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Abstract

Nowadays, investigating what construction is better to be a crypto-
graphic hash function is red hot. In [13], Maurer et al. first introduced
the notion of indifferentiability as a generalization of the concept of
the indistinguishability of two cryptosystems. At ASIACRYPT’06,
Chang et al. [6] analyzed the indifferentiability security of some popu-
lar block-cipher-based hash functions, such as PGV constructions and
MDC-2. In this paper, we investigate Chang et al.’s analysis of PGV
constructions and the PBGV double block length constructions. In
particular, we point out a more precise adversarial advantage of indif-
ferentiability, by considering the two situations that whether the hash
function is either keyed or not. Furthermore, Chang et al.[6] designed
attacks on 4 PGV hash functions and PBGV hash function to prove
they are differentiable from random oracle with prefix-free padding.
We find a limitation in their differentiable attacks and construct our
simulations to obtain the controversy results that those schemes are
indifferentiable from random oracle with prefix-free padding and some
other popular constructions.

1 Introduction

Block-Cipher-Based Hash Function Hash functions are a cryptographic
primitive in the design of schemes to provide a unique ”fingerprint” on a cer-
tain information. If hash functions receive some additional properties, they
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can make schemes more secure and efficient. In practice, one-wayness prop-
erty and collision-resistance property are two fundamental conditions for a
hash function can be implemented. The cryptoanalysis of a hash function
construction is used to basing on the statistical analysis to check whether it
preserves the secure conditions. Many articles have discussed those general
aspects of how to construct hash functions. Instructive examples can be
found in [8, 14].

Cryptoanalysis on hash functions has been focussed on the question:
what conditions should be imposed on f to guarantee that h satisfies certain
properties? It is obvious that weakness of f will affect the security of h, but
the converse does not hold in general. An accomplished assessing standard
is checking whether a CRHF or OWHF can be derived from an ideal fixed
size compression function or an ideal block cipher.

In practice, most of hash functions are either explicitly based on block-
cipher for [24, 12] or implicitly as in SHA-1[16]. Preneel et al.[19] proposed
64 kinds of constructions to build up a hash function H : {0, 1}∗ → {0, 1}n

from a compression function f : {0, 1}n×{0, 1}k → {0, 1}n by using a block
cipher E : {0, 1}k×{0, 1}l → {0, 1}l. They regards 12 out of 64 schemes (We
denote these 12 schemes by PGV-Group 1) as secure, besides the remaining
52 schemes were shown to be not collision resistant or preimage resistant.
Recently, Black, Rogaway and Shrimption [3] proved that in a black box
model, the 12 schemes are really secure. Furthermore, they showed that an
additional 8 of the 52 remaining schemes are collision resistant as the first 12
schemes (We will call these 8 schemes as PGV-Group 2), which are classified
as backward-attackable (potential but not serious) in [19].

Random Oracle Model Random oracle methodology was proposed by
Bellare and Rogaway in [1], which is quickly wide-used because the schemes
design under such model would be more efficient and practical while compare
to the standard model ones. In most applications, random oracle is an oracle
that anybody can query but no one has control over. This is according to
a completely valid application of the random oracle (as explained in [1]).
Then in some proofs, random oracle is considered to be under control of a
simulator. The simulator can listen to any query made to the oracle, so he
knows what queries were asked. Yet he has no control over the output, so
the oracle still remains a truly random oracle[10]. Finally in some proofs,
random oracle is considered to be under complete control of a simulator.
The simulator can actually manipulate the answers the oracle gives, as long
as the result is indistinguishable from a random oracle[4].

