Simulatability of Signature Schemes
	Some Signatures in the Class C

	Formal Definition of Security for UDVS and IBS Schemes
	Example GUDVS Construction
	More on Proofs of Disjunctive Knowledge
	Bellare and Neven's General Forking Lemma