Since random oracle performs quite like hash function, people is sug-
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gested to replace random oracle in their schemes with a ”secure” dedicated
hash function, such as SHA-1, SHA-256, etc. In variant applications, the re-
quirements impose on the hash function are also different. E.g., in authority
implementations, hash functions are always used to store manipulation de-
tective code (MDC) corresponding to the password, instead of the password
itself, which implies that one-wayness is sufficient. But in digital signa-
ture schemes, hash functions must be collision-resistance, since two distinct
messages have the same hash value allows forgery and repudiation. Formal
construction of hash functions totally focus on the statistical cryptanalysis
to make the proof of the security. One has to be careful with the selection of
the hash function, because a specific vulnerability will be found in between
the digital signature scheme and the hash function[5, 17]. Since we can prove
such scheme is secure in random oracle model, this back to the efforts that
how can we design an ideal hash function same as random oracle.

Indifferentiability Methodology Research on how to instantiate the ran-
dom oracle with a certain hash function has been a hot argumentation in
recent years. Many valuable references on this problem could not be indi-
cated at a specific location: [9, 11, 15]. The problem has been focussed on
the question: what conditions should be imposed on the round function F
to make sure that the transform CF satisfies the certain conditions of the
random oracle. This approach is based on the fact that one of the problems
in assessing the security of a hash function is caused by the arbitrary size of
input. It is clear that the weakness of F will generally result in weakness of
CF , but the converse does not hold in general. The main problem is to derive
such that sufficient conditions. In [13], Maurer et al. first provide a term
”indifferentiability” and a formal model to ”distinguish” whether a given
construction has any different from a heuristic random oracle. Informally,
indifferentiability methodology is a white-box analysis that be restrictive
to investigate all of the internal interfaces in the construction, while indis-
tinguishability methodology is just a black-box analysis which ignores the
internal.

Recently, Coron et al.[7] first implemented the notion of indifferentia-
bility for analysis of some classical hash constructions. They proved that
plain Merkle-Damgard hash function is differentiable with random oracle,
and show MD hash functions will be indifferentiable under the prefix-free,
HMAC/NMAC and Chop constructions. Following Coron et al.’s initial
work, Chang et al.[6] continued this suggestion and analyzed the indifferen-
tiability in some block-cipher-based hash functions with prefix-free padding,
especially in PGV hash functions. They claimed that there are 16 out of
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20 collision-resistant PGV hash functions are indifferentiable from random
oracle in the ideal cipher model, while the remains 4 schemes are not. And
they also gave an differentiable attack on the PBGV double block length
hash function[18].

Some Missing Results The authors of [6] only focused on collision-free
event, not all of the security events on hash function, e.g., preimage attack,
second preimage attack, etc. Sepcifically, they only analyzed the situation
in unkeyed mode of hash functions. Since keyed hash functions are receiving
more and more attention, after the genius attacks were found by Wang et
al. in dedicated-key hash functions, such as MD4, MD5 and SHA-1[22, 23].
The indifferentiability security analysis of keyed hash function becomes both
practically and theoretically significant. Prior to the current work, we are
unaware of any indifferentiability advantage analysis for the keyed hash func-
tions based on any block-cipher. We begin by giving a more suitable defini-
tion of adversary in block-cipher-based hash functions and then proposing
the advantage of differentiable attackers in either keyed or unkeyed mode to
strengthen the result. Moreover, Chang et al.[6] also showed a differentiable
attack on 4 out of 20 PGV hash functions and PBGV hash function. They
said the attacks is not only valid in one-block padded message, but also
similar to multi-block message. But we find a flaw in their attacks, which
limits their attacks only works in the one-block mode. As the main contri-
bution of this paper, we give our simulations to prove that those schemes
are indifferentiable from random oracle with prefix-free padding and some
other popular constructions.

Organization The remainder of this paper is organized as follows. In Sec-
tion 2, we provide some necessary definitions on block-cipher-based hash
functions and indifferentiability methodology for our security analysis. Then
in Section 3, first we propose an more exact analysis of adversary’s advan-
tage in indifferentiability. After that, we present our security analysis on
the four PGV hash functions and PBGV double block length hash function.
Section 4 give a conclusion.

2 Preliminary

Here we provide those main notions and definitions that will be used through-
out the paper. The same terminology and abbreviations in different defini-
tions are the same meaning, except there are special claims in the context.
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2.1 Ideal Cipher Model

Ideal cipher model is the formal model for the security analysis of block-
cipher-based hash functions, which is dating back to Shannon [21] and widely
used, e.g., in [12, 19]. Let Bloc(K,X) = E : K ×X → X be a family of
trapdoor permutation, where E(ki, ·), ki ∈ K (Eki

(·) for short) denotes an
instance of the family. An adversary can query two oracles: E and its
inversion E−1. Thus, we define the i-th query-response qi is a four-tuple

qi = (σi, ki, xi, yi).

If σi = 1 then adversary inputs (ki, xi) and gets response yi = Eki
(xi),

otherwise inputs (ki, yi) and gets answer xi = E−1
ki

(yi). In generally, Ek(·)
is a trapdoor permutation that Pr[Ek(x) = y] = 1

/ |X| and for different k,
e.g., Ek1(·), · · · , Eki

(·) have independently uniform distributions. See [3] for
more details about ideal cipher model.

2.2 Definitions for Indifferentiability Security Analysis

We now recall the definitions for indifferentiability security analysis [13].

Definition 2.1 A Turing machine C with oracle access to an ideal primitive
F is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive Rand if
there exists a simulator S, such that for any distinguisher D it holds the
advantage of indifferentiability that:

Adv(D) = |Pr[DC,F = 1]− Pr[DRand,S = 1]| < ε,

where S has oracle access to Rand and runs in polynomial time at most tS,
and D runs in polynomial time at most tD and makes at most q queries. CF
is said to be (computationally) indifferentiable from Rand if ε is a negligible
function of the security parameter k (in polynomial time tD and tS).

It is showed in [13] that if CF is indifferentiable from Rand, then CF
can replace Rand in any cryptosystem, and the resulting cryptosystem is
at least as secure in the F model as in the Rand model. For example, if
a block-cipher based iterative hash function CF is indifferentiable from a
random oracle Rand in the ideal cipher model, then CF can replace Rand

5



in any cryptosystem, while keep the resulting system (with CF ) remaining
secure in the ideal cipher model if the original system (with Rand) is secure
in the random oracle model.

In the rest of the paper, the Turing Machine C will denote the construc-
tion of an iterative hash function. The ideal primitive F will represent the
underlying iterative function. E denotes the block cipher used in the iter-
ative function and E−1 denotes the corresponding inverse operation. Since
we focus on block-cipher-based hash functions in case of the ideal cipher
model, S has to simulate both E and E−1.

Therefore, every distinguisher D obtain the following rules: either the
block-cipher E, E−1 is chosen at random and the hash function H is con-
structed from it, or the hash function H is chosen at random and the block-
cipher E, E−1 is implemented by a simulator S with oracle access to H.
Those two ways to build up a hash function should be indistinguishable.

2.3 Adversary in Block-cipher-based Hash Functions

For indifferentiability security analysis of block-cipher-based hash functions,
we need to formally define the adversary in the indifferentiability model.
Chang et al. [6] proposed a definition of the adversary in the random oracle
model (attack hash functions based on one-way compression function). We
propose our modifications to make it more suitable for block-cipher-based
hash functions.

Let D be a distinguisher in the indifferentiable attack. D can access
two oracles. One is O1 = (H, E, E−1), the other is O2 = (Rand, S, S−1). H

denotes iterative hash function based on block-cipher E. Let ri ← (IV
M−→

hi) be the i-th query to O1, where M ∈ M. Let rj ← (hi
m−→ hj) be the

j-th to O2. Let Ri = (r1, · · · , ri) be the query-response set after ith query.
Pad(·) denotes scheme’s padding rule. Let M = m0||m1|| · · · ‖|mi, where ||
denotes the concatenation operation. In fact, IV

M−→ hi can be represented
by h0

m0−→ h1 · · · mi−→ hi

In [6], Chang et al. only defined one kind of distinguisher’s query. It
is not sufficient for block-cipher-based hash functions since the query for
H, Rand is quite different from the query for E, E−1, S, S−1. The H, Rand
query inputs an arbitrary length message and the response is a fixed length
hash value, while the E, E−1, S, S−1 query is a plain-text or cipher-text in
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fixed block length and the output is the corresponding cipher-text or plain
text, respectively. Here we give a complete definition for the both cases.

• Query on (E, E−1, S, S−1):

1. For i-th query on (E, S), distinguisherD inputs Qi = (1, hi−1,mi)
and the response is hi = Ehi−1

(mi) or S(hi−1,mi). Here mi ∈M
is fixed one block length, where M denotes message space.

2. For j-th query on E−1, S−1, adversary’s query is Qi = (−1, hi−1, ci)
and the response is mi = E−1

hi−1
(ci) or S−1(hi−1, ci). Let Ri =

Ri−1 ∪ (hi−1
mi−→ hi). We denote R = (R1, R2, · · · , Rq) be the

complete view after the maximum q queries. According to the
transitive and substitute properties of Qi, the functional closure
set R∗ = (R∗

1, · · · , R∗
q) will be the complete view of distinguisher

D.

• Query on (H, Rand): For i-th query on H, Rand, distinguisher D
can select an arbitrary length message Q′

i = Mi ∈ M as input. Thus
the query on keyed hash functions will be Q′

i = (ki,Mi). The response
of H, Rand is hi = H(Mi) or S(Mi)hi ∈ Y , where Y is the range
of the oracles. Let Q′

i be the i-th query. For brevity, R′
i = R′

i−1 ∪
(IV

Mi−→ hi) denotes the functional closure set after i-th query. Let
R′ = (R′

1, R
′
2, · · · , R′

q) be the complete view after the maximum q
queries.

In a simulation game, we will ignore all the repetition query i.e. Ri =
Rj or R′

i = R′
j for some j < i. For simplicity, we can assume there is

no such trivial query since it does not help distinguisher as the view of
indifferentiability.

3 Security analysis on some popular hash func-
tions

In this section, we point out our indifferentiability advantage analysis on
block-cipher-based hash functions. And then we give our indifferentiability
security analysis on 4 out of 20 PGV hash functions and PBGV double block
length hash function.
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3.1 Advantage of Indifferentiability

The original analysis given by Chang et al. [6] just covered the situation of
collision event. By considering the high-level classification that whether the
hash function is either keyed or not, we take all the differentiable events in
consideration to achieve a more precise adversarial advantage of indifferen-
tiability.

First, we describe the situation in unkeyed hash functions. To give a ex-
act probability analysis, we must carefully consider all the events that will af-
fect the advantage of distinguisher D. Let Bad be the indifferentiable event
of the distinguisher D for iterative hash functions. We assume (H, E,E−1)
and (Rand, S, S−1) are identically distributed conditioned on the past view
of the distinguisher and Bad does not occur. Since iterative hash function
can easily resist extension attack by length padding technique, we will ignore
this event by implicitly using the padding in our discussion. If a hash con-
struction already used a padding rule, then we will combine length padding
technique with the given rule without special description. For brevity, we
denote the event DH,E,E−1

= 1 by D1 and the event DRand,S,S−1
= 1 by D2.

Let Badi, i ∈ {1, 2} denotes the indifferentiable event for O1 = (H, E,E−1)
and O2 = (Rand, S, S−1), respectively. The function Max(·, ·) returns the
biggest value of inputs. If D is a distinguisher then we write Adv(D) as a
measure of the maximal differentiable advantage overall distinguishers D.
The advantage of the indifferentiability of (H, E, E−1) with (Rand, S, S−1)
is as follows

Adv(D) = |Pr[DH,F,F−1
= 1]− Pr[DRand,S,S−1

= 1]|
= |(Pr[D1 ∩Bad1] + Pr[D1 ∩ ¬Bad1])
− (Pr[D2 ∩Bad2] + Pr[D2 ∩ ¬Bad2])|

= |(Pr[D1|Bad1]× Pr[Bad1]− Pr[D2|Bad2]× Pr[Bad2])
+ (Pr[D1|¬Bad1]× Pr[¬Bad1]− Pr[D2|¬Bad2]× Pr[¬Bad2])|

≤ Max(Pr[Bad1], P r[Bad2]])× |Pr[D1|Bad1]− Pr[D2|Bad2]|
+ |Pr[D1|¬Bad1]× Pr[¬Bad1]− Pr[D2|¬Bad2]× Pr[Bad2]|

≤ Max(Pr[Bad1], P r[Bad2]]) + Pr[D1|¬Bad1]×Max(Pr[Bad1], P r[Bad2])
= 2×Max(Pr[Bad1], P r[Bad2]]).

Then we analyze the differentiable event Bad in hash functions. For un-
keyed hash function, the security properties include collision resistance, sec-
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ondary preimage and preimage. Because collision resistance(CR for short)
implies second-preimage resistance(Sec for short), while separates from preim-
age resistance(Pre for short), then the differentiable event

Bad = {CR,Pre}.

For keyed hash functions, there are more security properties need to be
considered. Besides the standard three of CR, Pre and Sec, there are four
always and everywhere variants (aSec, eSec, aPre and ePre) for keyed hash
functions. According to the conclusion of implications and separations for
keyed hash functions, the differentiable event of keyed hash functions will
be

Badkey = {CR, eSec, aPre, ePre}.

For brevity, We ignore the description of those security definitions and
the proof of the implications and separations here, see [14, 20] for more
details.

3.2 Different Result on Chang et al.’s Attack on Some Block-
Cipher-Based Hash Functions

In [6], Chang et al. showed a differentiable attack on four PGV hash func-
tions and PBGV hash function. They said such attack is not only works
with one-block padded message, but also more than one block. We find a
limitation in their attack, which exposed their attack only works in the one-
block mode. Then we construct our simulations to prove that those schemes
are indifferentiable from random oracle with prefix-free padding and some
other popular constructions.

3.3 The Four PGV Hash Functions

To prove their result, Chang et al. gave an indifferentiable attack on the
four PGV hash functions. The four schemes are Ehi−1

(mi)⊕mi (PGV −17),
Ehi−1

(mi⊕hi−1)⊕mi⊕hi−1(PGV −18), Ehi−1
(mi)⊕mi⊕hi−1(PGV −19),

Ehi−1
(mi⊕hi−1)⊕mi(PGV − 20).They claimed that the attack is based on

one-block padded message, which is easily extended to more than one block.
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We give our analysis that their attack is not feasible in the multi-block mode.
And then we prove the four PGV hash functions are indifferentiable from
random oracle with prefix-free padding. First we recall Chang et al.’s attack
on PGV − 17 in Fig 3.1.

Distinguisher D can access to oracles (O1,O2) where O1 = (H, E,E−1)
and O2 = (Rand,S,S−1).

1. Select a message M such that g(M) = m and |m| = n, then make
the query M to H and receive z.

2. make an inverse query (−1, hi−1, z ⊕ m) to S−1 and receive m∗,
where hi−1 = h0 = IV

3. if m = m∗ output 1, otherwise output 0.

Fig 3.1 Chang et al.’s attack on PGV − 17.

Since any simulator S can return m∗ = m only with probability 2−n, it
is obviously differentiable from random oracle. We see the attack can only
works when hi−1 = h0 = IV , consequently the result is correct only in one
block mode. The situation will be quite different while works with padding
rules, such as prefix-free or NMAC, etc. In prefix-free mode, z⊕m will equal
to Ehi−1

(mi) and there are no messages shorter than two block in (H, Rand)-
query. Because distinguisher D only knows H(M) = z (interior value hi−1 is
unknown), D cannot make inverse query (−1, hi−1, z ⊕m) if hi−1 6∈ R∗. So
the attack cannot work in multi-block message mode, which means Chang
et al.’s differentiable attack is only feasible in one-block message mode. It
is easily to verify the differentiable attack on PBGV hash function fails in
multi-block message similarly. If D has asked the internal value hi−1 before,
then S can track it from the relation closure R.

Now we will give our simulation to show the above 4 PGV hash functions
are indifferentiable from random oracle in the prefix-free mode. Let Pad(·)
denote the padding algorithm. We can assume distinguisher D never make
a repetition query since it does not help anything.

• Rand-Query. For Rand-query Q′
i, If Q′

i is a repetition query, then
retrieves hj where Q′

i ∈ R′
j . Else Rand returns hi = Rand(Mi) and

updates R′
i = R′

i−1 ∪ {IV
Mi−→ hi}.
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• (S,S−1)-Query. Like the previous simulator, our simulator S also
keeps the relations R = (R1, · · · , Ri−1). Initially, R0 = ∅. To answer
distinguisher D’s encrypt or decrypt query, the response of S is as
follow:

1. On S query (1, hi−1,mi),

(a) If ∃IV
M−→ hi−1 ∈ Ri−1 and Pad(M) = mi, then run

Rand(M) and obtain the response hi, update Ri = Ri−1 ∪
{hi−1

mi−→ hi}, then return hi ⊕mi.

(b) Else select a random value hi, Ri = Ri−1 ∪ {hi−1
mi−→ hi},

then return hi ⊕mi.

2. On S−1 query (−1, hi−1, ci),

(a) If ∃IV
M−→ hi−1 ∈ Ri−1, then run Rand(M) and obtain

the response hi. Check if ci = hi ⊕ Pad(M), then update

Ri = Ri−1 ∪ {hi−1
Pad(M)−→ hi} and return mi = Pad(M).

(b) Else randomly select a message mi ∈M, updateRi = Ri−1∪
{hi−1

mi−→ ci ⊕mi} and return mi.

We notice that on S−1 query, there is a probability that distinguisher
D’s query ci is a valid cipher-text on the key hi−1 while hi−1 has been
never queried. Because q is the maximum times of oracle access and l is
the maximum length of a query made by D, the probability that the above
event occurs is is equal to Pr[Pre2] = l ·O( q

2n ). In the worst case, simulator

S has to track at most l × O(q) to check if ∃IV
M−→ hi−1. By convention,

the running time is actual worst case running time of D.

Lemma 1 In PGV−17 hash functions with prefix-free padding, Pr[Bad1] =
2−n+1 · O(q2) and Pr[Bad2] = 2−n+1 · l2 · O(q2), where l is the maximum
number of length in a hash query.

Proof.Assume there are no repetition query. Thus, in case of O1, there are
q queries and the probability is

Pr[Bad1] = 2×max{Pr[CR1], P r[Pre1]} = 2× Pr[CR1] = 2−n+1 ·O(q2).
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Prefix-free MD(IV,M) NMAC Construction (IV,M)
M = m1|| · · · ||mi, h0 = IV M = m1|| · · · ||mi, h0 = IV
For i = 1 to i do hi = F (PFPad(mi), hi−1) For i = 1 to i do hi = F (mi, hi−1)
Return hi Return g(hi)
Pad(·) is a Prefix-free padding function g(·) is a random permutation
HMAC Construction (IV, M) Chop Construction (IV,M)
M = m1|| · · · ||mi, h0 = IV M = m1|| · · · ||mi, h0 = IV
For i = 1 to i do hi = F (mi, hi−1) For i = 1 to i do hi = F (mi, hi−1)
Return hi+1 = F (hi, IV ) Return Chop(hi)

Fig 3.2 Definitions of the four MD variants proposed in [7]. We notice that

string IV is fixed initialization vector. M is arbitrary message in the space M.

PFPad(mj) returns 1||mj if mj is the last block, else returns 0||mj . g(x), x ∈ {0, 1}n is

a random permutation in {0, 1}n.

In case ofO2, the total number of choices is l×q, where l is the maximum
number of length in a hash query. Similarly, the probability is

Pr[Bad2] = 2×max{Pr[CR2], P r[Pre2]} = 2×Pr[CR2] = 2−n+1 ·l2 ·O(q2).

According to previous lemma, we have the following theorem of our
result.

Theorem 1 Prefix-free PGV-17 hash functions in ideal cipher model is
(tD, tS , q, ε)-indifferentiable form a random oracle. For any distinguisher
D in polynomial time bound td and ts = l · O(q), the advantage will be
ε = 2−n+1 · l2 ·O(q2), where l is the maximum length of a query made by D.

Proof. The results are obvious from the above analysis, so we skip the
proof here.¤

By using the similar method we can find PGV −18, PGV −19, PGV −20
are also indifferentiable from random oracle in prefix-free mode. It is easily
to extend the same results in NMAC, HMAC and Chop constructions.

Theorem 2 Prefix-free Group-2 hash functions in ideal cipher model is
(tD, tS , q, ε)-indifferentiable form a random oracle. For any distinguisher
D in polynomial time bound tD and tS = l · O(q), the advantage will be
ε = 2−n+1 · l2 ·O(q2), where l is the maximum length of a query made by D.
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Theorem 3 HMAC/NMAC Group-2 hash functions in ideal cipher model
is (tD, tS , q, ε)-indifferentiable form a random oracle. For any distinguisher
D in polynomial time bound tD and tS = l · O(q), the advantage will be
ε = 2−n+1 · l2 ·O(q2), where l is the maximum length of a query made by D.

Theorem 4 Chop Group-2 hash functions in ideal cipher model is (tD, tS , q, ε)-
indifferentiable form a random oracle. For any distinguisher D in polynomial
time bound tD and tS = l ·O(q), the advantage will be ε = 2−n+1 · l2 ·O(q2),
where l is the maximum length of a query made by D.

3.4 The PBGV Hash Function

Similar to the (Group-2) PGV hash fucntions, Chang et al.’s differentiable
attack on the PBGV hash fucntion is also infeasible in multi-block message
mode. Here We give our indifferentiability analysis on the PBGV hash
function. The PBGV scheme is a double block length hash function proposed
in [18]. Let IV = h0||g0 be initialization vetors. E denotes a block cipher
with {0, 1}n × {0, 1}k → {0, 1}n. The PBGV hash function takes l · 2k-bit
message M = (m1,m2, · · · ,ml) (where mi = mi,1||mi,2, |mi,1| = |mi,2| = k)
and IV as inputs. For i = 1 to l, the PBGV hash fuction H : H(M) = hl||gl

is defined as follows.

hi = Emi,1⊕mi,2(hi−1 ⊕ gi−1)⊕mi−1 ⊕ hi−1 ⊕ gi−1

gi = Emi,1⊕mi,2(hi−1 ⊕ gi−1)⊕mi−1 ⊕ hi−1 ⊕ gi−1

Now we give our simulation to prove the PBGV hash function with
prefix-free padding is also indifferentiable from random oracle. Let dis-
tinguisher D can access to oracles (O1,O2) where O1 = (H, E, E−1) and
O2 = (Rand,S,S−1)

• Rand-Query. For Rand-query Q′
i, If Q′

i is a repetition query, then
Rand retrieves hj where Q′

i ∈ R′
j . Else Rand returns (hi, gi) ←

Rand(Mi) and updates R′
i = R′

i−1 ∪ {IV
Mi−→ (hi, gi)}.

• (S,S−1)-Query. Like the previous simulator, our simulator S also
keeps the relations R = (R1, · · · , Ri−1). Initially, R0 = ∅. To answer
distinguisher D’s query, the response of S is as follow:
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1. On S query (1, xi, yi),

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ Ri−1, first compute Pad(M) =

mi = mi,1||mi,2, then:
i. If xi = mi,1 ⊕ mi,2 and yi = hi−1 ⊕ gi−1, then run

Rand(M) and obtain the response (hi, gi), update Ri =
Ri−1∪{(hi−1, gi−1)

mi−→ (hi, gi)} and return hi⊕mi,1⊕yi.
ii. Else If xi = mi,1 ⊕ hi−1 and yi = mi,2 ⊕ gi−1, then run

Rand(M) and obtain the response (hi, gi), update Ri =
Ri−1∪{(hi−1, gi−1)

mi−→ (hi, gi)} and return gi⊕hi−1⊕yi.
(b) Else select (hi, gi, hi−1,mi,1) uniformly and randomly, com-

pute mi,2 = xi ⊕ mi,1 and gi−1 = yi ⊕ hi−1, update Ri =
Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}. Return hi ⊕mi,1 ⊕ yi.

2. On S−1 query (−1, xi, yi),

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ Ri−1, first compute Pad(M) =

mi = mi,1||mi,2, then:
i. If xi = mi,1 ⊕ mi,2, then run Rand(M) and obtain the

response (hi, gi). Check if yi = hi ⊕mi,1 ⊕ hi−1 ⊕ gi−1,
then update Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and
return hi−1 ⊕ gi−1.

ii. If xi = mi,1 ⊕ hi−1, then run Rand(M) and obtain the
response (hi, gi). Check if yi = gi ⊕mi,2 ⊕ hi−1 ⊕ gi−1,
then update Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and
return mi,2 ⊕ gi−1.

(b) Else choose (hi−1, gi−1,mi,1, gi) uniformly and randomly, com-
pute hi = yi ⊕mi,1 ⊕ hi−1 ⊕ gi−1 and mi,2 = xi ⊕mi,1, up-
date Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}. Then return
hi−1 ⊕ gi−1.

Similarly, we can obtain the following results by implementing the sim-
ulation.

Lemma 2 In PBGV double block length hash functions with prefix-free
padding, Pr[Bad1] = 2−2n+1 · O(q2) and Pr[Bad2] = 2−2n+1 · l2 · O(q2),
where l is the maximum number of length in a hash query.

Theorem 5 Prefix-free PBGV double block length hash functions in ideal
cipher model is (tD, tS , q, ε)-indifferentiable form a random oracle. For any
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distinguisher D in polynomial time bound tD and tS = 2l ·O(q), the advan-
tage will be ε = 2−2n+1 · l2 ·O(q2), where l is the maximum length of a query
made by D.

4 Conclusion

Since hash functions play a fundamental primitive in nearly all of the cryp-
tosystems, investigating how to design a better hash function is important.
In this paper, first we point out a more precise advantage of indifferentiabil-
ity, by considering the high level that whether the hash function is keyed or
not. Then we show a flaw in Chang et al.’s differentiable attack on 4 out of
20 PGV hash functions and PBGV hash function, and give our simulations
to prove those schemes with prefix-free are actually indifferentiable from
random oracle. The result shows all of 20 PGV hash functions that Black et
al. proved secure in [3] are indifferentiable from random oracle if we choose
Prefix-free, HMAC/NMAC and Chop constructions, and the same goes to
the PBGV double block length hash function. As the notion of indifferen-
tiability is a critical methodology to find the gap between hash function and
random oracle in a white-box investigation, there are still many kinds of
hash functions and padding rules are open in the view of indifferentiability
security analysis and our synthetic advantage boundary of distinguisher.
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